Properties

Label 210.3.w.a.17.14
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.14
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(2.82505 - 1.00950i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.52260 + 4.31700i) q^{5} +(-4.22859 + 0.344962i) q^{6} +(0.692615 - 6.96565i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(6.96182 - 5.70377i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(2.82505 - 1.00950i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.52260 + 4.31700i) q^{5} +(-4.22859 + 0.344962i) q^{6} +(0.692615 - 6.96565i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(6.96182 - 5.70377i) q^{9} +(-1.86581 - 6.82047i) q^{10} +(3.24428 + 1.87308i) q^{11} +(5.90263 + 1.07655i) q^{12} +(5.63880 + 5.63880i) q^{13} +(-3.49573 + 9.26174i) q^{14} +(11.4845 + 9.64917i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-4.24716 + 1.13802i) q^{17} +(-11.5978 + 5.24330i) q^{18} +(8.60142 + 14.8981i) q^{19} +(0.0522811 + 9.99986i) q^{20} +(-5.07515 - 20.3775i) q^{21} +(-3.74617 - 3.74617i) q^{22} +(9.56743 - 35.7061i) q^{23} +(-7.66910 - 3.63110i) q^{24} +(-12.2729 + 21.7802i) q^{25} +(-5.63880 - 9.76669i) q^{26} +(13.9095 - 23.1414i) q^{27} +(8.16529 - 11.3722i) q^{28} +29.5157 q^{29} +(-12.1563 - 17.3846i) q^{30} +(-11.0230 - 6.36411i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(11.0561 + 2.01646i) q^{33} +6.21827 q^{34} +(31.8179 - 14.5816i) q^{35} +(17.7620 - 2.91740i) q^{36} +(-6.31767 + 23.5779i) q^{37} +(-6.29668 - 23.4995i) q^{38} +(21.6223 + 10.2375i) q^{39} +(3.58879 - 13.6792i) q^{40} -26.2318 q^{41} +(-0.525906 + 29.6938i) q^{42} +(38.5379 - 38.5379i) q^{43} +(3.74617 + 6.48855i) q^{44} +(42.1851 + 15.6658i) q^{45} +(-26.1387 + 45.2736i) q^{46} +(-7.31893 + 27.3146i) q^{47} +(9.14711 + 7.76726i) q^{48} +(-48.0406 - 9.64903i) q^{49} +(24.7372 - 25.2600i) q^{50} +(-10.8496 + 7.50248i) q^{51} +(4.12789 + 15.4055i) q^{52} +(7.09618 - 1.90142i) q^{53} +(-27.4711 + 26.5205i) q^{54} +(0.0979269 + 18.7306i) q^{55} +(-15.3165 + 12.5461i) q^{56} +(39.3391 + 33.4048i) q^{57} +(-40.3193 - 10.8035i) q^{58} +(-68.7458 - 39.6904i) q^{59} +(10.2426 + 28.1973i) q^{60} +(-47.6402 + 27.5051i) q^{61} +(12.7282 + 12.7282i) q^{62} +(-34.9086 - 52.4441i) q^{63} +8.00000i q^{64} +(-10.1182 + 38.5672i) q^{65} +(-14.3649 - 6.80136i) q^{66} +(-79.7633 + 21.3725i) q^{67} +(-8.49432 - 2.27605i) q^{68} +(-9.01685 - 110.530i) q^{69} +(-48.8013 + 8.27263i) q^{70} +86.9495i q^{71} +(-25.3312 - 2.51610i) q^{72} +(9.35252 - 2.50600i) q^{73} +(17.2602 - 29.8955i) q^{74} +(-12.6846 + 73.9196i) q^{75} +34.4057i q^{76} +(15.2943 - 21.3012i) q^{77} +(-25.7894 - 21.8990i) q^{78} +(-134.657 + 77.7444i) q^{79} +(-9.90931 + 