Properties

Label 210.3.w.a.17.2
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.72119 - 1.26298i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.34013 - 4.41857i) q^{5} +(3.25493 + 2.72129i) q^{6} +(-6.07917 + 3.47039i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(5.80976 + 6.87362i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.72119 - 1.26298i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.34013 - 4.41857i) q^{5} +(3.25493 + 2.72129i) q^{6} +(-6.07917 + 3.47039i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(5.80976 + 6.87362i) q^{9} +(1.57936 + 6.89243i) q^{10} +(-5.23131 - 3.02030i) q^{11} +(-3.45026 - 4.90874i) q^{12} +(-7.33446 - 7.33446i) q^{13} +(9.57456 - 2.51551i) q^{14} +(0.787362 + 14.9793i) q^{15} +(2.00000 + 3.46410i) q^{16} +(22.5211 - 6.03451i) q^{17} +(-5.42036 - 11.5161i) q^{18} +(17.0920 + 29.6042i) q^{19} +(0.365356 - 9.99332i) q^{20} +(20.9256 - 1.76573i) q^{21} +(6.04060 + 6.04060i) q^{22} +(-7.11456 + 26.5519i) q^{23} +(2.91642 + 7.96834i) q^{24} +(-14.0476 + 20.6801i) q^{25} +(7.33446 + 12.7037i) q^{26} +(-7.12823 - 26.0420i) q^{27} +(-13.9998 - 0.0682753i) q^{28} -6.86667 q^{29} +(4.40726 - 20.7503i) q^{30} +(38.9114 + 22.4655i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(10.4208 + 14.8258i) q^{33} -32.9732 q^{34} +(29.5602 + 18.7401i) q^{35} +(3.18919 + 17.7152i) q^{36} +(-9.14352 + 34.1241i) q^{37} +(-12.5122 - 46.6962i) q^{38} +(10.6952 + 29.2218i) q^{39} +(-4.15690 + 13.5174i) q^{40} +18.2221 q^{41} +(-29.2313 - 5.24728i) q^{42} +(17.2571 - 17.2571i) q^{43} +(-6.04060 - 10.4626i) q^{44} +(16.7760 - 41.7560i) q^{45} +(19.4373 - 33.6664i) q^{46} +(-6.24890 + 23.3212i) q^{47} +(-1.06729 - 11.9524i) q^{48} +(24.9127 - 42.1943i) q^{49} +(26.7588 - 23.1077i) q^{50} +(-68.9057 - 12.0226i) q^{51} +(-5.36920 - 20.0381i) q^{52} +(-77.2906 + 20.7100i) q^{53} +(0.205295 + 38.1832i) q^{54} +(-1.10348 + 30.1828i) q^{55} +(19.0991 + 5.21756i) q^{56} +(-9.12106 - 102.145i) q^{57} +(9.38005 + 2.51338i) q^{58} +(-97.9689 - 56.5624i) q^{59} +(-13.6156 + 26.7323i) q^{60} +(16.8856 - 9.74888i) q^{61} +(-44.9310 - 44.9310i) q^{62} +(-59.1727 - 21.6238i) q^{63} +8.00000i q^{64} +(-15.2443 + 49.5715i) q^{65} +(-8.80847 - 24.0668i) q^{66} +(10.9297 - 2.92860i) q^{67} +(45.0422 + 12.0690i) q^{68} +(52.8946 - 63.2672i) q^{69} +(-33.5207 - 36.4193i) q^{70} +80.6556i q^{71} +(2.12771 - 25.3668i) q^{72} +(-1.93873 + 0.519481i) q^{73} +(24.9805 - 43.2676i) q^{74} +(64.3447 - 38.5325i) q^{75} +68.3679i q^{76} +(42.2837 + 0.206212i) q^{77} +(-3.91400 - 43.8324i) q^{78} +(-73.1841 + 42.2528i) q^{79} +(10.6261 - 16.9436i) q^{80} +(-13.4933 + 79.8682i) q^{81} +(-24.8919 - 6.66976i) q^{82} +(-4.56113 + 4.56113i) q^{83} +(38.0100 + 17.8673i) q^{84} +(-79.3662 - 85.3897i) q^{85} +(-29.8902 + 17.2571i) q^{86} +(18.6855 + 8.67247i) q^{87} +(4.42202 + 16.5032i) q^{88} +(-21.5716 + 12.4544i) q^{89} +(-38.2002 + 50.8993i) q^{90} +(70.0410 + 19.1340i) q^{91} +(-38.8747 + 38.8747i) q^{92} +(-77.5118 - 110.277i) q^{93} +(17.0723 - 29.5701i) q^{94} +(90.8109 - 144.800i) q^{95} +(-2.91695 + 16.7180i) q^{96} +(38.4454 - 38.4454i) q^{97} +(-49.4756 + 48.5197i) q^{98} +(-9.63229 - 53.5053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −2.72119 1.26298i −0.907064 0.420993i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −2.34013 4.41857i −0.468025 0.883715i
\(6\) 3.25493 + 2.72129i 0.542489 + 0.453548i
\(7\) −6.07917 + 3.47039i −0.868454 + 0.495771i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 5.80976 + 6.87362i 0.645529 + 0.763736i
\(10\) 1.57936 + 6.89243i 0.157936 + 0.689243i
\(11\) −5.23131 3.02030i −0.475574 0.274573i 0.242996 0.970027i \(-0.421870\pi\)
−0.718570 + 0.695455i \(0.755203\pi\)
\(12\) −3.45026 4.90874i −0.287522 0.409061i
\(13\) −7.33446 7.33446i −0.564189 0.564189i 0.366305 0.930495i \(-0.380623\pi\)
−0.930495 + 0.366305i \(0.880623\pi\)
\(14\) 9.57456 2.51551i 0.683897 0.179680i
\(15\) 0.787362 + 14.9793i 0.0524908 + 0.998621i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 22.5211 6.03451i 1.32477 0.354971i 0.474008 0.880520i \(-0.342807\pi\)
0.850763 + 0.525549i \(0.176140\pi\)
\(18\) −5.42036 11.5161i −0.301131 0.639781i
\(19\) 17.0920 + 29.6042i 0.899578 + 1.55811i 0.828034 + 0.560678i \(0.189459\pi\)
0.0715438 + 0.997437i \(0.477207\pi\)
\(20\) 0.365356 9.99332i 0.0182678 0.499666i
\(21\) 20.9256 1.76573i 0.996459 0.0840824i
\(22\) 6.04060 + 6.04060i 0.274573 + 0.274573i
\(23\) −7.11456 + 26.5519i −0.309329 + 1.15443i 0.619826 + 0.784739i \(0.287203\pi\)
−0.929155 + 0.369691i \(0.879464\pi\)
\(24\) 2.91642 + 7.96834i 0.121518 + 0.332014i
\(25\) −14.0476 + 20.6801i −0.561904 + 0.827202i
\(26\) 7.33446 + 12.7037i 0.282095 + 0.488602i
\(27\) −7.12823 26.0420i −0.264009 0.964520i
\(28\) −13.9998 0.0682753i −0.499994 0.00243840i
\(29\) −6.86667 −0.236782 −0.118391 0.992967i \(-0.537774\pi\)
−0.118391 + 0.992967i \(0.537774\pi\)
\(30\) 4.40726 20.7503i 0.146909 0.691678i
\(31\) 38.9114 + 22.4655i 1.25520 + 0.724693i 0.972138 0.234407i \(-0.0753150\pi\)
0.283066 + 0.959100i \(0.408648\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 10.4208 + 14.8258i 0.315782 + 0.449268i
\(34\) −32.9732 −0.969800
\(35\) 29.5602 + 18.7401i 0.844578 + 0.535432i
\(36\) 3.18919 + 17.7152i 0.0885885 + 0.492090i
\(37\) −9.14352 + 34.1241i −0.247122 + 0.922272i 0.725183 + 0.688556i \(0.241755\pi\)
−0.972305 + 0.233716i \(0.924911\pi\)
\(38\) −12.5122 46.6962i −0.329268 1.22885i
\(39\) 10.6952 + 29.2218i 0.274236 + 0.749276i
\(40\) −4.15690 + 13.5174i −0.103922 + 0.337935i
\(41\) 18.2221 0.444442 0.222221 0.974996i \(-0.428669\pi\)
0.222221 + 0.974996i \(0.428669\pi\)
\(42\) −29.2313 5.24728i −0.695982 0.124935i
\(43\) 17.2571 17.2571i 0.401329 0.401329i −0.477372 0.878701i \(-0.658411\pi\)
0.878701 + 0.477372i \(0.158411\pi\)
\(44\) −6.04060 10.4626i −0.137286 0.237787i
\(45\) 16.7760 41.7560i 0.372800 0.927912i
\(46\) 19.4373 33.6664i 0.422551 0.731879i
