Properties

Label 210.3.w.a.17.15
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.15
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.15

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(2.86958 - 0.874940i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.99957 + 0.0656422i) q^{5} +(-4.24017 + 0.144852i) q^{6} +(-2.70652 + 6.45560i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(7.46896 - 5.02142i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(2.86958 - 0.874940i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.99957 + 0.0656422i) q^{5} +(-4.24017 + 0.144852i) q^{6} +(-2.70652 + 6.45560i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(7.46896 - 5.02142i) q^{9} +(6.85357 + 1.74030i) q^{10} +(17.7852 + 10.2683i) q^{11} +(5.84520 + 1.35414i) q^{12} +(10.2742 + 10.2742i) q^{13} +(6.06009 - 7.82786i) q^{14} +(-14.2892 + 4.56269i) q^{15} +(2.00000 + 3.46410i) q^{16} +(16.4097 - 4.39696i) q^{17} +(-12.0408 + 4.12556i) q^{18} +(-11.5679 - 20.0362i) q^{19} +(-8.72515 - 4.88587i) q^{20} +(-2.11831 + 20.8929i) q^{21} +(-20.5366 - 20.5366i) q^{22} +(-5.50900 + 20.5599i) q^{23} +(-7.48904 - 3.98928i) q^{24} +(24.9914 - 0.656366i) q^{25} +(-10.2742 - 17.7954i) q^{26} +(17.0393 - 20.9442i) q^{27} +(-11.1434 + 8.47490i) q^{28} +2.30614 q^{29} +(21.1895 - 1.00253i) q^{30} +(3.09559 + 1.78724i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(60.0203 + 13.9047i) q^{33} -24.0255 q^{34} +(13.1077 - 32.4529i) q^{35} +(17.9580 - 1.22839i) q^{36} +(-10.7499 + 40.1190i) q^{37} +(8.46831 + 31.6042i) q^{38} +(38.4718 + 20.4933i) q^{39} +(10.1304 + 9.86785i) q^{40} -0.0268075 q^{41} +(10.5410 - 27.7649i) q^{42} +(-6.00590 + 6.00590i) q^{43} +(20.5366 + 35.5705i) q^{44} +(-37.0120 + 25.5952i) q^{45} +(15.0509 - 26.0689i) q^{46} +(-3.18676 + 11.8931i) q^{47} +(8.77004 + 8.19063i) q^{48} +(-34.3495 - 34.9444i) q^{49} +(-34.3791 - 8.25087i) q^{50} +(43.2418 - 26.9749i) q^{51} +(7.52122 + 28.0696i) q^{52} +(8.99679 - 2.41068i) q^{53} +(-30.9423 + 22.3735i) q^{54} +(-89.5925 - 50.1696i) q^{55} +(18.3242 - 7.49816i) q^{56} +(-50.7256 - 47.3743i) q^{57} +(-3.15025 - 0.844106i) q^{58} +(13.7556 + 7.94180i) q^{59} +(-29.3123 - 6.38641i) q^{60} +(41.9848 - 24.2400i) q^{61} +(-3.57448 - 3.57448i) q^{62} +(12.2014 + 61.8072i) q^{63} +8.00000i q^{64} +(-52.0409 - 50.6920i) q^{65} +(-76.8997 - 40.9631i) q^{66} +(-23.7880 + 6.37397i) q^{67} +(32.8194 + 8.79393i) q^{68} +(2.18014 + 63.8182i) q^{69} +(-29.7840 + 39.5337i) q^{70} -80.4443i q^{71} +(-24.9808 - 4.89508i) q^{72} +(-137.930 + 36.9582i) q^{73} +(29.3691 - 50.8688i) q^{74} +(71.1404 - 23.7495i) q^{75} -46.2717i q^{76} +(-114.424 + 87.0229i) q^{77} +(-45.0525 - 42.0760i) q^{78} +(-22.7970 + 13.1619i) q^{79} +(-10.2265 - 17.1877i) q^{80} +(30.5707 - 75.0095i) q^{81} +(0.0366197 + 0.00981222i) q^{82} +(-83.7069 + 83.7069i) q^{83} +(-24.5619 + 34.0692i) q^{84} +(-81.7527 + 23.0601i) q^{85} +(10.4025 - 6.00590i) q^{86} +(6.61765 - 2.01773i) q^{87} +(-15.0338 - 56.1071i) q^{88} +(39.3534 - 22.7207i) q^{89} +(59.9278 - 21.4164i) q^{90} +(-94.1332 + 38.5187i) q^{91} +(-30.1017 + 30.1017i) q^{92} +(10.4468 + 2.42017i) q^{93} +(8.70638 - 15.0799i) q^{94} +(59.1499 + 99.4132i) q^{95} +(-8.98212 - 14.3987i) q^{96} +(84.5722 - 84.5722i) q^{97} +(34.1317 + 60.3077i) q^{98} +(184.399 - 12.6135i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 2.86958 0.874940i 0.956526 0.291647i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −4.99957 + 0.0656422i −0.999914 + 0.0131284i
\(6\) −4.24017 + 0.144852i −0.706695 + 0.0241420i
\(7\) −2.70652 + 6.45560i −0.386646 + 0.922228i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 7.46896 5.02142i 0.829884 0.557935i
\(10\) 6.85357 + 1.74030i 0.685357 + 0.174030i
\(11\) 17.7852 + 10.2683i 1.61684 + 0.933482i 0.987731 + 0.156164i \(0.0499130\pi\)
0.629108 + 0.777318i \(0.283420\pi\)
\(12\) 5.84520 + 1.35414i 0.487100 + 0.112845i
\(13\) 10.2742 + 10.2742i 0.790321 + 0.790321i 0.981546 0.191225i \(-0.0612460\pi\)
−0.191225 + 0.981546i \(0.561246\pi\)
\(14\) 6.06009 7.82786i 0.432863 0.559133i
\(15\) −14.2892 + 4.56269i −0.952615 + 0.304179i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 16.4097 4.39696i 0.965276 0.258645i 0.258444 0.966026i \(-0.416790\pi\)
0.706832 + 0.707381i \(0.250124\pi\)
\(18\) −12.0408 + 4.12556i −0.668931 + 0.229198i
\(19\) −11.5679 20.0362i −0.608838 1.05454i −0.991432 0.130622i \(-0.958302\pi\)
0.382594 0.923917i \(-0.375031\pi\)
\(20\) −8.72515 4.88587i −0.436257 0.244294i
\(21\) −2.11831 + 20.8929i −0.100872 + 0.994899i
\(22\) −20.5366 20.5366i −0.933482 0.933482i
\(23\) −5.50900 + 20.5599i −0.239522 + 0.893907i 0.736537 + 0.676398i \(0.236460\pi\)
−0.976058 + 0.217509i \(0.930207\pi\)
\(24\) −7.48904 3.98928i −0.312043 0.166220i
\(25\) 24.9914 0.656366i 0.999655 0.0262546i
\(26\) −10.2742 17.7954i −0.395161 0.684438i
\(27\) 17.0393 20.9442i 0.631086 0.775713i
\(28\) −11.1434 + 8.47490i −0.397980 + 0.302675i
\(29\) 2.30614 0.0795221 0.0397610 0.999209i \(-0.487340\pi\)
0.0397610 + 0.999209i \(0.487340\pi\)
\(30\) 21.1895 1.00253i 0.706317 0.0334177i
\(31\) 3.09559 + 1.78724i 0.0998577 + 0.0576529i 0.549097 0.835758i \(-0.314972\pi\)
−0.449239 + 0.893411i \(0.648305\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 60.0203 + 13.9047i 1.81880 + 0.421355i
\(34\) −24.0255 −0.706631
\(35\) 13.1077 32.4529i 0.374505 0.927225i
\(36\) 17.9580 1.22839i 0.498834 0.0341220i
\(37\) −10.7499 + 40.1190i −0.290536 + 1.08430i 0.654161 + 0.756355i \(0.273022\pi\)
−0.944698 + 0.327942i \(0.893645\pi\)
\(38\) 8.46831 + 31.6042i 0.222850 + 0.831689i
\(39\) 38.4718 + 20.4933i 0.986458 + 0.525468i
\(40\) 10.1304 + 9.86785i 0.253261 + 0.246696i
\(41\) −0.0268075 −0.000653841 −0.000326921 1.00000i \(-0.500104\pi\)
−0.000326921 1.00000i \(0.500104\pi\)
\(42\) 10.5410 27.7649i 0.250976 0.661068i
\(43\) −6.00590 + 6.00590i −0.139672 + 0.139672i −0.773486 0.633814i \(-0.781489\pi\)
0.633814 + 0.773486i \(0.281489\pi\)
\(44\) 20.5366 + 35.5705i 0.466741 + 0.808419i