17.3726i) q^{80} +(15.9339 - 79.4173i) q^{81} +(35.8333 + 9.60151i) q^{82} +(68.5558 - 68.5558i) q^{83} +(11.5871 - 40.3700i) q^{84} +(-15.6267 - 15.4642i) q^{85} +(-66.7497 + 38.5379i) q^{86} +(83.3835 - 29.7961i) q^{87} +(-2.74239 - 10.2347i) q^{88} +(-94.3451 + 54.4701i) q^{89} +(-51.8918 - 36.8407i) q^{90} +(43.1835 - 35.3724i) q^{91} +(52.2774 - 52.2774i) q^{92} +(-37.5650 - 6.85126i) q^{93} +(19.9957 - 34.6336i) q^{94} +(-42.6171 + 74.7144i) q^{95} +(-9.65217 - 13.9584i) q^{96} +(-17.8295 + 17.8295i) q^{97} +(62.0928 + 30.7649i) q^{98} +(33.2697 - 5.46454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 2.82505 1.00950i 0.941684 0.336500i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 2.52260 + 4.31700i 0.504521 + 0.863400i
\(6\) −4.22859 + 0.344962i −0.704766 + 0.0574936i
\(7\) 0.692615 6.96565i 0.0989450 0.995093i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 6.96182 5.70377i 0.773536 0.633753i
\(10\) −1.86581 6.82047i −0.186581 0.682047i
\(11\) 3.24428 + 1.87308i 0.294934 + 0.170280i 0.640165 0.768237i \(-0.278866\pi\)
−0.345231 + 0.938518i \(0.612199\pi\)
\(12\) 5.90263 + 1.07655i 0.491886 + 0.0897122i
\(13\) 5.63880 + 5.63880i 0.433754 + 0.433754i 0.889903 0.456149i \(-0.150772\pi\)
−0.456149 + 0.889903i \(0.650772\pi\)
\(14\) −3.49573 + 9.26174i −0.249695 + 0.661553i
\(15\) 11.4845 + 9.64917i 0.765633 + 0.643278i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −4.24716 + 1.13802i −0.249833 + 0.0669425i −0.381562 0.924343i \(-0.624614\pi\)
0.131729 + 0.991286i \(0.457947\pi\)
\(18\) −11.5978 + 5.24330i −0.644320 + 0.291294i
\(19\) 8.60142 + 14.8981i 0.452707 + 0.784111i 0.998553 0.0537744i \(-0.0171252\pi\)
−0.545847 + 0.837885i \(0.683792\pi\)
\(20\) 0.0522811 + 9.99986i 0.00261406 + 0.499993i
\(21\) −5.07515 20.3775i −0.241674 0.970358i
\(22\) −3.74617 3.74617i −0.170280 0.170280i
\(23\) 9.56743 35.7061i 0.415975 1.55244i −0.366899 0.930261i \(-0.619580\pi\)
0.782874 0.622180i \(-0.213753\pi\)
\(24\) −7.66910 3.63110i −0.319546 0.151296i
\(25\) −12.2729 + 21.7802i −0.490917 + 0.871206i
\(26\) −5.63880 9.76669i −0.216877 0.375642i
\(27\) 13.9095 23.1414i 0.515168 0.857089i
\(28\) 8.16529 11.3722i 0.291618 0.406152i
\(29\) 29.5157 1.01778 0.508892 0.860830i \(-0.330055\pi\)
0.508892 + 0.860830i \(0.330055\pi\)
\(30\) −12.1563 17.3846i −0.405209 0.579488i
\(31\) −11.0230 6.36411i −0.355579 0.205294i 0.311561 0.950226i \(-0.399148\pi\)
−0.667140 + 0.744933i \(0.732482\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 11.0561 + 2.01646i 0.335034 + 0.0611049i
\(34\) 6.21827 0.182890
\(35\) 31.8179 14.5816i 0.909083 0.416616i
\(36\) 17.7620 2.91740i 0.493389 0.0810390i
\(37\) −6.31767 + 23.5779i −0.170748 + 0.637240i 0.826489 + 0.562953i \(0.190335\pi\)
