Properties

Label 210.3.w.a.17.16
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.16
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.16

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(2.97842 + 0.359186i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.39011 - 4.39174i) q^{5} +(-3.93713 - 1.58084i) q^{6} +(6.65191 + 2.17994i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(8.74197 + 2.13962i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(2.97842 + 0.359186i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.39011 - 4.39174i) q^{5} +(-3.93713 - 1.58084i) q^{6} +(6.65191 + 2.17994i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(8.74197 + 2.13962i) q^{9} +(-4.87243 + 5.12439i) q^{10} +(-5.82368 - 3.36230i) q^{11} +(4.79959 + 3.60055i) q^{12} +(-3.78650 - 3.78650i) q^{13} +(-8.28876 - 5.41262i) q^{14} +(8.69619 - 12.2220i) q^{15} +(2.00000 + 3.46410i) q^{16} +(3.69500 - 0.990073i) q^{17} +(-11.1586 - 6.12255i) q^{18} +(2.17576 + 3.76853i) q^{19} +(8.53153 - 5.21661i) q^{20} +(19.0292 + 8.88204i) q^{21} +(6.72461 + 6.72461i) q^{22} +(-3.48168 + 12.9938i) q^{23} +(-5.23847 - 6.67521i) q^{24} +(-13.5748 - 20.9935i) q^{25} +(3.78650 + 6.55841i) q^{26} +(25.2687 + 9.51267i) q^{27} +(9.34151 + 10.4277i) q^{28} +19.0062 q^{29} +(-16.3528 + 13.5125i) q^{30} +(0.140971 + 0.0813895i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-16.1377 - 12.1061i) q^{33} -5.40986 q^{34} +(25.4725 - 24.0032i) q^{35} +(13.0019 + 12.4479i) q^{36} +(13.9748 - 52.1548i) q^{37} +(-1.59277 - 5.94429i) q^{38} +(-9.91773 - 12.6378i) q^{39} +(-13.5637 + 4.00327i) q^{40} +64.3886 q^{41} +(-22.7433 - 19.0983i) q^{42} +(-49.3467 + 49.3467i) q^{43} +(-6.72461 - 11.6474i) q^{44} +(30.2909 - 33.2786i) q^{45} +(9.51213 - 16.4755i) q^{46} +(8.05536 - 30.0630i) q^{47} +(4.71258 + 11.0359i) q^{48} +(39.4958 + 29.0015i) q^{49} +(10.8594 + 33.6463i) q^{50} +(11.3609 - 1.62166i) q^{51} +(-2.77191 - 10.3449i) q^{52} +(-79.5945 + 21.3273i) q^{53} +(-31.0359 - 22.2436i) q^{54} +(-28.6856 + 17.5398i) q^{55} +(-8.94394 - 17.6637i) q^{56} +(5.12672 + 12.0058i) q^{57} +(-25.9629 - 6.95675i) q^{58} +(-1.10247 - 0.636510i) q^{59} +(27.2842 - 12.4729i) q^{60} +(-88.4000 + 51.0378i) q^{61} +(-0.162779 - 0.162779i) q^{62} +(53.4866 + 33.2895i) q^{63} +8.00000i q^{64} +(-25.6795 + 7.57919i) q^{65} +(17.6133 + 22.4441i) q^{66} +(-98.3650 + 26.3568i) q^{67} +(7.39001 + 1.98015i) q^{68} +(-15.0371 + 37.4504i) q^{69} +(-43.5818 + 23.4654i) q^{70} +119.115i q^{71} +(-13.2047 - 21.7632i) q^{72} +(-68.2204 + 18.2796i) q^{73} +(-38.1800 + 66.1296i) q^{74} +(-32.8908 - 67.4032i) q^{75} +8.70304i q^{76} +(-31.4090 - 35.0610i) q^{77} +(8.92209 + 20.8938i) q^{78} +(89.1596 - 51.4763i) q^{79} +(19.9937 - 0.503911i) q^{80} +(71.8441 + 37.4089i) q^{81} +(-87.9564 - 23.5678i) q^{82} +(-21.3161 + 21.3161i) q^{83} +(24.0775 + 34.4133i) q^{84} +(4.48331 - 18.5939i) q^{85} +(85.4709 - 49.3467i) q^{86} +(56.6084 + 6.82676i) q^{87} +(4.92275 + 18.3720i) q^{88} +(-83.4011 + 48.1516i) q^{89} +(-53.5589 + 34.3721i) q^{90} +(-16.9331 - 33.4418i) q^{91} +(-19.0243 + 19.0243i) q^{92} +(0.390636 + 0.293047i) q^{93} +(-22.0076 + 38.1184i) q^{94} +(21.7507 - 0.548195i) q^{95} +(-2.39808 - 16.8003i) q^{96} +(-37.6895 + 37.6895i) q^{97} +(-43.3369 - 54.0732i) q^{98} +(-43.7164 - 41.8536i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 2.97842 + 0.359186i 0.992807 + 0.119729i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 2.39011 4.39174i 0.478021 0.878348i
\(6\) −3.93713 1.58084i −0.656188 0.263473i
\(7\) 6.65191 + 2.17994i 0.950273 + 0.311419i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 8.74197 + 2.13962i 0.971330 + 0.237735i
\(10\) −4.87243 + 5.12439i −0.487243 + 0.512439i
\(11\) −5.82368 3.36230i −0.529425 0.305664i 0.211357 0.977409i \(-0.432212\pi\)
−0.740782 + 0.671745i \(0.765545\pi\)
\(12\) 4.79959 + 3.60055i 0.399966 + 0.300046i
\(13\) −3.78650 3.78650i −0.291269 0.291269i 0.546312 0.837582i \(-0.316031\pi\)
−0.837582 + 0.546312i \(0.816031\pi\)
\(14\) −8.28876 5.41262i −0.592055 0.386615i
\(15\) 8.69619 12.2220i 0.579746 0.814797i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 3.69500 0.990073i 0.217353 0.0582396i −0.148499 0.988913i \(-0.547444\pi\)
0.365852 + 0.930673i \(0.380778\pi\)
\(18\) −11.1586 6.12255i −0.619922 0.340142i
\(19\) 2.17576 + 3.76853i 0.114514 + 0.198344i 0.917585 0.397539i \(-0.130136\pi\)
−0.803072 + 0.595883i \(0.796802\pi\)
\(20\) 8.53153 5.21661i 0.426576 0.260831i
\(21\) 19.0292 + 8.88204i 0.906151 + 0.422954i
\(22\) 6.72461 + 6.72461i 0.305664 + 0.305664i
\(23\) −3.48168 + 12.9938i −0.151377 + 0.564948i 0.848011 + 0.529979i \(0.177800\pi\)
−0.999388 + 0.0349695i \(0.988867\pi\)
\(24\) −5.23847 6.67521i −0.218269 0.278134i
\(25\) −13.5748 20.9935i −0.542991 0.839738i
\(26\) 3.78650 + 6.55841i 0.145635 + 0.252247i
\(27\) 25.2687 + 9.51267i 0.935879 + 0.352321i
\(28\) 9.34151 + 10.4277i 0.333625 + 0.372417i
\(29\) 19.0062 0.655386 0.327693 0.944784i \(-0.393729\pi\)
0.327693 + 0.944784i \(0.393729\pi\)
\(30\) −16.3528 + 13.5125i −0.545092 + 0.450416i
\(31\) 0.140971 + 0.0813895i 0.00454744 + 0.00262547i 0.502272 0.864710i \(-0.332498\pi\)
−0.497725 + 0.867335i \(0.665831\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −16.1377 12.1061i −0.489020 0.366853i
\(34\) −5.40986 −0.159114
\(35\) 25.4725 24.0032i 0.727785 0.685805i
\(36\) 13.0019 + 12.4479i 0.361164 + 0.345775i
\(37\) 13.9748 52.1548i 0.377698 1.40959i −0.471664 0.881779i \(-0.656346\pi\)
0.849362 0.527811i \(-0.176987\pi\)
\(38\) −1.59277 5.94429i −0.0419149 0.156429i
\(39\) −9.91773 12.6378i −0.254301 0.324047i
\(40\) −13.5637 + 4.00327i −0.339092 + 0.100082i
\(41\) 64.3886 1.57045 0.785226 0.619209i \(-0.212547\pi\)
0.785226 + 0.619209i \(0.212547\pi\)
\(42\) −22.7433 19.0983i −0.541507 0.454720i
\(43\) −49.3467 + 49.3467i −1.14760 + 1.14760i −0.160573 + 0.987024i \(0.551334\pi\)
−0.987024 + 0.160573i \(0.948666\pi\)
\(44\) −6.72461 11.6474i −0.152832 0.264713i