\(45\) −37.0120 + 25.5952i −0.822488 + 0.568782i
\(46\) 15.0509 26.0689i 0.327193 0.566714i
\(47\) −3.18676 + 11.8931i −0.0678033 + 0.253046i −0.991505 0.130066i \(-0.958481\pi\)
0.923702 + 0.383112i \(0.125148\pi\)
\(48\) 8.77004 + 8.19063i 0.182709 + 0.170638i
\(49\) −34.3495 34.9444i −0.701010 0.713151i
\(50\) −34.3791 8.25087i −0.687582 0.165017i
\(51\) 43.2418 26.9749i 0.847879 0.528920i
\(52\) 7.52122 + 28.0696i 0.144639 + 0.539800i
\(53\) 8.99679 2.41068i 0.169751 0.0454846i −0.172943 0.984932i \(-0.555328\pi\)
0.342693 + 0.939447i \(0.388661\pi\)
\(54\) −30.9423 + 22.3735i −0.573005 + 0.414325i
\(55\) −89.5925 50.1696i −1.62895 0.912175i
\(56\) 18.3242 7.49816i 0.327219 0.133896i
\(57\) −50.7256 47.3743i −0.889923 0.831129i
\(58\) −3.15025 0.844106i −0.0543146 0.0145535i
\(59\) 13.7556 + 7.94180i 0.233146 + 0.134607i 0.612022 0.790840i \(-0.290356\pi\)
−0.378877 + 0.925447i \(0.623690\pi\)
\(60\) −29.3123 6.38641i −0.488539 0.106440i
\(61\) 41.9848 24.2400i 0.688276 0.397376i −0.114690 0.993401i \(-0.536587\pi\)
0.802966 + 0.596025i \(0.203254\pi\)
\(62\) −3.57448 3.57448i −0.0576529 0.0576529i
\(63\) 12.2014 + 61.8072i 0.193672 + 0.981066i
\(64\) 8.00000i 0.125000i
\(65\) −52.0409 50.6920i −0.800629 0.779878i
\(66\) −76.8997 40.9631i −1.16515 0.620653i
\(67\) −23.7880 + 6.37397i −0.355045 + 0.0951339i −0.431933 0.901906i \(-0.642168\pi\)
0.0768881 + 0.997040i \(0.475502\pi\)
\(68\) 32.8194 + 8.79393i 0.482638 + 0.129322i
\(69\) 2.18014 + 63.8182i 0.0315963 + 0.924901i
\(70\) −29.7840 + 39.5337i −0.425486 + 0.564767i
\(71\) 80.4443i 1.13302i −0.824055 0.566509i \(-0.808294\pi\)
0.824055 0.566509i \(-0.191706\pi\)
\(72\) −24.9808 4.89508i −0.346955 0.0679873i
\(73\) −137.930 + 36.9582i −1.88945 + 0.506277i −0.890796 + 0.454403i \(0.849853\pi\)
−0.998654 + 0.0518734i \(0.983481\pi\)
\(74\) 29.3691 50.8688i 0.396880 0.687417i
\(75\) 71.1404 23.7495i 0.948539 0.316659i
\(76\) 46.2717i 0.608838i
\(77\) −114.424 + 87.0229i −1.48603 + 1.13017i
\(78\) −45.0525 42.0760i −0.577596 0.539436i
\(79\) −22.7970 + 13.1619i −0.288570 + 0.166606i −0.637297 0.770619i \(-0.719947\pi\)
0.348727 + 0.937224i \(0.386614\pi\)
\(80\) −10.2265 17.1877i −0.127832 0.214847i
\(81\) 30.5707 75.0095i 0.377416 0.926044i
\(82\) 0.0366197 + 0.00981222i 0.000446582 + 0.000119661i
\(83\) −83.7069 + 83.7069i −1.00852 + 1.00852i −0.00855347 + 0.999963i \(0.502723\pi\)
−0.999963 + 0.00855347i \(0.997277\pi\)
\(84\) −24.5619 + 34.0692i −0.292404 + 0.405586i
\(85\) −81.7527 + 23.0601i −0.961797 + 0.271295i
\(86\) 10.4025 6.00590i 0.120960 0.0698360i
\(87\) 6.61765 2.01773i 0.0760649 0.0231923i
\(88\) −15.0338 56.1071i −0.170839 0.637580i
\(89\) 39.3534 22.7207i 0.442173 0.255289i −0.262346 0.964974i \(-0.584496\pi\)
0.704519 + 0.709685i \(0.251163\pi\)
\(90\) 59.9278 21.4164i 0.665864 0.237960i
\(91\) −94.1332 + 38.5187i −1.03443 + 0.423282i
\(92\) −30.1017 + 30.1017i −0.327193 + 0.327193i
\(93\) 10.4468 + 2.42017i 0.112331 + 0.0260233i
\(94\) 8.70638 15.0799i 0.0926211 0.160424i
\(95\) 59.1499 + 99.4132i 0.622630 + 1.04646i
\(96\) −8.98212 14.3987i −0.0935637 0.149986i
\(97\) 84.5722 84.5722i 0.871878 0.871878i −0.120799 0.992677i \(-0.538546\pi\)
0.992677 + 0.120799i \(0.0385456\pi\)
\(98\) 34.1317 + 60.3077i 0.348283 + 0.615385i
\(99\) 184.399 12.6135i 1.86261 0.127409i
\(100\) 43.9427 + 23.8545i 0.439427 + 0.238545i
\(101\) 78.0280 135.148i 0.772554 1.33810i −0.163605 0.986526i \(-0.552312\pi\)
0.936159 0.351577i \(-0.114354\pi\)
\(102\) −68.9429 + 21.0208i −0.675911 + 0.206087i
\(103\) 23.1494 86.3948i 0.224752 0.838785i −0.757752 0.652542i \(-0.773702\pi\)
0.982504 0.186242i \(-0.0596309\pi\)
\(104\) 41.0967i 0.395161i
\(105\) 9.21918 104.594i 0.0878018 0.996138i
\(106\) −13.1722 −0.124266
\(107\) −46.5411 12.4706i −0.434963 0.116548i 0.0346918 0.999398i \(-0.488955\pi\)
−0.469655 + 0.882850i \(0.655622\pi\)
\(108\) 50.4572 19.2372i 0.467196 0.178122i
\(109\) −32.5583 18.7976i −0.298700 0.172455i 0.343159 0.939278i \(-0.388503\pi\)
−0.641859 + 0.766823i \(0.721837\pi\)
\(110\) 104.022 + 101.326i 0.945657 + 0.921147i
\(111\) 4.25417 + 124.530i 0.0383259 + 1.12189i
\(112\) −27.7759 + 3.53553i −0.247999 + 0.0315673i
\(113\) −50.8023 50.8023i −0.449578 0.449578i 0.445636 0.895214i \(-0.352977\pi\)
−0.895214 + 0.445636i \(0.852977\pi\)
\(114\) 51.9522 + 83.2814i 0.455721 + 0.730539i
\(115\) 26.1930 103.152i 0.227765 0.896975i
\(116\) 3.99435 + 2.30614i 0.0344341 + 0.0198805i
\(117\) 128.328 + 25.1465i 1.09682 + 0.214927i
\(118\) −15.8836 15.8836i −0.134607 0.134607i
\(119\) −16.0281 + 117.835i −0.134690 + 0.990209i
\(120\) 37.7038 + 19.4531i 0.314199 + 0.162109i
\(121\) 150.376 + 260.459i 1.24278 + 2.15256i
\(122\) −66.2248 + 17.7449i −0.542826 + 0.145450i
\(123\) −0.0769262 + 0.0234549i −0.000625416 + 0.000190691i
\(124\) 3.57448 + 6.19118i 0.0288264 + 0.0499289i
\(125\) −124.903 + 4.92204i −0.999224 + 0.0393763i
\(126\) 5.95562 88.8962i 0.0472668 0.705525i
\(127\) 116.547 + 116.547i 0.917690 + 0.917690i 0.996861 0.0791709i \(-0.0252273\pi\)
−0.0791709 + 0.996861i \(0.525227\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) −11.9796 + 22.4892i −0.0928651 + 0.174335i
\(130\) 52.5346 + 88.2949i 0.404112 + 0.679192i
\(131\) −62.0948 107.551i −0.474006 0.821003i 0.525551 0.850762i \(-0.323859\pi\)
−0.999557 + 0.0297594i \(0.990526\pi\)
\(132\) 90.0534 + 84.1039i 0.682223 + 0.637151i
\(133\) 160.655 20.4494i 1.20793 0.153755i
\(134\) 34.8280 0.259911
\(135\) −83.8145 + 105.831i −0.620848 + 0.783931i
\(136\) −41.6133 24.0255i −0.305980 0.176658i
\(137\) −56.4241 210.578i −0.411855 1.53706i −0.791053 0.611748i \(-0.790467\pi\)
0.379197 0.925316i \(-0.376200\pi\)
\(138\) 20.3809 87.9752i 0.147688 0.637502i
\(139\) 59.3797 0.427192 0.213596 0.976922i \(-0.431482\pi\)
0.213596 + 0.976922i \(0.431482\pi\)
\(140\) 55.1560 43.1023i 0.393972 0.307874i
\(141\) 1.26114 + 36.9165i 0.00894422 + 0.261819i
\(142\) −29.4447 + 109.889i −0.207357 + 0.773866i
\(143\) 77.2302 + 288.227i 0.540071 + 2.01557i