−0.997237 + 0.0742870i \(0.976332\pi\)
\(38\) −6.29668 23.4995i −0.165702 0.618409i
\(39\) 21.6223 + 10.2375i 0.554417 + 0.262501i
\(40\) 3.58879 13.6792i 0.0897197 0.341980i
\(41\) −26.2318 −0.639800 −0.319900 0.947451i \(-0.603649\pi\)
−0.319900 + 0.947451i \(0.603649\pi\)
\(42\) −0.525906 + 29.6938i −0.0125216 + 0.706996i
\(43\) 38.5379 38.5379i 0.896231 0.896231i −0.0988691 0.995100i \(-0.531522\pi\)
0.995100 + 0.0988691i \(0.0315225\pi\)
\(44\) 3.74617 + 6.48855i 0.0851402 + 0.147467i
\(45\) 42.1851 + 15.6658i 0.937447 + 0.348129i
\(46\) −26.1387 + 45.2736i −0.568233 + 0.984208i
\(47\) −7.31893 + 27.3146i −0.155722 + 0.581162i 0.843321 + 0.537411i \(0.180598\pi\)
−0.999042 + 0.0437512i \(0.986069\pi\)
\(48\) 9.14711 + 7.76726i 0.190565 + 0.161818i
\(49\) −48.0406 9.64903i −0.980420 0.196919i
\(50\) 24.7372 25.2600i 0.494745 0.505201i
\(51\) −10.8496 + 7.50248i −0.212737 + 0.147107i
\(52\) 4.12789 + 15.4055i 0.0793825 + 0.296260i
\(53\) 7.09618 1.90142i 0.133890 0.0358758i −0.191252 0.981541i \(-0.561255\pi\)
0.325142 + 0.945665i \(0.394588\pi\)
\(54\) −27.4711 + 26.5205i −0.508725 + 0.491120i
\(55\) 0.0979269 + 18.7306i 0.00178049 + 0.340556i
\(56\) −15.3165 + 12.5461i −0.273509 + 0.224037i
\(57\) 39.3391 + 33.4048i 0.690159 + 0.586049i
\(58\) −40.3193 10.8035i −0.695160 0.186267i
\(59\) −68.7458 39.6904i −1.16518 0.672719i −0.212643 0.977130i \(-0.568207\pi\)
−0.952541 + 0.304411i \(0.901540\pi\)
\(60\) 10.2426 + 28.1973i 0.170709 + 0.469956i
\(61\) −47.6402 + 27.5051i −0.780987 + 0.450903i −0.836780 0.547539i \(-0.815565\pi\)
0.0557927 + 0.998442i \(0.482231\pi\)
\(62\) 12.7282 + 12.7282i 0.205294 + 0.205294i
\(63\) −34.9086 52.4441i −0.554105 0.832447i
\(64\) 8.00000i 0.125000i
\(65\) −10.1182 + 38.5672i −0.155665 + 0.593341i
\(66\) −14.3649 6.80136i −0.217650 0.103051i
\(67\) −79.7633 + 21.3725i −1.19050 + 0.318993i −0.799082 0.601222i \(-0.794681\pi\)
−0.391415 + 0.920214i \(0.628014\pi\)
\(68\) −8.49432 2.27605i −0.124916 0.0334713i
\(69\) −9.01685 110.530i −0.130679 1.60188i
\(70\) −48.8013 + 8.27263i −0.697161 + 0.118180i
\(71\) 86.9495i 1.22464i 0.790610 + 0.612320i \(0.209764\pi\)
−0.790610 + 0.612320i \(0.790236\pi\)
\(72\) −25.3312 2.51610i −0.351822 0.0349458i
\(73\) 9.35252 2.50600i 0.128117 0.0343288i −0.194191 0.980964i \(-0.562208\pi\)
0.322308 + 0.946635i \(0.395541\pi\)
\(74\) 17.2602 29.8955i 0.233246 0.403994i
\(75\) −12.6846 + 73.9196i −0.169128 + 0.985594i
\(76\) 34.4057i 0.452707i
\(77\) 15.2943 21.3012i 0.198627 0.276639i
\(78\) −25.7894 21.8990i −0.330633 0.280757i
\(79\) −134.657 + 77.7444i −1.70452 + 0.984106i −0.763471 + 0.645842i \(0.776507\pi\)
−0.941051 + 0.338265i \(0.890160\pi\)