\(45\) 30.2909 33.2786i 0.673131 0.739524i
\(46\) 9.51213 16.4755i 0.206785 0.358163i
\(47\) 8.05536 30.0630i 0.171391 0.639638i −0.825748 0.564040i \(-0.809247\pi\)
0.997138 0.0755987i \(-0.0240868\pi\)
\(48\) 4.71258 + 11.0359i 0.0981788 + 0.229915i
\(49\) 39.4958 + 29.0015i 0.806036 + 0.591867i
\(50\) 10.8594 + 33.6463i 0.217187 + 0.672926i
\(51\) 11.3609 1.62166i 0.222763 0.0317972i
\(52\) −2.77191 10.3449i −0.0533060 0.198941i
\(53\) −79.5945 + 21.3273i −1.50178 + 0.402402i −0.913697 0.406397i \(-0.866785\pi\)
−0.588086 + 0.808798i \(0.700118\pi\)
\(54\) −31.0359 22.2436i −0.574738 0.411918i
\(55\) −28.6856 + 17.5398i −0.521556 + 0.318906i
\(56\) −8.94394 17.6637i −0.159713 0.315423i
\(57\) 5.12672 + 12.0058i 0.0899425 + 0.210627i
\(58\) −25.9629 6.95675i −0.447637 0.119944i
\(59\) −1.10247 0.636510i −0.0186859 0.0107883i 0.490628 0.871369i \(-0.336767\pi\)
−0.509314 + 0.860581i \(0.670101\pi\)
\(60\) 27.2842 12.4729i 0.454737 0.207881i
\(61\) −88.4000 + 51.0378i −1.44918 + 0.836685i −0.998433 0.0559667i \(-0.982176\pi\)
−0.450748 + 0.892651i \(0.648843\pi\)
\(62\) −0.162779 0.162779i −0.00262547 0.00262547i
\(63\) 53.4866 + 33.2895i 0.848993 + 0.528404i
\(64\) 8.00000i 0.125000i
\(65\) −25.6795 + 7.57919i −0.395069 + 0.116603i
\(66\) 17.6133 + 22.4441i 0.266868 + 0.340062i
\(67\) −98.3650 + 26.3568i −1.46813 + 0.393386i −0.902291 0.431127i \(-0.858116\pi\)
−0.565844 + 0.824513i \(0.691449\pi\)
\(68\) 7.39001 + 1.98015i 0.108677 + 0.0291198i
\(69\) −15.0371 + 37.4504i −0.217929 + 0.542760i
\(70\) −43.5818 + 23.4654i −0.622598 + 0.335220i
\(71\) 119.115i 1.67768i 0.544376 + 0.838841i \(0.316767\pi\)
−0.544376 + 0.838841i \(0.683233\pi\)
\(72\) −13.2047 21.7632i −0.183399 0.302266i
\(73\) −68.2204 + 18.2796i −0.934526 + 0.250405i −0.693783 0.720184i \(-0.744058\pi\)
−0.240742 + 0.970589i \(0.577391\pi\)
\(74\) −38.1800 + 66.1296i −0.515945 + 0.893644i
\(75\) −32.8908 67.4032i −0.438544 0.898709i
\(76\) 8.70304i 0.114514i
\(77\) −31.4090 35.0610i −0.407909 0.455337i
\(78\) 8.92209 + 20.8938i 0.114386 + 0.267869i
\(79\) 89.1596 51.4763i 1.12860 0.651599i 0.185020 0.982735i \(-0.440765\pi\)
0.943583 + 0.331136i \(0.107432\pi\)
\(80\) 19.9937 0.503911i 0.249921 0.00629889i
\(81\) 71.8441 + 37.4089i 0.886964 + 0.461839i
\(82\) −87.9564 23.5678i −1.07264 0.287413i
\(83\) −21.3161 + 21.3161i −0.256821 + 0.256821i −0.823760 0.566939i \(-0.808127\pi\)
0.566939 + 0.823760i \(0.308127\pi\)
\(84\) 24.0775 + 34.4133i 0.286636 + 0.409682i
\(85\) 4.48331 18.5939i 0.0527448 0.218752i
\(86\) 85.4709 49.3467i 0.993848 0.573799i
\(87\) 56.6084 + 6.82676i 0.650671 + 0.0784685i
\(88\) 4.92275 + 18.3720i 0.0559404 + 0.208772i
\(89\) −83.4011 + 48.1516i −0.937091 + 0.541030i −0.889047 0.457816i \(-0.848632\pi\)
−0.0480436 + 0.998845i \(0.515299\pi\)
\(90\) −53.5589 + 34.3721i −0.595099 + 0.381913i
\(91\) −16.9331 33.4418i −0.186078 0.367492i
\(92\) −19.0243 + 19.0243i −0.206785 + 0.206785i
\(93\) 0.390636 + 0.293047i 0.00420039 + 0.00315104i
\(94\) −22.0076 + 38.1184i −0.234124 + 0.405514i
\(95\) 21.7507 0.548195i 0.228955 0.00577047i
\(96\) −2.39808 16.8003i −0.0249800 0.175003i
\(97\) −37.6895 + 37.6895i −0.388552 + 0.388552i −0.874171 0.485619i \(-0.838594\pi\)
0.485619 + 0.874171i \(0.338594\pi\)
\(98\) −43.3369 54.0732i −0.442214 0.551767i
\(99\) −43.7164 41.8536i −0.441580 0.422764i
\(100\) −2.51876 49.9365i −0.0251876 0.499365i
\(101\) 11.4760 19.8770i 0.113624 0.196802i −0.803605 0.595163i \(-0.797087\pi\)
0.917229 + 0.398361i \(0.130421\pi\)
\(102\) −16.1128 1.94315i −0.157969 0.0190505i
\(103\) 21.7638 81.2236i 0.211299 0.788578i −0.776138 0.630563i \(-0.782824\pi\)
0.987437 0.158015i \(-0.0505094\pi\)
\(104\) 15.1460i 0.145635i
\(105\) 84.4894 62.3422i 0.804661 0.593735i
\(106\) 116.534 1.09938
\(107\) −106.956 28.6588i −0.999591 0.267840i −0.278317 0.960489i \(-0.589776\pi\)
−0.721274 + 0.692650i \(0.756443\pi\)
\(108\) 34.2541 + 41.7452i 0.317167 + 0.386529i
\(109\) 76.8368 + 44.3618i 0.704925 + 0.406989i 0.809179 0.587562i \(-0.199912\pi\)
−0.104254 + 0.994551i \(0.533245\pi\)
\(110\) 45.6053 13.4602i 0.414593 0.122366i
\(111\) 60.3562 150.319i 0.543750 1.35423i
\(112\) 5.75230 + 27.4028i 0.0513598 + 0.244667i
\(113\) −96.4512 96.4512i −0.853551 0.853551i 0.137018 0.990569i \(-0.456248\pi\)
−0.990569 + 0.137018i \(0.956248\pi\)
\(114\) −2.60882 18.2767i −0.0228844 0.160322i
\(115\) 48.7439 + 46.3472i 0.423860 + 0.403019i
\(116\) 32.9197 + 19.0062i 0.283790 + 0.163846i
\(117\) −24.9998 41.2031i −0.213674 0.352163i
\(118\) 1.27302 + 1.27302i 0.0107883 + 0.0107883i
\(119\) 26.7371 + 1.46899i 0.224682 + 0.0123445i
\(120\) −41.8363 + 7.05152i −0.348636 + 0.0587627i
\(121\) −37.8898 65.6271i −0.313139 0.542373i
\(122\) 139.438 37.3622i 1.14293 0.306248i
\(123\) 191.776 + 23.1275i 1.55916 + 0.188028i
\(124\) 0.162779 + 0.281942i 0.00131273 + 0.00227372i
\(125\) −124.643 + 9.44033i −0.997144 + 0.0755227i
\(126\) −60.8792 65.0517i −0.483168 0.516283i
\(127\) 150.961 + 150.961i 1.18867 + 1.18867i 0.977436 + 0.211232i \(0.0677477\pi\)
0.211232 + 0.977436i \(0.432252\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) −164.700 + 129.250i −1.27674 + 1.00194i
\(130\) 37.8530 0.954029i 0.291177 0.00733869i
\(131\) 81.2787 + 140.779i 0.620448 + 1.07465i 0.989402 + 0.145200i \(0.0463825\pi\)
−0.368954 + 0.929448i \(0.620284\pi\)
\(132\) −15.8451 37.1061i −0.120039 0.281107i
\(133\) 6.25781 + 29.8109i 0.0470512 + 0.224142i
\(134\) 144.016 1.07475
\(135\) 102.172 88.2375i 0.756831 0.653611i
\(136\) −9.37015 5.40986i −0.0688982 0.0397784i
\(137\) −49.3770 184.278i −0.360416 1.34509i −0.873529 0.486771i \(-0.838175\pi\)
0.513113 0.858321i \(-0.328492\pi\)
\(138\) 34.2489 45.6543i 0.248180 0.330828i
\(139\) −66.3531 −0.477360 −0.238680 0.971098i \(-0.576715\pi\)
−0.238680 + 0.971098i \(0.576715\pi\)
\(140\) 68.1228 16.1022i 0.486592 0.115016i
\(141\) 34.7905 86.6468i 0.246741 0.614517i
\(142\) 43.5993 162.715i 0.307037 1.14588i
\(143\) 9.32000 + 34.7827i 0.0651748 + 0.243236i