\(144\) 32.3326 + 15.8304i 0.224532 + 0.109933i
\(145\) −11.5297 + 0.151380i −0.0795152 + 0.00104400i
\(146\) 201.943 1.38317
\(147\) −129.143 70.2220i −0.878523 0.477701i
\(148\) −58.7383 + 58.7383i −0.396880 + 0.396880i
\(149\) −85.0716 147.348i −0.570950 0.988915i −0.996469 0.0839650i \(-0.973242\pi\)
0.425519 0.904950i \(-0.360092\pi\)
\(150\) −105.873 + 6.40315i −0.705817 + 0.0426876i
\(151\) −15.8953 + 27.5315i −0.105267 + 0.182328i −0.913847 0.406058i \(-0.866903\pi\)
0.808580 + 0.588386i \(0.200236\pi\)
\(152\) −16.9366 + 63.2084i −0.111425 + 0.415844i
\(153\) 100.484 115.241i 0.656760 0.753207i
\(154\) 188.159 76.9934i 1.22181 0.499957i
\(155\) −15.5939 8.73223i −0.100606 0.0563369i
\(156\) 46.1419 + 73.9672i 0.295782 + 0.474149i
\(157\) −71.4356 266.601i −0.455004 1.69810i −0.688076 0.725639i \(-0.741544\pi\)
0.233072 0.972460i \(-0.425122\pi\)
\(158\) 35.9588 9.63514i 0.227588 0.0609819i
\(159\) 23.7078 14.7893i 0.149106 0.0930144i
\(160\) 7.67855 + 27.2220i 0.0479910 + 0.170138i
\(161\) −117.816 91.2096i −0.731776 0.566519i
\(162\) −69.2158 + 91.2753i −0.427258 + 0.563428i
\(163\) 288.194 + 77.2215i 1.76806 + 0.473751i 0.988326 0.152355i \(-0.0486856\pi\)
0.779738 + 0.626106i \(0.215352\pi\)
\(164\) −0.0464319 0.0268075i −0.000283122 0.000163460i
\(165\) −300.988 65.5776i −1.82417 0.397440i
\(166\) 144.985 83.7069i 0.873401 0.504258i
\(167\) 26.5855 + 26.5855i 0.159195 + 0.159195i 0.782210 0.623015i \(-0.214093\pi\)
−0.623015 + 0.782210i \(0.714093\pi\)
\(168\) 46.0224 37.5492i 0.273943 0.223507i
\(169\) 42.1174i 0.249216i
\(170\) 120.117 1.57708i 0.706570 0.00927697i
\(171\) −187.011 91.5625i −1.09363 0.535453i
\(172\) −16.4084 + 4.39662i −0.0953978 + 0.0255618i
\(173\) −118.374 31.7182i −0.684243 0.183342i −0.100081 0.994979i \(-0.531910\pi\)
−0.584162 + 0.811637i \(0.698577\pi\)
\(174\) −9.77842 + 0.334049i −0.0561978 + 0.00191982i
\(175\) −63.4024 + 163.111i −0.362300 + 0.932062i
\(176\) 82.1465i 0.466741i
\(177\) 46.4214 + 10.7543i 0.262268 + 0.0607587i
\(178\) −62.0741 + 16.6327i −0.348731 + 0.0934422i
\(179\) −130.298 + 225.682i −0.727921 + 1.26080i 0.229840 + 0.973229i \(0.426180\pi\)
−0.957760 + 0.287567i \(0.907154\pi\)
\(180\) −89.7018 + 7.32023i −0.498343 + 0.0406680i
\(181\) 208.629i 1.15265i −0.817221 0.576325i \(-0.804486\pi\)
0.817221 0.576325i \(-0.195514\pi\)
\(182\) 142.687 18.1624i 0.783996 0.0997932i
\(183\) 99.2703 106.293i 0.542461 0.580834i
\(184\) 52.1377 30.1017i 0.283357 0.163596i
\(185\) 51.1111 201.283i 0.276276 1.08802i
\(186\) −13.3847 7.12979i −0.0719608 0.0383322i
\(187\) 336.999 + 90.2987i 1.80214 + 0.482881i
\(188\) −17.4128 + 17.4128i −0.0926211 + 0.0926211i
\(189\) 89.0904 + 166.685i 0.471378 + 0.881932i
\(190\) −44.4125 157.451i −0.233750 0.828691i
\(191\) 79.0834 45.6588i 0.414049 0.239051i −0.278479 0.960442i \(-0.589830\pi\)
0.692528 + 0.721391i \(0.256497\pi\)
\(192\) 6.99952 + 22.9566i 0.0364558 + 0.119566i
\(193\) 34.6802 + 129.428i 0.179690 + 0.670612i 0.995705 + 0.0925816i \(0.0295119\pi\)
−0.816015 + 0.578031i \(0.803821\pi\)
\(194\) −146.483 + 84.5722i −0.755069 + 0.435939i
\(195\) −193.688 99.9321i −0.993271 0.512472i
\(196\) −24.5507 94.8750i −0.125258 0.484056i
\(197\) −202.633 + 202.633i −1.02860 + 1.02860i −0.0290171 + 0.999579i \(0.509238\pi\)
−0.999579 + 0.0290171i \(0.990762\pi\)
\(198\) −256.510 50.2642i −1.29551 0.253860i
\(199\) 16.7094 28.9416i 0.0839670 0.145435i −0.820984 0.570952i \(-0.806574\pi\)
0.904951 + 0.425517i \(0.139908\pi\)
\(200\) −51.2955 48.6700i −0.256477 0.243350i
\(201\) −62.6847 + 39.1037i −0.311864 + 0.194546i
\(202\) −156.056 + 156.056i −0.772554 + 0.772554i
\(203\) −6.24161 + 14.8875i −0.0307469 + 0.0733375i
\(204\) 101.872 3.48013i 0.499372 0.0170595i
\(205\) 0.134026 0.00175970i 0.000653785 8.58392e-6i
\(206\) −63.2454 + 109.544i −0.307016 + 0.531768i
\(207\) 62.0932 + 181.224i 0.299967 + 0.875477i
\(208\) −15.0424 + 56.1391i −0.0723194 + 0.269900i
\(209\) 475.132i 2.27336i
\(210\) −50.8779 + 139.504i −0.242276 + 0.664306i
\(211\) −163.964 −0.777081 −0.388541 0.921432i \(-0.627021\pi\)
−0.388541 + 0.921432i \(0.627021\pi\)
\(212\) 17.9936 + 4.82136i 0.0848754 + 0.0227423i
\(213\) −70.3840 230.841i −0.330441 1.08376i
\(214\) 59.0117 + 34.0704i 0.275756 + 0.159208i
\(215\) 29.6327 30.4211i 0.137826 0.141494i
\(216\) −75.9671 + 7.80984i −0.351700 + 0.0361567i
\(217\) −19.9160 + 15.1467i −0.0917787 + 0.0698004i
\(218\) 37.5951 + 37.5951i 0.172455 + 0.172455i
\(219\) −363.464 + 226.735i −1.65965 + 1.03532i
\(220\) −105.009 176.489i −0.477314 0.802222i
\(221\) 213.771 + 123.421i 0.967291 + 0.558465i
\(222\) 39.7699 171.668i 0.179143 0.773281i
\(223\) −158.312 158.312i −0.709919 0.709919i 0.256599 0.966518i \(-0.417398\pi\)
−0.966518 + 0.256599i \(0.917398\pi\)
\(224\) 39.2367 + 5.33705i 0.175164 + 0.0238261i
\(225\) 183.364 130.395i 0.814950 0.579531i
\(226\) 50.8023 + 87.9921i 0.224789 + 0.389346i
\(227\) 367.930 98.5866i 1.62084 0.434302i 0.669590 0.742731i \(-0.266470\pi\)
0.951247 + 0.308429i \(0.0998033\pi\)
\(228\) −40.4850 132.780i −0.177566 0.582370i
\(229\) −35.2818 61.1098i −0.154069 0.266855i 0.778651 0.627458i \(-0.215904\pi\)
−0.932720 + 0.360603i \(0.882571\pi\)
\(230\) −73.5366 + 131.321i −0.319724 + 0.570961i
\(231\) −252.209 + 349.833i −1.09181 + 1.51443i
\(232\) −4.61228 4.61228i −0.0198805 0.0198805i
\(233\) −91.0726 + 339.887i −0.390869 + 1.45874i 0.437834 + 0.899056i \(0.355746\pi\)
−0.828703 + 0.559689i \(0.810921\pi\)
\(234\) −166.096 81.3222i −0.709810 0.347531i
\(235\) 15.1517 59.6698i 0.0644754 0.253914i
\(236\) 15.8836 + 27.5112i 0.0673034 + 0.116573i
\(237\) −53.9019 + 57.7150i −0.227434 + 0.243523i
\(238\) 65.0254 155.099i 0.273216 0.651675i
\(239\) 254.464 1.06470 0.532351 0.846524i \(-0.321309\pi\)
0.532351 + 0.846524i \(0.321309\pi\)
\(240\) −44.3841 40.3739i −0.184934 0.168225i
\(241\) 237.059 + 136.866i 0.983646 + 0.567908i 0.903369 0.428864i \(-0.141086\pi\)
0.0802771 + 0.996773i \(0.474419\pi\)
