Properties

Label 210.3.w.a.17.3
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.49614 + 1.66411i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.84166 - 1.24831i) q^{5} +(4.01890 - 1.35957i) q^{6} +(-0.400482 - 6.98853i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(3.46146 - 8.30773i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.49614 + 1.66411i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.84166 - 1.24831i) q^{5} +(4.01890 - 1.35957i) q^{6} +(-0.400482 - 6.98853i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(3.46146 - 8.30773i) q^{9} +(6.15692 + 3.47740i) q^{10} +(4.21141 + 2.43146i) q^{11} +(-5.98756 + 0.386185i) q^{12} +(13.3745 + 13.3745i) q^{13} +(-2.01091 + 9.69310i) q^{14} +(14.1628 - 4.94111i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-25.3015 + 6.77952i) q^{17} +(-7.76928 + 10.0816i) q^{18} +(6.44901 + 11.1700i) q^{19} +(-7.13770 - 7.00381i) q^{20} +(12.6294 + 16.7779i) q^{21} +(-4.86292 - 4.86292i) q^{22} +(-5.04836 + 18.8407i) q^{23} +(8.32051 + 1.66406i) q^{24} +(21.8834 + 12.0878i) q^{25} +(-13.3745 - 23.1653i) q^{26} +(5.18469 + 26.4975i) q^{27} +(6.29488 - 12.5050i) q^{28} +41.0872 q^{29} +(-21.1553 + 1.56573i) q^{30} +(28.4108 + 16.4030i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-14.5585 + 0.938992i) q^{33} +37.0440 q^{34} +(-6.78488 + 34.3361i) q^{35} +(14.3031 - 10.9279i) q^{36} +(16.1378 - 60.2271i) q^{37} +(-4.72101 - 17.6190i) q^{38} +(-55.6413 - 11.1280i) q^{39} +(7.18670 + 12.1800i) q^{40} +50.2823 q^{41} +(-11.1109 - 27.5418i) q^{42} +(-39.5246 + 39.5246i) q^{43} +(4.86292 + 8.42282i) q^{44} +(-27.1299 + 35.9022i) q^{45} +(13.7924 - 23.8891i) q^{46} +(-0.928232 + 3.46421i) q^{47} +(-10.7569 - 5.31867i) q^{48} +(-48.6792 + 5.59756i) q^{49} +(-25.4689 - 24.5222i) q^{50} +(51.8743 - 59.0272i) q^{51} +(9.79081 + 36.5398i) q^{52} +(55.8602 - 14.9677i) q^{53} +(2.61634 - 38.0940i) q^{54} +(-17.3550 - 17.0295i) q^{55} +(-13.1761 + 14.7780i) q^{56} +(-34.6858 - 17.1501i) q^{57} +(-56.1262 - 15.0390i) q^{58} +(41.0549 + 23.7030i) q^{59} +(29.4718 + 5.60457i) q^{60} +(-58.7846 + 33.9393i) q^{61} +(-32.8059 - 32.8059i) q^{62} +(-59.4451 - 20.8634i) q^{63} +8.00000i q^{64} +(-48.0593 - 81.4504i) q^{65} +(20.2310 + 4.04610i) q^{66} +(40.3060 - 10.7999i) q^{67} +(-50.6030 - 13.5590i) q^{68} +(-18.7517 - 55.4302i) q^{69} +(21.8362 - 44.4205i) q^{70} +30.7646i q^{71} +(-23.5384 + 9.69253i) q^{72} +(52.4330 - 14.0494i) q^{73} +(-44.0893 + 76.3649i) q^{74} +(-74.7397 + 6.24356i) q^{75} +25.7961i q^{76} +(15.3057 - 30.4053i) q^{77} +(71.9343 + 35.5672i) q^{78} +(-26.6943 + 15.4119i) q^{79} +(-5.35905 - 19.2686i) q^{80} +(-57.0366 - 57.5137i) q^{81} +(-68.6869 - 18.4046i) q^{82} +(-43.6505 + 43.6505i) q^{83} +(5.09677 + 41.6896i) q^{84} +(130.964 - 1.23996i) q^{85} +(68.4587 - 39.5246i) q^{86} +(-102.560 + 68.3737i) q^{87} +(-3.55990 - 13.2857i) q^{88} +(-54.3696 + 31.3903i) q^{89} +(50.2012 - 39.1132i) q^{90} +(88.1119 - 98.8244i) q^{91} +(-27.5847 + 27.5847i) q^{92} +(-98.2137 + 6.33457i) q^{93} +(2.53598 - 4.39244i) q^{94} +(-17.2803 - 62.1319i) q^{95} +(12.7475 + 11.2027i) q^{96} +(16.7634 - 16.7634i) q^{97} +(68.5459 + 10.1714i) q^{98} +(34.7775 - 26.5708i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −2.49614 + 1.66411i −0.832048 + 0.554704i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −4.84166 1.24831i −0.968333 0.249663i
\(6\) 4.01890 1.35957i 0.669817 0.226595i
\(7\) −0.400482 6.98853i −0.0572117 0.998362i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 3.46146 8.30773i 0.384607 0.923081i
\(10\) 6.15692 + 3.47740i 0.615692 + 0.347740i
\(11\) 4.21141 + 2.43146i 0.382856 + 0.221042i 0.679060 0.734083i \(-0.262388\pi\)
−0.296204 + 0.955125i \(0.595721\pi\)
\(12\) −5.98756 + 0.386185i −0.498963 + 0.0321821i
\(13\) 13.3745 + 13.3745i 1.02881 + 1.02881i 0.999573 + 0.0292348i \(0.00930704\pi\)
0.0292348 + 0.999573i \(0.490693\pi\)
\(14\) −2.01091 + 9.69310i −0.143637 + 0.692364i
\(15\) 14.1628 4.94111i 0.944188 0.329407i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −25.3015 + 6.77952i −1.48832 + 0.398795i −0.909171 0.416424i \(-0.863283\pi\)
−0.579153 + 0.815219i \(0.696617\pi\)
\(18\) −7.76928 + 10.0816i −0.431627 + 0.560088i
\(19\) 6.44901 + 11.1700i 0.339422 + 0.587896i 0.984324 0.176369i \(-0.0564353\pi\)
−0.644902 + 0.764265i \(0.723102\pi\)
\(20\) −7.13770 7.00381i −0.356885 0.350190i
\(21\) 12.6294 + 16.7779i 0.601398 + 0.798949i
\(22\) −4.86292 4.86292i −0.221042 0.221042i
\(23\) −5.04836 + 18.8407i −0.219494 + 0.819162i 0.765042 + 0.643980i \(0.222718\pi\)
−0.984536 + 0.175182i \(0.943949\pi\)
\(24\) 8.32051 + 1.66406i 0.346688 + 0.0693359i
\(25\) 21.8834 + 12.0878i 0.875337 + 0.483513i
\(26\) −13.3745 23.1653i −0.514404 0.890973i
\(27\) 5.18469 + 26.4975i 0.192026 + 0.981390i
\(28\) 6.29488 12.5050i 0.224817 0.446606i
\(29\) 41.0872 1.41680 0.708400 0.705811i \(-0.249417\pi\)
0.708400 + 0.705811i \(0.249417\pi\)
\(30\) −21.1553 + 1.56573i −0.705178 + 0.0521909i
\(31\) 28.4108 + 16.4030i 0.916477 + 0.529128i 0.882509 0.470295i \(-0.155852\pi\)
0.0339672 + 0.999423i \(0.489186\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −14.5585 + 0.938992i −0.441167 + 0.0284543i
\(34\) 37.0440 1.08953
\(35\) −6.78488 + 34.3361i −0.193854 + 0.981030i
\(36\) 14.3031 10.9279i 0.397310 0.303554i
\(37\) 16.1378 60.2271i 0.436157 1.62776i −0.302127 0.953268i \(-0.597697\pi\)
0.738283 0.674491i \(-0.235637\pi\)
\(38\) −4.72101 17.6190i −0.124237 0.463659i
\(39\) −55.6413 11.1280i −1.42670 0.285333i
\(40\) 7.18670 + 12.1800i 0.179668 + 0.304499i
\(41\) 50.2823 1.22640 0.613199 0.789929i \(-0.289883\pi\)
0.613199 + 0.789929i \(0.289883\pi\)
\(42\) −11.1109 27.5418i −0.264545 0.655756i
\(43\) −39.5246 + 39.5246i −0.919178 + 0.919178i −0.996970 0.0777918i \(-0.975213\pi\)
0.0777918 + 0.996970i \(0.475213\pi\)
\(44\) 4.86292 + 8.42282i 0.110521 + 0.191428i
\(45\) −27.1299 + 35.9022i −0.602886 + 0.797828i
\(46\) 13.7924 23.8891i 0.299834 0.519328i