\(144\) 10.0721 + 34.5623i 0.0699451 + 0.240016i
\(145\) 45.4268 83.4702i 0.313288 0.575657i
\(146\) 99.8816 0.684120
\(147\) 107.218 + 100.565i 0.729374 + 0.684115i
\(148\) 76.3599 76.3599i 0.515945 0.515945i
\(149\) 23.3448 + 40.4345i 0.156677 + 0.271372i 0.933668 0.358139i \(-0.116589\pi\)
−0.776992 + 0.629511i \(0.783255\pi\)
\(150\) 20.2584 + 104.113i 0.135056 + 0.694089i
\(151\) 95.0699 164.666i 0.629602 1.09050i −0.358029 0.933710i \(-0.616551\pi\)
0.987632 0.156793i \(-0.0501154\pi\)
\(152\) 3.18553 11.8886i 0.0209575 0.0782143i
\(153\) 34.4200 0.749301i 0.224967 0.00489739i
\(154\) 30.0722 + 59.3907i 0.195274 + 0.385654i
\(155\) 0.694377 0.424578i 0.00447985 0.00273921i
\(156\) −4.54016 31.8071i −0.0291036 0.203892i
\(157\) 58.8702 + 219.707i 0.374969 + 1.39940i 0.853390 + 0.521274i \(0.174543\pi\)
−0.478420 + 0.878131i \(0.658790\pi\)
\(158\) −140.636 + 37.6833i −0.890101 + 0.238502i
\(159\) −244.726 + 34.9323i −1.53916 + 0.219700i
\(160\) −27.4963 6.62983i −0.171852 0.0414364i
\(161\) −51.4855 + 78.8438i −0.319786 + 0.489713i
\(162\) −84.4482 77.3983i −0.521285 0.477767i
\(163\) 113.940 + 30.5302i 0.699021 + 0.187302i 0.590792 0.806824i \(-0.298815\pi\)
0.108229 + 0.994126i \(0.465482\pi\)
\(164\) 111.524 + 64.3886i 0.680026 + 0.392613i
\(165\) −91.7378 + 41.9375i −0.555986 + 0.254167i
\(166\) 36.9206 21.3161i 0.222413 0.128410i
\(167\) 56.9075 + 56.9075i 0.340764 + 0.340764i 0.856654 0.515891i \(-0.172539\pi\)
−0.515891 + 0.856654i \(0.672539\pi\)
\(168\) −20.2943 55.8224i −0.120799 0.332276i
\(169\) 140.325i 0.830324i
\(170\) −12.9301 + 23.7587i −0.0760597 + 0.139757i
\(171\) 10.9572 + 37.5997i 0.0640774 + 0.219881i
\(172\) −134.818 + 36.1243i −0.783823 + 0.210025i
\(173\) −264.119 70.7704i −1.52670 0.409078i −0.604758 0.796409i \(-0.706730\pi\)
−0.921940 + 0.387332i \(0.873397\pi\)
\(174\) −74.8297 30.0456i −0.430056 0.172676i
\(175\) −44.5338 169.239i −0.254479 0.967078i
\(176\) 26.8984i 0.152832i
\(177\) −3.05498 2.29178i −0.0172598 0.0129479i
\(178\) 131.553 35.2494i 0.739060 0.198031i
\(179\) 83.4294 144.504i 0.466086 0.807285i −0.533164 0.846012i \(-0.678997\pi\)
0.999250 + 0.0387273i \(0.0123304\pi\)
\(180\) 85.7439 27.3493i 0.476355 0.151940i
\(181\) 214.129i 1.18303i 0.806293 + 0.591516i \(0.201470\pi\)
−0.806293 + 0.591516i \(0.798530\pi\)
\(182\) 10.8905 + 51.8803i 0.0598381 + 0.285056i
\(183\) −281.624 + 120.260i −1.53893 + 0.657157i
\(184\) 32.9510 19.0243i 0.179081 0.103393i
\(185\) −195.649 186.029i −1.05756 1.00556i
\(186\) −0.426356 0.543292i −0.00229224 0.00292093i
\(187\) −24.8474 6.65785i −0.132874 0.0356035i
\(188\) 44.0153 44.0153i 0.234124 0.234124i
\(189\) 147.348 + 118.362i 0.779621 + 0.626252i
\(190\) −29.9127 7.21246i −0.157435 0.0379603i
\(191\) −81.4585 + 47.0301i −0.426484 + 0.246231i −0.697848 0.716246i \(-0.745859\pi\)
0.271363 + 0.962477i \(0.412525\pi\)
\(192\) −2.87349 + 23.8274i −0.0149661 + 0.124101i
\(193\) −8.62307 32.1818i −0.0446791 0.166745i 0.939981 0.341226i \(-0.110842\pi\)
−0.984661 + 0.174481i \(0.944175\pi\)
\(194\) 65.2801 37.6895i 0.336496 0.194276i
\(195\) −79.2066 + 13.3503i −0.406188 + 0.0684630i
\(196\) 39.4072 + 89.7278i 0.201057 + 0.457795i
\(197\) 15.6791 15.6791i 0.0795891 0.0795891i −0.666192 0.745781i \(-0.732077\pi\)
0.745781 + 0.666192i \(0.232077\pi\)
\(198\) 44.3982 + 73.1744i 0.224233 + 0.369568i
\(199\) −34.1697 + 59.1837i −0.171707 + 0.297405i −0.939017 0.343871i \(-0.888262\pi\)
0.767310 + 0.641277i \(0.221595\pi\)
\(200\) −14.8374 + 69.1365i −0.0741868 + 0.345682i
\(201\) −302.439 + 43.1703i −1.50467 + 0.214778i
\(202\) −22.9520 + 22.9520i −0.113624 + 0.113624i
\(203\) 126.427 + 41.4323i 0.622795 + 0.204100i
\(204\) 21.2993 + 8.55210i 0.104408 + 0.0419221i
\(205\) 153.896 282.778i 0.750710 1.37940i
\(206\) −59.4598 + 102.987i −0.288640 + 0.499939i
\(207\) −58.2385 + 106.142i −0.281345 + 0.512763i
\(208\) 5.54382 20.6898i 0.0266530 0.0994703i
\(209\) 29.2623i 0.140011i
\(210\) −138.233 + 54.2357i −0.658254 + 0.258265i
\(211\) 96.2506 0.456164 0.228082 0.973642i \(-0.426755\pi\)
0.228082 + 0.973642i \(0.426755\pi\)
\(212\) −159.189 42.6546i −0.750891 0.201201i
\(213\) −42.7847 + 354.776i −0.200867 + 1.66561i
\(214\) 135.615 + 78.2974i 0.633715 + 0.365876i
\(215\) 98.7740 + 334.662i 0.459414 + 1.55657i
\(216\) −31.5121 69.5628i −0.145889 0.322050i
\(217\) 0.760301 + 0.848703i 0.00350369 + 0.00391107i
\(218\) −88.7235 88.7235i −0.406989 0.406989i
\(219\) −209.755 + 29.9405i −0.957784 + 0.136714i
\(220\) −67.2247 + 1.69430i −0.305567 + 0.00770137i
\(221\) −17.7400 10.2422i −0.0802717 0.0463449i
\(222\) −137.469 + 183.248i −0.619229 + 0.825442i
\(223\) 112.186 + 112.186i 0.503075 + 0.503075i 0.912392 0.409317i \(-0.134233\pi\)
−0.409317 + 0.912392i \(0.634233\pi\)
\(224\) 2.17232 39.5383i 0.00969787 0.176510i
\(225\) −73.7524 212.569i −0.327788 0.944751i
\(226\) 96.4512 + 167.058i 0.426775 + 0.739197i
\(227\) 225.570 60.4414i 0.993702 0.266262i 0.274897 0.961474i \(-0.411356\pi\)
0.718805 + 0.695212i \(0.244689\pi\)
\(228\) −3.12602 + 25.9213i −0.0137106 + 0.113690i
\(229\) −90.9875 157.595i −0.397326 0.688188i 0.596069 0.802933i \(-0.296728\pi\)
−0.993395 + 0.114745i \(0.963395\pi\)
\(230\) −49.6211 81.1530i −0.215744 0.352839i
\(231\) −80.9557 115.708i −0.350458 0.500900i
\(232\) −38.0124 38.0124i −0.163846 0.163846i
\(233\) −3.87883 + 14.4760i −0.0166473 + 0.0621286i −0.973750 0.227621i \(-0.926905\pi\)
0.957103 + 0.289749i \(0.0935720\pi\)
\(234\) 19.0690 + 65.4351i 0.0814914 + 0.279637i
\(235\) −112.776 107.231i −0.479897 0.456301i
\(236\) −1.27302 2.20493i −0.00539415 0.00934294i
\(237\) 284.044 121.293i 1.19850 0.511786i
\(238\) −35.9859 11.7932i −0.151201 0.0495511i
\(239\) 373.492 1.56273 0.781365 0.624075i \(-0.214524\pi\)
0.781365 + 0.624075i \(0.214524\pi\)
\(240\) 59.7305 + 5.68059i 0.248877 + 0.0236691i
\(241\) −91.8906 53.0531i −0.381289 0.220137i 0.297090 0.954849i \(-0.403984\pi\)
−0.678379 + 0.734712i \(0.737317\pi\)