\(242\) −110.083 410.836i −0.454889 1.69767i
\(243\) 22.0962 241.993i 0.0909309 0.995857i
\(244\) 96.9599 0.397376
\(245\) 174.027 + 172.452i 0.710312 + 0.703887i
\(246\) 0.113668 0.00388311i 0.000462066 1.57850e-5i
\(247\) 87.0050 324.707i 0.352247 1.31460i
\(248\) −2.61670 9.76566i −0.0105512 0.0393777i
\(249\) −166.965 + 313.442i −0.670542 + 1.25880i
\(250\) 172.422 + 38.9941i 0.689689 + 0.155976i
\(251\) 191.024 0.761051 0.380525 0.924770i \(-0.375743\pi\)
0.380525 + 0.924770i \(0.375743\pi\)
\(252\) −40.6738 + 119.255i −0.161404 + 0.473232i
\(253\) −309.094 + 309.094i −1.22171 + 1.22171i
\(254\) −116.547 201.865i −0.458845 0.794743i
\(255\) −214.420 + 137.701i −0.840862 + 0.540006i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 52.7967 197.040i 0.205435 0.766693i −0.783882 0.620910i \(-0.786763\pi\)
0.989317 0.145783i \(-0.0465701\pi\)
\(258\) 24.5960 26.3360i 0.0953335 0.102077i
\(259\) −229.897 177.980i −0.887635 0.687180i
\(260\) −39.4454 139.842i −0.151713 0.537854i
\(261\) 17.2245 11.5801i 0.0659941 0.0443682i
\(262\) 45.4566 + 169.646i 0.173498 + 0.647504i
\(263\) 304.514 81.5944i 1.15785 0.310245i 0.371743 0.928336i \(-0.378760\pi\)
0.786106 + 0.618091i \(0.212094\pi\)
\(264\) −92.2311 147.850i −0.349360 0.560038i
\(265\) −44.8218 + 12.6429i −0.169139 + 0.0477092i
\(266\) −226.944 30.8693i −0.853171 0.116050i
\(267\) 93.0484 99.6307i 0.348496 0.373149i
\(268\) −47.5760 12.7479i −0.177522 0.0475670i
\(269\) −135.013 77.9500i −0.501908 0.289777i 0.227593 0.973756i \(-0.426914\pi\)
−0.729501 + 0.683980i \(0.760248\pi\)
\(270\) 153.229 113.889i 0.567516 0.421812i
\(271\) −348.826 + 201.395i −1.28718 + 0.743154i −0.978150 0.207899i \(-0.933337\pi\)
−0.309029 + 0.951052i \(0.600004\pi\)
\(272\) 48.0509 + 48.0509i 0.176658 + 0.176658i
\(273\) −236.421 + 192.893i −0.866011 + 0.706569i
\(274\) 308.307i 1.12521i
\(275\) 451.217 + 244.946i 1.64079 + 0.890711i
\(276\) −60.0421 + 112.716i −0.217544 + 0.408393i
\(277\) 262.303 70.2839i 0.946942 0.253732i 0.247878 0.968791i \(-0.420267\pi\)
0.699064 + 0.715059i \(0.253600\pi\)
\(278\) −81.1142 21.7345i −0.291778 0.0781816i
\(279\) 32.0953 2.19543i 0.115037 0.00786893i
\(280\) −91.1211 + 38.6904i −0.325432 + 0.138180i
\(281\) 337.916i 1.20255i 0.799043 + 0.601273i \(0.205340\pi\)
−0.799043 + 0.601273i \(0.794660\pi\)
\(282\) 11.7896 50.8905i 0.0418072 0.180463i
\(283\) 52.1704 13.9790i 0.184348 0.0493958i −0.165464 0.986216i \(-0.552912\pi\)
0.349812 + 0.936820i \(0.386246\pi\)
\(284\) 80.4443 139.334i 0.283255 0.490611i
\(285\) 256.716 + 233.521i 0.900758 + 0.819374i
\(286\) 421.994i 1.47550i
\(287\) 0.0725550 0.173058i 0.000252805 0.000602991i
\(288\) −38.3729 33.4593i −0.133239 0.116178i
\(289\) −0.336749 + 0.194422i −0.00116522 + 0.000672741i
\(290\) 15.8053 + 4.01338i 0.0545010 + 0.0138392i
\(291\) 168.691 316.682i 0.579694 1.08825i
\(292\) −275.860 73.9164i −0.944725 0.253138i
\(293\) 169.435 169.435i 0.578275 0.578275i −0.356152 0.934428i \(-0.615912\pi\)
0.934428 + 0.356152i \(0.115912\pi\)
\(294\) 150.709 + 143.195i 0.512617 + 0.487056i
\(295\) −69.2934 38.8026i −0.234893 0.131534i
\(296\) 101.738 58.7383i 0.343708 0.198440i
\(297\) 518.110 197.533i 1.74448 0.665095i
\(298\) 62.2767 + 232.420i 0.208982 + 0.779932i
\(299\) −267.836 + 154.635i −0.895773 + 0.517175i
\(300\) 146.968 + 30.0052i 0.489894 + 0.100017i
\(301\) −22.5166 55.0268i −0.0748059 0.182813i
\(302\) 31.7906 31.7906i 0.105267 0.105267i
\(303\) 105.661 456.089i 0.348715 1.50524i
\(304\) 46.2717 80.1450i 0.152210 0.263635i
\(305\) −208.315 + 123.945i −0.683000 + 0.406378i
\(306\) −179.445 + 120.642i −0.586422 + 0.394254i
\(307\) −67.5728 + 67.5728i −0.220107 + 0.220107i −0.808543 0.588437i \(-0.799744\pi\)
0.588437 + 0.808543i \(0.299744\pi\)
\(308\) −285.211 + 36.3040i −0.926011 + 0.117870i
\(309\) −9.16121 268.171i −0.0296479 0.867867i
\(310\) 18.1055 + 17.6362i 0.0584048 + 0.0568910i
\(311\) −254.040 + 440.010i −0.816848 + 1.41482i 0.0911453 + 0.995838i \(0.470947\pi\)
−0.907993 + 0.418985i \(0.862386\pi\)
\(312\) −35.9572 117.930i −0.115247 0.377981i
\(313\) 43.7645 163.331i 0.139823 0.521825i −0.860109 0.510111i \(-0.829604\pi\)
0.999931 0.0117143i \(-0.00372886\pi\)
\(314\) 390.332i 1.24309i
\(315\) −65.0587 308.208i −0.206536 0.978439i
\(316\) −52.6474 −0.166606
\(317\) −440.523 118.038i −1.38966 0.372359i −0.515041 0.857165i \(-0.672223\pi\)
−0.874621 + 0.484806i \(0.838890\pi\)
\(318\) −37.7987 + 11.5249i −0.118864 + 0.0362418i
\(319\) 41.0152 + 23.6802i 0.128574 + 0.0742324i
\(320\) −0.525138 39.9966i −0.00164106 0.124989i
\(321\) −144.464 + 4.93516i −0.450045 + 0.0153743i
\(322\) 127.555 + 167.718i 0.396132 + 0.520864i
\(323\) −277.925 277.925i −0.860448 0.860448i
\(324\) 127.960 99.3496i 0.394937 0.306635i
\(325\) 263.510 + 250.022i 0.810798 + 0.769299i
\(326\) −365.416 210.973i −1.12091 0.647156i
\(327\) −109.875 25.4545i −0.336011 0.0778425i
\(328\) 0.0536150 + 0.0536150i 0.000163460 + 0.000163460i
\(329\) −68.1523 52.7614i −0.207150 0.160369i
\(330\) 387.154 + 199.750i 1.17320 + 0.605303i
\(331\) 7.43125 + 12.8713i 0.0224509 + 0.0388861i 0.877033 0.480431i \(-0.159520\pi\)
−0.854582 + 0.519317i \(0.826186\pi\)
\(332\) −228.692 + 61.2777i −0.688830 + 0.184571i
\(333\) 121.164 + 353.627i 0.363856 + 1.06194i
\(334\) −26.5855 46.0474i −0.0795973 0.137867i
\(335\) 118.511 33.4286i 0.353765 0.0997869i
\(336\) −76.6117 + 34.4477i −0.228011 + 0.102523i
\(337\) −296.408 296.408i −0.879550 0.879550i 0.113938 0.993488i \(-0.463654\pi\)
−0.993488 + 0.113938i \(0.963654\pi\)
\(338\) 15.4161 57.5335i 0.0456096 0.170217i
\(339\) −190.230 101.332i −0.561151 0.298915i
\(340\) −164.660 41.8115i −0.484294 0.122975i
\(341\) 36.7038 + 63.5729i 0.107636 + 0.186431i
\(342\) 221.947 + 193.527i 0.648969 + 0.565870i
\(343\) 318.555 127.169i 0.928731 0.370754i
\(344\) 24.0236 0.0698360
\(345\) −15.0890 318.920i −0.0437361 0.924407i
\(346\) 150.092 + 86.6558i 0.433793 + 0.250450i
\(347\) 3.82705 + 14.2827i 0.0110290 + 0.0411606i 0.971221 0.238180i \(-0.0765508\pi\)