\(47\) −6.24890 + 23.3212i −0.132955 + 0.496196i −0.999998 0.00203792i \(-0.999351\pi\)
0.867043 + 0.498234i \(0.166018\pi\)
\(48\) −1.06729 11.9524i −0.0222352 0.249009i
\(49\) 24.9127 42.1943i 0.508423 0.861107i
\(50\) 26.7588 23.1077i 0.535176 0.462154i
\(51\) −68.9057 12.0226i −1.35109 0.235738i
\(52\) −5.36920 20.0381i −0.103254 0.385349i
\(53\) −77.2906 + 20.7100i −1.45831 + 0.390754i −0.898907 0.438139i \(-0.855638\pi\)
−0.559407 + 0.828893i \(0.688971\pi\)
\(54\) 0.205295 + 38.1832i 0.00380176 + 0.707097i
\(55\) −1.10348 + 30.1828i −0.0200633 + 0.548779i
\(56\) 19.0991 + 5.21756i 0.341056 + 0.0931707i
\(57\) −9.12106 102.145i −0.160019 1.79203i
\(58\) 9.38005 + 2.51338i 0.161725 + 0.0433341i
\(59\) −97.9689 56.5624i −1.66049 0.958684i −0.972481 0.232982i \(-0.925152\pi\)
−0.688009 0.725702i \(-0.741515\pi\)
\(60\) −13.6156 + 26.7323i −0.226926 + 0.445538i
\(61\) 16.8856 9.74888i 0.276812 0.159818i −0.355167 0.934803i \(-0.615576\pi\)
0.631979 + 0.774985i \(0.282243\pi\)
\(62\) −44.9310 44.9310i −0.724693 0.724693i
\(63\) −59.1727 21.6238i −0.939250 0.343234i
\(64\) 8.00000i 0.125000i
\(65\) −15.2443 + 49.5715i −0.234528 + 0.762638i
\(66\) −8.80847 24.0668i −0.133462 0.364648i
\(67\) 10.9297 2.92860i 0.163130 0.0437104i −0.176330 0.984331i \(-0.556423\pi\)
0.339459 + 0.940621i \(0.389756\pi\)
\(68\) 45.0422 + 12.0690i 0.662386 + 0.177486i
\(69\) 52.8946 63.2672i 0.766588 0.916916i
\(70\) −33.5207 36.4193i −0.478867 0.520275i
\(71\) 80.6556i 1.13599i 0.823030 + 0.567997i \(0.192282\pi\)
−0.823030 + 0.567997i \(0.807718\pi\)
\(72\) 2.12771 25.3668i 0.0295516 0.352316i
\(73\) −1.93873 + 0.519481i −0.0265579 + 0.00711618i −0.272074 0.962276i \(-0.587709\pi\)
0.245516 + 0.969393i \(0.421043\pi\)
\(74\) 24.9805 43.2676i 0.337575 0.584697i
\(75\) 64.3447 38.5325i 0.857930 0.513767i
\(76\) 68.3679i 0.899578i
\(77\) 42.2837 + 0.206212i 0.549139 + 0.00267807i
\(78\) −3.91400 43.8324i −0.0501796 0.561954i
\(79\) −73.1841 + 42.2528i −0.926381 + 0.534846i −0.885665 0.464325i \(-0.846297\pi\)
−0.0407156 + 0.999171i \(0.512964\pi\)
\(80\) 10.6261 16.9436i 0.132827 0.211795i
\(81\) −13.4933 + 79.8682i −0.166584 + 0.986027i
\(82\) −24.8919 6.66976i −0.303559 0.0813385i
\(83\) −4.56113 + 4.56113i −0.0549533 + 0.0549533i −0.734049 0.679096i \(-0.762372\pi\)
0.679096 + 0.734049i \(0.262372\pi\)
\(84\) 38.0100 + 17.8673i 0.452500 + 0.212706i
\(85\) −79.3662 85.3897i −0.933720 1.00458i
\(86\) −29.8902 + 17.2571i −0.347561 + 0.200664i
\(87\) 18.6855 + 8.67247i 0.214776 + 0.0996835i
\(88\) 4.42202 + 16.5032i 0.0502503 + 0.187537i
\(89\) −21.5716 + 12.4544i −0.242377 + 0.139937i −0.616269 0.787536i \(-0.711357\pi\)
0.373892 + 0.927472i \(0.378023\pi\)
\(90\) −38.2002 + 50.8993i −0.424447 + 0.565548i
\(91\) 70.0410 + 19.1340i 0.769681 + 0.210264i
\(92\) −38.8747 + 38.8747i −0.422551 + 0.422551i
\(93\) −77.5118 110.277i −0.833460 1.18578i
\(94\) 17.0723 29.5701i 0.181620 0.314576i
\(95\) 90.8109 144.800i 0.955904 1.52421i
\(96\) −2.91695 + 16.7180i −0.0303849 + 0.174146i
\(97\) 38.4454 38.4454i 0.396345 0.396345i −0.480597 0.876942i \(-0.659580\pi\)
0.876942 + 0.480597i \(0.159580\pi\)
\(98\) −49.4756 + 48.5197i −0.504853 + 0.495099i
\(99\) −9.63229 53.5053i −0.0972959 0.540457i
\(100\) −45.0112 + 21.7713i −0.450112 + 0.217713i
\(101\) −11.7303 + 20.3175i −0.116142 + 0.201163i −0.918235 0.396035i \(-0.870386\pi\)
0.802094 + 0.597198i \(0.203719\pi\)
\(102\) 89.7264 + 41.6445i 0.879670 + 0.408279i
\(103\) −48.6683 + 181.632i −0.472507 + 1.76342i 0.158207 + 0.987406i \(0.449429\pi\)
−0.630714 + 0.776015i \(0.717238\pi\)
\(104\) 29.3379i 0.282095i
\(105\) −56.7707 88.3295i −0.540673 0.841233i
\(106\) 113.161 1.06756
\(107\) 80.3041 + 21.5174i 0.750506 + 0.201097i 0.613742 0.789506i \(-0.289663\pi\)
0.136763 + 0.990604i \(0.456330\pi\)
\(108\) 13.6956 52.2344i 0.126811 0.483652i
\(109\) 28.9994 + 16.7428i 0.266049 + 0.153604i 0.627091 0.778946i \(-0.284245\pi\)
−0.361042 + 0.932550i \(0.617579\pi\)
\(110\) 12.5551 40.8266i 0.114137 0.371151i
\(111\) 67.9793 81.3100i 0.612426 0.732523i
\(112\) −24.1801 14.1181i −0.215894 0.126054i
\(113\) 12.6123 + 12.6123i 0.111613 + 0.111613i 0.760708 0.649095i \(-0.224852\pi\)
−0.649095 + 0.760708i \(0.724852\pi\)
\(114\) −24.9282 + 142.872i −0.218669 + 1.25326i
\(115\) 133.970 30.6986i 1.16496 0.266944i
\(116\) −11.8934 6.86667i −0.102530 0.0591954i
\(117\) 7.80282 93.0258i 0.0666908 0.795092i
\(118\) 113.125 + 113.125i 0.958684 + 0.958684i
\(119\) −115.968 + 114.842i −0.974518 + 0.965059i
\(120\) 28.3839 31.5334i 0.236533 0.262778i
\(121\) −42.2556 73.1888i −0.349220 0.604866i
\(122\) −26.6344 + 7.13668i −0.218315 + 0.0584973i
\(123\) −49.5859 23.0142i −0.403137 0.187107i
\(124\) 44.9310 + 77.8227i 0.362346 + 0.627602i
\(125\) 124.250 + 13.6764i 0.993997 + 0.109412i
\(126\) 72.9166 + 51.1973i 0.578703 + 0.406328i
\(127\) 147.938 + 147.938i 1.16486 + 1.16486i 0.983397 + 0.181467i \(0.0580847\pi\)
0.181467 + 0.983397i \(0.441915\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) −68.7554 + 25.1645i −0.532987 + 0.195074i
\(130\) 38.9685 62.1361i 0.299758 0.477970i
\(131\) 74.8356 + 129.619i 0.571264 + 0.989459i 0.996436 + 0.0843465i \(0.0268803\pi\)
−0.425172 + 0.905113i \(0.639786\pi\)
\(132\) 3.22354 + 36.0999i 0.0244207 + 0.273484i
\(133\) −206.643 120.653i −1.55371 0.907166i
\(134\) −16.0022 −0.119419
\(135\) −98.3878 + 92.4383i −0.728798 + 0.684728i
\(136\) −57.1113 32.9732i −0.419936 0.242450i
\(137\) 6.54134 + 24.4126i 0.0477470 + 0.178194i 0.985681 0.168619i \(-0.0539306\pi\)
−0.937934 + 0.346813i \(0.887264\pi\)
\(138\) −95.4127 + 67.0639i −0.691397 + 0.485970i
\(139\) −237.437 −1.70818 −0.854090 0.520125i \(-0.825885\pi\)
−0.854090 + 0.520125i \(0.825885\pi\)
\(140\) 32.4597 + 62.0191i 0.231855 + 0.442993i
\(141\) 46.4587 55.5693i 0.329494 0.394108i
\(142\) 29.5220 110.178i 0.207901 0.775899i
\(143\) 16.2166 + 60.5211i 0.113403 + 0.423225i
\(144\) −12.1914 + 33.8729i −0.0846624 + 0.235228i