\(242\) 27.7373 + 103.517i 0.114617 + 0.427756i
\(243\) 200.545 + 137.225i 0.825288 + 0.564712i
\(244\) −204.151 −0.836685
\(245\) 221.766 104.139i 0.905167 0.425055i
\(246\) −253.506 101.788i −1.03051 0.413771i
\(247\) 6.03101 22.5080i 0.0244171 0.0911257i
\(248\) −0.119163 0.444721i −0.000480494 0.00179323i
\(249\) −71.1448 + 55.8319i −0.285722 + 0.224224i
\(250\) 173.721 + 32.7268i 0.694884 + 0.130907i
\(251\) −171.959 −0.685097 −0.342548 0.939500i \(-0.611290\pi\)
−0.342548 + 0.939500i \(0.611290\pi\)
\(252\) 59.3520 + 111.146i 0.235524 + 0.441054i
\(253\) 63.9653 63.9653i 0.252827 0.252827i
\(254\) −150.961 261.472i −0.594334 1.02942i
\(255\) 20.0318 53.7700i 0.0785562 0.210863i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 25.0505 93.4896i 0.0974726 0.363773i −0.899910 0.436075i \(-0.856368\pi\)
0.997383 + 0.0723027i \(0.0230348\pi\)
\(258\) 272.293 116.275i 1.05540 0.450679i
\(259\) 206.653 316.465i 0.797890 1.22187i
\(260\) −52.0573 12.5519i −0.200220 0.0482766i
\(261\) 166.151 + 40.6659i 0.636596 + 0.155808i
\(262\) −59.5001 222.057i −0.227100 0.847548i
\(263\) 370.341 99.2327i 1.40814 0.377311i 0.526881 0.849939i \(-0.323362\pi\)
0.881262 + 0.472629i \(0.156695\pi\)
\(264\) 8.06307 + 56.4876i 0.0305419 + 0.213968i
\(265\) −96.5754 + 400.533i −0.364436 + 1.51144i
\(266\) 2.36323 43.0130i 0.00888431 0.161703i
\(267\) −265.699 + 113.459i −0.995127 + 0.424941i
\(268\) −196.730 52.7137i −0.734067 0.196693i
\(269\) −359.720 207.684i −1.33725 0.772061i −0.350850 0.936432i \(-0.614107\pi\)
−0.986399 + 0.164370i \(0.947441\pi\)
\(270\) −171.867 + 83.1370i −0.636544 + 0.307915i
\(271\) −148.971 + 86.0086i −0.549710 + 0.317375i −0.749005 0.662564i \(-0.769468\pi\)
0.199295 + 0.979940i \(0.436135\pi\)
\(272\) 10.8197 + 10.8197i 0.0397784 + 0.0397784i
\(273\) −38.4221 105.686i −0.140740 0.387127i
\(274\) 269.801i 0.984676i
\(275\) 8.46882 + 167.902i 0.0307957 + 0.610552i
\(276\) −63.4955 + 49.8290i −0.230056 + 0.180540i
\(277\) 212.684 56.9885i 0.767812 0.205735i 0.146407 0.989224i \(-0.453229\pi\)
0.621405 + 0.783490i \(0.286562\pi\)
\(278\) 90.6400 + 24.2869i 0.326043 + 0.0873630i
\(279\) 1.05822 + 1.01313i 0.00379290 + 0.00363128i
\(280\) −98.9513 2.93860i −0.353398 0.0104950i
\(281\) 151.432i 0.538902i −0.963014 0.269451i \(-0.913158\pi\)
0.963014 0.269451i \(-0.0868423\pi\)
\(282\) −79.2396 + 105.628i −0.280991 + 0.374566i
\(283\) −25.9365 + 6.94966i −0.0916484 + 0.0245571i −0.304352 0.952560i \(-0.598440\pi\)
0.212703 + 0.977117i \(0.431773\pi\)
\(284\) −119.115 + 206.314i −0.419421 + 0.726458i
\(285\) 64.9796 + 6.17980i 0.227999 + 0.0216835i
\(286\) 50.9254i 0.178061i
\(287\) 428.307 + 140.363i 1.49236 + 0.489069i
\(288\) −1.10805 50.8996i −0.00384741 0.176735i
\(289\) −237.609 + 137.183i −0.822175 + 0.474683i
\(290\) −92.6064 + 97.3951i −0.319332 + 0.335845i
\(291\) −125.793 + 98.7176i −0.432277 + 0.339236i
\(292\) −136.441 36.5592i −0.467263 0.125203i
\(293\) −272.300 + 272.300i −0.929353 + 0.929353i −0.997664 0.0683113i \(-0.978239\pi\)
0.0683113 + 0.997664i \(0.478239\pi\)
\(294\) −109.653 176.619i −0.372970 0.600744i
\(295\) −5.43040 + 3.32042i −0.0184081 + 0.0112557i
\(296\) −132.259 + 76.3599i −0.446822 + 0.257973i
\(297\) −115.173 140.360i −0.387786 0.472592i
\(298\) −17.0896 63.7793i −0.0573477 0.214024i
\(299\) 62.3844 36.0177i 0.208644 0.120460i
\(300\) 10.4346 149.637i 0.0347820 0.498789i
\(301\) −435.822 + 220.677i −1.44791 + 0.733146i
\(302\) −190.140 + 190.140i −0.629602 + 0.629602i
\(303\) 41.3199 55.0801i 0.136369 0.181783i
\(304\) −8.70304 + 15.0741i −0.0286284 + 0.0495859i
\(305\) 12.8592 + 510.216i 0.0421615 + 1.67284i
\(306\) −47.2928 11.5750i −0.154552 0.0378269i
\(307\) −138.707 + 138.707i −0.451814 + 0.451814i −0.895956 0.444142i \(-0.853509\pi\)
0.444142 + 0.895956i \(0.353509\pi\)
\(308\) −19.3410 92.1364i −0.0627953 0.299144i
\(309\) 93.9961 234.101i 0.304194 0.757607i
\(310\) −1.10394 + 0.325824i −0.00356110 + 0.00105105i
\(311\) 106.582 184.606i 0.342708 0.593587i −0.642227 0.766515i \(-0.721989\pi\)
0.984935 + 0.172927i \(0.0553226\pi\)
\(312\) −5.44024 + 45.1111i −0.0174367 + 0.144587i
\(313\) 57.9840 216.399i 0.185252 0.691371i −0.809324 0.587362i \(-0.800166\pi\)
0.994576 0.104009i \(-0.0331670\pi\)
\(314\) 321.673i 1.02444i
\(315\) 274.037 155.334i 0.869960 0.493123i
\(316\) 205.905 0.651599
\(317\) 373.738 + 100.143i 1.17899 + 0.315908i 0.794524 0.607233i \(-0.207720\pi\)
0.384462 + 0.923141i \(0.374387\pi\)
\(318\) 347.088 + 41.8576i 1.09147 + 0.131628i
\(319\) −110.686 63.9045i −0.346978 0.200328i
\(320\) 35.1339 + 19.1209i 0.109794 + 0.0597527i
\(321\) −308.267 123.775i −0.960332 0.385593i
\(322\) 99.1893 88.8576i 0.308041 0.275955i
\(323\) 11.7706 + 11.7706i 0.0364414 + 0.0364414i
\(324\) 87.0287 + 136.638i 0.268607 + 0.421723i
\(325\) −28.0908 + 130.893i −0.0864333 + 0.402747i
\(326\) −144.471 83.4102i −0.443161 0.255859i
\(327\) 212.918 + 159.727i 0.651126 + 0.488461i
\(328\) −128.777 128.777i −0.392613 0.392613i
\(329\) 119.119 182.416i 0.362063 0.554456i
\(330\) 140.666 23.7094i 0.426262 0.0718465i
\(331\) −135.009 233.842i −0.407881 0.706471i 0.586771 0.809753i \(-0.300399\pi\)
−0.994652 + 0.103282i \(0.967065\pi\)
\(332\) −58.2367 + 15.6045i −0.175412 + 0.0470014i
\(333\) 233.759 426.035i 0.701979 1.27938i
\(334\) −56.9075 98.5667i −0.170382 0.295110i
\(335\) −119.351 + 494.989i −0.356270 + 1.47758i
\(336\) 7.29006 + 83.6831i 0.0216966 + 0.249057i
\(337\) 384.011 + 384.011i 1.13950 + 1.13950i 0.988540 + 0.150959i \(0.0482361\pi\)
0.150959 + 0.988540i \(0.451764\pi\)
\(338\) −51.3625 + 191.687i −0.151960 + 0.567122i
\(339\) −252.628 321.916i −0.745216 0.949606i
\(340\) 26.3592 27.7222i 0.0775270 0.0815360i
\(341\) −0.547312 0.947973i −0.00160502 0.00277998i
\(342\) −1.20543 55.3727i −0.00352465 0.161908i
\(343\) 199.501 + 279.013i 0.581635 + 0.813450i
\(344\) 197.387 0.573799
\(345\) 128.532 + 155.550i 0.372558 + 0.450869i
\(346\) 334.889 + 193.348i 0.967888 + 0.558810i