−0.960192 + 0.279341i \(0.909884\pi\)
\(348\) 13.4798 + 3.12283i 0.0387352 + 0.00897365i
\(349\) −18.2453 −0.0522787 −0.0261393 0.999658i \(-0.508321\pi\)
−0.0261393 + 0.999658i \(0.508321\pi\)
\(350\) 146.312 199.607i 0.418034 0.570304i
\(351\) 390.250 40.1198i 1.11182 0.114302i
\(352\) 30.0677 112.214i 0.0854196 0.318790i
\(353\) 64.9344 + 242.338i 0.183950 + 0.686511i 0.994853 + 0.101330i \(0.0323098\pi\)
−0.810903 + 0.585181i \(0.801023\pi\)
\(354\) −59.4764 31.6820i −0.168012 0.0894972i
\(355\) 5.28055 + 402.187i 0.0148748 + 1.13292i
\(356\) 90.8828 0.255289
\(357\) 57.1044 + 352.160i 0.159956 + 0.986442i
\(358\) 260.596 260.596i 0.727921 0.727921i
\(359\) −193.329 334.856i −0.538522 0.932747i −0.998984 0.0450678i \(-0.985650\pi\)
0.460462 0.887679i \(-0.347684\pi\)
\(360\) 125.214 + 22.8335i 0.347818 + 0.0634264i
\(361\) −87.1341 + 150.921i −0.241369 + 0.418063i
\(362\) −76.3637 + 284.993i −0.210949 + 0.787274i
\(363\) 659.403 + 615.838i 1.81654 + 1.69652i
\(364\) −201.562 27.4169i −0.553742 0.0753212i
\(365\) 687.164 193.829i 1.88264 0.531038i
\(366\) −174.512 + 108.863i −0.476808 + 0.297440i
\(367\) 87.0699 + 324.949i 0.237248 + 0.885420i 0.977123 + 0.212676i \(0.0682179\pi\)
−0.739875 + 0.672744i \(0.765115\pi\)
\(368\) −82.2394 + 22.0360i −0.223477 + 0.0598804i
\(369\) −0.200224 + 0.134612i −0.000542613 + 0.000364801i
\(370\) −143.494 + 256.250i −0.387821 + 0.692568i
\(371\) −8.78759 + 64.6042i −0.0236862 + 0.174135i
\(372\) 15.6742 + 14.6386i 0.0421348 + 0.0393511i
\(373\) −311.170 83.3778i −0.834236 0.223533i −0.183675 0.982987i \(-0.558799\pi\)
−0.650561 + 0.759454i \(0.725466\pi\)
\(374\) −427.298 246.701i −1.14251 0.659628i
\(375\) −354.113 + 123.407i −0.944300 + 0.329085i
\(376\) 30.1598 17.4128i 0.0802122 0.0463105i
\(377\) 23.6937 + 23.6937i 0.0628480 + 0.0628480i
\(378\) −60.6887 260.305i −0.160552 0.688639i
\(379\) 55.5302i 0.146518i 0.997313 + 0.0732589i \(0.0233399\pi\)
−0.997313 + 0.0732589i \(0.976660\pi\)
\(380\) 3.03738 + 231.339i 0.00799310 + 0.608786i
\(381\) 436.411 + 232.468i 1.14544 + 0.610153i
\(382\) −124.742 + 33.4246i −0.326550 + 0.0874988i
\(383\) −91.7762 24.5913i −0.239624 0.0642072i 0.137008 0.990570i \(-0.456251\pi\)
−0.376632 + 0.926363i \(0.622918\pi\)
\(384\) −1.15881 33.9213i −0.00301775 0.0883368i
\(385\) 566.359 442.588i 1.47106 1.14958i
\(386\) 189.496i 0.490922i
\(387\) −14.6997 + 75.0159i −0.0379837 + 0.193840i
\(388\) 231.055 61.9111i 0.595504 0.159565i
\(389\) 53.5232 92.7050i 0.137592 0.238316i −0.788993 0.614403i \(-0.789397\pi\)
0.926585 + 0.376086i \(0.122730\pi\)
\(390\) 228.005 + 207.405i 0.584628 + 0.531806i
\(391\) 361.604i 0.924818i
\(392\) −1.18984 + 138.588i −0.00303531 + 0.353540i
\(393\) −272.287 254.298i −0.692842 0.647068i
\(394\) 350.971 202.633i 0.890790 0.514298i
\(395\) 113.111 67.3000i 0.286357 0.170380i
\(396\) 332.001 + 162.551i 0.838387 + 0.410483i
\(397\) −352.714 94.5094i −0.888449 0.238059i −0.214400 0.976746i \(-0.568780\pi\)
−0.674049 + 0.738687i \(0.735446\pi\)
\(398\) −33.4189 + 33.4189i −0.0839670 + 0.0839670i
\(399\) 443.119 199.244i 1.11058 0.499360i
\(400\) 52.2565 + 85.2600i 0.130641 + 0.213150i
\(401\) −292.445 + 168.843i −0.729289 + 0.421055i −0.818162 0.574988i \(-0.805007\pi\)
0.0888730 + 0.996043i \(0.471673\pi\)
\(402\) 99.9418 30.4724i 0.248611 0.0758021i
\(403\) 13.4422 + 50.1671i 0.0333554 + 0.124484i
\(404\) 270.297 156.056i 0.669051 0.386277i
\(405\) −147.917 + 377.022i −0.365226 + 0.930919i
\(406\) 13.9754 18.0521i 0.0344222 0.0444634i
\(407\) −603.143 + 603.143i −1.48192 + 1.48192i
\(408\) −140.433 32.5338i −0.344200 0.0797396i
\(409\) −82.5496 + 142.980i −0.201833 + 0.349585i −0.949119 0.314918i \(-0.898023\pi\)
0.747286 + 0.664502i \(0.231356\pi\)
\(410\) −0.183727 0.0466531i −0.000448114 0.000113788i
\(411\) −346.156 554.902i −0.842230 1.35013i
\(412\) 126.491 126.491i 0.307016 0.307016i
\(413\) −88.4988 + 67.3060i −0.214283 + 0.162968i
\(414\) −18.4884 270.284i −0.0446579 0.652860i
\(415\) 413.004 423.993i 0.995190 1.02167i
\(416\) 41.0967 71.1816i 0.0987902 0.171110i
\(417\) 170.395 51.9537i 0.408620 0.124589i
\(418\) −173.910 + 649.043i −0.416054 + 1.55273i
\(419\) 190.349i 0.454294i −0.973860 0.227147i \(-0.927060\pi\)
0.973860 0.227147i \(-0.0729398\pi\)
\(420\) 120.563 171.944i 0.287054 0.409390i
\(421\) 455.861 1.08280 0.541402 0.840764i \(-0.317894\pi\)
0.541402 + 0.840764i \(0.317894\pi\)
\(422\) 223.979 + 60.0150i 0.530756 + 0.142216i
\(423\) 35.9187 + 104.831i 0.0849141 + 0.247828i
\(424\) −22.8149 13.1722i −0.0538088 0.0310665i
\(425\) 407.215 120.657i 0.958152 0.283899i
\(426\) 11.6525 + 341.097i 0.0273533 + 0.800698i
\(427\) 42.8506 + 336.643i 0.100353 + 0.788392i
\(428\) −68.1408 68.1408i −0.159208 0.159208i
\(429\) 473.799 + 759.518i 1.10443 + 1.77044i
\(430\) −51.6139 + 30.7097i −0.120032 + 0.0714180i
\(431\) 632.551 + 365.204i 1.46764 + 0.847340i 0.999343 0.0362332i \(-0.0115359\pi\)
0.468293 + 0.883573i \(0.344869\pi\)
\(432\) 106.632 + 17.1375i 0.246833 + 0.0396701i
\(433\) −457.462 457.462i −1.05649 1.05649i −0.998306 0.0581890i \(-0.981467\pi\)
−0.0581890 0.998306i \(-0.518533\pi\)
\(434\) 32.7498 13.4010i 0.0754604 0.0308779i
\(435\) −32.9529 + 10.5222i −0.0757539 + 0.0241890i
\(436\) −37.5951 65.1167i −0.0862274 0.149350i
\(437\) 475.670 127.455i 1.08849 0.291660i
\(438\) 579.492 176.688i 1.32304 0.403398i
\(439\) −66.0824 114.458i −0.150529 0.260724i 0.780893 0.624665i \(-0.214764\pi\)
−0.931422 + 0.363941i \(0.881431\pi\)
\(440\) 78.8457 + 279.524i 0.179195 + 0.635283i
\(441\) −432.026 88.5153i −0.979650 0.200715i
\(442\) −246.842 246.842i −0.558465 0.558465i
\(443\) 133.862 499.578i 0.302171 1.12772i −0.633183 0.774002i \(-0.718252\pi\)
0.935354 0.353714i \(-0.115081\pi\)
\(444\) −117.162 + 219.947i −0.263878 + 0.495375i
\(445\) −195.259 + 116.177i −0.438783 + 0.261072i
\(446\) 158.312 + 274.204i 0.354959 + 0.614808i
\(447\) −373.040 348.395i −0.834542 0.779407i
\(448\) −51.6448 21.6522i −0.115279 0.0483307i