\(145\) 16.0689 + 30.3409i 0.110820 + 0.209248i
\(146\) 2.83850 0.0194418
\(147\) −121.083 + 83.3544i −0.823693 + 0.567037i
\(148\) −49.9611 + 49.9611i −0.337575 + 0.337575i
\(149\) 19.6566 + 34.0462i 0.131924 + 0.228498i 0.924418 0.381381i \(-0.124551\pi\)
−0.792494 + 0.609879i \(0.791218\pi\)
\(150\) −102.000 + 29.0846i −0.680003 + 0.193897i
\(151\) −19.0601 + 33.0130i −0.126226 + 0.218629i −0.922211 0.386686i \(-0.873620\pi\)
0.795986 + 0.605315i \(0.206953\pi\)
\(152\) 25.0244 93.3923i 0.164634 0.614423i
\(153\) 172.321 + 119.742i 1.12628 + 0.782631i
\(154\) −57.6851 15.7586i −0.374579 0.102329i
\(155\) 8.20789 224.505i 0.0529541 1.44842i
\(156\) −10.6971 + 61.3088i −0.0685714 + 0.393005i
\(157\) 15.5225 + 57.9306i 0.0988692 + 0.368985i 0.997578 0.0695618i \(-0.0221601\pi\)
−0.898708 + 0.438547i \(0.855493\pi\)
\(158\) 115.437 30.9312i 0.730613 0.195767i
\(159\) 236.479 + 41.2608i 1.48729 + 0.259502i
\(160\) −20.7174 + 19.2559i −0.129483 + 0.120350i
\(161\) −48.8949 186.104i −0.303695 1.15592i
\(162\) 47.6660 104.163i 0.294234 0.642982i
\(163\) 5.64718 + 1.51316i 0.0346453 + 0.00928317i 0.276100 0.961129i \(-0.410958\pi\)
−0.241455 + 0.970412i \(0.577625\pi\)
\(164\) 31.5616 + 18.2221i 0.192449 + 0.111110i
\(165\) 41.1231 80.7395i 0.249231 0.489331i
\(166\) 7.90010 4.56113i 0.0475910 0.0274767i
\(167\) −6.13829 6.13829i −0.0367562 0.0367562i 0.688490 0.725246i \(-0.258274\pi\)
−0.725246 + 0.688490i \(0.758274\pi\)
\(168\) −45.3827 38.3198i −0.270135 0.228094i
\(169\) 61.4113i 0.363381i
\(170\) 77.1615 + 145.695i 0.453891 + 0.857027i
\(171\) −104.188 + 289.477i −0.609284 + 1.69285i
\(172\) 47.1474 12.6331i 0.274113 0.0734483i
\(173\) 194.574 + 52.1359i 1.12470 + 0.301363i 0.772785 0.634668i \(-0.218863\pi\)
0.351918 + 0.936031i \(0.385530\pi\)
\(174\) −22.3506 18.6862i −0.128451 0.107392i
\(175\) 13.6299 174.468i 0.0778852 0.996962i
\(176\) 24.1624i 0.137286i
\(177\) 195.155 + 277.650i 1.10257 + 1.56864i
\(178\) 34.0259 9.11722i 0.191157 0.0512203i
\(179\) −17.6436 + 30.5596i −0.0985676 + 0.170724i −0.911092 0.412203i \(-0.864759\pi\)
0.812524 + 0.582927i \(0.198093\pi\)
\(180\) 70.8129 55.5475i 0.393405 0.308597i
\(181\) 194.579i 1.07502i −0.843258 0.537510i \(-0.819365\pi\)
0.843258 0.537510i \(-0.180635\pi\)
\(182\) −88.6742 51.7743i −0.487221 0.284474i
\(183\) −58.2615 + 5.20245i −0.318369 + 0.0284287i
\(184\) 67.3329 38.8747i 0.365940 0.211275i
\(185\) 172.177 39.4533i 0.930685 0.213261i
\(186\) 65.5188 + 179.013i 0.352252 + 0.962434i
\(187\) −136.041 36.4521i −0.727492 0.194931i
\(188\) −34.1446 + 34.1446i −0.181620 + 0.181620i
\(189\) 133.710 + 133.576i 0.707460 + 0.706753i
\(190\) −177.050 + 164.561i −0.931844 + 0.866111i
\(191\) −114.428 + 66.0651i −0.599100 + 0.345890i −0.768687 0.639625i \(-0.779090\pi\)
0.169588 + 0.985515i \(0.445756\pi\)
\(192\) 10.1038 21.7695i 0.0526242 0.113383i
\(193\) 54.3985 + 203.018i 0.281858 + 1.05191i 0.951105 + 0.308867i \(0.0999498\pi\)
−0.669248 + 0.743039i \(0.733383\pi\)
\(194\) −66.5894 + 38.4454i −0.343244 + 0.198172i
\(195\) 104.090 115.640i 0.533797 0.593026i
\(196\) 85.3444 48.1699i 0.435430 0.245765i
\(197\) −94.5121 + 94.5121i −0.479757 + 0.479757i −0.905054 0.425297i \(-0.860170\pi\)
0.425297 + 0.905054i \(0.360170\pi\)
\(198\) −6.42633 + 76.6152i −0.0324562 + 0.386945i
\(199\) 182.775 316.575i 0.918465 1.59083i 0.116717 0.993165i \(-0.462763\pi\)
0.801748 0.597663i \(-0.203904\pi\)
\(200\) 69.4553 13.2649i 0.347277 0.0663245i
\(201\) −33.4405 5.83469i −0.166371 0.0290283i
\(202\) 23.4606 23.4606i 0.116142 0.116142i
\(203\) 41.7437 23.8301i 0.205634 0.117389i
\(204\) −107.326 89.7296i −0.526106 0.439851i
\(205\) −42.6421 80.5158i −0.208010 0.392760i
\(206\) 132.964 230.301i 0.645457 1.11796i
\(207\) −223.841 + 105.357i −1.08136 + 0.508973i
\(208\) 10.7384 40.0763i 0.0516269 0.192674i
\(209\) 206.492i 0.987998i
\(210\) 45.2193 + 141.440i 0.215330 + 0.673523i
\(211\) 49.4419 0.234322 0.117161 0.993113i \(-0.462621\pi\)
0.117161 + 0.993113i \(0.462621\pi\)
\(212\) −154.581 41.4199i −0.729157 0.195377i
\(213\) 101.866 219.479i 0.478246 1.03042i
\(214\) −101.822 58.7867i −0.475801 0.274704i
\(215\) −116.636 35.8681i −0.542492 0.166828i
\(216\) −37.8276 + 66.3406i −0.175128 + 0.307132i
\(217\) −314.513 1.53384i −1.44937 0.00706837i
\(218\) −33.4856 33.4856i −0.153604 0.153604i
\(219\) 5.93175 + 1.03497i 0.0270856 + 0.00472589i
\(220\) −32.0941 + 51.1747i −0.145882 + 0.232612i
\(221\) −209.440 120.920i −0.947693 0.547151i
\(222\) −122.623 + 86.1894i −0.552356 + 0.388241i
\(223\) −147.669 147.669i −0.662195 0.662195i 0.293702 0.955897i \(-0.405113\pi\)
−0.955897 + 0.293702i \(0.905113\pi\)
\(224\) 27.8631 + 28.1362i 0.124389 + 0.125608i
\(225\) −223.760 + 23.5883i −0.994489 + 0.104837i
\(226\) −12.6123 21.8451i −0.0558066 0.0966599i
\(227\) −212.531 + 56.9475i −0.936259 + 0.250870i −0.694522 0.719472i \(-0.744384\pi\)
−0.241738 + 0.970342i \(0.577717\pi\)
\(228\) 86.3473 186.042i 0.378716 0.815975i
\(229\) 149.624 + 259.157i 0.653380 + 1.13169i 0.982297 + 0.187329i \(0.0599831\pi\)
−0.328917 + 0.944359i \(0.606684\pi\)
\(230\) −194.244 7.10154i −0.844537 0.0308762i
\(231\) −114.802 53.9646i −0.496976 0.233613i
\(232\) 13.7333 + 13.7333i 0.0591954 + 0.0591954i
\(233\) −31.0526 + 115.890i −0.133273 + 0.497381i −0.999999 0.00140324i \(-0.999553\pi\)
0.866726 + 0.498784i \(0.166220\pi\)
\(234\) −44.7087 + 124.220i −0.191063 + 0.530853i
\(235\) 117.670 26.9634i 0.500722 0.114738i
\(236\) −113.125 195.938i −0.479342 0.830245i
\(237\) 252.512 22.5481i 1.06545 0.0951395i
\(238\) 200.450 114.430i 0.842226 0.480798i
\(239\) −395.609 −1.65527 −0.827634 0.561268i \(-0.810314\pi\)
−0.827634 + 0.561268i \(0.810314\pi\)
\(240\) −50.3152 + 32.6861i −0.209647 + 0.136192i
\(241\) −191.579 110.608i −0.794934 0.458956i 0.0467624 0.998906i \(-0.485110\pi\)
−0.841697 + 0.539950i \(0.818443\pi\)
\(242\) 30.9332 + 115.444i 0.127823 + 0.477043i
\(243\) 137.590 200.295i 0.566213 0.824259i