\(347\) −172.277 642.948i −0.496477 1.85288i −0.521598 0.853191i \(-0.674664\pi\)
0.0251213 0.999684i \(-0.492003\pi\)
\(348\) 91.2218 + 68.4327i 0.262132 + 0.196646i
\(349\) 427.589 1.22518 0.612592 0.790399i \(-0.290127\pi\)
0.612592 + 0.790399i \(0.290127\pi\)
\(350\) −1.11135 + 247.485i −0.00317528 + 0.707100i
\(351\) −59.6603 131.700i −0.169972 0.375213i
\(352\) −9.84551 + 36.7439i −0.0279702 + 0.104386i
\(353\) −61.2407 228.554i −0.173487 0.647460i −0.996804 0.0798800i \(-0.974546\pi\)
0.823318 0.567580i \(-0.192120\pi\)
\(354\) 3.33434 + 4.24884i 0.00941903 + 0.0120024i
\(355\) 523.124 + 284.699i 1.47359 + 0.801968i
\(356\) −192.607 −0.541030
\(357\) 79.1067 + 13.9789i 0.221587 + 0.0391566i
\(358\) −166.859 + 166.859i −0.466086 + 0.466086i
\(359\) 195.109 + 337.939i 0.543480 + 0.941335i 0.998701 + 0.0509562i \(0.0162269\pi\)
−0.455221 + 0.890378i \(0.650440\pi\)
\(360\) −127.139 + 5.97536i −0.353164 + 0.0165982i
\(361\) 171.032 296.236i 0.473773 0.820599i
\(362\) 78.3766 292.505i 0.216510 0.808026i
\(363\) −89.2795 209.075i −0.245949 0.575963i
\(364\) 4.11275 74.8560i 0.0112988 0.205648i
\(365\) −82.7747 + 343.296i −0.226780 + 0.940538i
\(366\) 428.724 61.1963i 1.17138 0.167203i
\(367\) −183.972 686.592i −0.501285 1.87082i −0.491513 0.870870i \(-0.663556\pi\)
−0.00977244 0.999952i \(-0.503111\pi\)
\(368\) −51.9752 + 13.9267i −0.141237 + 0.0378444i
\(369\) 562.883 + 137.767i 1.52543 + 0.373352i
\(370\) 199.170 + 325.733i 0.538298 + 0.880361i
\(371\) −575.947 31.6438i −1.55242 0.0852932i
\(372\) 0.383555 + 0.898208i 0.00103106 + 0.00241454i
\(373\) −497.049 133.184i −1.33257 0.357062i −0.478899 0.877870i \(-0.658964\pi\)
−0.853674 + 0.520809i \(0.825631\pi\)
\(374\) 31.5053 + 18.1896i 0.0842388 + 0.0486353i
\(375\) −374.630 16.6528i −0.999014 0.0444075i
\(376\) −76.2367 + 44.0153i −0.202757 + 0.117062i
\(377\) −71.9669 71.9669i −0.190894 0.190894i
\(378\) −157.958 215.618i −0.417879 0.570419i
\(379\) 19.8509i 0.0523770i 0.999657 + 0.0261885i \(0.00833701\pi\)
−0.999657 + 0.0261885i \(0.991663\pi\)
\(380\) 38.2215 + 20.8012i 0.100583 + 0.0547400i
\(381\) 395.402 + 503.848i 1.03780 + 1.32244i
\(382\) 128.489 34.4284i 0.336358 0.0901268i
\(383\) −378.907 101.528i −0.989312 0.265085i −0.272351 0.962198i \(-0.587801\pi\)
−0.716962 + 0.697113i \(0.754468\pi\)
\(384\) 12.6467 31.4970i 0.0329341 0.0820235i
\(385\) −229.050 + 54.1406i −0.594934 + 0.140625i
\(386\) 47.1174i 0.122066i
\(387\) −536.970 + 325.804i −1.38752 + 0.841871i
\(388\) −102.970 + 27.5906i −0.265386 + 0.0711099i
\(389\) −27.1111 + 46.9578i −0.0696943 + 0.120714i −0.898767 0.438427i \(-0.855536\pi\)
0.829072 + 0.559141i \(0.188869\pi\)
\(390\) 113.085 + 10.7548i 0.289961 + 0.0275763i
\(391\) 51.4593i 0.131609i
\(392\) −20.9886 136.994i −0.0535423 0.349476i
\(393\) 191.516 + 448.493i 0.487319 + 1.14120i
\(394\) −27.1569 + 15.6791i −0.0689262 + 0.0397946i
\(395\) −12.9697 514.600i −0.0328348 1.30278i
\(396\) −33.8654 116.209i −0.0855188 0.293457i
\(397\) 594.125 + 159.195i 1.49654 + 0.400996i 0.911939 0.410327i \(-0.134585\pi\)
0.584598 + 0.811323i \(0.301252\pi\)
\(398\) 68.3394 68.3394i 0.171707 0.171707i
\(399\) 7.93071 + 91.0372i 0.0198765 + 0.228163i
\(400\) 45.5739 89.0113i 0.113935 0.222528i
\(401\) 391.648 226.118i 0.976679 0.563886i 0.0754133 0.997152i \(-0.475972\pi\)
0.901266 + 0.433266i \(0.142639\pi\)
\(402\) 428.941 + 51.7287i 1.06702 + 0.128678i
\(403\) −0.225604 0.841967i −0.000559812 0.00208925i
\(404\) 39.7541 22.9520i 0.0984012 0.0568119i
\(405\) 336.005 226.109i 0.829643 0.558295i
\(406\) −157.538 102.873i −0.388024 0.253382i
\(407\) −256.745 + 256.745i −0.630824 + 0.630824i
\(408\) −25.9651 19.4785i −0.0636400 0.0477413i
\(409\) 160.349 277.733i 0.392052 0.679054i −0.600668 0.799498i \(-0.705099\pi\)
0.992720 + 0.120445i \(0.0384321\pi\)
\(410\) −313.729 + 329.952i −0.765193 + 0.804761i
\(411\) −80.8755 566.592i −0.196777 1.37857i
\(412\) 118.920 118.920i 0.288640 0.288640i
\(413\) −5.94596 6.63731i −0.0143970 0.0160710i
\(414\) 118.406 123.676i 0.286005 0.298734i
\(415\) 42.6671 + 144.563i 0.102812 + 0.348344i
\(416\) −15.1460 + 26.2336i −0.0364087 + 0.0630616i
\(417\) −197.627 23.8331i −0.473926 0.0571538i
\(418\) −10.7107 + 39.9730i −0.0256238 + 0.0956292i
\(419\) 416.098i 0.993073i −0.868016 0.496537i \(-0.834605\pi\)
0.868016 0.496537i \(-0.165395\pi\)
\(420\) 208.682 23.4905i 0.496862 0.0559297i
\(421\) 86.6033 0.205708 0.102854 0.994696i \(-0.467202\pi\)
0.102854 + 0.994696i \(0.467202\pi\)
\(422\) −131.481 35.2302i −0.311566 0.0834838i
\(423\) 134.743 245.574i 0.318541 0.580554i
\(424\) 201.844 + 116.534i 0.476046 + 0.274845i
\(425\) −70.9439 64.1309i −0.166927 0.150896i
\(426\) 188.302 468.973i 0.442023 1.10087i
\(427\) −699.288 + 146.792i −1.63768 + 0.343776i
\(428\) −156.595 156.595i −0.365876 0.365876i
\(429\) 15.2654 + 106.945i 0.0355837 + 0.249289i
\(430\) −12.4332 493.310i −0.0289143 1.14723i
\(431\) 306.389 + 176.894i 0.710880 + 0.410427i 0.811387 0.584510i \(-0.198713\pi\)
−0.100507 + 0.994936i \(0.532046\pi\)
\(432\) 17.5846 + 106.559i 0.0407051 + 0.246664i
\(433\) −184.106 184.106i −0.425186 0.425186i 0.461799 0.886985i \(-0.347204\pi\)
−0.886985 + 0.461799i \(0.847204\pi\)
\(434\) −0.727943 1.43764i −0.00167729 0.00331253i
\(435\) 165.281 232.293i 0.379957 0.534006i
\(436\) 88.7235 + 153.674i 0.203494 + 0.352463i
\(437\) −56.5428 + 15.1506i −0.129389 + 0.0346696i
\(438\) 297.489 + 35.8761i 0.679199 + 0.0819089i
\(439\) 151.405 + 262.241i 0.344887 + 0.597361i 0.985333 0.170642i \(-0.0545841\pi\)
−0.640447 + 0.768003i \(0.721251\pi\)
\(440\) 92.4508 + 22.2915i 0.210116 + 0.0506625i
\(441\) 283.219 + 338.036i 0.642219 + 0.766521i
\(442\) 20.4844 + 20.4844i 0.0463449 + 0.0463449i
\(443\) 89.7849 335.082i 0.202675 0.756392i −0.787471 0.616352i \(-0.788610\pi\)
0.990146 0.140041i \(-0.0447233\pi\)
\(444\) 254.859 200.004i 0.574008 0.450461i
\(445\) 12.1321 + 481.364i 0.0272631 + 1.08172i
\(446\) −112.186 194.311i −0.251538 0.435676i
\(447\) 55.0072 + 128.816i 0.123059 + 0.288179i