\(80\) −9.90931 + 17.3726i −0.123866 + 0.217157i
\(81\) 15.9339 79.4173i 0.196715 0.980461i
\(82\) 35.8333 + 9.60151i 0.436992 + 0.117092i
\(83\) 68.5558 68.5558i 0.825974 0.825974i −0.160983 0.986957i \(-0.551467\pi\)
0.986957 + 0.160983i \(0.0514665\pi\)
\(84\) 11.5871 40.3700i 0.137942 0.480596i
\(85\) −15.6267 15.4642i −0.183844 0.181932i
\(86\) −66.7497 + 38.5379i −0.776159 + 0.448116i
\(87\) 83.3835 29.7961i 0.958431 0.342484i
\(88\) −2.74239 10.2347i −0.0311635 0.116304i
\(89\) −94.3451 + 54.4701i −1.06006 + 0.612024i −0.925448 0.378875i \(-0.876311\pi\)
−0.134609 + 0.990899i \(0.542978\pi\)
\(90\) −51.8918 36.8407i −0.576576 0.409341i
\(91\) 43.1835 35.3724i 0.474543 0.388708i
\(92\) 52.2774 52.2774i 0.568233 0.568233i
\(93\) −37.5650 6.85126i −0.403924 0.0736694i
\(94\) 19.9957 34.6336i 0.212720 0.368442i
\(95\) −42.6171 + 74.7144i −0.448601 + 0.786467i
\(96\) −9.65217 13.9584i −0.100543 0.145400i
\(97\) −17.8295 + 17.8295i −0.183810 + 0.183810i −0.793014 0.609204i \(-0.791489\pi\)
0.609204 + 0.793014i \(0.291489\pi\)
\(98\) 62.0928 + 30.7649i 0.633600 + 0.313927i
\(99\) 33.2697 5.46454i 0.336058 0.0551974i
\(100\) −43.0375 + 25.4514i −0.430375 + 0.254514i
\(101\) −90.8819 + 157.412i −0.899821 + 1.55854i −0.0720991 + 0.997397i \(0.522970\pi\)
−0.827722 + 0.561138i \(0.810364\pi\)
\(102\) 17.5669 6.27734i 0.172225 0.0615426i
\(103\) −24.1275 + 90.0449i −0.234247 + 0.874222i 0.744240 + 0.667913i \(0.232812\pi\)
−0.978487 + 0.206310i \(0.933855\pi\)
\(104\) 22.5552i 0.216877i
\(105\) 75.1671 73.3138i 0.715877 0.698227i
\(106\) −10.3895 −0.0980145
\(107\) 149.820 + 40.1442i 1.40019 + 0.375180i 0.878413 0.477902i \(-0.158603\pi\)
0.521777 + 0.853082i \(0.325269\pi\)
\(108\) 47.2334 26.1725i 0.437347 0.242338i
\(109\) 87.0240 + 50.2433i 0.798385 + 0.460948i 0.842906 0.538061i \(-0.180843\pi\)
−0.0445210 + 0.999008i \(0.514176\pi\)
\(110\) 6.72210 25.6223i 0.0611100 0.232930i
\(111\) 5.95411 + 72.9864i 0.0536406 + 0.657535i
\(112\) 25.5150 11.5320i 0.227812 0.102964i
\(113\) −123.013 123.013i −1.08861 1.08861i −0.995672 0.0929363i \(-0.970375\pi\)
−0.0929363 0.995672i \(-0.529625\pi\)
\(114\) −41.5112 60.0309i −0.364133 0.526587i
\(115\) 178.278 48.7699i 1.55025 0.424086i
\(116\) 51.1228 + 29.5157i 0.440714 + 0.254446i
\(117\) 71.4188 + 7.09389i 0.610417 + 0.0606315i
\(118\) 79.3808 + 79.3808i 0.672719 + 0.672719i
\(119\) 4.98542 + 30.3724i 0.0418943 + 0.255231i
\(120\) −3.67064 42.2673i −0.0305887 0.352228i
\(121\) −53.4831 92.6355i −0.442009 0.765582i
\(122\) 75.1453 20.1351i 0.615945 0.165042i
\(123\) −74.1062 + 26.4810i −0.602489 + 0.215293i
\(124\) −12.7282 22.0459i −0.102647 0.177790i
\(125\) −124.985 + 1.96047i −0.999877 + 0.0156838i