\(47\) −0.928232 + 3.46421i −0.0197496 + 0.0737066i −0.975097 0.221777i \(-0.928814\pi\)
0.955348 + 0.295484i \(0.0954809\pi\)
\(48\) −10.7569 5.31867i −0.224103 0.110806i
\(49\) −48.6792 + 5.59756i −0.993454 + 0.114236i
\(50\) −25.4689 24.5222i −0.509377 0.490443i
\(51\) 51.8743 59.0272i 1.01714 1.15740i
\(52\) 9.79081 + 36.5398i 0.188285 + 0.702688i
\(53\) 55.8602 14.9677i 1.05397 0.282409i 0.310077 0.950712i \(-0.399645\pi\)
0.743890 + 0.668302i \(0.232979\pi\)
\(54\) 2.61634 38.0940i 0.0484508 0.705445i
\(55\) −17.3550 17.0295i −0.315546 0.309627i
\(56\) −13.1761 + 14.7780i −0.235288 + 0.263893i
\(57\) −34.6858 17.1501i −0.608523 0.300879i
\(58\) −56.1262 15.0390i −0.967693 0.259292i
\(59\) 41.0549 + 23.7030i 0.695845 + 0.401747i 0.805798 0.592190i \(-0.201737\pi\)
−0.109953 + 0.993937i \(0.535070\pi\)
\(60\) 29.4718 + 5.60457i 0.491197 + 0.0934095i
\(61\) −58.7846 + 33.9393i −0.963682 + 0.556382i −0.897304 0.441412i \(-0.854478\pi\)
−0.0663780 + 0.997795i \(0.521144\pi\)
\(62\) −32.8059 32.8059i −0.529128 0.529128i
\(63\) −59.4451 20.8634i −0.943573 0.331166i
\(64\) 8.00000i 0.125000i
\(65\) −48.0593 81.4504i −0.739373 1.25308i
\(66\) 20.2310 + 4.04610i 0.306530 + 0.0613045i
\(67\) 40.3060 10.7999i 0.601581 0.161193i 0.0548406 0.998495i \(-0.482535\pi\)
0.546741 + 0.837302i \(0.315868\pi\)
\(68\) −50.6030 13.5590i −0.744162 0.199398i
\(69\) −18.7517 55.4302i −0.271763 0.803336i
\(70\) 21.8362 44.4205i 0.311946 0.634579i
\(71\) 30.7646i 0.433304i 0.976249 + 0.216652i \(0.0695137\pi\)
−0.976249 + 0.216652i \(0.930486\pi\)
\(72\) −23.5384 + 9.69253i −0.326922 + 0.134619i
\(73\) 52.4330 14.0494i 0.718261 0.192457i 0.118865 0.992910i \(-0.462074\pi\)
0.599396 + 0.800453i \(0.295408\pi\)
\(74\) −44.0893 + 76.3649i −0.595801 + 1.03196i
\(75\) −74.7397 + 6.24356i −0.996529 + 0.0832475i
\(76\) 25.7961i 0.339422i
\(77\) 15.3057 30.4053i 0.198776 0.394875i
\(78\) 71.9343 + 35.5672i 0.922235 + 0.455990i
\(79\) −26.6943 + 15.4119i −0.337902 + 0.195088i −0.659344 0.751842i \(-0.729166\pi\)
0.321442 + 0.946929i \(0.395833\pi\)
\(80\) −5.35905 19.2686i −0.0669881 0.240858i
\(81\) −57.0366 57.5137i −0.704156 0.710046i
\(82\) −68.6869 18.4046i −0.837645 0.224446i
\(83\) −43.6505 + 43.6505i −0.525910 + 0.525910i −0.919350 0.393440i \(-0.871285\pi\)
0.393440 + 0.919350i \(0.371285\pi\)
\(84\) 5.09677 + 41.6896i 0.0606759 + 0.496305i
\(85\) 130.964 1.23996i 1.54076 0.0145878i
\(86\) 68.4587 39.5246i 0.796031 0.459589i
\(87\) −102.560 + 68.3737i −1.17885 + 0.785905i
\(88\) −3.55990 13.2857i −0.0404534 0.150974i
\(89\) −54.3696 + 31.3903i −0.610894 + 0.352700i −0.773315 0.634022i \(-0.781403\pi\)
0.162421 + 0.986722i \(0.448070\pi\)
\(90\) 50.2012 39.1132i 0.557791 0.434591i
\(91\) 88.1119 98.8244i 0.968262 1.08598i
\(92\) −27.5847 + 27.5847i −0.299834 + 0.299834i
\(93\) −98.2137 + 6.33457i −1.05606 + 0.0681137i
\(94\) 2.53598 4.39244i 0.0269785 0.0467281i
\(95\) −17.2803 62.1319i −0.181898 0.654020i
\(96\) 12.7475 + 11.2027i 0.132786 + 0.116695i
\(97\) 16.7634 16.7634i 0.172819 0.172819i −0.615398 0.788217i \(-0.711005\pi\)
0.788217 + 0.615398i \(0.211005\pi\)
\(98\) 68.5459 + 10.1714i 0.699448 + 0.103790i
\(99\) 34.7775 26.5708i 0.351288 0.268392i
\(100\) 25.8154 + 42.8202i 0.258154 + 0.428202i
\(101\) 45.8307 79.3811i 0.453769 0.785951i −0.544847 0.838535i \(-0.683412\pi\)
0.998617 + 0.0525839i \(0.0167457\pi\)
\(102\) −92.4670 + 61.6453i −0.906540 + 0.604366i
\(103\) −38.7970 + 144.792i −0.376670 + 1.40575i 0.474220 + 0.880406i \(0.342730\pi\)
−0.850890 + 0.525344i \(0.823937\pi\)
\(104\) 53.4980i 0.514404i
\(105\) −40.2031 96.9985i −0.382886 0.923796i
\(106\) −81.7850 −0.771557
\(107\) 109.905 + 29.4490i 1.02715 + 0.275224i 0.732779 0.680467i \(-0.238223\pi\)
0.294372 + 0.955691i \(0.404890\pi\)
\(108\) −17.5174 + 51.0798i −0.162198 + 0.472961i
\(109\) 35.4189 + 20.4491i 0.324944 + 0.187606i 0.653594 0.756845i \(-0.273260\pi\)
−0.328650 + 0.944452i \(0.606594\pi\)
\(110\) 17.4742 + 29.6151i 0.158856 + 0.269228i
\(111\) 59.9424 + 177.190i 0.540021 + 1.59631i
\(112\) 23.4080 15.3644i 0.209000 0.137182i
\(113\) 89.3288 + 89.3288i 0.790520 + 0.790520i 0.981579 0.191059i \(-0.0611921\pi\)
−0.191059 + 0.981579i \(0.561192\pi\)
\(114\) 41.1044 + 36.1233i 0.360565 + 0.316871i
\(115\) 47.9616 84.9185i 0.417057 0.738422i
\(116\) 71.1651 + 41.0872i 0.613493 + 0.354200i
\(117\) 157.407 64.8164i 1.34536 0.553986i
\(118\) −47.4061 47.4061i −0.401747 0.401747i
\(119\) 57.5117 + 174.105i 0.483291 + 1.46307i
\(120\) −38.2079 18.4434i −0.318399 0.153695i
\(121\) −48.6760 84.3093i −0.402281 0.696771i
\(122\) 92.7240 24.8453i 0.760032 0.203650i
\(123\) −125.512 + 83.6754i −1.02042 + 0.680288i
\(124\) 32.8059 + 56.8215i 0.264564 + 0.458238i
\(125\) −90.8629 85.8425i −0.726903 0.686740i
\(126\) 73.5669 + 50.2584i 0.583865 + 0.398876i
\(127\) 43.3151 + 43.3151i 0.341064 + 0.341064i 0.856767 0.515703i \(-0.172469\pi\)
−0.515703 + 0.856767i \(0.672469\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 32.8857 164.433i 0.254928 1.27467i
\(130\) 35.8373 + 128.854i 0.275671 + 0.991186i
\(131\) −49.0812 85.0111i −0.374665 0.648939i 0.615612 0.788050i \(-0.288909\pi\)
−0.990277 + 0.139110i \(0.955576\pi\)
\(132\) −26.1551 12.9321i −0.198144 0.0979706i
\(133\) 75.4794 49.5425i 0.567514 0.372500i
\(134\) −59.0120 −0.440388
\(135\) 7.97464 134.764i 0.0590714 0.998254i
\(136\) 64.1620 + 37.0440i 0.471780 + 0.272382i
\(137\) −19.5210 72.8533i −0.142489 0.531776i −0.999854 0.0170677i \(-0.994567\pi\)
0.857365 0.514708i \(-0.172100\pi\)
\(138\) 5.32640 + 82.5826i 0.0385971 + 0.598425i
\(139\) −84.6039 −0.608661 −0.304331 0.952567i \(-0.598433\pi\)
−0.304331 + 0.952567i \(0.598433\pi\)
\(140\) −46.0878 + 52.6869i −0.329199 + 0.376335i
\(141\) −3.44783 10.1918i −0.0244527 0.0722826i
\(142\) 11.2606 42.0252i 0.0793002 0.295952i
\(143\) 23.8060 + 88.8450i 0.166475 + 0.621294i
\(144\) 35.7017 4.62461i 0.247929 0.0321153i
\(145\) −198.930 51.2897i −1.37193 0.353722i