\(449\) −69.6440 −0.155109 −0.0775546 0.996988i \(-0.524711\pi\)
−0.0775546 + 0.996988i \(0.524711\pi\)
\(450\) −298.207 + 111.006i −0.662683 + 0.246681i
\(451\) −0.476777 0.275268i −0.00105716 0.000610349i
\(452\) −37.1899 138.794i −0.0822784 0.307067i
\(453\) −21.5244 + 92.9111i −0.0475153 + 0.205102i
\(454\) −538.687 −1.18654
\(455\) 468.097 198.756i 1.02878 0.436826i
\(456\) 6.70254 + 196.200i 0.0146986 + 0.430263i
\(457\) −15.1658 + 56.5997i −0.0331857 + 0.123851i −0.980532 0.196361i \(-0.937087\pi\)
0.947346 + 0.320212i \(0.103754\pi\)
\(458\) 25.8280 + 96.3916i 0.0563931 + 0.210462i
\(459\) 187.519 418.610i 0.408538 0.912004i
\(460\) 148.520 152.472i 0.322869 0.331460i
\(461\) −479.196 −1.03947 −0.519735 0.854327i \(-0.673969\pi\)
−0.519735 + 0.854327i \(0.673969\pi\)
\(462\) 472.572 385.566i 1.02288 0.834559i
\(463\) −43.4920 + 43.4920i −0.0939351 + 0.0939351i −0.752513 0.658578i \(-0.771158\pi\)
0.658578 + 0.752513i \(0.271158\pi\)
\(464\) 4.61228 + 7.98870i 0.00994026 + 0.0172170i
\(465\) −52.3882 11.4141i −0.112663 0.0245463i
\(466\) 248.815 430.960i 0.533938 0.924807i
\(467\) 96.9891 361.968i 0.207686 0.775093i −0.780929 0.624620i \(-0.785254\pi\)
0.988614 0.150473i \(-0.0480796\pi\)
\(468\) 197.125 + 171.883i 0.421207 + 0.367272i
\(469\) 23.2349 170.817i 0.0495413 0.364215i
\(470\) −42.5383 + 75.9645i −0.0905070 + 0.161627i
\(471\) −438.251 702.532i −0.930468 1.49158i
\(472\) −11.6276 43.3948i −0.0246347 0.0919381i
\(473\) −168.487 + 45.1459i −0.356209 + 0.0954458i
\(474\) 94.7566 59.1106i 0.199908 0.124706i
\(475\) −302.250 493.141i −0.636315 1.03819i
\(476\) −145.596 + 188.068i −0.305875 + 0.395100i
\(477\) 55.0916 63.1819i 0.115496 0.132457i
\(478\) −347.604 93.1402i −0.727205 0.194854i
\(479\) 95.9666 + 55.4064i 0.200348 + 0.115671i 0.596818 0.802377i \(-0.296432\pi\)
−0.396470 + 0.918048i \(0.629765\pi\)
\(480\) 45.8519 + 71.3975i 0.0955247 + 0.148745i
\(481\) −522.635 + 301.744i −1.08656 + 0.627326i
\(482\) −273.732 273.732i −0.567908 0.567908i
\(483\) −417.885 158.651i −0.865187 0.328470i
\(484\) 601.505i 1.24278i
\(485\) −417.273 + 428.376i −0.860357 + 0.883249i
\(486\) −118.760 + 322.481i −0.244362 + 0.663542i
\(487\) −542.192 + 145.280i −1.11333 + 0.298316i −0.768181 0.640232i \(-0.778838\pi\)
−0.345148 + 0.938548i \(0.612171\pi\)
\(488\) −132.450 35.4898i −0.271413 0.0727249i
\(489\) 894.561 30.5598i 1.82937 0.0624945i
\(490\) −174.603 299.272i −0.356332 0.610760i
\(491\) 903.210i 1.83953i −0.392468 0.919765i \(-0.628379\pi\)
0.392468 0.919765i \(-0.371621\pi\)
\(492\) −0.156695 0.0363010i −0.000318486 7.37826e-5i
\(493\) 37.8430 10.1400i 0.0767607 0.0205680i
\(494\) −237.702 + 411.712i −0.481178 + 0.833425i
\(495\) −921.086 + 75.1664i −1.86078 + 0.151851i
\(496\) 14.2979i 0.0288264i
\(497\) 519.316 + 217.724i 1.04490 + 0.438077i
\(498\) 342.806 367.056i 0.688366 0.737061i
\(499\) −569.357 + 328.719i −1.14100 + 0.658755i −0.946677 0.322184i \(-0.895583\pi\)
−0.194319 + 0.980938i \(0.562250\pi\)
\(500\) −221.260 116.378i −0.442521 0.232756i
\(501\) 99.5499 + 53.0285i 0.198702 + 0.105845i
\(502\) −260.943 69.9195i −0.519807 0.139282i
\(503\) −575.210 + 575.210i −1.14356 + 1.14356i −0.155763 + 0.987794i \(0.549784\pi\)
−0.987794 + 0.155763i \(0.950216\pi\)
\(504\) 99.2116 148.017i 0.196848 0.293685i
\(505\) −381.235 + 680.806i −0.754920 + 1.34813i
\(506\) 535.366 309.094i 1.05804 0.610857i
\(507\) 36.8502 + 120.859i 0.0726829 + 0.238381i
\(508\) 85.3181 + 318.411i 0.167949 + 0.626794i
\(509\) 101.767 58.7554i 0.199936 0.115433i −0.396690 0.917953i \(-0.629841\pi\)
0.596626 + 0.802520i \(0.296508\pi\)
\(510\) 343.305 109.621i 0.673147 0.214942i
\(511\) 134.723 990.448i 0.263645 1.93825i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −616.754 99.1225i −1.20225 0.193221i
\(514\) −144.243 + 249.837i −0.280629 + 0.486064i
\(515\) −110.066 + 433.456i −0.213720 + 0.841663i
\(516\) −43.2385 + 26.9728i −0.0837955 + 0.0522729i
\(517\) −178.800 + 178.800i −0.345841 + 0.345841i
\(518\) 248.901 + 327.273i 0.480503 + 0.631801i
\(519\) −367.435 + 12.5523i −0.707968 + 0.0241855i
\(520\) 2.69768 + 205.466i 0.00518785 + 0.395127i
\(521\) −30.0102 + 51.9791i −0.0576011 + 0.0997680i −0.893388 0.449286i \(-0.851678\pi\)
0.835787 + 0.549054i \(0.185012\pi\)
\(522\) −27.7677 + 9.51411i −0.0531948 + 0.0182263i
\(523\) 61.1814 228.332i 0.116982 0.436582i −0.882446 0.470414i \(-0.844105\pi\)
0.999428 + 0.0338324i \(0.0107712\pi\)
\(524\) 248.379i 0.474006i
\(525\) −39.2261 + 523.533i −0.0747164 + 0.997205i
\(526\) −445.840 −0.847604
\(527\) 58.6561 + 15.7169i 0.111302 + 0.0298232i
\(528\) 71.8732 + 235.726i 0.136124 + 0.446450i
\(529\) 65.7686 + 37.9715i 0.124326 + 0.0717798i
\(530\) 65.8554 0.864653i 0.124255 0.00163142i
\(531\) 142.619 9.75564i 0.268586 0.0183722i
\(532\) 298.712 + 125.235i 0.561488 + 0.235405i
\(533\) −0.275425 0.275425i −0.000516745 0.000516745i
\(534\) −163.574 + 102.040i −0.306318 + 0.191086i
\(535\) 233.504 + 59.2928i 0.436456 + 0.110828i
\(536\) 60.3239 + 34.8280i 0.112545 + 0.0649777i
\(537\) −176.441 + 761.616i −0.328568 + 1.41828i
\(538\) 155.900 + 155.900i 0.289777 + 0.289777i
\(539\) −252.094 974.206i −0.467706 1.80743i
\(540\) −251.002 + 99.4897i −0.464818 + 0.184240i
\(541\) −211.663 366.611i −0.391244 0.677655i 0.601370 0.798971i \(-0.294622\pi\)
−0.992614 + 0.121316i \(0.961289\pi\)
\(542\) 550.220 147.431i 1.01517 0.272013i
\(543\) −182.538 598.679i −0.336166 1.10254i
\(544\) −48.0509 83.2266i −0.0883289 0.152990i
\(545\) 164.012 + 91.8425i 0.300939 + 0.168518i
\(546\) 393.561 176.961i 0.720808 0.324104i
\(547\) 459.383 + 459.383i 0.839823 + 0.839823i 0.988835 0.149013i \(-0.0476095\pi\)
−0.149013 + 0.988835i \(0.547610\pi\)
\(548\) 112.848 421.156i 0.205928 0.768532i
\(549\) 191.864 391.871i 0.349479 0.713790i
\(550\) −526.718 499.759i −0.957669 0.908652i
\(551\) −26.6773 46.2064i −0.0484161 0.0838591i
\(552\) 123.276 131.997i 0.223326 0.239124i
\(553\) −23.2671 182.791i −0.0420743 0.330544i
\(554\) −384.038 −0.693210