\(448\) −17.4395 + 53.2153i −0.0389274 + 0.118784i
\(449\) 119.472 0.266084 0.133042 0.991110i \(-0.457525\pi\)
0.133042 + 0.991110i \(0.457525\pi\)
\(450\) 22.9420 + 317.370i 0.0509822 + 0.705266i
\(451\) −374.978 216.494i −0.831438 0.480031i
\(452\) −70.6072 263.510i −0.156211 0.582986i
\(453\) 342.304 456.296i 0.755638 1.00728i
\(454\) −330.258 −0.727440
\(455\) −187.340 5.56351i −0.411735 0.0122275i
\(456\) 13.7581 34.2650i 0.0301712 0.0751425i
\(457\) 92.1811 344.025i 0.201709 0.752789i −0.788718 0.614755i \(-0.789255\pi\)
0.990427 0.138034i \(-0.0440784\pi\)
\(458\) 66.6075 + 248.583i 0.145431 + 0.542757i
\(459\) 102.786 + 10.1315i 0.223935 + 0.0220729i
\(460\) 38.0796 + 129.020i 0.0827818 + 0.280477i
\(461\) 621.253 1.34762 0.673810 0.738905i \(-0.264657\pi\)
0.673810 + 0.738905i \(0.264657\pi\)
\(462\) 68.2355 + 187.692i 0.147696 + 0.406260i
\(463\) 26.5760 26.5760i 0.0573995 0.0573995i −0.677824 0.735224i \(-0.737077\pi\)
0.735224 + 0.677824i \(0.237077\pi\)
\(464\) 38.0124 + 65.8393i 0.0819232 + 0.141895i
\(465\) 2.22065 1.01516i 0.00477559 0.00218314i
\(466\) 10.5971 18.3548i 0.0227407 0.0393880i
\(467\) −124.540 + 464.791i −0.266682 + 0.995269i 0.694531 + 0.719462i \(0.255612\pi\)
−0.961213 + 0.275807i \(0.911055\pi\)
\(468\) −2.09782 96.3657i −0.00448252 0.205910i
\(469\) −711.771 39.1062i −1.51764 0.0833822i
\(470\) 114.805 + 187.759i 0.244267 + 0.399487i
\(471\) 96.4245 + 675.524i 0.204723 + 1.43423i
\(472\) 0.931915 + 3.47795i 0.00197440 + 0.00736855i
\(473\) 453.298 121.461i 0.958346 0.256788i
\(474\) −432.408 + 61.7221i −0.912254 + 0.130215i
\(475\) 49.5790 96.8337i 0.104377 0.203860i
\(476\) 44.8411 + 29.2815i 0.0942039 + 0.0615157i
\(477\) −741.445 + 16.1408i −1.55439 + 0.0338381i
\(478\) −510.200 136.708i −1.06736 0.285999i
\(479\) 361.804 + 208.888i 0.755331 + 0.436091i 0.827617 0.561293i \(-0.189696\pi\)
−0.0722856 + 0.997384i \(0.523029\pi\)
\(480\) −79.5141 29.6227i −0.165654 0.0617140i
\(481\) −250.400 + 144.568i −0.520582 + 0.300558i
\(482\) 106.106 + 106.106i 0.220137 + 0.220137i
\(483\) −181.665 + 216.337i −0.376118 + 0.447903i
\(484\) 151.559i 0.313139i
\(485\) 75.4406 + 255.604i 0.155548 + 0.527020i
\(486\) −223.722 260.857i −0.460333 0.536743i
\(487\) −387.966 + 103.955i −0.796645 + 0.213460i −0.634110 0.773243i \(-0.718633\pi\)
−0.162534 + 0.986703i \(0.551967\pi\)
\(488\) 278.876 + 74.7245i 0.571466 + 0.153124i
\(489\) 328.396 + 131.858i 0.671567 + 0.269648i
\(490\) −341.055 + 61.0839i −0.696031 + 0.124661i
\(491\) 451.546i 0.919646i −0.888011 0.459823i \(-0.847913\pi\)
0.888011 0.459823i \(-0.152087\pi\)
\(492\) 309.039 + 231.834i 0.628127 + 0.471208i
\(493\) 70.2279 18.8175i 0.142450 0.0381694i
\(494\) −16.4770 + 28.5391i −0.0333543 + 0.0577714i
\(495\) −288.297 + 91.9566i −0.582418 + 0.185771i
\(496\) 0.651116i 0.00131273i
\(497\) −259.664 + 792.345i −0.522463 + 1.59426i
\(498\) 117.621 50.2270i 0.236188 0.100857i
\(499\) −731.784 + 422.496i −1.46650 + 0.846685i −0.999298 0.0374644i \(-0.988072\pi\)
−0.467204 + 0.884150i \(0.654739\pi\)
\(500\) −225.328 108.292i −0.450657 0.216584i
\(501\) 149.054 + 189.935i 0.297513 + 0.379111i
\(502\) 234.901 + 62.9415i 0.467930 + 0.125381i
\(503\) 140.492 140.492i 0.279308 0.279308i −0.553525 0.832833i \(-0.686718\pi\)
0.832833 + 0.553525i \(0.186718\pi\)
\(504\) −40.3942 173.552i −0.0801472 0.344349i
\(505\) −59.8659 97.9079i −0.118546 0.193877i
\(506\) −110.791 + 63.9653i −0.218955 + 0.126414i
\(507\) 50.4028 417.946i 0.0994138 0.824352i
\(508\) 110.511 + 412.433i 0.217541 + 0.811876i
\(509\) 378.654 218.616i 0.743918 0.429501i −0.0795742 0.996829i \(-0.525356\pi\)
0.823492 + 0.567328i \(0.192023\pi\)
\(510\) −47.0452 + 66.1191i −0.0922455 + 0.129645i
\(511\) −493.644 27.1219i −0.966035 0.0530761i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 19.1300 + 115.923i 0.0372904 + 0.225971i
\(514\) −68.4391 + 118.540i −0.133150 + 0.230623i
\(515\) −304.695 289.714i −0.591641 0.562551i
\(516\) −414.519 + 59.1686i −0.803331 + 0.114668i
\(517\) −147.993 + 147.993i −0.286253 + 0.286253i
\(518\) −398.128 + 356.658i −0.768587 + 0.688530i
\(519\) −761.237 305.652i −1.46674 0.588925i
\(520\) 66.5173 + 36.2005i 0.127918 + 0.0696164i
\(521\) −490.536 + 849.633i −0.941527 + 1.63077i −0.178968 + 0.983855i \(0.557276\pi\)
−0.762559 + 0.646918i \(0.776058\pi\)
\(522\) −212.082 116.366i −0.406288 0.222924i
\(523\) −83.0151 + 309.817i −0.158729 + 0.592384i 0.840028 + 0.542542i \(0.182538\pi\)
−0.998757 + 0.0498414i \(0.984128\pi\)
\(524\) 325.115i 0.620448i
\(525\) −71.8521 520.060i −0.136861 0.990590i
\(526\) −542.217 −1.03083
\(527\) 0.601469 + 0.161163i 0.00114131 + 0.000305812i
\(528\) 9.66155 80.1148i 0.0182984 0.151733i
\(529\) 301.410 + 174.019i 0.569774 + 0.328959i
\(530\) 278.530 511.789i 0.525528 0.965640i
\(531\) −8.27585 7.92321i −0.0155854 0.0149213i
\(532\) −18.9721 + 57.8918i −0.0356618 + 0.108819i
\(533\) −243.807 243.807i −0.457425 0.457425i
\(534\) 404.480 57.7357i 0.757454 0.108119i
\(535\) −381.499 + 401.226i −0.713082 + 0.749956i
\(536\) 249.444 + 144.016i 0.465380 + 0.268687i
\(537\) 300.392 400.427i 0.559389 0.745674i
\(538\) 415.369 + 415.369i 0.772061 + 0.772061i
\(539\) −132.499 301.692i −0.245824 0.559725i
\(540\) 265.205 50.6596i 0.491120 0.0938141i
\(541\) −34.9843 60.5947i −0.0646661 0.112005i 0.831880 0.554956i \(-0.187265\pi\)
−0.896546 + 0.442951i \(0.853932\pi\)
\(542\) 234.980 62.9627i 0.433542 0.116167i
\(543\) −76.9122 + 637.766i −0.141643 + 1.17452i
\(544\) −10.8197 18.7403i −0.0198892 0.0344491i
\(545\) 378.474 231.418i 0.694447 0.424621i
\(546\) 13.8019 + 158.433i 0.0252782 + 0.290170i
\(547\) 159.245 + 159.245i 0.291124 + 0.291124i 0.837524 0.546400i \(-0.184002\pi\)
−0.546400 + 0.837524i \(0.684002\pi\)
\(548\) 98.7541 368.555i 0.180208 0.672546i
\(549\) −881.991 + 257.029i −1.60654 + 0.468176i
\(550\) 49.8877 232.458i 0.0907049 0.422651i
\(551\) 41.3529 + 71.6253i 0.0750506 + 0.129992i
\(552\) 104.975 44.8267i 0.190172 0.0812078i