\(146\) −76.7673 −0.525803
\(147\) 112.195 94.9800i 0.763234 0.646123i
\(148\) 88.1785 88.1785i 0.595801 0.595801i
\(149\) −5.31113 9.19914i −0.0356452 0.0617392i 0.847652 0.530552i \(-0.178015\pi\)
−0.883298 + 0.468813i \(0.844682\pi\)
\(150\) 104.382 + 18.8278i 0.695877 + 0.125518i
\(151\) −106.623 + 184.676i −0.706110 + 1.22302i 0.260179 + 0.965560i \(0.416218\pi\)
−0.966289 + 0.257458i \(0.917115\pi\)
\(152\) 9.44201 35.2381i 0.0621185 0.231829i
\(153\) −31.2577 + 233.665i −0.204299 + 1.52722i
\(154\) −32.0372 + 35.9322i −0.208034 + 0.233326i
\(155\) −117.079 114.883i −0.755351 0.741182i
\(156\) −85.2456 74.9156i −0.546446 0.480228i
\(157\) 3.85205 + 14.3760i 0.0245354 + 0.0915672i 0.977108 0.212745i \(-0.0682402\pi\)
−0.952572 + 0.304312i \(0.901574\pi\)
\(158\) 42.1062 11.2823i 0.266495 0.0714071i
\(159\) −114.527 + 130.319i −0.720297 + 0.819618i
\(160\) 0.267782 + 28.2830i 0.00167364 + 0.176769i
\(161\) 133.691 + 27.7353i 0.830378 + 0.172269i
\(162\) 56.8620 + 99.4420i 0.351000 + 0.613840i
\(163\) 137.975 + 36.9704i 0.846474 + 0.226812i 0.655888 0.754858i \(-0.272294\pi\)
0.190586 + 0.981670i \(0.438961\pi\)
\(164\) 87.0915 + 50.2823i 0.531046 + 0.306599i
\(165\) 71.6595 + 13.6273i 0.434300 + 0.0825896i
\(166\) 75.6049 43.6505i 0.455451 0.262955i
\(167\) 155.302 + 155.302i 0.929954 + 0.929954i 0.997702 0.0677484i \(-0.0215815\pi\)
−0.0677484 + 0.997702i \(0.521582\pi\)
\(168\) 8.29713 58.8146i 0.0493877 0.350087i
\(169\) 188.754i 1.11689i
\(170\) −179.354 46.2424i −1.05503 0.272014i
\(171\) 115.120 14.9121i 0.673219 0.0872051i
\(172\) −107.983 + 28.9340i −0.627810 + 0.168221i
\(173\) 9.31283 + 2.49537i 0.0538314 + 0.0144241i 0.285634 0.958339i \(-0.407796\pi\)
−0.231803 + 0.972763i \(0.574462\pi\)
\(174\) 165.125 55.8609i 0.948997 0.321039i
\(175\) 75.7122 157.774i 0.432641 0.901566i
\(176\) 19.4517i 0.110521i
\(177\) −141.923 + 9.15375i −0.801827 + 0.0517161i
\(178\) 85.7599 22.9793i 0.481797 0.129097i
\(179\) 88.5445 153.364i 0.494662 0.856780i −0.505319 0.862933i \(-0.668625\pi\)
0.999981 + 0.00615276i \(0.00195850\pi\)
\(180\) −82.8925 + 35.0546i −0.460514 + 0.194748i
\(181\) 156.164i 0.862785i 0.902164 + 0.431392i \(0.141978\pi\)
−0.902164 + 0.431392i \(0.858022\pi\)
\(182\) −156.535 + 102.745i −0.860084 + 0.564535i
\(183\) 90.2560 182.542i 0.493202 0.997495i
\(184\) 47.7782 27.5847i 0.259664 0.149917i
\(185\) −153.316 + 271.454i −0.828735 + 1.46732i
\(186\) 136.481 + 27.2955i 0.733769 + 0.146750i
\(187\) −123.039 32.9682i −0.657963 0.176301i
\(188\) −5.07195 + 5.07195i −0.0269785 + 0.0269785i
\(189\) 183.103 46.8452i 0.968796 0.247858i
\(190\) 0.863466 + 91.1987i 0.00454456 + 0.479993i
\(191\) −169.386 + 97.7951i −0.886839 + 0.512016i −0.872907 0.487886i \(-0.837768\pi\)
−0.0139315 + 0.999903i \(0.504435\pi\)
\(192\) −13.3129 19.9691i −0.0693380 0.104006i
\(193\) −43.3945 161.950i −0.224842 0.839121i −0.982468 0.186432i \(-0.940308\pi\)
0.757626 0.652689i \(-0.226359\pi\)
\(194\) −29.0351 + 16.7634i −0.149666 + 0.0864094i
\(195\) 255.505 + 123.336i 1.31028 + 0.632491i
\(196\) −89.9125 38.9840i −0.458737 0.198898i
\(197\) −133.654 + 133.654i −0.678445 + 0.678445i −0.959648 0.281203i \(-0.909267\pi\)
0.281203 + 0.959648i \(0.409267\pi\)
\(198\) −57.2326 + 23.5670i −0.289053 + 0.119025i
\(199\) −9.32884 + 16.1580i −0.0468786 + 0.0811961i −0.888513 0.458852i \(-0.848261\pi\)
0.841634 + 0.540048i \(0.181594\pi\)
\(200\) −19.5912 67.9425i −0.0979561 0.339713i
\(201\) −82.6371 + 94.0319i −0.411130 + 0.467820i
\(202\) −91.6614 + 91.6614i −0.453769 + 0.453769i
\(203\) −16.4547 287.139i −0.0810575 1.41448i
\(204\) 148.876 50.3638i 0.729785 0.246881i
\(205\) −243.450 62.7680i −1.18756 0.306185i
\(206\) 105.995 183.589i 0.514540 0.891210i
\(207\) 139.049 + 107.157i 0.671734 + 0.517665i
\(208\) −19.5816 + 73.0796i −0.0941424 + 0.351344i
\(209\) 62.7220i 0.300105i
\(210\) 19.4145 + 147.218i 0.0924498 + 0.701037i
\(211\) −103.762 −0.491763 −0.245881 0.969300i \(-0.579077\pi\)
−0.245881 + 0.969300i \(0.579077\pi\)
\(212\) 111.720 + 29.9354i 0.526983 + 0.141205i
\(213\) −51.1958 76.7928i −0.240356 0.360530i
\(214\) −139.354 80.4561i −0.651187 0.375963i
\(215\) 240.704 142.026i 1.11955 0.660586i
\(216\) 42.6257 63.3644i 0.197341 0.293354i
\(217\) 103.255 205.119i 0.475828 0.945248i
\(218\) −40.8982 40.8982i −0.187606 0.187606i
\(219\) −107.501 + 122.324i −0.490870 + 0.558556i
\(220\) −13.0303 46.8509i −0.0592287 0.212959i
\(221\) −429.067 247.722i −1.94148 1.12091i
\(222\) −17.0266 263.987i −0.0766964 1.18913i
\(223\) −207.251 207.251i −0.929375 0.929375i 0.0682903 0.997665i \(-0.478246\pi\)
−0.997665 + 0.0682903i \(0.978246\pi\)
\(224\) −37.5997 + 12.4202i −0.167856 + 0.0554473i
\(225\) 176.171 139.960i 0.782982 0.622045i
\(226\) −89.3288 154.722i −0.395260 0.684610i
\(227\) −132.012 + 35.3725i −0.581550 + 0.155826i −0.537589 0.843207i \(-0.680665\pi\)
−0.0439617 + 0.999033i \(0.513998\pi\)
\(228\) −42.9275 64.3906i −0.188279 0.282415i
\(229\) −31.2046 54.0479i −0.136264 0.236017i 0.789815 0.613345i \(-0.210176\pi\)
−0.926080 + 0.377328i \(0.876843\pi\)
\(230\) −96.5990 + 98.4457i −0.419996 + 0.428025i
\(231\) 12.3926 + 101.367i 0.0536476 + 0.438816i
\(232\) −82.1744 82.1744i −0.354200 0.354200i
\(233\) 61.6527 230.091i 0.264604 0.987515i −0.697888 0.716207i \(-0.745877\pi\)
0.962492 0.271309i \(-0.0874565\pi\)
\(234\) −238.746 + 30.9259i −1.02028 + 0.132162i
\(235\) 8.81861 15.6138i 0.0375260 0.0664418i
\(236\) 47.4061 + 82.1098i 0.200873 + 0.347923i
\(237\) 40.9855 82.8926i 0.172935 0.349758i
\(238\) −14.8354 258.883i −0.0623337 1.08774i
\(239\) −112.005 −0.468641 −0.234321 0.972159i \(-0.575287\pi\)
−0.234321 + 0.972159i \(0.575287\pi\)
\(240\) 45.4421 + 39.1792i 0.189342 + 0.163247i
\(241\) −49.3895 28.5150i −0.204936 0.118320i 0.394020 0.919102i \(-0.371084\pi\)
−0.598956 + 0.800782i \(0.704417\pi\)
\(242\) 35.6333 + 132.985i 0.147245 + 0.549526i
\(243\) 238.081 + 48.6471i 0.979756 + 0.200194i