\(555\) −29.4435 622.317i −0.0530513 1.12129i
\(556\) 102.849 + 59.3797i 0.184980 + 0.106798i
\(557\) −168.106 627.381i −0.301806 1.12636i −0.935660 0.352904i \(-0.885194\pi\)
0.633853 0.773453i \(-0.281472\pi\)
\(558\) −44.6466 8.74869i −0.0800118 0.0156786i
\(559\) −123.411 −0.220772
\(560\) 138.635 19.4994i 0.247563 0.0348204i
\(561\) 1046.05 35.7350i 1.86462 0.0636988i
\(562\) 123.686 461.601i 0.220081 0.821355i
\(563\) 91.3244 + 340.827i 0.162210 + 0.605377i 0.998380 + 0.0569055i \(0.0181234\pi\)
−0.836169 + 0.548471i \(0.815210\pi\)
\(564\) −34.7322 + 65.2024i −0.0615819 + 0.115607i
\(565\) 257.324 + 250.655i 0.455441 + 0.443637i
\(566\) −76.3827 −0.134952
\(567\) 401.491 + 400.367i 0.708097 + 0.706115i
\(568\) −160.889 + 160.889i −0.283255 + 0.283255i
\(569\) 395.579 + 685.164i 0.695219 + 1.20415i 0.970107 + 0.242678i \(0.0780258\pi\)
−0.274888 + 0.961476i \(0.588641\pi\)
\(570\) −265.206 412.961i −0.465273 0.724493i
\(571\) −292.476 + 506.583i −0.512216 + 0.887185i 0.487683 + 0.873021i \(0.337842\pi\)
−0.999900 + 0.0141642i \(0.995491\pi\)
\(572\) −154.460 + 576.454i −0.270036 + 1.00779i
\(573\) 186.987 200.215i 0.326330 0.349415i
\(574\) −0.162456 + 0.209845i −0.000283024 + 0.000365584i
\(575\) −124.183 + 517.435i −0.215970 + 0.899887i
\(576\) 40.1713 + 59.7517i 0.0697419 + 0.103736i
\(577\) −81.0131 302.345i −0.140404 0.523995i −0.999917 0.0128809i \(-0.995900\pi\)
0.859513 0.511114i \(-0.170767\pi\)
\(578\) 0.531171 0.142327i 0.000918982 0.000246240i
\(579\) 212.759 + 341.061i 0.367460 + 0.589052i
\(580\) −20.1214 11.2675i −0.0346921 0.0194267i
\(581\) −313.824 766.933i −0.540144 1.32002i
\(582\) −346.350 + 370.851i −0.595103 + 0.637200i
\(583\) 184.764 + 49.5072i 0.316919 + 0.0849181i
\(584\) 349.776 + 201.943i 0.598932 + 0.345793i
\(585\) −643.237 117.298i −1.09955 0.200509i
\(586\) −293.469 + 169.435i −0.500801 + 0.289138i
\(587\) −236.641 236.641i −0.403136 0.403136i 0.476201 0.879337i \(-0.342014\pi\)
−0.879337 + 0.476201i \(0.842014\pi\)
\(588\) −153.460 250.771i −0.260986 0.426481i
\(589\) 82.6987i 0.140405i
\(590\) 80.4538 + 78.3685i 0.136362 + 0.132828i
\(591\) −404.180 + 758.765i −0.683892 + 1.28387i
\(592\) −160.476 + 42.9994i −0.271074 + 0.0726341i
\(593\) 739.912 + 198.259i 1.24774 + 0.334332i 0.821465 0.570259i \(-0.193157\pi\)
0.426280 + 0.904591i \(0.359824\pi\)
\(594\) −780.054 + 80.1938i −1.31322 + 0.135006i
\(595\) 72.3988 590.175i 0.121679 0.991892i
\(596\) 340.286i 0.570950i
\(597\) 22.6269 97.6699i 0.0379010 0.163601i
\(598\) 422.471 113.201i 0.706474 0.189299i
\(599\) −353.328 + 611.982i −0.589863 + 1.02167i 0.404387 + 0.914588i \(0.367485\pi\)
−0.994250 + 0.107085i \(0.965848\pi\)
\(600\) −189.780 94.7820i −0.316300 0.157970i
\(601\) 736.670i 1.22574i 0.790184 + 0.612870i \(0.209985\pi\)
−0.790184 + 0.612870i \(0.790015\pi\)
\(602\) 10.6170 + 83.4096i 0.0176363 + 0.138554i
\(603\) −145.665 + 167.056i −0.241567 + 0.277042i
\(604\) −55.0629 + 31.7906i −0.0911638 + 0.0526334i
\(605\) −768.914 1292.31i −1.27093 2.13605i
\(606\) −311.275 + 584.354i −0.513655 + 0.964281i
\(607\) 136.772 + 36.6480i 0.225325 + 0.0603757i 0.369715 0.929145i \(-0.379455\pi\)
−0.144390 + 0.989521i \(0.546122\pi\)
\(608\) −92.5434 + 92.5434i −0.152210 + 0.152210i
\(609\) −4.88512 + 48.1819i −0.00802154 + 0.0791165i
\(610\) 329.931 93.0639i 0.540870 0.152564i
\(611\) −154.934 + 89.4509i −0.253574 + 0.146401i
\(612\) 289.285 99.1183i 0.472687 0.161958i
\(613\) −58.7148 219.126i −0.0957826 0.357466i 0.901354 0.433082i \(-0.142574\pi\)
−0.997137 + 0.0756168i \(0.975907\pi\)
\(614\) 117.040 67.5728i 0.190618 0.110053i
\(615\) 0.383058 0.122314i 0.000622859 0.000198885i
\(616\) 402.894 + 54.8025i 0.654049 + 0.0889650i
\(617\) −89.4983 + 89.4983i −0.145054 + 0.145054i −0.775904 0.630850i \(-0.782706\pi\)
0.630850 + 0.775904i \(0.282706\pi\)
\(618\) −85.6430 + 369.682i −0.138581 + 0.598190i
\(619\) 187.806 325.289i 0.303402 0.525508i −0.673502 0.739185i \(-0.735211\pi\)
0.976904 + 0.213677i \(0.0685441\pi\)
\(620\) −18.2773 30.7186i −0.0294794 0.0495461i
\(621\) 336.741 + 465.708i 0.542256 + 0.749932i
\(622\) 508.079 508.079i 0.816848 0.816848i
\(623\) 40.1649 + 315.544i 0.0644702 + 0.506491i
\(624\) 5.95293 + 174.257i 0.00953996 + 0.279258i
\(625\) 624.138 32.8070i 0.998621 0.0524912i
\(626\) −119.567 + 207.096i −0.191001 + 0.330824i
\(627\) −415.712 1363.43i −0.663018 2.17453i
\(628\) 142.871 533.203i 0.227502 0.849049i
\(629\) 705.607i 1.12179i
\(630\) −23.9402 + 444.834i −0.0380003 + 0.706085i
\(631\) −602.534 −0.954888 −0.477444 0.878662i \(-0.658437\pi\)
−0.477444 + 0.878662i \(0.658437\pi\)
\(632\) 71.9177 + 19.2703i 0.113794 + 0.0304910i
\(633\) −470.508 + 143.459i −0.743298 + 0.226633i
\(634\) 558.561 + 322.485i 0.881011 + 0.508652i
\(635\) −590.333 575.033i −0.929659 0.905563i
\(636\) 55.8524 1.90802i 0.0878182 0.00300003i
\(637\) 6.11231 711.938i 0.00959547 1.11764i
\(638\) −47.3603 47.3603i −0.0742324 0.0742324i
\(639\) −403.945 600.835i −0.632151 0.940274i
\(640\) −13.9224 + 54.8285i −0.0217538 + 0.0856696i
\(641\) 372.428 + 215.022i 0.581011 + 0.335447i 0.761535 0.648124i \(-0.224446\pi\)
−0.180524 + 0.983571i \(0.557779\pi\)
\(642\) 199.148 + 46.1360i 0.310200 + 0.0718630i
\(643\) −626.656 626.656i −0.974581 0.974581i 0.0251036 0.999685i \(-0.492008\pi\)
−0.999685 + 0.0251036i \(0.992008\pi\)
\(644\) −112.854 275.796i −0.175239 0.428254i
\(645\) 58.4166 113.223i 0.0905683 0.175539i
\(646\) 277.925 + 481.380i 0.430224 + 0.745170i
\(647\) −260.681 + 69.8492i −0.402907 + 0.107959i −0.454581 0.890705i \(-0.650211\pi\)
0.0516740 + 0.998664i \(0.483544\pi\)
\(648\) −211.161 + 88.8776i −0.325865 + 0.137157i
\(649\) 163.098 + 282.493i 0.251306 + 0.435275i
\(650\) −268.446 437.988i −0.412994 0.673828i
\(651\) −43.8980 + 60.8899i −0.0674317 + 0.0935328i
\(652\) 421.946 + 421.946i 0.647156 + 0.647156i
\(653\) 5.13649 19.1696i 0.00786598 0.0293563i −0.961881 0.273467i \(-0.911829\pi\)
0.969747 + 0.244111i \(0.0784961\pi\)
\(654\) 140.776 + 74.9887i 0.215253 + 0.114662i