\(553\) 705.297 148.054i 1.27540 0.267728i
\(554\) −311.391 −0.562077
\(555\) −515.906 624.348i −0.929560 1.12495i
\(556\) −114.927 66.3531i −0.206703 0.119340i
\(557\) −223.552 834.309i −0.401351 1.49786i −0.810688 0.585479i \(-0.800907\pi\)
0.409337 0.912383i \(-0.365760\pi\)
\(558\) −1.07472 1.77129i −0.00192603 0.00317436i
\(559\) 373.702 0.668519
\(560\) 134.094 + 40.2329i 0.239454 + 0.0718445i
\(561\) −71.6147 28.7547i −0.127655 0.0512562i
\(562\) −55.4278 + 206.859i −0.0986260 + 0.368077i
\(563\) 167.352 + 624.566i 0.297251 + 1.10935i 0.939414 + 0.342786i \(0.111371\pi\)
−0.642163 + 0.766568i \(0.721963\pi\)
\(564\) 146.906 115.286i 0.260471 0.204408i
\(565\) −654.118 + 193.060i −1.15773 + 0.341699i
\(566\) 37.9737 0.0670913
\(567\) 396.351 + 405.456i 0.699032 + 0.715090i
\(568\) 238.231 238.231i 0.419421 0.419421i
\(569\) 172.352 + 298.522i 0.302903 + 0.524644i 0.976792 0.214189i \(-0.0687108\pi\)
−0.673889 + 0.738833i \(0.735377\pi\)
\(570\) −86.5019 32.2260i −0.151758 0.0565368i
\(571\) 106.891 185.140i 0.187199 0.324239i −0.757116 0.653280i \(-0.773392\pi\)
0.944315 + 0.329042i \(0.106726\pi\)
\(572\) −18.6400 + 69.5654i −0.0325874 + 0.121618i
\(573\) −259.510 + 110.817i −0.452898 + 0.193397i
\(574\) −533.702 348.510i −0.929794 0.607161i
\(575\) 320.048 103.296i 0.556605 0.179645i
\(576\) −17.1169 + 69.9358i −0.0297169 + 0.121416i
\(577\) −199.206 743.448i −0.345245 1.28847i −0.892326 0.451392i \(-0.850928\pi\)
0.547081 0.837080i \(-0.315739\pi\)
\(578\) 374.792 100.425i 0.648429 0.173746i
\(579\) −14.1239 98.9481i −0.0243936 0.170895i
\(580\) 162.152 99.1479i 0.279572 0.170945i
\(581\) −188.261 + 95.3250i −0.324028 + 0.164071i
\(582\) 207.969 88.8074i 0.357335 0.152590i
\(583\) 535.242 + 143.418i 0.918082 + 0.245999i
\(584\) 173.000 + 99.8816i 0.296233 + 0.171030i
\(585\) −240.706 + 11.3129i −0.411463 + 0.0193382i
\(586\) 471.638 272.300i 0.804843 0.464676i
\(587\) −34.1370 34.1370i −0.0581550 0.0581550i 0.677431 0.735586i \(-0.263093\pi\)
−0.735586 + 0.677431i \(0.763093\pi\)
\(588\) 85.1422 + 281.402i 0.144800 + 0.478574i
\(589\) 0.708336i 0.00120261i
\(590\) 8.63342 2.54812i 0.0146329 0.00431885i
\(591\) 52.3305 41.0671i 0.0885457 0.0694875i
\(592\) 208.619 55.8994i 0.352397 0.0944246i
\(593\) −839.420 224.922i −1.41555 0.379295i −0.531646 0.846967i \(-0.678426\pi\)
−0.883902 + 0.467671i \(0.845093\pi\)
\(594\) 105.953 + 233.891i 0.178373 + 0.393756i
\(595\) 70.3560 113.911i 0.118245 0.191448i
\(596\) 93.3794i 0.156677i
\(597\) −123.030 + 164.001i −0.206080 + 0.274708i
\(598\) −98.4021 + 26.3668i −0.164552 + 0.0440916i
\(599\) −183.387 + 317.635i −0.306155 + 0.530276i −0.977518 0.210853i \(-0.932376\pi\)
0.671363 + 0.741129i \(0.265709\pi\)
\(600\) −69.0247 + 200.588i −0.115041 + 0.334313i
\(601\) 107.243i 0.178440i −0.996012 0.0892202i \(-0.971563\pi\)
0.996012 0.0892202i \(-0.0284375\pi\)
\(602\) 676.117 141.928i 1.12312 0.235761i
\(603\) −916.298 + 19.9472i −1.51956 + 0.0330800i
\(604\) 329.332 190.140i 0.545251 0.314801i
\(605\) −378.778 + 9.54655i −0.626079 + 0.0157794i
\(606\) −76.6048 + 60.1167i −0.126411 + 0.0992025i
\(607\) 61.6948 + 16.5311i 0.101639 + 0.0272340i 0.309280 0.950971i \(-0.399912\pi\)
−0.207641 + 0.978205i \(0.566579\pi\)
\(608\) 17.4061 17.4061i 0.0286284 0.0286284i
\(609\) 361.672 + 168.814i 0.593878 + 0.277198i
\(610\) 169.186 701.674i 0.277354 1.15029i
\(611\) −144.335 + 83.3319i −0.236228 + 0.136386i
\(612\) 60.3665 + 33.1222i 0.0986380 + 0.0541212i
\(613\) 20.7243 + 77.3443i 0.0338081 + 0.126173i 0.980767 0.195180i \(-0.0625290\pi\)
−0.946959 + 0.321353i \(0.895862\pi\)
\(614\) 240.247 138.707i 0.391283 0.225907i
\(615\) 559.935 786.954i 0.910464 1.27960i
\(616\) −7.30400 + 132.940i −0.0118571 + 0.215812i
\(617\) −443.200 + 443.200i −0.718314 + 0.718314i −0.968260 0.249946i \(-0.919587\pi\)
0.249946 + 0.968260i \(0.419587\pi\)
\(618\) −214.088 + 285.382i −0.346420 + 0.461784i
\(619\) 31.3094 54.2294i 0.0505806 0.0876081i −0.839627 0.543164i \(-0.817226\pi\)
0.890207 + 0.455556i \(0.150560\pi\)
\(620\) 1.62727 0.0410131i 0.00262463 6.61501e-5i
\(621\) −211.584 + 295.217i −0.340714 + 0.475390i
\(622\) −213.164 + 213.164i −0.342708 + 0.342708i
\(623\) −659.744 + 138.491i −1.05898 + 0.222297i
\(624\) 23.9433 59.6317i 0.0383707 0.0955636i
\(625\) −256.451 + 569.963i −0.410321 + 0.911941i
\(626\) −158.415 + 274.383i −0.253059 + 0.438312i
\(627\) 10.5106 87.1553i 0.0167633 0.139004i
\(628\) −117.740 + 439.413i −0.187485 + 0.699702i
\(629\) 206.548i 0.328376i
\(630\) −431.198 + 111.885i −0.684441 + 0.177596i
\(631\) 518.483 0.821684 0.410842 0.911707i \(-0.365235\pi\)
0.410842 + 0.911707i \(0.365235\pi\)
\(632\) −281.272 75.3666i −0.445050 0.119251i
\(633\) 286.675 + 34.5719i 0.452883 + 0.0546160i
\(634\) −473.881 273.596i −0.747447 0.431539i
\(635\) 1023.79 302.169i 1.61227 0.475856i
\(636\) −458.811 184.222i −0.721400 0.289657i
\(637\) −39.7366 259.365i −0.0623809 0.407166i
\(638\) 127.809 + 127.809i 0.200328 + 0.200328i
\(639\) −254.861 + 1041.30i −0.398844 + 1.62958i
\(640\) −40.9951 38.9795i −0.0640549 0.0609054i
\(641\) 282.179 + 162.916i 0.440217 + 0.254159i 0.703690 0.710507i \(-0.251535\pi\)
−0.263473 + 0.964667i \(0.584868\pi\)
\(642\) 375.795 + 281.914i 0.585351 + 0.439118i
\(643\) 238.396 + 238.396i 0.370756 + 0.370756i 0.867753 0.496996i \(-0.165564\pi\)
−0.496996 + 0.867753i \(0.665564\pi\)
\(644\) −168.019 + 85.0759i −0.260899 + 0.132106i
\(645\) 173.985 + 1032.24i 0.269744 + 1.60037i
\(646\) −11.7706 20.3872i −0.0182207 0.0315592i
\(647\) 677.491 181.533i 1.04713 0.280577i 0.306062 0.952011i \(-0.400988\pi\)
0.741064 + 0.671435i \(0.234322\pi\)
\(648\) −68.8703 218.506i −0.106281 0.337201i
\(649\) 4.28028 + 7.41366i 0.00659519 + 0.0114232i
\(650\) 86.2828 168.521i 0.132743 0.259263i
\(651\) 1.95965 + 2.80088i 0.00301022 + 0.00430243i
\(652\) 166.820 + 166.820i 0.255859 + 0.255859i
\(653\) 202.218 754.689i 0.309676 1.15573i −0.619170 0.785257i \(-0.712531\pi\)
0.928845 0.370468i \(-0.120803\pi\)