\(244\) −135.757 −0.556382
\(245\) 242.676 + 33.6654i 0.990514 + 0.137410i
\(246\) 202.080 68.3622i 0.821462 0.277895i
\(247\) −63.1411 + 235.646i −0.255632 + 0.954031i
\(248\) −24.0156 89.6275i −0.0968371 0.361401i
\(249\) 36.3185 181.597i 0.145858 0.729306i
\(250\) 92.7004 + 150.521i 0.370802 + 0.602085i
\(251\) 78.0529 0.310968 0.155484 0.987838i \(-0.450306\pi\)
0.155484 + 0.987838i \(0.450306\pi\)
\(252\) −82.0985 95.5816i −0.325788 0.379292i
\(253\) −67.0711 + 67.0711i −0.265103 + 0.265103i
\(254\) −43.3151 75.0240i −0.170532 0.295370i
\(255\) −324.842 + 221.035i −1.27389 + 0.866802i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −51.7312 + 193.064i −0.201289 + 0.751220i 0.789260 + 0.614059i \(0.210464\pi\)
−0.990549 + 0.137161i \(0.956202\pi\)
\(258\) −105.109 + 212.582i −0.407400 + 0.823962i
\(259\) −427.362 88.6597i −1.65005 0.342315i
\(260\) −1.79073 189.135i −0.00688741 0.727444i
\(261\) 142.222 341.341i 0.544911 1.30782i
\(262\) 35.9299 + 134.092i 0.137137 + 0.511802i
\(263\) 206.919 55.4438i 0.786765 0.210813i 0.157000 0.987599i \(-0.449818\pi\)
0.629765 + 0.776786i \(0.283151\pi\)
\(264\) 30.9950 + 27.2390i 0.117405 + 0.103178i
\(265\) −289.141 + 2.73757i −1.09110 + 0.0103305i
\(266\) −121.241 + 40.0490i −0.455792 + 0.150560i
\(267\) 83.4773 168.832i 0.312649 0.632329i
\(268\) 80.6119 + 21.5999i 0.300791 + 0.0805966i
\(269\) 234.338 + 135.295i 0.871146 + 0.502956i 0.867729 0.497038i \(-0.165579\pi\)
0.00341699 + 0.999994i \(0.498912\pi\)
\(270\) −60.2207 + 181.172i −0.223040 + 0.671009i
\(271\) 202.450 116.885i 0.747048 0.431308i −0.0775784 0.996986i \(-0.524719\pi\)
0.824626 + 0.565678i \(0.191385\pi\)
\(272\) −74.0879 74.0879i −0.272382 0.272382i
\(273\) −55.4850 + 393.308i −0.203242 + 1.44069i
\(274\) 106.665i 0.389287i
\(275\) 62.7691 + 104.115i 0.228251 + 0.378602i
\(276\) 22.9513 114.760i 0.0831570 0.415795i
\(277\) 38.2508 10.2493i 0.138089 0.0370009i −0.189112 0.981955i \(-0.560561\pi\)
0.327202 + 0.944955i \(0.393894\pi\)
\(278\) 115.571 + 30.9672i 0.415723 + 0.111393i
\(279\) 234.614 179.251i 0.840911 0.642476i
\(280\) 82.2419 55.1024i 0.293721 0.196794i
\(281\) 324.293i 1.15407i 0.816720 + 0.577034i \(0.195790\pi\)
−0.816720 + 0.577034i \(0.804210\pi\)
\(282\) 0.979355 + 15.1843i 0.00347289 + 0.0538451i
\(283\) 100.622 26.9616i 0.355555 0.0952707i −0.0766202 0.997060i \(-0.524413\pi\)
0.432175 + 0.901790i \(0.357746\pi\)
\(284\) −30.7646 + 53.2858i −0.108326 + 0.187626i
\(285\) 146.528 + 126.334i 0.514135 + 0.443276i
\(286\) 130.078i 0.454819i
\(287\) −20.1371 351.399i −0.0701642 1.22439i
\(288\) −50.4622 6.75041i −0.175216 0.0234389i
\(289\) 343.923 198.564i 1.19004 0.687072i
\(290\) 252.971 + 142.877i 0.872313 + 0.492678i
\(291\) −13.9477 + 69.7401i −0.0479302 + 0.239657i
\(292\) 104.866 + 28.0988i 0.359130 + 0.0962287i
\(293\) 155.222 155.222i 0.529767 0.529767i −0.390736 0.920503i \(-0.627780\pi\)
0.920503 + 0.390736i \(0.127780\pi\)
\(294\) −188.027 + 88.6788i −0.639547 + 0.301628i
\(295\) −169.185 166.012i −0.573509 0.562751i
\(296\) −152.730 + 88.1785i −0.515979 + 0.297900i
\(297\) −42.5928 + 124.198i −0.143410 + 0.418176i
\(298\) 3.88802 + 14.5103i 0.0130470 + 0.0486922i
\(299\) −319.504 + 184.466i −1.06858 + 0.616943i
\(300\) −135.696 63.9255i −0.452322 0.213085i
\(301\) 292.048 + 260.390i 0.970260 + 0.865085i
\(302\) 213.245 213.245i 0.706110 0.706110i
\(303\) 17.6991 + 274.414i 0.0584129 + 0.905657i
\(304\) −25.7961 + 44.6801i −0.0848554 + 0.146974i
\(305\) 326.982 90.9412i 1.07207 0.298168i
\(306\) 128.226 307.751i 0.419040 1.00572i
\(307\) 12.5079 12.5079i 0.0407422 0.0407422i −0.686442 0.727184i \(-0.740829\pi\)
0.727184 + 0.686442i \(0.240829\pi\)
\(308\) 56.9157 37.3579i 0.184791 0.121292i
\(309\) −144.108 425.985i −0.466369 1.37859i
\(310\) 117.883 + 199.787i 0.380269 + 0.644475i
\(311\) −256.759 + 444.719i −0.825591 + 1.42996i 0.0758765 + 0.997117i \(0.475825\pi\)
−0.901467 + 0.432848i \(0.857509\pi\)
\(312\) 89.0267 + 133.539i 0.285342 + 0.428008i
\(313\) −120.241 + 448.747i −0.384158 + 1.43370i 0.455333 + 0.890321i \(0.349520\pi\)
−0.839490 + 0.543375i \(0.817146\pi\)
\(314\) 21.0480i 0.0670318i
\(315\) 261.769 + 175.220i 0.831013 + 0.556253i
\(316\) −61.6477 −0.195088
\(317\) 368.670 + 98.7847i 1.16300 + 0.311624i 0.788162 0.615468i \(-0.211033\pi\)
0.374834 + 0.927092i \(0.377700\pi\)
\(318\) 204.147 136.100i 0.641972 0.427986i
\(319\) 173.035 + 99.9019i 0.542430 + 0.313172i
\(320\) 9.98650 38.7333i 0.0312078 0.121042i
\(321\) −323.345 + 109.386i −1.00731 + 0.340765i
\(322\) −172.473 86.8213i −0.535631 0.269631i
\(323\) −238.897 238.897i −0.739619 0.739619i
\(324\) −41.2766 156.653i −0.127397 0.483498i
\(325\) 131.011 + 454.348i 0.403112 + 1.39799i
\(326\) −174.946 101.005i −0.536643 0.309831i
\(327\) −122.440 + 7.89712i −0.374435 + 0.0241502i
\(328\) −100.565 100.565i −0.306599 0.306599i
\(329\) 24.5815 + 5.09963i 0.0747158 + 0.0155004i
\(330\) −92.9008 44.8444i −0.281518 0.135892i
\(331\) 1.24808 + 2.16173i 0.00377062 + 0.00653091i 0.867905 0.496731i \(-0.165466\pi\)
−0.864134 + 0.503262i \(0.832133\pi\)
\(332\) −119.255 + 31.9544i −0.359203 + 0.0962482i
\(333\) −444.490 342.542i −1.33480 1.02865i
\(334\) −155.302 268.992i −0.464977 0.805364i
\(335\) −208.630 + 1.97530i −0.622775 + 0.00589641i
\(336\) −32.8617 + 77.3053i −0.0978028 + 0.230075i
\(337\) −42.5517 42.5517i −0.126266 0.126266i 0.641150 0.767416i \(-0.278458\pi\)
−0.767416 + 0.641150i \(0.778458\pi\)
\(338\) 69.0889 257.843i 0.204405 0.762849i
\(339\) −371.630 74.3242i −1.09625 0.219246i
\(340\) 228.077 + 128.817i 0.670814 + 0.378872i
\(341\) 79.7663 + 138.159i 0.233919 + 0.405159i
\(342\) −162.716 21.7667i −0.475777 0.0636454i
\(343\) 58.6139 + 337.955i 0.170886 + 0.985291i
\(344\) 158.099 0.459589
\(345\) 21.5951 + 291.782i 0.0625945 + 0.845746i
\(346\) −11.8082 6.81746i −0.0341277 0.0197037i
\(347\) 79.5200 + 296.773i 0.229164 + 0.855253i 0.980693 + 0.195553i \(0.0626500\pi\)
−0.751529 + 0.659700i \(0.770683\pi\)