\(244\) 38.9955 0.159818
\(245\) −244.737 11.3388i −0.998928 0.0462808i
\(246\) 59.3118 + 49.5876i 0.241105 + 0.201576i
\(247\) 91.7703 342.491i 0.371540 1.38660i
\(248\) −32.8917 122.754i −0.132628 0.494974i
\(249\) 18.1723 6.65109i 0.0729812 0.0267112i
\(250\) −164.722 64.1609i −0.658889 0.256644i
\(251\) 231.794 0.923482 0.461741 0.887015i \(-0.347225\pi\)
0.461741 + 0.887015i \(0.347225\pi\)
\(252\) −80.8664 96.6262i −0.320898 0.383437i
\(253\) 117.413 117.413i 0.464083 0.464083i
\(254\) −147.938 256.236i −0.582432 1.00880i
\(255\) 108.125 + 332.600i 0.424020 + 1.30431i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 8.34872 31.1578i 0.0324853 0.121237i −0.947779 0.318927i \(-0.896677\pi\)
0.980264 + 0.197691i \(0.0633441\pi\)
\(258\) 103.132 9.20920i 0.399738 0.0356946i
\(259\) −62.8389 239.178i −0.242621 0.923466i
\(260\) −75.9753 + 70.6160i −0.292213 + 0.271600i
\(261\) −39.8937 47.1989i −0.152850 0.180839i
\(262\) −54.7835 204.455i −0.209097 0.780362i
\(263\) −161.425 + 43.2538i −0.613785 + 0.164463i −0.552301 0.833645i \(-0.686250\pi\)
−0.0614840 + 0.998108i \(0.519583\pi\)
\(264\) 8.81006 50.4933i 0.0333714 0.191263i
\(265\) 272.378 + 293.051i 1.02784 + 1.10585i
\(266\) 238.118 + 240.452i 0.895180 + 0.903954i
\(267\) 74.4300 6.64621i 0.278764 0.0248922i
\(268\) 21.8594 + 5.85720i 0.0815648 + 0.0218552i
\(269\) 302.162 + 174.453i 1.12328 + 0.648526i 0.942236 0.334949i \(-0.108719\pi\)
0.181043 + 0.983475i \(0.442053\pi\)
\(270\) 168.235 90.2607i 0.623093 0.334299i
\(271\) 17.0749 9.85817i 0.0630068 0.0363770i −0.468166 0.883641i \(-0.655085\pi\)
0.531172 + 0.847264i \(0.321752\pi\)
\(272\) 65.9464 + 65.9464i 0.242450 + 0.242450i
\(273\) −166.429 140.528i −0.609630 0.514753i
\(274\) 35.7425i 0.130447i
\(275\) 135.947 65.7558i 0.494354 0.239112i
\(276\) 154.883 56.6875i 0.561171 0.205389i
\(277\) 216.453 57.9983i 0.781417 0.209380i 0.154008 0.988070i \(-0.450782\pi\)
0.627409 + 0.778690i \(0.284115\pi\)
\(278\) 324.345 + 86.9080i 1.16671 + 0.312619i
\(279\) 71.6466 + 397.981i 0.256798 + 1.42646i
\(280\) −21.6402 96.6007i −0.0772865 0.345003i
\(281\) 226.986i 0.807780i 0.914808 + 0.403890i \(0.132342\pi\)
−0.914808 + 0.403890i \(0.867658\pi\)
\(282\) −83.8035 + 58.9040i −0.297176 + 0.208879i
\(283\) −92.5997 + 24.8120i −0.327208 + 0.0876750i −0.418683 0.908132i \(-0.637508\pi\)
0.0914758 + 0.995807i \(0.470842\pi\)
\(284\) −80.6556 + 139.700i −0.283999 + 0.491900i
\(285\) −429.993 + 279.336i −1.50875 + 0.980125i
\(286\) 88.6091i 0.309822i
\(287\) −110.775 + 63.2379i −0.385977 + 0.220341i
\(288\) 29.0521 41.8088i 0.100875 0.145169i
\(289\) 220.504 127.308i 0.762989 0.440512i
\(290\) −10.8450 47.3281i −0.0373964 0.163200i
\(291\) −153.173 + 56.0615i −0.526368 + 0.192651i
\(292\) −3.87746 1.03896i −0.0132790 0.00355809i
\(293\) −190.809 + 190.809i −0.651224 + 0.651224i −0.953288 0.302064i \(-0.902325\pi\)
0.302064 + 0.953288i \(0.402325\pi\)
\(294\) 195.912 69.5448i 0.666367 0.236547i
\(295\) −20.6654 + 565.246i −0.0700521 + 1.91609i
\(296\) 86.5352 49.9611i 0.292349 0.168787i
\(297\) −41.3648 + 157.763i −0.139275 + 0.531190i
\(298\) −14.3896 53.7028i −0.0482874 0.180211i
\(299\) 246.925 142.562i 0.825837 0.476797i
\(300\) 149.981 2.39559i 0.499936 0.00798529i
\(301\) −45.0201 + 164.798i −0.149568 + 0.547502i
\(302\) 38.1201 38.1201i 0.126226 0.126226i
\(303\) 57.5809 40.4726i 0.190036 0.133573i
\(304\) −68.3679 + 118.417i −0.224895 + 0.389529i
\(305\) −82.5905 51.7965i −0.270789 0.169824i
\(306\) −191.566 226.645i −0.626034 0.740671i
\(307\) −34.1553 + 34.1553i −0.111255 + 0.111255i −0.760543 0.649288i \(-0.775067\pi\)
0.649288 + 0.760543i \(0.275067\pi\)
\(308\) 73.0313 + 42.6408i 0.237114 + 0.138444i
\(309\) 361.834 432.789i 1.17098 1.40061i
\(310\) −93.3866 + 303.675i −0.301247 + 0.979597i
\(311\) 272.168 471.409i 0.875139 1.51579i 0.0185247 0.999828i \(-0.494103\pi\)
0.856614 0.515957i \(-0.172564\pi\)
\(312\) 37.0531 79.8339i 0.118760 0.255878i
\(313\) 118.989 444.072i 0.380155 1.41876i −0.465509 0.885043i \(-0.654129\pi\)
0.845664 0.533716i \(-0.179205\pi\)
\(314\) 84.8163i 0.270116i
\(315\) 42.9255 + 312.062i 0.136271 + 0.990672i
\(316\) −169.011 −0.534846
\(317\) 17.9678 + 4.81445i 0.0566806 + 0.0151875i 0.287048 0.957916i \(-0.407326\pi\)
−0.230367 + 0.973104i \(0.573993\pi\)
\(318\) −307.934 142.921i −0.968345 0.449436i
\(319\) 35.9217 + 20.7394i 0.112607 + 0.0650138i
\(320\) 35.3486 18.7210i 0.110464 0.0585032i
\(321\) −191.347 159.975i −0.596096 0.498366i
\(322\) −1.32709 + 272.119i −0.00412139 + 0.845091i
\(323\) 563.577 + 563.577i 1.74482 + 1.74482i
\(324\) −103.239 + 124.842i −0.318640 + 0.385316i
\(325\) 254.709 48.6454i 0.783719 0.149678i
\(326\) −7.16033 4.13402i −0.0219642 0.0126810i
\(327\) −57.7671 82.1860i −0.176658 0.251333i
\(328\) −36.4442 36.4442i −0.111110 0.111110i
\(329\) −42.9457 163.460i −0.130534 0.496839i
\(330\) −85.7279 + 95.2402i −0.259782 + 0.288607i
\(331\) −82.1070 142.213i −0.248057 0.429648i 0.714929 0.699197i \(-0.246459\pi\)
−0.962987 + 0.269549i \(0.913125\pi\)
\(332\) −12.4612 + 3.33898i −0.0375338 + 0.0100572i
\(333\) −287.678 + 135.404i −0.863896 + 0.406618i
\(334\) 6.13829 + 10.6318i 0.0183781 + 0.0318318i
\(335\) −38.5171 41.4403i −0.114976 0.123702i
\(336\) 47.9679 + 68.9571i 0.142762 + 0.205229i
\(337\) 182.945 + 182.945i 0.542865 + 0.542865i 0.924368 0.381503i \(-0.124593\pi\)
−0.381503 + 0.924368i \(0.624593\pi\)
\(338\) −22.4781 + 83.8894i −0.0665033 + 0.248194i
\(339\) −18.3914 50.2495i −0.0542519 0.148229i
\(340\) −52.0766 227.266i −0.153167 0.668428i
\(341\) −135.705 235.048i −0.397962 0.689290i
\(342\) 248.279 357.298i 0.725961 1.04473i
\(343\) −5.01807 + 342.963i −0.0146300 + 0.999893i
\(344\) −69.0285 −0.200664
\(345\) −403.331 85.6653i −1.16908 0.248305i
\(346\) −246.710 142.438i −0.713033 0.411670i
\(347\) −19.7736 73.7960i −0.0569844 0.212669i 0.931563 0.363580i \(-0.118446\pi\)
−0.988547 + 0.150912i \(0.951779\pi\)
\(348\) 23.6918 + 33.7067i 0.0680799 + 0.0968583i