\(126\) 28.4902 + 84.4175i 0.226113 + 0.669980i
\(127\) −102.528 102.528i −0.807305 0.807305i 0.176920 0.984225i \(-0.443386\pi\)
−0.984225 + 0.176920i \(0.943386\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 69.9676 147.776i 0.542385 1.14555i
\(130\) 27.9383 48.9802i 0.214910 0.376771i
\(131\) −21.6471 37.4939i −0.165245 0.286213i 0.771497 0.636233i \(-0.219508\pi\)
−0.936742 + 0.350020i \(0.886175\pi\)
\(132\) 17.1333 + 14.5487i 0.129798 + 0.110218i
\(133\) 109.732 49.5959i 0.825056 0.372901i
\(134\) 116.782 0.871504
\(135\) 134.990 + 1.67086i 0.999923 + 0.0123767i
\(136\) 10.7704 + 6.21827i 0.0791939 + 0.0457226i
\(137\) −30.6444 114.366i −0.223682 0.834791i −0.982928 0.183988i \(-0.941099\pi\)
0.759247 0.650803i \(-0.225567\pi\)
\(138\) −28.1395 + 154.287i −0.203910 + 1.11802i
\(139\) 257.537 1.85278 0.926391 0.376563i \(-0.122894\pi\)
0.926391 + 0.376563i \(0.122894\pi\)
\(140\) 69.6918 + 6.56188i 0.497798 + 0.0468706i
\(141\) 6.89774 + 84.5536i 0.0489202 + 0.599671i
\(142\) 31.8257 118.775i 0.224125 0.836445i
\(143\) 7.73189 + 28.8558i 0.0540691 + 0.201789i
\(144\) 33.6821 + 12.7089i 0.233903 + 0.0882563i
\(145\) 74.4565 + 127.419i 0.513493 + 0.878755i
\(146\) −13.6930 −0.0937879
\(147\) −145.458 + 21.2379i −0.989508 + 0.144476i
\(148\) −34.5204 + 34.5204i −0.233246 + 0.233246i
\(149\) −80.2081 138.925i −0.538309 0.932379i −0.998995 0.0448160i \(-0.985730\pi\)
0.460686 0.887563i \(-0.347603\pi\)
\(150\) 44.3839 96.3331i 0.295893 0.642221i
\(151\) 93.7262 162.338i 0.620703 1.07509i −0.368652 0.929567i \(-0.620181\pi\)
0.989355 0.145522i \(-0.0464861\pi\)
\(152\) 12.5934 46.9991i 0.0828511 0.309204i
\(153\) −23.0769 + 32.1476i −0.150830 + 0.210115i
\(154\) −28.6892 + 23.4998i −0.186293 + 0.152596i
\(155\) −0.332722 63.6402i −0.00214660 0.410582i
\(156\) 27.2133 + 39.3542i 0.174445 + 0.252271i
\(157\) 0.0276015 + 0.103010i 0.000175806 + 0.000656117i 0.966014 0.258491i \(-0.0832252\pi\)
−0.965838 + 0.259147i \(0.916559\pi\)
\(158\) 212.402 56.9129i 1.34431 0.360208i
\(159\) 18.1276 12.5352i 0.114010 0.0788377i
\(160\) 19.8952 20.1043i 0.124345 0.125652i
\(161\) −242.090 91.3740i −1.50366 0.567540i
\(162\) −50.8349 + 102.654i −0.313796 + 0.633666i
\(163\) −243.194 65.1637i −1.49199 0.399778i −0.581582 0.813488i \(-0.697566\pi\)
−0.910409 + 0.413710i \(0.864233\pi\)
\(164\) −45.4348 26.2318i −0.277042 0.159950i
\(165\) 19.1852 + 52.8160i 0.116274 + 0.320097i
\(166\) −118.742 + 68.5558i −0.715314 + 0.412987i
\(167\) 179.100 + 179.100i 1.07245 + 1.07245i 0.997162 + 0.0752919i \(0.0239889\pi\)
0.0752919 + 0.997162i \(0.476011\pi\)
\(168\) −30.6047 + 50.9053i −0.182171 + 0.303008i
\(169\) 105.408i 0.623715i