\(348\) −246.012 + 15.8672i −0.706931 + 0.0455955i
\(349\) 299.276 0.857526 0.428763 0.903417i \(-0.358950\pi\)
0.428763 + 0.903417i \(0.358950\pi\)
\(350\) −161.174 + 187.811i −0.460498 + 0.536602i
\(351\) −285.048 + 423.734i −0.812104 + 1.20722i
\(352\) 7.11981 26.5715i 0.0202267 0.0754872i
\(353\) −136.317 508.741i −0.386166 1.44119i −0.836320 0.548242i \(-0.815297\pi\)
0.450154 0.892951i \(-0.351369\pi\)
\(354\) 197.221 + 39.4433i 0.557123 + 0.111422i
\(355\) 38.4038 148.952i 0.108180 0.419583i
\(356\) −125.561 −0.352700
\(357\) −433.288 338.886i −1.21369 0.949260i
\(358\) −177.089 + 177.089i −0.494662 + 0.494662i
\(359\) 21.3535 + 36.9854i 0.0594805 + 0.103023i 0.894232 0.447603i \(-0.147722\pi\)
−0.834752 + 0.550626i \(0.814389\pi\)
\(360\) 126.064 17.5448i 0.350178 0.0487354i
\(361\) 97.3204 168.564i 0.269586 0.466936i
\(362\) 57.1600 213.324i 0.157901 0.589293i
\(363\) 261.803 + 129.446i 0.721219 + 0.356600i
\(364\) 251.439 83.0569i 0.690765 0.228178i
\(365\) −271.401 + 2.56962i −0.743565 + 0.00704004i
\(366\) −190.107 + 216.321i −0.519418 + 0.591040i
\(367\) −160.689 599.699i −0.437844 1.63406i −0.734167 0.678969i \(-0.762427\pi\)
0.296323 0.955088i \(-0.404240\pi\)
\(368\) −75.3629 + 20.1934i −0.204790 + 0.0548734i
\(369\) 174.050 417.731i 0.471680 1.13206i
\(370\) 308.793 314.696i 0.834575 0.850529i
\(371\) −126.973 384.387i −0.342246 1.03608i
\(372\) −176.446 87.2419i −0.474317 0.234521i
\(373\) 596.218 + 159.756i 1.59844 + 0.428301i 0.944571 0.328307i \(-0.106478\pi\)
0.653869 + 0.756607i \(0.273145\pi\)
\(374\) 156.007 + 90.0709i 0.417132 + 0.240831i
\(375\) 369.658 + 63.0692i 0.985756 + 0.168185i
\(376\) 8.78488 5.07195i 0.0233641 0.0134892i
\(377\) 549.521 + 549.521i 1.45761 + 1.45761i
\(378\) −267.269 3.02845i −0.707061 0.00801177i
\(379\) 310.044i 0.818057i 0.912522 + 0.409029i \(0.134132\pi\)
−0.912522 + 0.409029i \(0.865868\pi\)
\(380\) 32.2015 124.896i 0.0847409 0.328673i
\(381\) −180.202 36.0395i −0.472971 0.0945918i
\(382\) 267.181 71.5910i 0.699428 0.187411i
\(383\) 193.781 + 51.9235i 0.505956 + 0.135570i 0.502763 0.864425i \(-0.332317\pi\)
0.00319298 + 0.999995i \(0.498984\pi\)
\(384\) 10.8765 + 32.1512i 0.0283243 + 0.0837271i
\(385\) −112.061 + 128.106i −0.291067 + 0.332743i
\(386\) 237.112i 0.614279i
\(387\) 191.547 + 465.173i 0.494953 + 1.20200i
\(388\) 45.7985 12.2717i 0.118037 0.0316280i
\(389\) −186.399 + 322.853i −0.479176 + 0.829956i −0.999715 0.0238813i \(-0.992398\pi\)
0.520539 + 0.853838i \(0.325731\pi\)
\(390\) −303.883 262.001i −0.779187 0.671798i
\(391\) 510.924i 1.30671i
\(392\) 108.554 + 86.1633i 0.276922 + 0.219804i
\(393\) 263.982 + 130.523i 0.671709 + 0.332120i
\(394\) 231.495 133.654i 0.587551 0.339223i
\(395\) 148.484 41.2966i 0.375908 0.104548i
\(396\) 86.8073 11.2445i 0.219210 0.0283953i
\(397\) 275.003 + 73.6867i 0.692702 + 0.185609i 0.587959 0.808890i \(-0.299932\pi\)
0.104742 + 0.994499i \(0.466598\pi\)
\(398\) 18.6577 18.6577i 0.0468786 0.0468786i
\(399\) −105.963 + 249.271i −0.265571 + 0.624740i
\(400\) 1.89342 + 99.9821i 0.00473355 + 0.249955i
\(401\) −338.657 + 195.524i −0.844532 + 0.487591i −0.858802 0.512307i \(-0.828791\pi\)
0.0142702 + 0.999898i \(0.495458\pi\)
\(402\) 147.302 98.2026i 0.366424 0.244285i
\(403\) 160.598 + 599.361i 0.398507 + 1.48725i
\(404\) 158.762 91.6614i 0.392976 0.226885i
\(405\) 204.357 + 349.662i 0.504585 + 0.863362i
\(406\) −82.6228 + 398.262i −0.203504 + 0.980942i
\(407\) 214.403 214.403i 0.526788 0.526788i
\(408\) −221.803 + 14.3058i −0.543635 + 0.0350633i
\(409\) 258.676 448.041i 0.632461 1.09545i −0.354586 0.935023i \(-0.615378\pi\)
0.987047 0.160431i \(-0.0512883\pi\)
\(410\) 309.584 + 174.852i 0.755083 + 0.426467i
\(411\) 169.963 + 149.367i 0.413536 + 0.363424i
\(412\) −211.991 + 211.991i −0.514540 + 0.514540i
\(413\) 149.208 296.406i 0.361278 0.717690i
\(414\) −150.722 197.274i −0.364063 0.476508i
\(415\) 265.831 156.852i 0.640556 0.377956i
\(416\) 53.4980 92.6612i 0.128601 0.222743i
\(417\) 211.183 140.790i 0.506435 0.337627i
\(418\) 22.9579 85.6799i 0.0549231 0.204976i
\(419\) 748.983i 1.78755i −0.448517 0.893774i \(-0.648048\pi\)
0.448517 0.893774i \(-0.351952\pi\)
\(420\) 27.3648 208.209i 0.0651543 0.495737i
\(421\) −761.887 −1.80971 −0.904854 0.425722i \(-0.860020\pi\)
−0.904854 + 0.425722i \(0.860020\pi\)
\(422\) 141.741 + 37.9795i 0.335880 + 0.0899989i
\(423\) 25.5667 + 19.7027i 0.0604413 + 0.0465785i
\(424\) −141.656 81.7850i −0.334094 0.192889i
\(425\) −635.633 157.481i −1.49561 0.370543i
\(426\) 41.8266 + 123.640i 0.0981844 + 0.290235i
\(427\) 260.728 + 397.226i 0.610605 + 0.930272i
\(428\) 160.912 + 160.912i 0.375963 + 0.375963i
\(429\) −207.271 182.154i −0.483150 0.424602i
\(430\) −380.793 + 105.907i −0.885565 + 0.246296i
\(431\) −452.105 261.023i −1.04897 0.605622i −0.126608 0.991953i \(-0.540409\pi\)
−0.922360 + 0.386331i \(0.873742\pi\)
\(432\) −81.4207 + 70.9554i −0.188474 + 0.164249i
\(433\) −506.772 506.772i −1.17037 1.17037i −0.982120 0.188254i \(-0.939717\pi\)
−0.188254 0.982120i \(-0.560283\pi\)
\(434\) −216.127 + 242.404i −0.497989 + 0.558534i
\(435\) 581.911 203.016i 1.33773 0.466704i
\(436\) 40.8982 + 70.8377i 0.0938032 + 0.162472i
\(437\) −243.008 + 65.1138i −0.556083 + 0.149002i
\(438\) 191.622 127.749i 0.437494 0.291665i
\(439\) 280.958 + 486.634i 0.639996 + 1.10851i 0.985433 + 0.170063i \(0.0543973\pi\)
−0.345437 + 0.938442i \(0.612269\pi\)
\(440\) 0.651102 + 68.7690i 0.00147978 + 0.156293i
\(441\) −121.998 + 423.789i −0.276640 + 0.960974i
\(442\) 495.444 + 495.444i 1.12091 + 1.12091i
\(443\) −130.727 + 487.881i −0.295096 + 1.10131i 0.646046 + 0.763299i \(0.276422\pi\)
−0.941141 + 0.338013i \(0.890245\pi\)
\(444\) −73.3672 + 366.845i −0.165242 + 0.826228i
\(445\) 302.424 84.1110i 0.679605 0.189014i
\(446\) 207.251 + 358.969i 0.464688 + 0.804863i
\(447\) 28.5657 + 14.1241i 0.0639055 + 0.0315975i
\(448\) 55.9083 3.20385i 0.124795 0.00715146i
\(449\) 111.200 0.247661 0.123830 0.992303i \(-0.460482\pi\)