\(349\) −601.421 −1.72327 −0.861634 0.507529i \(-0.830559\pi\)
−0.861634 + 0.507529i \(0.830559\pi\)
\(350\) −82.4787 + 233.339i −0.235653 + 0.666684i
\(351\) −138.723 + 243.286i −0.395221 + 0.693123i
\(352\) −8.84405 + 33.0064i −0.0251251 + 0.0937683i
\(353\) 117.673 + 439.162i 0.333351 + 1.24408i 0.905645 + 0.424036i \(0.139387\pi\)
−0.572294 + 0.820048i \(0.693946\pi\)
\(354\) −164.960 450.708i −0.465988 1.27319i
\(355\) 356.383 188.744i 1.00390 0.531674i
\(356\) −49.8174 −0.139937
\(357\) 460.613 166.042i 1.29023 0.465104i
\(358\) 35.2872 35.2872i 0.0985676 0.0985676i
\(359\) −99.2457 171.899i −0.276450 0.478826i 0.694050 0.719927i \(-0.255825\pi\)
−0.970500 + 0.241101i \(0.922491\pi\)
\(360\) −117.064 + 49.9600i −0.325178 + 0.138778i
\(361\) −403.772 + 699.353i −1.11848 + 1.93727i
\(362\) −71.2207 + 265.799i −0.196742 + 0.734252i
\(363\) 22.5495 + 252.529i 0.0621199 + 0.695672i
\(364\) 102.180 + 103.182i 0.280716 + 0.283467i
\(365\) 6.83224 + 7.35077i 0.0187185 + 0.0201391i
\(366\) 81.4909 + 14.2185i 0.222653 + 0.0388484i
\(367\) 121.793 + 454.536i 0.331860 + 1.23852i 0.907233 + 0.420628i \(0.138190\pi\)
−0.575373 + 0.817891i \(0.695143\pi\)
\(368\) −106.208 + 28.4582i −0.288607 + 0.0773321i
\(369\) 105.866 + 125.252i 0.286900 + 0.339436i
\(370\) −249.639 9.12678i −0.674699 0.0246670i
\(371\) 397.992 394.129i 1.07275 1.06234i
\(372\) −23.9772 268.517i −0.0644549 0.721821i
\(373\) 261.696 + 70.1213i 0.701599 + 0.187993i 0.591947 0.805977i \(-0.298360\pi\)
0.109652 + 0.993970i \(0.465026\pi\)
\(374\) 172.493 + 99.5889i 0.461211 + 0.266281i
\(375\) −320.834 194.141i −0.855557 0.517709i
\(376\) 59.1402 34.1446i 0.157288 0.0908102i
\(377\) 50.3633 + 50.3633i 0.133590 + 0.133590i
\(378\) −133.759 231.410i −0.353859 0.612196i
\(379\) 478.536i 1.26263i 0.775528 + 0.631314i \(0.217484\pi\)
−0.775528 + 0.631314i \(0.782516\pi\)
\(380\) 302.089 159.990i 0.794971 0.421025i
\(381\) −215.725 589.409i −0.566206 1.54701i
\(382\) 180.493 48.3630i 0.472495 0.126605i
\(383\) −412.087 110.418i −1.07595 0.288299i −0.323012 0.946395i \(-0.604695\pi\)
−0.752934 + 0.658096i \(0.771362\pi\)
\(384\) −21.7703 + 26.0395i −0.0566935 + 0.0678111i
\(385\) −98.0380 187.316i −0.254644 0.486535i
\(386\) 297.239i 0.770049i
\(387\) 218.879 + 18.3591i 0.565578 + 0.0474396i
\(388\) 105.035 28.1440i 0.270708 0.0725361i
\(389\) 116.515 201.810i 0.299524 0.518791i −0.676503 0.736440i \(-0.736505\pi\)
0.976027 + 0.217649i \(0.0698387\pi\)
\(390\) −184.517 + 119.868i −0.473121 + 0.307353i
\(391\) 640.911i 1.63916i
\(392\) −134.214 + 34.5631i −0.342383 + 0.0881711i
\(393\) −39.9357 447.234i −0.101618 1.13800i
\(394\) 163.700 94.5121i 0.415482 0.239878i
\(395\) 357.957 + 224.492i 0.906221 + 0.568335i
\(396\) 36.8216 102.306i 0.0929839 0.258349i
\(397\) 52.8700 + 14.1665i 0.133174 + 0.0356838i 0.324790 0.945786i \(-0.394706\pi\)
−0.191616 + 0.981470i \(0.561373\pi\)
\(398\) −365.549 + 365.549i −0.918465 + 0.918465i
\(399\) 409.934 + 589.307i 1.02740 + 1.47696i
\(400\) −99.7330 7.30223i −0.249333 0.0182556i
\(401\) −396.262 + 228.782i −0.988184 + 0.570528i −0.904731 0.425984i \(-0.859928\pi\)
−0.0834527 + 0.996512i \(0.526595\pi\)
\(402\) 43.5449 + 20.2104i 0.108321 + 0.0502747i
\(403\) −120.622 450.166i −0.299309 1.11704i
\(404\) −40.6349 + 23.4606i −0.100582 + 0.0580708i
\(405\) 384.480 127.281i 0.949333 0.314273i
\(406\) −65.7453 + 17.2732i −0.161934 + 0.0425449i
\(407\) 150.897 150.897i 0.370755 0.370755i
\(408\) 113.766 + 161.857i 0.278839 + 0.396708i
\(409\) −166.436 + 288.276i −0.406935 + 0.704832i −0.994545 0.104312i \(-0.966736\pi\)
0.587609 + 0.809145i \(0.300069\pi\)
\(410\) 28.7793 + 125.595i 0.0701935 + 0.306329i
\(411\) 13.0324 74.6930i 0.0317090 0.181735i
\(412\) −265.928 + 265.928i −0.645457 + 0.645457i
\(413\) 791.864 + 3.86181i 1.91735 + 0.00935064i
\(414\) 344.337 61.9892i 0.831731 0.149732i
\(415\) 30.8273 + 9.48006i 0.0742827 + 0.0228435i
\(416\) −29.3379 + 50.8146i −0.0705237 + 0.122151i
\(417\) 646.112 + 299.878i 1.54943 + 0.719133i
\(418\) −75.5812 + 282.073i −0.180816 + 0.674815i
\(419\) 377.243i 0.900341i −0.892943 0.450171i \(-0.851363\pi\)
0.892943 0.450171i \(-0.148637\pi\)
\(420\) −10.0002 209.762i −0.0238101 0.499433i
\(421\) 197.759 0.469736 0.234868 0.972027i \(-0.424534\pi\)
0.234868 + 0.972027i \(0.424534\pi\)
\(422\) −67.5389 18.0970i −0.160045 0.0428839i
\(423\) −196.606 + 92.5382i −0.464789 + 0.218766i
\(424\) 196.001 + 113.161i 0.462267 + 0.266890i
\(425\) −191.574 + 550.508i −0.450762 + 1.29531i
\(426\) −219.487 + 262.529i −0.515228 + 0.616265i
\(427\) −68.8178 + 117.865i −0.161166 + 0.276030i
\(428\) 117.573 + 117.573i 0.274704 + 0.274704i
\(429\) 32.3085 185.171i 0.0753113 0.431633i
\(430\) 146.199 + 91.6883i 0.339997 + 0.213229i
\(431\) −142.518 82.2828i −0.330668 0.190911i 0.325469 0.945553i \(-0.394478\pi\)
−0.656138 + 0.754641i \(0.727811\pi\)
\(432\) 75.9558 76.7770i 0.175824 0.177725i
\(433\) −346.623 346.623i −0.800515 0.800515i 0.182661 0.983176i \(-0.441529\pi\)
−0.983176 + 0.182661i \(0.941529\pi\)
\(434\) 429.071 + 117.215i 0.988644 + 0.270081i
\(435\) −5.40656 102.858i −0.0124289 0.236455i
\(436\) 33.4856 + 57.9988i 0.0768019 + 0.133025i
\(437\) −907.649 + 243.204i −2.07700 + 0.556530i
\(438\) −7.72409 3.58497i −0.0176349 0.00818485i
\(439\) −269.647 467.043i −0.614230 1.06388i −0.990519 0.137376i \(-0.956133\pi\)
0.376289 0.926502i \(-0.377200\pi\)
\(440\) 62.5726 58.1587i 0.142210 0.132179i
\(441\) 434.764 73.8981i 0.985860 0.167569i
\(442\) 241.841 + 241.841i 0.547151 + 0.547151i
\(443\) 91.4437 341.272i 0.206419 0.770367i −0.782593 0.622533i \(-0.786103\pi\)
0.989012 0.147833i \(-0.0472299\pi\)
\(444\) 199.054 72.8538i 0.448319 0.164085i
\(445\) 105.511 + 66.1709i 0.237103 + 0.148699i
\(446\) 147.669 + 255.771i 0.331097 + 0.573478i
\(447\) −10.4897 117.472i −0.0234668 0.262801i
\(448\) −27.7632 48.6334i −0.0619713 0.108557i
\(449\) 436.761 0.972742 0.486371 0.873752i \(-0.338320\pi\)