\(170\) 15.6862 + 26.8443i 0.0922720 + 0.157908i
\(171\) 144.857 + 54.6574i 0.847117 + 0.319634i
\(172\) 105.288 28.2117i 0.612137 0.164022i
\(173\) 73.5490 + 19.7074i 0.425139 + 0.113916i 0.465043 0.885288i \(-0.346039\pi\)
−0.0399046 + 0.999203i \(0.512705\pi\)
\(174\) −124.810 + 10.1818i −0.717299 + 0.0585161i
\(175\) 143.213 + 100.574i 0.818357 + 0.574710i
\(176\) 14.9847i 0.0851402i
\(177\) −234.278 42.7286i −1.32360 0.241404i
\(178\) 148.815 39.8749i 0.836041 0.224016i
\(179\) −170.766 + 295.775i −0.953998 + 1.65237i −0.217354 + 0.976093i \(0.569743\pi\)
−0.736644 + 0.676281i \(0.763591\pi\)
\(180\) 57.4009 + 69.3191i 0.318894 + 0.385106i
\(181\) 139.336i 0.769813i −0.922956 0.384907i \(-0.874234\pi\)
0.922956 0.384907i \(-0.125766\pi\)
\(182\) −71.9369 + 32.5134i −0.395258 + 0.178645i
\(183\) −106.820 + 125.796i −0.583714 + 0.687410i
\(184\) −90.5472 + 52.2774i −0.492104 + 0.284116i
\(185\) −117.723 + 32.2043i −0.636338 + 0.174077i
\(186\) 48.8070 + 23.1087i 0.262403 + 0.124240i
\(187\) −15.9106 4.26323i −0.0850833 0.0227980i
\(188\) −39.9914 + 39.9914i −0.212720 + 0.212720i
\(189\) −151.561 112.917i −0.801910 0.597445i
\(190\) 85.5634 86.4628i 0.450334 0.455067i
\(191\) 87.2796 50.3909i 0.456961 0.263827i −0.253804 0.967256i \(-0.581682\pi\)
0.710766 + 0.703429i \(0.248349\pi\)
\(192\) 8.07600 + 22.6004i 0.0420625 + 0.117710i
\(193\) 7.05482 + 26.3290i 0.0365535 + 0.136419i 0.981791 0.189963i \(-0.0608369\pi\)
−0.945238 + 0.326383i \(0.894170\pi\)
\(194\) 30.8817 17.8295i 0.159184 0.0919049i
\(195\) 10.3490 + 119.169i 0.0530719 + 0.611121i
\(196\) −73.5597 64.7532i −0.375304 0.330373i
\(197\) −176.862 + 176.862i −0.897779 + 0.897779i −0.995239 0.0974606i \(-0.968928\pi\)
0.0974606 + 0.995239i \(0.468928\pi\)
\(198\) −47.4475 4.71286i −0.239634 0.0238023i
\(199\) −4.04297 + 7.00263i −0.0203164 + 0.0351891i −0.876005 0.482302i \(-0.839801\pi\)
0.855688 + 0.517491i \(0.173134\pi\)
\(200\) 68.1062 19.0144i 0.340531 0.0950722i
\(201\) −203.760 + 140.899i −1.01373 + 0.700992i
\(202\) 181.764 181.764i 0.899821 0.899821i
\(203\) 20.4431 205.596i 0.100705 1.01279i
\(204\) −26.2946 + 2.14507i −0.128895 + 0.0105150i
\(205\) −66.1725 113.243i −0.322793 0.552403i
\(206\) 65.9175 114.172i 0.319988 0.554235i
\(207\) −137.053 303.150i −0.662092 1.46449i
\(208\) −8.25578 + 30.8110i −0.0396913 + 0.148130i
\(209\) 64.4448i 0.308348i
\(210\) −129.515 + 72.6354i −0.616737 + 0.345883i
\(211\) 65.2730 0.309351 0.154675 0.987965i \(-0.450567\pi\)
0.154675 + 0.987965i \(0.450567\pi\)
\(212\) 14.1924 + 3.80283i 0.0669451 + 0.0179379i
\(213\) 87.7754 + 245.637i 0.412091 + 1.15322i
\(214\) −189.965 109.676i −0.887685 0.512505i
\(215\) 263.584 + 69.1522i 1.22597 + 0.321638i