0.123830 + 0.992303i \(0.460482\pi\)
\(450\) −291.883 + 126.706i −0.648629 + 0.281569i
\(451\) 211.759 + 122.259i 0.469533 + 0.271085i
\(452\) 65.3932 + 244.051i 0.144675 + 0.539935i
\(453\) −41.1760 638.409i −0.0908963 1.40929i
\(454\) 193.279 0.425724
\(455\) −549.972 + 368.483i −1.20873 + 0.809853i
\(456\) 35.0715 + 103.672i 0.0769112 + 0.227350i
\(457\) −75.8846 + 283.205i −0.166049 + 0.619705i 0.831855 + 0.554994i \(0.187279\pi\)
−0.997904 + 0.0647113i \(0.979387\pi\)
\(458\) 22.8433 + 85.2525i 0.0498763 + 0.186141i
\(459\) −310.821 635.277i −0.677170 1.38405i
\(460\) 167.990 99.1217i 0.365196 0.215482i
\(461\) 249.905 0.542092 0.271046 0.962566i \(-0.412630\pi\)
0.271046 + 0.962566i \(0.412630\pi\)
\(462\) 20.1741 143.005i 0.0436670 0.309535i
\(463\) 38.5398 38.5398i 0.0832394 0.0832394i −0.664261 0.747501i \(-0.731254\pi\)
0.747501 + 0.664261i \(0.231254\pi\)
\(464\) 82.1744 + 142.330i 0.177100 + 0.306746i
\(465\) 483.425 + 91.9316i 1.03962 + 0.197702i
\(466\) −168.438 + 291.744i −0.361456 + 0.626060i
\(467\) 189.900 708.715i 0.406638 1.51759i −0.394378 0.918948i \(-0.629040\pi\)
0.801016 0.598644i \(-0.204293\pi\)
\(468\) 337.453 + 45.1416i 0.721054 + 0.0964565i
\(469\) −91.6176 277.354i −0.195347 0.591374i
\(470\) −17.7615 + 18.1010i −0.0377904 + 0.0385128i
\(471\) −33.5386 29.4744i −0.0712073 0.0625784i
\(472\) −34.7037 129.516i −0.0735247 0.274398i
\(473\) −262.557 + 70.3520i −0.555089 + 0.148736i
\(474\) −86.3280 + 98.2317i −0.182127 + 0.207240i
\(475\) 6.10535 + 322.393i 0.0128534 + 0.678722i
\(476\) −74.4922 + 359.071i −0.156496 + 0.754351i
\(477\) 69.0103 515.882i 0.144676 1.08151i
\(478\) 153.002 + 40.9968i 0.320088 + 0.0857673i
\(479\) −58.6930 33.8864i −0.122532 0.0707441i 0.437481 0.899228i \(-0.355871\pi\)
−0.560013 + 0.828484i \(0.689204\pi\)
\(480\) −47.7345 70.1528i −0.0994469 0.146152i
\(481\) 1021.34 589.672i 2.12337 1.22593i
\(482\) 57.0301 + 57.0301i 0.118320 + 0.118320i
\(483\) −379.866 + 153.245i −0.786472 + 0.317278i
\(484\) 194.704i 0.402281i
\(485\) −102.089 + 60.2369i −0.210493 + 0.124200i
\(486\) −307.418 153.597i −0.632548 0.316043i
\(487\) −384.662 + 103.070i −0.789859 + 0.211642i −0.631127 0.775679i \(-0.717407\pi\)
−0.158732 + 0.987322i \(0.550741\pi\)
\(488\) 185.448 + 49.6906i 0.380016 + 0.101825i
\(489\) −405.929 + 137.323i −0.830121 + 0.280824i
\(490\) −319.179 134.813i −0.651386 0.275129i
\(491\) 359.608i 0.732400i −0.930536 0.366200i \(-0.880659\pi\)
0.930536 0.366200i \(-0.119341\pi\)
\(492\) −301.068 + 19.4182i −0.611927 + 0.0394680i
\(493\) −1039.57 + 278.551i −2.10866 + 0.565013i
\(494\) 172.505 298.787i 0.349200 0.604831i
\(495\) −201.550 + 85.2339i −0.407171 + 0.172190i
\(496\) 131.224i 0.264564i
\(497\) 214.999 12.3207i 0.432594 0.0247900i
\(498\) −116.081 + 234.773i −0.233095 + 0.471432i
\(499\) 443.265 255.919i 0.888307 0.512864i 0.0149186 0.999889i \(-0.495251\pi\)
0.873388 + 0.487025i \(0.161918\pi\)
\(500\) −71.5365 239.546i −0.143073 0.479093i
\(501\) −646.097 129.216i −1.28962 0.257917i
\(502\) −106.622 28.5693i −0.212395 0.0569110i
\(503\) 159.644 159.644i 0.317383 0.317383i −0.530378 0.847761i \(-0.677950\pi\)
0.847761 + 0.530378i \(0.177950\pi\)
\(504\) 77.1633 + 160.617i 0.153102 + 0.318685i
\(505\) −320.989 + 327.126i −0.635622 + 0.647773i
\(506\) 116.171 67.0711i 0.229586 0.132552i
\(507\) −314.108 471.158i −0.619543 0.929305i
\(508\) 31.7089 + 118.339i 0.0624190 + 0.232951i
\(509\) −506.116 + 292.206i −0.994334 + 0.574079i −0.906567 0.422062i \(-0.861306\pi\)
−0.0877670 + 0.996141i \(0.527973\pi\)
\(510\) 524.647 183.038i 1.02872 0.358899i
\(511\) −119.183 360.804i −0.233235 0.706074i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −262.542 + 228.796i −0.511777 + 0.445996i
\(514\) 141.332 244.795i 0.274966 0.476254i
\(515\) 368.588 652.605i 0.715705 1.26719i
\(516\) 221.392 251.920i 0.429055 0.488217i
\(517\) −12.3323 + 12.3323i −0.0238535 + 0.0238535i
\(518\) 551.335 + 277.537i 1.06435 + 0.535785i
\(519\) −27.3987 + 9.26881i −0.0527914 + 0.0178590i
\(520\) −66.7822 + 259.019i −0.128427 + 0.498114i
\(521\) 412.424 714.339i 0.791600 1.37109i −0.133375 0.991066i \(-0.542582\pi\)
0.924976 0.380026i \(-0.124085\pi\)
\(522\) −319.218 + 414.224i −0.611529 + 0.793533i
\(523\) 200.803 749.406i 0.383944 1.43290i −0.455880 0.890041i \(-0.650676\pi\)
0.839825 0.542858i \(-0.182658\pi\)
\(524\) 196.325i 0.374665i
\(525\) 73.5652 + 519.820i 0.140124 + 0.990134i
\(526\) −302.951 −0.575952
\(527\) −830.039 222.408i −1.57503 0.422027i
\(528\) −32.3698 48.5542i −0.0613064 0.0919586i
\(529\) 128.641 + 74.2706i 0.243177 + 0.140398i
\(530\) 395.976 + 102.093i 0.747124 + 0.192629i
\(531\) 339.028 259.026i 0.638471 0.487807i
\(532\) 180.277 10.3308i 0.338866 0.0194189i
\(533\) 672.500 + 672.500i 1.26173 + 1.26173i
\(534\) −175.829 + 200.074i −0.329267 + 0.374670i
\(535\) −495.362 279.778i −0.925911 0.522950i
\(536\) −102.212 59.0120i −0.190694 0.110097i
\(537\) 34.1945 + 530.165i 0.0636770 + 0.987273i
\(538\) −270.590 270.590i −0.502956 0.502956i
\(539\) −218.618 94.7879i −0.405600 0.175859i
\(540\) 148.577 225.444i 0.275142 0.417489i
\(541\) 385.549 + 667.791i 0.712660 + 1.23436i 0.963855 + 0.266427i \(0.0858432\pi\)
−0.251195 + 0.967937i \(0.580823\pi\)
\(542\) −319.335 + 85.5654i −0.589178 + 0.157870i
\(543\) −259.875 389.808i −0.478590 0.717878i
\(544\) 74.0879 + 128.324i 0.136191 + 0.235890i
\(545\) −145.959 143.221i −0.267815 0.262792i
\(546\) 219.755 516.960i 0.402481 0.946812i
\(547\) 451.313 + 451.313i 0.825069 + 0.825069i 0.986830 0.161761i \(-0.0517174\pi\)
−0.161761 + 0.986830i \(0.551717\pi\)
\(548\) 39.0420 145.707i 0.0712445 0.265888i
\(549\) 78.4780 + 605.846i 0.142947 + 1.10354i
\(550\) −47.6352 165.199i −0.0866095 0.300363i
\(551\) 264.972 + 458.945i 0.480893 + 0.832931i
\(552\) −73.3570 + 148.364i −0.132893 + 0.268775i
\(553\) 118.397 + 180.382i 0.214100 + 0.326187i
\(554\) −56.0030 −0.101088
\(555\) −69.0318 932.724i −0.124382 1.68058i