0.486371 + 0.873752i \(0.338320\pi\)
\(450\) 314.296 + 49.6797i 0.698435 + 0.110399i
\(451\) −95.3255 55.0362i −0.211365 0.122032i
\(452\) 9.23284 + 34.4574i 0.0204266 + 0.0762333i
\(453\) 93.5609 65.7622i 0.206536 0.145170i
\(454\) 311.167 0.685389
\(455\) −79.3597 354.257i −0.174417 0.778587i
\(456\) −186.049 + 222.533i −0.408002 + 0.488011i
\(457\) −8.13289 + 30.3524i −0.0177963 + 0.0664166i −0.974253 0.225458i \(-0.927612\pi\)
0.956457 + 0.291874i \(0.0942789\pi\)
\(458\) −109.532 408.781i −0.239154 0.892534i
\(459\) −317.687 543.481i −0.692128 1.18405i
\(460\) 262.742 + 80.7989i 0.571179 + 0.175650i
\(461\) −154.115 −0.334305 −0.167152 0.985931i \(-0.553457\pi\)
−0.167152 + 0.985931i \(0.553457\pi\)
\(462\) 137.069 + 115.737i 0.296687 + 0.250514i
\(463\) −200.474 + 200.474i −0.432989 + 0.432989i −0.889644 0.456655i \(-0.849047\pi\)
0.456655 + 0.889644i \(0.349047\pi\)
\(464\) −13.7333 23.7868i −0.0295977 0.0512648i
\(465\) −305.880 + 600.554i −0.657807 + 1.29151i
\(466\) 84.8372 146.942i 0.182054 0.315327i
\(467\) −25.0817 + 93.6060i −0.0537081 + 0.200441i −0.987567 0.157202i \(-0.949753\pi\)
0.933858 + 0.357643i \(0.116419\pi\)
\(468\) 106.541 153.323i 0.227651 0.327612i
\(469\) −56.2800 + 55.7338i −0.120000 + 0.118835i
\(470\) −170.609 6.23747i −0.362998 0.0132712i
\(471\) 30.9256 177.245i 0.0656595 0.376316i
\(472\) 82.8131 + 309.063i 0.175451 + 0.654794i
\(473\) −142.399 + 38.1557i −0.301055 + 0.0806675i
\(474\) −353.191 61.6247i −0.745130 0.130010i
\(475\) −852.318 62.4048i −1.79435 0.131379i
\(476\) −315.704 + 82.9446i −0.663243 + 0.174253i
\(477\) −591.393 410.947i −1.23982 0.861523i
\(478\) 540.412 + 144.803i 1.13057 + 0.302935i
\(479\) −92.7005 53.5207i −0.193529 0.111734i 0.400104 0.916470i \(-0.368974\pi\)
−0.593634 + 0.804735i \(0.702307\pi\)
\(480\) 80.6958 26.2335i 0.168116 0.0546531i
\(481\) 317.344 183.219i 0.659760 0.380912i
\(482\) 221.217 + 221.217i 0.458956 + 0.458956i
\(483\) −101.993 + 568.177i −0.211166 + 1.17635i
\(484\) 169.022i 0.349220i
\(485\) −259.841 79.9068i −0.535755 0.164756i
\(486\) −261.264 + 223.247i −0.537581 + 0.459355i
\(487\) 456.200 122.238i 0.936756 0.251003i 0.242023 0.970271i \(-0.422189\pi\)
0.694733 + 0.719268i \(0.255522\pi\)
\(488\) −53.2689 14.2734i −0.109158 0.0292487i
\(489\) −13.4560 11.2499i −0.0275173 0.0230059i
\(490\) 330.167 + 105.069i 0.673811 + 0.214427i
\(491\) 228.035i 0.464431i −0.972664 0.232215i \(-0.925403\pi\)
0.972664 0.232215i \(-0.0745974\pi\)
\(492\) −62.8711 89.4476i −0.127787 0.181804i
\(493\) −154.645 + 41.4370i −0.313682 + 0.0840508i
\(494\) −250.721 + 434.262i −0.507532 + 0.879072i
\(495\) −213.876 + 167.770i −0.432073 + 0.338930i
\(496\) 179.724i 0.362346i
\(497\) −279.907 490.320i −0.563193 0.986559i
\(498\) −27.2583 + 2.43403i −0.0547356 + 0.00488760i
\(499\) 706.586 407.948i 1.41600 0.817530i 0.420059 0.907497i \(-0.362009\pi\)
0.995945 + 0.0899668i \(0.0286761\pi\)
\(500\) 201.530 + 147.938i 0.403060 + 0.295876i
\(501\) 8.95092 + 24.4560i 0.0178661 + 0.0488143i
\(502\) −316.636 84.8425i −0.630750 0.169009i
\(503\) 493.203 493.203i 0.980522 0.980522i −0.0192915 0.999814i \(-0.506141\pi\)
0.999814 + 0.0192915i \(0.00614106\pi\)
\(504\) 75.0979 + 161.593i 0.149004 + 0.320621i
\(505\) 117.225 + 4.28573i 0.232128 + 0.00848659i
\(506\) −203.365 + 117.413i −0.401908 + 0.232042i
\(507\) −77.5613 + 167.112i −0.152981 + 0.329609i
\(508\) 108.298 + 404.174i 0.213185 + 0.795617i
\(509\) −715.344 + 413.004i −1.40539 + 0.811403i −0.994939 0.100479i \(-0.967962\pi\)
−0.410452 + 0.911882i \(0.634629\pi\)
\(510\) −25.9619 493.916i −0.0509056 0.968463i
\(511\) 9.98307 9.88617i 0.0195363 0.0193467i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 649.118 656.136i 1.26534 1.27902i
\(514\) −22.8091 + 39.5066i −0.0443757 + 0.0768610i
\(515\) 916.446 209.999i 1.77951 0.407764i
\(516\) −144.252 25.1691i −0.279559 0.0487773i
\(517\) 103.127 103.127i 0.199472 0.199472i
\(518\) −1.70555 + 349.724i −0.00329258 + 0.675142i
\(519\) −463.626 387.614i −0.893306 0.746848i
\(520\) 129.631 68.6543i 0.249291 0.132028i
\(521\) −70.0727 + 121.369i −0.134497 + 0.232955i −0.925405 0.378980i \(-0.876275\pi\)
0.790908 + 0.611934i \(0.209608\pi\)
\(522\) 37.2199 + 79.0770i 0.0713024 + 0.151489i
\(523\) −44.3611 + 165.558i −0.0848204 + 0.316554i −0.995280 0.0970437i \(-0.969061\pi\)
0.910460 + 0.413598i \(0.135728\pi\)
\(524\) 299.343i 0.571264i
\(525\) −257.440 + 457.548i −0.490361 + 0.871519i
\(526\) 236.343 0.449322
\(527\) 1011.90 + 271.137i 1.92011 + 0.514491i
\(528\) −30.5166 + 65.7505i −0.0577966 + 0.124527i
\(529\) −196.258 113.310i −0.370999 0.214196i
\(530\) −264.812 500.012i −0.499645 0.943419i
\(531\) −180.388 1002.02i −0.339714 1.88703i
\(532\) −237.264 415.621i −0.445984 0.781242i
\(533\) −133.649 133.649i −0.250749 0.250749i
\(534\) −104.106 18.1644i −0.194955 0.0340157i
\(535\) −92.8455 405.183i −0.173543 0.757352i
\(536\) −27.7166 16.0022i −0.0517100 0.0298548i
\(537\) 86.6078 60.8751i 0.161281 0.113361i
\(538\) −348.907 348.907i −0.648526 0.648526i
\(539\) −257.765 + 145.487i −0.478229 + 0.269921i
\(540\) −262.851 + 61.7201i −0.486761 + 0.114297i
\(541\) 271.403 + 470.083i 0.501669 + 0.868916i 0.999998 + 0.00192801i \(0.000613704\pi\)
−0.498329 + 0.866988i \(0.666053\pi\)
\(542\) −26.9330 + 7.21668i −0.0496919 + 0.0133149i
\(543\) −245.749 + 529.485i −0.452576 + 0.975111i
\(544\) −65.9464 114.223i −0.121225 0.209968i
\(545\) 6.11708 167.316i 0.0112240 0.307002i
\(546\) 175.910 + 252.882i 0.322179 + 0.463153i
\(547\) −764.656 764.656i −1.39791 1.39791i −0.806017 0.591892i \(-0.798381\pi\)
−0.591892 0.806017i \(-0.701619\pi\)
\(548\) −13.0827 + 48.8252i −0.0238735 + 0.0890971i
\(549\) 165.111 + 59.4262i 0.300749 + 0.108244i
\(550\) −209.776 + 40.0639i −0.381411 + 0.0728435i
\(551\) −117.365 203.282i −0.213004 0.368933i
\(552\) −232.324 + 20.7453i −0.420876 + 0.0375821i
\(553\) 298.265 510.840i 0.539358 0.923761i
\(554\) −316.909 −0.572037