\(654\) −232.388 296.124i −0.355333 0.452789i
\(655\) 812.529 20.4786i 1.24050 0.0312651i
\(656\) 128.777 + 223.049i 0.196307 + 0.340013i
\(657\) −635.492 + 13.8343i −0.967263 + 0.0210567i
\(658\) −229.488 + 205.585i −0.348766 + 0.312438i
\(659\) −296.676 −0.450191 −0.225096 0.974337i \(-0.572269\pi\)
−0.225096 + 0.974337i \(0.572269\pi\)
\(660\) −200.832 19.0999i −0.304291 0.0289392i
\(661\) 502.629 + 290.193i 0.760407 + 0.439021i 0.829442 0.558593i \(-0.188659\pi\)
−0.0690350 + 0.997614i \(0.521992\pi\)
\(662\) 98.8331 + 368.850i 0.149295 + 0.557176i
\(663\) −49.1584 36.8776i −0.0741454 0.0556223i
\(664\) 85.2644 0.128410
\(665\) 145.879 + 43.7686i 0.219366 + 0.0658174i
\(666\) −475.260 + 496.413i −0.713604 + 0.745365i
\(667\) −66.1735 + 246.963i −0.0992106 + 0.370259i
\(668\) 41.6592 + 155.474i 0.0623641 + 0.232746i
\(669\) 293.841 + 374.432i 0.439224 + 0.559689i
\(670\) 344.215 632.483i 0.513753 0.944004i
\(671\) 686.418 1.02298
\(672\) 20.6717 116.982i 0.0307615 0.174080i
\(673\) 578.339 578.339i 0.859345 0.859345i −0.131916 0.991261i \(-0.542113\pi\)
0.991261 + 0.131916i \(0.0421130\pi\)
\(674\) −384.011 665.127i −0.569749 0.986835i
\(675\) −143.314 659.611i −0.212317 0.977201i
\(676\) 140.325 243.050i 0.207581 0.359541i
\(677\) 34.6936 129.478i 0.0512461 0.191253i −0.935558 0.353174i \(-0.885102\pi\)
0.986804 + 0.161921i \(0.0517690\pi\)
\(678\) 227.267 + 532.214i 0.335202 + 0.784977i
\(679\) −332.868 + 168.546i −0.490232 + 0.248227i
\(680\) −46.1544 + 28.2211i −0.0678741 + 0.0415017i
\(681\) 693.553 98.9980i 1.01843 0.145372i
\(682\) 0.400660 + 1.49529i 0.000587479 + 0.00219250i
\(683\) −263.899 + 70.7116i −0.386382 + 0.103531i −0.446781 0.894644i \(-0.647430\pi\)
0.0603983 + 0.998174i \(0.480763\pi\)
\(684\) −18.6212 + 76.0817i −0.0272239 + 0.111231i
\(685\) −927.316 223.592i −1.35375 0.326412i
\(686\) −170.397 454.162i −0.248392 0.662043i
\(687\) −214.393 502.066i −0.312071 0.730809i
\(688\) −269.635 72.2485i −0.391912 0.105012i
\(689\) 382.140 + 220.629i 0.554630 + 0.320216i
\(690\) −118.643 259.531i −0.171947 0.376132i
\(691\) 954.298 550.964i 1.38104 0.797343i 0.388757 0.921341i \(-0.372905\pi\)
0.992283 + 0.123997i \(0.0395714\pi\)
\(692\) −386.697 386.697i −0.558810 0.558810i
\(693\) −199.559 373.705i −0.287964 0.539257i
\(694\) 941.341i 1.35640i
\(695\) −158.591 + 291.405i −0.228188 + 0.419288i
\(696\) −99.5633 126.870i −0.143051 0.182285i
\(697\) 237.916 63.7494i 0.341343 0.0914625i
\(698\) −584.097 156.508i −0.836816 0.224224i
\(699\) −16.7523 + 41.7223i −0.0239662 + 0.0596886i
\(700\) 92.1039 337.664i 0.131577 0.482377i
\(701\) 1133.69i 1.61725i −0.588327 0.808623i \(-0.700213\pi\)
0.588327 0.808623i \(-0.299787\pi\)
\(702\) 33.2921 + 201.742i 0.0474246 + 0.287382i
\(703\) 226.953 60.8118i 0.322835 0.0865033i
\(704\) 26.8984 46.5894i 0.0382080 0.0661782i
\(705\) −297.378 359.886i −0.421812 0.510476i
\(706\) 334.626i 0.473974i
\(707\) 119.668 107.203i 0.169262 0.151631i
\(708\) −2.99960 7.02447i −0.00423673 0.00992157i
\(709\) 892.396 515.225i 1.25867 0.726693i 0.285853 0.958273i \(-0.407723\pi\)
0.972816 + 0.231581i \(0.0743897\pi\)
\(710\) −610.394 580.382i −0.859710 0.817440i
\(711\) 889.570 259.237i 1.25115 0.364609i
\(712\) 263.105 + 70.4989i 0.369530 + 0.0990153i
\(713\) −1.54837 + 1.54837i −0.00217163 + 0.00217163i
\(714\) −102.945 48.0506i −0.144181 0.0672978i
\(715\) 175.033 + 42.2034i 0.244801 + 0.0590257i
\(716\) 289.008 166.859i 0.403642 0.233043i
\(717\) 1112.42 + 134.153i 1.55149 + 0.187104i
\(718\) −142.830 533.048i −0.198927 0.742407i
\(719\) −946.111 + 546.238i −1.31587 + 0.759718i −0.983062 0.183276i \(-0.941330\pi\)
−0.332809 + 0.942994i \(0.607997\pi\)
\(720\) 175.862 + 38.3736i 0.244253 + 0.0532966i
\(721\) 321.833 492.848i 0.446370 0.683562i
\(722\) −342.064 + 342.064i −0.473773 + 0.473773i
\(723\) −254.633 191.020i −0.352189 0.264205i
\(724\) −214.129 + 370.882i −0.295758 + 0.512268i
\(725\) −258.005 399.005i −0.355869 0.550352i
\(726\) 45.4314 + 318.280i 0.0625777 + 0.438402i
\(727\) 195.469 195.469i 0.268870 0.268870i −0.559775 0.828645i \(-0.689112\pi\)
0.828645 + 0.559775i \(0.189112\pi\)
\(728\) −33.0173 + 100.750i −0.0453534 + 0.138393i
\(729\) 548.018 + 480.746i 0.751740 + 0.659460i
\(730\) 238.728 438.654i 0.327024 0.600896i
\(731\) −133.479 + 231.193i −0.182598 + 0.316269i
\(732\) −608.048 73.3283i −0.830666 0.100175i
\(733\) 41.8982 156.366i 0.0571599 0.213324i −0.931439 0.363898i \(-0.881446\pi\)
0.988599 + 0.150574i \(0.0481123\pi\)
\(734\) 1005.24i 1.36954i
\(735\) 697.917 230.513i 0.949548 0.313623i
\(736\) 76.0970 0.103393
\(737\) 661.466 + 177.239i 0.897512 + 0.240488i
\(738\) −718.486 394.222i −0.973558 0.534177i
\(739\) −442.881 255.698i −0.599298 0.346005i 0.169467 0.985536i \(-0.445795\pi\)
−0.768765 + 0.639531i \(0.779129\pi\)
\(740\) −152.845 517.861i −0.206547 0.699813i
\(741\) 26.0475 64.8722i 0.0351518 0.0875468i
\(742\) 775.176 + 254.038i 1.04471 + 0.342369i
\(743\) 366.443 + 366.443i 0.493194 + 0.493194i 0.909311 0.416117i \(-0.136609\pi\)
−0.416117 + 0.909311i \(0.636609\pi\)
\(744\) −0.195178 1.36737i −0.000262337 0.00183786i
\(745\) 233.374 5.88186i 0.313254 0.00789512i
\(746\) 630.233 + 363.865i 0.844817 + 0.487755i
\(747\) −231.953 + 140.737i −0.310513 + 0.188402i
\(748\) −36.3792 36.3792i −0.0486353 0.0486353i
\(749\) −648.988 423.794i −0.866473 0.565813i
\(750\) 505.659 + 159.872i 0.674212 + 0.213163i
\(751\) −258.355 447.484i −0.344015 0.595851i 0.641160 0.767408i \(-0.278454\pi\)
−0.985174 + 0.171557i \(0.945120\pi\)
\(752\) 120.252 32.2214i 0.159910 0.0428476i
\(753\) −512.167 61.7654i −0.680169 0.0820258i
\(754\) 71.9669 + 124.650i 0.0954468 + 0.165319i
\(755\) −495.943 811.092i −0.656878 1.07429i
\(756\) 136.853 + 352.357i 0.181023 + 0.466080i
\(757\) 211.287 + 211.287i 0.279111 + 0.279111i 0.832754 0.553643i \(-0.186763\pi\)
−0.553643 + 0.832754i \(0.686763\pi\)
\(758\) 7.26593 27.1168i 0.00958565 0.0357741i
\(759\) 213.491 167.540i 0.281279 0.220738i
\(760\) −44.5978