\(556\) −146.538 84.6039i −0.263558 0.152165i
\(557\) 228.129 + 851.390i 0.409568 + 1.52853i 0.795473 + 0.605989i \(0.207222\pi\)
−0.385905 + 0.922538i \(0.626111\pi\)
\(558\) −386.099 + 158.986i −0.691934 + 0.284922i
\(559\) −1057.24 −1.89131
\(560\) −132.513 + 45.1686i −0.236631 + 0.0806583i
\(561\) 361.986 122.458i 0.645251 0.218284i
\(562\) 118.699 442.992i 0.211209 0.788243i
\(563\) −268.513 1002.11i −0.476933 1.77994i −0.613923 0.789366i \(-0.710410\pi\)
0.136990 0.990572i \(-0.456257\pi\)
\(564\) 4.22002 21.1006i 0.00748231 0.0374125i
\(565\) −320.990 544.010i −0.568123 0.962850i
\(566\) −147.321 −0.260284
\(567\) −379.094 + 421.635i −0.668597 + 0.743625i
\(568\) 61.5292 61.5292i 0.108326 0.108326i
\(569\) −310.277 537.415i −0.545302 0.944491i −0.998588 0.0531258i \(-0.983082\pi\)
0.453286 0.891365i \(-0.350252\pi\)
\(570\) −153.920 226.208i −0.270036 0.396856i
\(571\) 294.339 509.811i 0.515480 0.892838i −0.484358 0.874870i \(-0.660947\pi\)
0.999839 0.0179685i \(-0.00571985\pi\)
\(572\) −47.6119 + 177.690i −0.0832376 + 0.310647i
\(573\) 260.070 525.988i 0.453874 0.917955i
\(574\) −101.113 + 487.391i −0.176156 + 0.849114i
\(575\) −338.219 + 351.276i −0.588206 + 0.610915i
\(576\) 66.4618 + 27.6917i 0.115385 + 0.0480758i
\(577\) −64.7801 241.763i −0.112271 0.418999i 0.886798 0.462158i \(-0.152925\pi\)
−0.999068 + 0.0431585i \(0.986258\pi\)
\(578\) −542.487 + 145.359i −0.938558 + 0.251486i
\(579\) 377.822 + 332.038i 0.652543 + 0.573468i
\(580\) −293.268 287.767i −0.505635 0.496150i
\(581\) 322.534 + 287.572i 0.555137 + 0.494960i
\(582\) 44.5795 90.1616i 0.0765972 0.154917i
\(583\) 271.644 + 72.7867i 0.465941 + 0.124849i
\(584\) −132.965 76.7673i −0.227680 0.131451i
\(585\) −843.023 + 117.326i −1.44106 + 0.200557i
\(586\) −268.852 + 155.222i −0.458791 + 0.264883i
\(587\) −404.063 404.063i −0.688352 0.688352i 0.273516 0.961868i \(-0.411813\pi\)
−0.961868 + 0.273516i \(0.911813\pi\)
\(588\) 289.308 52.3149i 0.492021 0.0889709i
\(589\) 423.132i 0.718390i
\(590\) 170.347 + 288.702i 0.288723 + 0.489325i
\(591\) 111.204 556.033i 0.188162 0.940835i
\(592\) 240.908 64.5512i 0.406940 0.109039i
\(593\) −578.702 155.063i −0.975888 0.261488i −0.264576 0.964365i \(-0.585232\pi\)
−0.711312 + 0.702876i \(0.751899\pi\)
\(594\) 103.643 154.068i 0.174482 0.259374i
\(595\) −61.1143 914.752i −0.102713 1.53740i
\(596\) 21.2445i 0.0356452i
\(597\) −3.60265 55.8570i −0.00603460 0.0935628i
\(598\) 503.970 135.038i 0.842760 0.225817i
\(599\) 181.060 313.605i 0.302271 0.523548i −0.674379 0.738385i \(-0.735589\pi\)
0.976650 + 0.214837i \(0.0689220\pi\)
\(600\) 161.966 + 136.992i 0.269944 + 0.228320i
\(601\) 184.720i 0.307354i −0.988121 0.153677i \(-0.950889\pi\)
0.988121 0.153677i \(-0.0491115\pi\)
\(602\) −303.636 462.597i −0.504378 0.768434i
\(603\) 49.7944 372.234i 0.0825778 0.617304i
\(604\) −369.352 + 213.245i −0.611509 + 0.353055i
\(605\) 130.429 + 468.960i 0.215584 + 0.775141i
\(606\) 76.2651 381.335i 0.125850 0.629265i
\(607\) −58.3935 15.6465i −0.0962002 0.0257768i 0.210398 0.977616i \(-0.432524\pi\)
−0.306598 + 0.951839i \(0.599191\pi\)
\(608\) 51.5921 51.5921i 0.0848554 0.0848554i
\(609\) 518.905 + 689.358i 0.852061 + 1.13195i
\(610\) −479.953 + 4.54417i −0.786808 + 0.00744946i
\(611\) −58.7467 + 33.9174i −0.0961484 + 0.0555113i
\(612\) −287.805 + 373.462i −0.470269 + 0.610232i
\(613\) −212.984 794.867i −0.347445 1.29668i −0.889729 0.456488i \(-0.849107\pi\)
0.542284 0.840195i \(-0.317560\pi\)
\(614\) −21.6642 + 12.5079i −0.0352838 + 0.0203711i
\(615\) 712.139 248.450i 1.15795 0.403984i
\(616\) −91.4222 + 30.1992i −0.148413 + 0.0490247i
\(617\) 675.877 675.877i 1.09542 1.09542i 0.100486 0.994938i \(-0.467960\pi\)
0.994938 0.100486i \(-0.0320397\pi\)
\(618\) 40.9338 + 634.653i 0.0662359 + 1.02695i
\(619\) −146.229 + 253.276i −0.236234 + 0.409169i −0.959631 0.281263i \(-0.909247\pi\)
0.723397 + 0.690433i \(0.242580\pi\)
\(620\) −87.9043 316.063i −0.141781 0.509779i
\(621\) −525.407 36.0856i −0.846066 0.0581088i
\(622\) 513.517 513.517i 0.825591 0.825591i
\(623\) 241.146 + 367.392i 0.387072 + 0.589715i
\(624\) −72.7342 215.003i −0.116561 0.344556i
\(625\) 332.769 + 529.046i 0.532431 + 0.846474i
\(626\) 328.505 568.988i 0.524769 0.908927i
\(627\) −104.377 156.563i −0.166470 0.249702i
\(628\) −7.70410 + 28.7521i −0.0122677 + 0.0457836i
\(629\) 1633.24i 2.59657i
\(630\) −293.448 335.169i −0.465791 0.532014i
\(631\) 93.3919 0.148006 0.0740031 0.997258i \(-0.476423\pi\)
0.0740031 + 0.997258i \(0.476423\pi\)
\(632\) 84.2124 + 22.5646i 0.133247 + 0.0357035i
\(633\) 259.005 172.672i 0.409170 0.272783i
\(634\) −467.454 269.885i −0.737310 0.425686i
\(635\) −155.646 263.788i −0.245113 0.415414i
\(636\) −328.686 + 111.192i −0.516802 + 0.174831i
\(637\) −725.925 576.196i −1.13960 0.904546i
\(638\) −199.804 199.804i −0.313172 0.313172i
\(639\) 255.584 + 106.490i 0.399975 + 0.166652i
\(640\) −27.8192 + 49.2554i −0.0434675 + 0.0769615i
\(641\) 675.541 + 390.024i 1.05389 + 0.608462i 0.923735 0.383032i \(-0.125120\pi\)
0.130152 + 0.991494i \(0.458454\pi\)
\(642\) 481.736 31.0709i 0.750367 0.0483971i
\(643\) 563.561 + 563.561i 0.876455 + 0.876455i 0.993166 0.116711i \(-0.0372350\pi\)
−0.116711 + 0.993166i \(0.537235\pi\)
\(644\) 203.824 + 181.730i 0.316497 + 0.282189i
\(645\) −364.485 + 755.076i −0.565093 + 1.17066i
\(646\) 238.897 + 413.782i 0.369810 + 0.640529i
\(647\) −1197.10 + 320.761i −1.85022 + 0.495766i −0.999552 0.0299300i \(-0.990472\pi\)
−0.850672 + 0.525696i \(0.823805\pi\)
\(648\) −0.954183 + 229.101i −0.00147250 + 0.353550i
\(649\) 115.266 + 199.647i 0.177605 + 0.307622i
\(650\) −12.6618 668.605i −0.0194797 1.02862i
\(651\) 83.6022 + 683.833i 0.128421 + 1.05043i
\(652\) 202.010 + 202.010i 0.309831 + 0.309831i
\(653\) −120.711 + 450.501i −0.184856 + 0.689894i 0.809805 + 0.586700i \(0.199573\pi\)
−0.994661 + 0.103194i \(0.967094\pi\)
\(654\) 170.147 + 34.0285i 0.260163 + 0.0520314i
\(655\) 131.514 + 472.864i 0.200785 + 0.721929i