\(555\) −518.355 110.096i −0.933972 0.198371i
\(556\) −411.253 237.437i −0.739664 0.427045i
\(557\) −0.745171 2.78102i −0.00133783 0.00499285i 0.965254 0.261315i \(-0.0841560\pi\)
−0.966592 + 0.256322i \(0.917489\pi\)
\(558\) 47.8001 569.877i 0.0856633 1.02128i
\(559\) −253.144 −0.452851
\(560\) −5.79721 + 139.880i −0.0103522 + 0.249786i
\(561\) 324.155 + 271.010i 0.577817 + 0.483084i
\(562\) 83.0827 310.069i 0.147834 0.551724i
\(563\) 58.0850 + 216.776i 0.103171 + 0.385038i 0.998131 0.0611074i \(-0.0194632\pi\)
−0.894961 + 0.446145i \(0.852797\pi\)
\(564\) 136.038 49.7901i 0.241202 0.0882803i
\(565\) 26.2140 85.2428i 0.0463965 0.150872i
\(566\) 135.575 0.239533
\(567\) −195.146 532.360i −0.344173 0.938906i
\(568\) 161.311 161.311i 0.283999 0.283999i
\(569\) −395.156 684.429i −0.694474 1.20286i −0.970358 0.241673i \(-0.922304\pi\)
0.275884 0.961191i \(-0.411029\pi\)
\(570\) 689.625 224.191i 1.20987 0.393318i
\(571\) −124.910 + 216.351i −0.218757 + 0.378899i −0.954428 0.298440i \(-0.903534\pi\)
0.735671 + 0.677339i \(0.236867\pi\)
\(572\) −32.4332 + 121.042i −0.0567013 + 0.211612i
\(573\) 394.820 35.2553i 0.689039 0.0615277i
\(574\) 174.469 45.8380i 0.303953 0.0798571i
\(575\) −449.152 520.120i −0.781134 0.904556i
\(576\) −54.9890 + 46.4781i −0.0954669 + 0.0806912i
\(577\) 22.1831 + 82.7885i 0.0384456 + 0.143481i 0.982481 0.186364i \(-0.0596703\pi\)
−0.944035 + 0.329845i \(0.893004\pi\)
\(578\) −347.812 + 93.1959i −0.601751 + 0.161239i
\(579\) 108.379 621.155i 0.187183 1.07281i
\(580\) −2.50878 + 68.6209i −0.00432548 + 0.118312i
\(581\) 11.8990 43.5568i 0.0204802 0.0749687i
\(582\) 229.758 20.5162i 0.394774 0.0352513i
\(583\) 466.882 + 125.101i 0.800826 + 0.214581i
\(584\) 4.91642 + 2.83850i 0.00841853 + 0.00486044i
\(585\) −429.301 + 183.215i −0.733848 + 0.313188i
\(586\) 330.490 190.809i 0.563977 0.325612i
\(587\) −198.002 198.002i −0.337312 0.337312i 0.518043 0.855355i \(-0.326661\pi\)
−0.855355 + 0.518043i \(0.826661\pi\)
\(588\) −293.076 + 23.2912i −0.498429 + 0.0396109i
\(589\) 1535.92i 2.60767i
\(590\) 235.124 764.577i 0.398515 1.29589i
\(591\) 376.552 137.819i 0.637144 0.233196i
\(592\) −136.496 + 36.5741i −0.230568 + 0.0617805i
\(593\) −957.421 256.540i −1.61454 0.432614i −0.665148 0.746712i \(-0.731631\pi\)
−0.949391 + 0.314097i \(0.898298\pi\)
\(594\) 114.251 200.368i 0.192341 0.337320i
\(595\) 778.817 + 243.667i 1.30894 + 0.409524i
\(596\) 78.6264i 0.131924i
\(597\) −897.192 + 630.620i −1.50283 + 1.05631i
\(598\) −389.488 + 104.363i −0.651317 + 0.174520i
\(599\) −58.5042 + 101.332i −0.0976698 + 0.169169i −0.910720 0.413025i \(-0.864472\pi\)
0.813050 + 0.582194i \(0.197806\pi\)
\(600\) −205.755 51.6244i −0.342924 0.0860406i
\(601\) 258.350i 0.429867i 0.976629 + 0.214933i \(0.0689534\pi\)
−0.976629 + 0.214933i \(0.931047\pi\)
\(602\) 121.819 208.640i 0.202357 0.346578i
\(603\) 83.6289 + 58.1120i 0.138688 + 0.0963715i
\(604\) −66.0260 + 38.1201i −0.109315 + 0.0631128i
\(605\) −224.507 + 357.981i −0.371086 + 0.591704i
\(606\) −93.4710 + 34.2105i −0.154243 + 0.0564530i
\(607\) −920.381 246.615i −1.51628 0.406285i −0.597763 0.801673i \(-0.703944\pi\)
−0.918514 + 0.395387i \(0.870610\pi\)
\(608\) 136.736 136.736i 0.224895 0.224895i
\(609\) −143.689 + 12.1247i −0.235943 + 0.0199092i
\(610\) 93.8619 + 100.986i 0.153872 + 0.165550i
\(611\) 216.881 125.216i 0.354961 0.204937i
\(612\) 178.727 + 379.721i 0.292037 + 0.620460i
\(613\) 60.5569 + 226.001i 0.0987878 + 0.368681i 0.997566 0.0697216i \(-0.0222111\pi\)
−0.898779 + 0.438403i \(0.855544\pi\)
\(614\) 59.1587 34.1553i 0.0963497 0.0556275i
\(615\) 14.3474 + 272.955i 0.0233291 + 0.443829i
\(616\) −84.1549 84.9798i −0.136615 0.137954i
\(617\) 722.963 722.963i 1.17174 1.17174i 0.189945 0.981795i \(-0.439169\pi\)
0.981795 0.189945i \(-0.0608308\pi\)
\(618\) −652.686 + 458.761i −1.05613 + 0.742332i
\(619\) 164.472 284.874i 0.265706 0.460217i −0.702042 0.712135i \(-0.747728\pi\)
0.967748 + 0.251919i \(0.0810616\pi\)
\(620\) 238.721 380.646i 0.385034 0.613945i
\(621\) 742.180 3.99039i 1.19514 0.00642574i
\(622\) −544.337 + 544.337i −0.875139 + 0.875139i
\(623\) 87.9159 150.574i 0.141117 0.241692i
\(624\) −79.8367 + 95.4928i −0.127943 + 0.153033i
\(625\) −230.329 581.011i −0.368527 0.929617i
\(626\) −325.083 + 563.060i −0.519302 + 0.899457i
\(627\) −260.795 + 561.903i −0.415941 + 0.896177i
\(628\) −31.0449 + 115.861i −0.0494346 + 0.184492i
\(629\) 823.689i 1.30952i
\(630\) 55.5851 441.996i 0.0882304 0.701581i
\(631\) −184.344 −0.292145 −0.146073 0.989274i \(-0.546663\pi\)
−0.146073 + 0.989274i \(0.546663\pi\)
\(632\) 230.874 + 61.8625i 0.365307 + 0.0978836i
\(633\) −134.541 62.4442i −0.212545 0.0986480i
\(634\) −22.7822 13.1533i −0.0359341 0.0207465i
\(635\) 307.481 999.867i 0.484222 1.57459i
\(636\) 368.333 + 307.945i 0.579139 + 0.484190i
\(637\) −492.194 + 126.751i −0.772675 + 0.198981i
\(638\) −41.4788 41.4788i −0.0650138 0.0650138i
\(639\) −554.396 + 468.590i −0.867600 + 0.733318i
\(640\) −55.1395 + 12.6349i −0.0861554 + 0.0197420i
\(641\) 706.892 + 408.124i 1.10280 + 0.636699i 0.936954 0.349453i \(-0.113633\pi\)
0.165841 + 0.986152i \(0.446966\pi\)
\(642\) 202.829 + 288.568i 0.315934 + 0.449483i
\(643\) 18.6427 + 18.6427i 0.0289933 + 0.0289933i 0.721455 0.692462i \(-0.243474\pi\)
−0.692462 + 0.721455i \(0.743474\pi\)
\(644\) 101.415 371.236i 0.157477 0.576454i
\(645\) 272.088 + 244.913i 0.421842 + 0.379709i
\(646\) −563.577 976.145i −0.872411 1.51106i
\(647\) −936.314 + 250.884i −1.44716 + 0.387766i −0.895036 0.445995i \(-0.852850\pi\)
−0.552126 + 0.833761i \(0.686183\pi\)
\(648\) 186.723 132.750i 0.288153 0.204861i
\(649\) 341.671 + 591.791i 0.526457 + 0.911850i
\(650\) −365.744 26.7790i −0.562683 0.0411984i
\(651\) 853.913 + 401.397i 1.31169 + 0.616586i
\(652\) 8.26804 + 8.26804i 0.0126810 + 0.0126810i
\(653\) 15.6346 58.3491i 0.0239427 0.0893554i −0.952921 0.303220i \(-0.901938\pi\)
0.976863 + 0.213864i \(0.0686050\pi\)
\(654\) 48.8291 + 133.412i 0.0746622 + 0.203995i