\(655\) 317.507 + 533.634i 0.484744 + 0.814709i
\(656\) −0.0536150 0.0928639i −8.17301e−5 0.000141561i
\(657\) −844.610 + 968.643i −1.28556 + 1.47434i
\(658\) 73.7858 + 97.0190i 0.112136 + 0.147445i
\(659\) 1042.32 1.58167 0.790834 0.612031i \(-0.209647\pi\)
0.790834 + 0.612031i \(0.209647\pi\)
\(660\) −455.749 414.572i −0.690529 0.628139i
\(661\) −577.967 333.689i −0.874383 0.504825i −0.00558050 0.999984i \(-0.501776\pi\)
−0.868802 + 0.495159i \(0.835110\pi\)
\(662\) −5.44005 20.3025i −0.00821760 0.0306685i
\(663\) 721.419 + 167.129i 1.08811 + 0.252080i
\(664\) 334.828 0.504258
\(665\) −801.862 + 112.784i −1.20581 + 0.169600i
\(666\) −36.0768 527.412i −0.0541694 0.791910i
\(667\) −12.7045 + 47.4139i −0.0190473 + 0.0710853i
\(668\) 19.4619 + 72.6329i 0.0291346 + 0.108732i
\(669\) −592.802 315.775i −0.886101 0.472010i
\(670\) −174.125 + 2.28619i −0.259888 + 0.00341222i
\(671\) 995.614 1.48378
\(672\) 117.262 19.0146i 0.174497 0.0282956i
\(673\) 479.306 479.306i 0.712193 0.712193i −0.254800 0.966994i \(-0.582010\pi\)
0.966994 + 0.254800i \(0.0820097\pi\)
\(674\) 296.408 + 513.394i 0.439775 + 0.761713i
\(675\) 412.089 534.610i 0.610503 0.792014i
\(676\) −42.1174 + 72.9495i −0.0623039 + 0.107914i
\(677\) −17.6567 + 65.8959i −0.0260809 + 0.0973351i −0.977739 0.209823i \(-0.932711\pi\)
0.951659 + 0.307158i \(0.0993780\pi\)
\(678\) 222.769 + 208.051i 0.328568 + 0.306860i
\(679\) 317.068 + 774.860i 0.466963 + 1.14118i
\(680\) 209.626 + 117.385i 0.308273 + 0.172625i
\(681\) 969.547 604.819i 1.42371 0.888133i
\(682\) −26.8691 100.277i −0.0393975 0.147033i
\(683\) 1196.10 320.494i 1.75124 0.469244i 0.766352 0.642421i \(-0.222070\pi\)
0.984891 + 0.173176i \(0.0554031\pi\)
\(684\) −232.350 345.602i −0.339693 0.505266i
\(685\) 295.919 + 1049.09i 0.431999 + 1.53152i
\(686\) −481.701 + 57.1167i −0.702188 + 0.0832604i
\(687\) −154.711 144.490i −0.225198 0.210320i
\(688\) −32.8168 8.79325i −0.0476989 0.0127809i
\(689\) 117.202 + 67.6668i 0.170105 + 0.0982102i
\(690\) −96.1210 + 441.176i −0.139306 + 0.639386i
\(691\) 99.6825 57.5517i 0.144258 0.0832876i −0.426134 0.904660i \(-0.640125\pi\)
0.570392 + 0.821373i \(0.306791\pi\)
\(692\) −173.312 173.312i −0.250450 0.250450i
\(693\) −417.651 + 1224.54i −0.602671 + 1.76702i
\(694\) 20.9114i 0.0301317i
\(695\) −296.873 + 3.89782i −0.427155 + 0.00560837i
\(696\) −17.2708 9.19983i −0.0248143 0.0132181i
\(697\) −0.439903 + 0.117872i −0.000631137 + 0.000169113i
\(698\) 24.9235 + 6.67823i 0.0357070 + 0.00956766i
\(699\) 36.0413 + 1055.02i 0.0515612 + 1.50932i
\(700\) −272.927 + 219.114i −0.389896 + 0.313020i
\(701\) 850.600i 1.21341i −0.794927 0.606705i \(-0.792491\pi\)
0.794927 0.606705i \(-0.207509\pi\)
\(702\) −547.776 88.0367i −0.780308 0.125408i
\(703\) 928.187 248.707i 1.32032 0.353780i
\(704\) −82.1465 + 142.282i −0.116685 + 0.202105i
\(705\) −8.72842 184.484i −0.0123807 0.261679i
\(706\) 354.808i 0.502561i
\(707\) 661.279 + 869.499i 0.935332 + 1.22984i
\(708\) 69.6499 + 65.0483i 0.0983755 + 0.0918762i
\(709\) 279.742 161.509i 0.394559 0.227799i −0.289575 0.957155i \(-0.593514\pi\)
0.684133 + 0.729357i \(0.260181\pi\)
\(710\) 139.997 551.330i 0.197179 0.776522i
\(711\) −104.179 + 212.779i −0.146524 + 0.299267i
\(712\) −124.148 33.2654i −0.174365 0.0467211i
\(713\) −53.7990 + 53.7990i −0.0754544 + 0.0754544i
\(714\) 50.8934 501.961i 0.0712792 0.703027i
\(715\) −405.038 1435.94i −0.566486 2.00831i
\(716\) −451.365 + 260.596i −0.630398 + 0.363960i
\(717\) 730.203 222.640i 1.01841 0.310517i
\(718\) 141.527 + 528.186i 0.197113 + 0.735634i
\(719\) 104.219 60.1707i 0.144950 0.0836867i −0.425771 0.904831i \(-0.639997\pi\)
0.570721 + 0.821144i \(0.306664\pi\)
\(720\) −162.688 77.0228i −0.225956 0.106976i
\(721\) 495.076 + 383.273i 0.686652 + 0.531585i
\(722\) 174.268 174.268i 0.241369 0.241369i
\(723\) 800.008 + 185.335i 1.10651 + 0.256342i
\(724\) 208.629 361.357i 0.288162 0.499112i
\(725\) 57.6336 1.51367i 0.0794947 0.00208782i
\(726\) −675.348 1082.61i −0.930232 1.49120i
\(727\) 182.698 182.698i 0.251304 0.251304i −0.570201 0.821505i \(-0.693135\pi\)
0.821505 + 0.570201i \(0.193135\pi\)
\(728\) 265.304 + 111.229i 0.364428 + 0.152787i
\(729\) −148.323 713.752i −0.203461 0.979083i
\(730\) −1009.63 + 13.2560i −1.38305 + 0.0181589i
\(731\) −72.1472 + 124.963i −0.0986966 + 0.170948i
\(732\) 278.234 84.8341i 0.380101 0.115894i
\(733\) −215.993 + 806.098i −0.294670 + 1.09972i 0.646808 + 0.762653i \(0.276103\pi\)
−0.941479 + 0.337072i \(0.890563\pi\)
\(734\) 475.759i 0.648172i
\(735\) 650.268 + 342.602i 0.884718 + 0.466126i
\(736\) 120.407 0.163596
\(737\) −488.525 130.900i −0.662856 0.177612i
\(738\) 0.322782 0.110596i 0.000437375 0.000149859i
\(739\) 781.051 + 450.940i 1.05690 + 0.610203i 0.924574 0.381003i \(-0.124421\pi\)
0.132329 + 0.991206i \(0.457754\pi\)
\(740\) 289.810 297.522i 0.391636 0.402056i
\(741\) −34.4316 1007.90i −0.0464663 1.36018i
\(742\) 35.6509 85.0345i 0.0480470 0.114602i
\(743\) 868.363 + 868.363i 1.16873 + 1.16873i 0.982509 + 0.186217i \(0.0596226\pi\)
0.186217 + 0.982509i \(0.440377\pi\)
\(744\) −16.0532 25.7339i −0.0215769 0.0345885i
\(745\) 434.993 + 731.094i 0.583884 + 0.981334i
\(746\) 394.548 + 227.792i 0.528885 + 0.305352i
\(747\) −204.876 + 1045.53i −0.274265 + 1.39964i
\(748\) 493.401 + 493.401i 0.659628 + 0.659628i
\(749\) 206.470 266.698i 0.275661 0.356073i
\(750\) 528.897 38.9627i 0.705196 0.0519503i
\(751\) 405.706 + 702.703i 0.540220 + 0.935689i 0.998891 + 0.0470828i \(0.0149925\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(752\) −47.5726 + 12.7470i −0.0632614 + 0.0169508i
\(753\) 548.158 167.134i 0.727965 0.221958i
\(754\) −23.6937 41.0387i −0.0314240 0.0544280i
\(755\) 77.6624 138.689i 0.102864 0.183694i
\(756\) −12.3760 + 377.797i −0.0163704 + 0.499732i
\(757\) 603.322 + 603.322i 0.796991 + 0.796991i 0.982620 0.185629i \(-0.0594324\pi\)
−0.185629 + 0.982620i \(0.559432\pi\)
\(758\) 20.3255 75.8557i 0.0268146 0.100073i
\(759\) −616.530 + 1157.41i −0.812293 + 1.52491i
\(760\)