\(656\) 100.565 + 174.183i 0.153300 + 0.265523i
\(657\) 64.7763 484.231i 0.0985941 0.737033i
\(658\) −31.7123 15.9637i −0.0481951 0.0242609i
\(659\) −127.507 −0.193485 −0.0967424 0.995309i \(-0.530842\pi\)
−0.0967424 + 0.995309i \(0.530842\pi\)
\(660\) 110.491 + 95.2627i 0.167410 + 0.144337i
\(661\) 313.149 + 180.796i 0.473750 + 0.273520i 0.717808 0.696241i \(-0.245145\pi\)
−0.244058 + 0.969761i \(0.578479\pi\)
\(662\) −0.913655 3.40981i −0.00138014 0.00515076i
\(663\) 1483.25 95.6665i 2.23718 0.144293i
\(664\) 174.602 0.262955
\(665\) −427.290 + 145.647i −0.642542 + 0.219017i
\(666\) 481.805 + 630.615i 0.723431 + 0.946870i
\(667\) −207.423 + 774.113i −0.310979 + 1.16059i
\(668\) 113.689 + 424.294i 0.170193 + 0.635170i
\(669\) 862.216 + 172.439i 1.28881 + 0.257756i
\(670\) 285.716 + 73.6654i 0.426442 + 0.109948i
\(671\) −330.088 −0.491935
\(672\) 73.1857 93.5727i 0.108907 0.139245i
\(673\) −487.993 + 487.993i −0.725101 + 0.725101i −0.969640 0.244539i \(-0.921363\pi\)
0.244539 + 0.969640i \(0.421363\pi\)
\(674\) 42.5517 + 73.7017i 0.0631331 + 0.109350i
\(675\) −206.838 + 642.528i −0.306427 + 0.951894i
\(676\) −188.754 + 326.932i −0.279222 + 0.483627i
\(677\) 109.671 409.298i 0.161996 0.604576i −0.836409 0.548106i \(-0.815349\pi\)
0.998404 0.0564694i \(-0.0179843\pi\)
\(678\) 480.452 + 237.555i 0.708631 + 0.350376i
\(679\) −123.865 110.438i −0.182423 0.162649i
\(680\) −264.409 259.449i −0.388836 0.381542i
\(681\) 270.657 307.977i 0.397440 0.452243i
\(682\) −58.3930 217.926i −0.0856202 0.319539i
\(683\) −419.380 + 112.373i −0.614027 + 0.164528i −0.552411 0.833572i \(-0.686292\pi\)
−0.0616158 + 0.998100i \(0.519625\pi\)
\(684\) 214.307 + 89.2920i 0.313314 + 0.130544i
\(685\) 3.57036 + 377.099i 0.00521221 + 0.550510i
\(686\) 43.6320 483.109i 0.0636035 0.704240i
\(687\) 167.833 + 82.9833i 0.244298 + 0.120791i
\(688\) −215.967 57.8681i −0.313905 0.0841106i
\(689\) 947.288 + 546.917i 1.37487 + 0.793784i
\(690\) 77.3003 406.486i 0.112029 0.589111i
\(691\) −781.153 + 450.999i −1.13047 + 0.652676i −0.944052 0.329795i \(-0.893020\pi\)
−0.186415 + 0.982471i \(0.559687\pi\)
\(692\) 13.6349 + 13.6349i 0.0197037 + 0.0197037i
\(693\) −199.619 232.403i −0.288051 0.335357i
\(694\) 434.505i 0.626088i
\(695\) 409.624 + 105.612i 0.589387 + 0.151960i
\(696\) 341.867 + 68.3716i 0.491188 + 0.0982351i
\(697\) −1272.22 + 340.890i −1.82528 + 0.489081i
\(698\) −408.819 109.543i −0.585701 0.156938i
\(699\) 229.003 + 676.937i 0.327616 + 0.968437i
\(700\) 288.912 197.560i 0.412731 0.282229i
\(701\) 367.006i 0.523546i 0.965129 + 0.261773i \(0.0843072\pi\)
−0.965129 + 0.261773i \(0.915693\pi\)
\(702\) 544.481 474.496i 0.775613 0.675920i
\(703\) 776.810 208.146i 1.10499 0.296082i
\(704\) −19.4517 + 33.6913i −0.0276302 + 0.0478569i
\(705\) 3.97065 + 53.6495i 0.00563213 + 0.0760985i
\(706\) 744.849i 1.05503i
\(707\) −573.112 288.499i −0.810625 0.408060i
\(708\) −254.972 126.069i −0.360130 0.178063i
\(709\) 391.615 226.099i 0.552349 0.318899i −0.197720 0.980259i \(-0.563354\pi\)
0.750069 + 0.661360i \(0.230020\pi\)
\(710\) −106.981 + 189.415i −0.150677 + 0.266782i
\(711\) 35.6371 + 275.116i 0.0501225 + 0.386943i
\(712\) 171.520 + 45.9586i 0.240899 + 0.0645486i
\(713\) −452.471 + 452.471i −0.634602 + 0.634602i
\(714\) 467.842 + 621.521i 0.655241 + 0.870478i
\(715\) −4.35408 459.875i −0.00608962 0.643182i
\(716\) 306.727 177.089i 0.428390 0.247331i
\(717\) 279.581 186.389i 0.389932 0.259957i
\(718\) −15.6319 58.3389i −0.0217714 0.0812519i
\(719\) 683.443 394.586i 0.950546 0.548798i 0.0572956 0.998357i \(-0.481752\pi\)
0.893251 + 0.449559i \(0.148419\pi\)
\(720\) −178.629 22.1761i −0.248095 0.0308002i
\(721\) 1027.42 + 213.147i 1.42500 + 0.295627i
\(722\) −194.641 + 194.641i −0.269586 + 0.269586i
\(723\) 170.735 11.0121i 0.236149 0.0152311i
\(724\) −156.164 + 270.484i −0.215696 + 0.373597i
\(725\) 899.129 + 496.655i 1.24018 + 0.685041i
\(726\) −310.248 272.653i −0.427339 0.375555i
\(727\) 261.618 261.618i 0.359859 0.359859i −0.503902 0.863761i \(-0.668103\pi\)
0.863761 + 0.503902i \(0.168103\pi\)
\(728\) −373.872 + 21.4250i −0.513561 + 0.0294299i
\(729\) −675.238 + 274.763i −0.926252 + 0.376904i
\(730\) 371.682 + 95.8296i 0.509153 + 0.131273i
\(731\) 732.075 1267.99i 1.00147 1.73460i
\(732\) 338.870 225.915i 0.462937 0.308628i
\(733\) −50.1170 + 187.039i −0.0683725 + 0.255170i −0.991649 0.128967i \(-0.958834\pi\)
0.923276 + 0.384136i \(0.125501\pi\)
\(734\) 878.020i 1.19621i
\(735\) −661.777 + 319.807i −0.900377 + 0.435111i
\(736\) 110.339 0.149917
\(737\) 196.005 + 52.5193i 0.265949 + 0.0712609i
\(738\) −390.657 + 506.925i −0.529346 + 0.686890i
\(739\) 693.344 + 400.303i 0.938220 + 0.541681i 0.889402 0.457126i \(-0.151121\pi\)
0.0488179 + 0.998808i \(0.484455\pi\)
\(740\) −537.005 + 316.857i −0.725683 + 0.428185i
\(741\) −234.532 693.279i −0.316507 0.935599i
\(742\) 32.7534 + 571.558i 0.0441421 + 0.770293i
\(743\) 671.297 + 671.297i 0.903495 + 0.903495i 0.995737 0.0922418i \(-0.0294033\pi\)
−0.0922418 + 0.995737i \(0.529403\pi\)
\(744\) 209.097 + 183.758i 0.281044 + 0.246987i
\(745\) 14.2313 + 51.1691i 0.0191024 + 0.0686834i
\(746\) −755.975 436.462i −1.01337 0.585070i
\(747\) 211.542 + 513.731i 0.283189 + 0.687725i
\(748\) −180.142 180.142i −0.240831 0.240831i
\(749\) 161.790 779.870i 0.216008 1.04121i
\(750\) −481.878 221.458i −0.642504 0.295278i
\(751\) −399.490 691.937i −0.531944 0.921354i −0.999305 0.0372875i \(-0.988128\pi\)
0.467360 0.884067i \(-0.345205\pi\)
\(752\) −13.8568 + 3.71293i −0.0184266 + 0.00493741i
\(753\) −194.831 + 129.889i −0.258740 + 0.172495i
\(754\) −549.521 951.798i −0.728807 1.26233i
\(755\) 746.764 761.040i 0.989091 1.00800i
\(756\) 363.988 + 101.964i 0.481466 + 0.134873i
\(757\) −449.959 449.959i −0.594398 0.594398i 0.344418 0.938816i \(-0.388076\pi\)
−0.938816 + 0.344418i \(0.888076\pi\)
\(758\) 113.484 423.528i 0.149715 0.558743i
\(759\) 55.8052 279.033i 0.0735247 0.367633i
\(760\) −89.7032 + 158.824i −0.118030 + 0.208979i <