\(655\) 397.607 633.992i 0.607033 0.967927i
\(656\) 36.4442 + 63.1233i 0.0555552 + 0.0962245i
\(657\) −14.8343 10.3080i −0.0225788 0.0156895i
\(658\) −1.16562 + 239.010i −0.00177145 + 0.363236i
\(659\) 397.461 0.603127 0.301564 0.953446i \(-0.402491\pi\)
0.301564 + 0.953446i \(0.402491\pi\)
\(660\) 151.967 98.7219i 0.230253 0.149579i
\(661\) 417.970 + 241.315i 0.632330 + 0.365076i 0.781654 0.623712i \(-0.214376\pi\)
−0.149324 + 0.988788i \(0.547710\pi\)
\(662\) 60.1065 + 224.320i 0.0907953 + 0.338853i
\(663\) 417.207 + 593.566i 0.629271 + 0.895273i
\(664\) 18.2445 0.0274767
\(665\) −49.5429 + 1195.41i −0.0745007 + 1.79761i
\(666\) 442.536 79.6676i 0.664468 0.119621i
\(667\) 48.8533 182.323i 0.0732434 0.273348i
\(668\) −4.49354 16.7701i −0.00672685 0.0251050i
\(669\) 215.333 + 588.340i 0.321873 + 0.879433i
\(670\) 37.4471 + 70.7068i 0.0558912 + 0.105532i
\(671\) −117.778 −0.175526
\(672\) −40.2854 111.755i −0.0599485 0.166301i
\(673\) 594.528 594.528i 0.883400 0.883400i −0.110479 0.993879i \(-0.535238\pi\)
0.993879 + 0.110479i \(0.0352384\pi\)
\(674\) −182.945 316.871i −0.271432 0.470135i
\(675\) 638.686 + 218.416i 0.946201 + 0.323580i
\(676\) 61.4113 106.368i 0.0908451 0.157348i
\(677\) 28.8163 107.544i 0.0425647 0.158854i −0.941372 0.337369i \(-0.890463\pi\)
0.983937 + 0.178516i \(0.0571295\pi\)
\(678\) 6.73050 + 75.3739i 0.00992699 + 0.111171i
\(679\) −100.296 + 367.137i −0.147711 + 0.540703i
\(680\) −12.0469 + 329.512i −0.0177161 + 0.484576i
\(681\) 650.261 + 113.457i 0.954861 + 0.166604i
\(682\) 99.3429 + 370.753i 0.145664 + 0.543626i
\(683\) 380.211 101.877i 0.556678 0.149161i 0.0304984 0.999535i \(-0.490291\pi\)
0.526180 + 0.850373i \(0.323624\pi\)
\(684\) −469.935 + 397.202i −0.687040 + 0.580704i
\(685\) 92.5614 86.0320i 0.135126 0.125594i
\(686\) 132.388 466.660i 0.192986 0.680262i
\(687\) −79.8463 894.187i −0.116225 1.30158i
\(688\) 94.2947 + 25.2662i 0.137056 + 0.0367241i
\(689\) 718.782 + 414.989i 1.04322 + 0.602306i
\(690\) 519.605 + 264.650i 0.753050 + 0.383551i
\(691\) 675.459 389.977i 0.977510 0.564366i 0.0759924 0.997108i \(-0.475788\pi\)
0.901517 + 0.432743i \(0.142454\pi\)
\(692\) 284.876 + 284.876i 0.411670 + 0.411670i
\(693\) 244.241 + 291.840i 0.352440 + 0.421125i
\(694\) 108.045i 0.155684i
\(695\) 555.633 + 1049.13i 0.799472 + 1.50954i
\(696\) −20.0261 54.7160i −0.0287732 0.0786149i
\(697\) 410.382 109.962i 0.588784 0.157764i
\(698\) 821.556 + 220.135i 1.17701 + 0.315380i
\(699\) 230.866 276.139i 0.330281 0.395049i
\(700\) 198.076 288.558i 0.282966 0.412226i
\(701\) 1193.31i 1.70229i 0.524928 + 0.851147i \(0.324092\pi\)
−0.524928 + 0.851147i \(0.675908\pi\)
\(702\) 278.548 281.559i 0.396792 0.401081i
\(703\) −1166.50 + 312.562i −1.65931 + 0.444611i
\(704\) 24.1624 41.8505i 0.0343216 0.0594467i
\(705\) −354.256 75.2421i −0.502491 0.106726i
\(706\) 642.977i 0.910733i
\(707\) 0.800889 164.222i 0.00113280 0.232280i
\(708\) 60.3685 + 676.059i 0.0852663 + 0.954885i
\(709\) −787.987 + 454.944i −1.11141 + 0.641671i −0.939193 0.343389i \(-0.888425\pi\)
−0.172213 + 0.985060i \(0.555092\pi\)
\(710\) −555.913 + 127.384i −0.782977 + 0.179415i
\(711\) −715.612 257.560i −1.00649 0.362251i
\(712\) 68.0519 + 18.2344i 0.0955785 + 0.0256102i
\(713\) −873.338 + 873.338i −1.22488 + 1.22488i
\(714\) −689.985 + 58.2218i −0.966366 + 0.0815431i
\(715\) 229.468 213.281i 0.320935 0.298296i
\(716\) −61.1192 + 35.2872i −0.0853621 + 0.0492838i
\(717\) 1076.53 + 499.647i 1.50143 + 0.696857i
\(718\) 72.6529 + 271.144i 0.101188 + 0.377638i
\(719\) −276.671 + 159.736i −0.384800 + 0.222164i −0.679905 0.733301i \(-0.737979\pi\)
0.295105 + 0.955465i \(0.404645\pi\)
\(720\) 178.199 25.3982i 0.247499 0.0352753i
\(721\) −334.473 1273.07i −0.463902 1.76570i
\(722\) 807.544 807.544i 1.11848 1.11848i
\(723\) 381.628 + 542.947i 0.527839 + 0.750964i
\(724\) 194.579 337.020i 0.268755 0.465497i
\(725\) 96.4603 142.003i 0.133049 0.195866i
\(726\) 61.6287 353.214i 0.0848881 0.486521i
\(727\) 962.101 962.101i 1.32338 1.32338i 0.412367 0.911018i \(-0.364702\pi\)
0.911018 0.412367i \(-0.135298\pi\)
\(728\) −101.814 178.350i −0.139854 0.244986i
\(729\) −627.377 + 371.268i −0.860599 + 0.509283i
\(730\) −6.64244 12.5421i −0.00909924 0.0171810i
\(731\) 284.511 492.788i 0.389209 0.674129i
\(732\) −106.114 49.2506i −0.144965 0.0672822i
\(733\) −101.038 + 377.079i −0.137842 + 0.514433i 0.862128 + 0.506690i \(0.169131\pi\)
−0.999970 + 0.00774251i \(0.997535\pi\)
\(734\) 665.487i 0.906658i
\(735\) 651.657 + 339.954i 0.886608 + 0.462522i
\(736\) 155.499 0.211275
\(737\) −66.0218 17.6905i −0.0895818 0.0240034i
\(738\) −98.7705 209.847i −0.133835 0.284346i
\(739\) −665.653 384.315i −0.900749 0.520047i −0.0233056 0.999728i \(-0.507419\pi\)
−0.877443 + 0.479681i \(0.840752\pi\)
\(740\) 337.672 + 103.842i 0.456314 + 0.140326i
\(741\) −682.284 + 816.080i −0.920761 + 1.10132i
\(742\) −687.928 + 392.715i −0.927126 + 0.529265i
\(743\) −411.294 411.294i −0.553559 0.553559i 0.373907 0.927466i \(-0.378018\pi\)
−0.927466 + 0.373907i \(0.878018\pi\)
\(744\) −65.5307 + 375.578i −0.0880789 + 0.504809i
\(745\) 104.437 166.527i 0.140184 0.223526i
\(746\) −331.818 191.575i −0.444796 0.256803i
\(747\) −57.8505 4.85239i −0.0774438 0.00649583i
\(748\) −199.178 199.178i −0.266281 0.266281i
\(749\) −562.857 + 147.879i −0.751477 + 0.197435i
\(750\) 367.207 + 382.635i 0.489609 + 0.510180i
\(751\) 569.327 + 986.103i 0.758091 + 1.31305i 0.943823 + 0.330452i \(0.107201\pi\)
−0.185731 + 0.982601i \(0.559465\pi\)
\(752\) −93.2849 + 24.9956i −0.124049 + 0.0332388i
\(753\) −630.756 292.751i −0.837657 0.388780i
\(754\) −50.3633 87.2319i −0.0667949 0.115692i
\(755\) 190.473 + 6.96370i 0.252283 + 0.00922345i
\(756\) 98.0160 + 365.071i 0.129651 + 0.482898i
\(757\) −264.443 264.443i −0.349331 0.349331i 0.510530 0.859860i \(-0.329449\pi\)
−0.859860 + 0.510530i \(0.829449\pi\)
\(758\) 175.156 653.692i 0.231077 0.862390i
\(759\) −467.794 + 171.213i −0.616329 + 0.225577i
\(760\) −471.221 +