\(216\) −74.1019 + 18.4637i −0.343064 + 0.0854802i
\(217\) −51.9648 + 72.3742i −0.239469 + 0.333522i
\(218\) −100.487 100.487i −0.460948 0.460948i
\(219\) 23.8915 16.5209i 0.109094 0.0754381i
\(220\) −18.5610 + 32.5403i −0.0843681 + 0.147910i
\(221\) −30.3660 17.5318i −0.137403 0.0793295i
\(222\) 18.5814 101.881i 0.0837000 0.458922i
\(223\) −6.16064 6.16064i −0.0276262 0.0276262i 0.693159 0.720785i \(-0.256218\pi\)
−0.720785 + 0.693159i \(0.756218\pi\)
\(224\) −39.0751 + 6.41390i −0.174442 + 0.0286335i
\(225\) 38.7871 + 221.632i 0.172387 + 0.985029i
\(226\) 123.013 + 213.064i 0.544304 + 0.942762i
\(227\) 17.8986 4.79592i 0.0788485 0.0211274i −0.219179 0.975685i \(-0.570338\pi\)
0.298028 + 0.954557i \(0.403671\pi\)
\(228\) 34.7325 + 97.1978i 0.152336 + 0.426306i
\(229\) 79.1498 + 137.092i 0.345633 + 0.598653i 0.985468 0.169858i \(-0.0543310\pi\)
−0.639836 + 0.768512i \(0.720998\pi\)
\(230\) −261.384 + 1.36656i −1.13645 + 0.00594157i
\(231\) 21.7036 75.6165i 0.0939550 0.327344i
\(232\) −59.0315 59.0315i −0.254446 0.254446i
\(233\) 40.1774 149.944i 0.172435 0.643536i −0.824539 0.565805i \(-0.808566\pi\)
0.996974 0.0777315i \(-0.0247677\pi\)
\(234\) −94.9634 35.8315i −0.405826 0.153126i
\(235\) −136.380 + 37.3082i −0.580340 + 0.158758i
\(236\) −79.3808 137.492i −0.336360 0.582592i
\(237\) −301.931 + 355.568i −1.27397 + 1.50029i
\(238\) 4.30687 43.3143i 0.0180961 0.181993i
\(239\) 370.794 1.55144 0.775720 0.631078i \(-0.217387\pi\)
0.775720 + 0.631078i \(0.217387\pi\)
\(240\) −10.4567 + 59.0818i −0.0435697 + 0.246174i
\(241\) 148.156 + 85.5377i 0.614754 + 0.354928i 0.774824 0.632177i \(-0.217839\pi\)
−0.160070 + 0.987106i \(0.551172\pi\)
\(242\) 39.1524 + 146.119i 0.161787 + 0.603796i
\(243\) −35.1576 240.443i −0.144681 0.989478i
\(244\) −110.020 −0.450903
\(245\) −79.5325 231.732i −0.324622 0.945844i
\(246\) 110.924 9.04897i 0.450909 0.0367844i
\(247\) −35.5057 + 132.509i −0.143748 + 0.536475i
\(248\) 9.31770 + 34.7741i 0.0375714 + 0.140218i
\(249\) 124.467 262.881i 0.499866 1.05575i
\(250\) 171.450 + 43.0695i 0.685799 + 0.172278i
\(251\) 423.501 1.68725 0.843627 0.536930i \(-0.180416\pi\)
0.843627 + 0.536930i \(0.180416\pi\)
\(252\) −8.01939 125.745i −0.0318230 0.498986i
\(253\) 97.9200 97.9200i 0.387036 0.387036i
\(254\) 102.528 + 177.583i 0.403652 + 0.699146i
\(255\) −59.7575 27.9120i −0.234343 0.109459i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 34.3610 128.237i 0.133701 0.498977i −0.866299 0.499525i \(-0.833508\pi\)
1.00000 0.000548025i \(0.000174442\pi\)
\(258\) −149.667 + 176.255i −0.580105 + 0.683161i
\(259\) 159.860 + 60.3371i 0.617218 + 0.232962i
\(260\) −56.0925 + 56.6821i −0.215740 + 0.218008i
\(261\) 205.483 168.351i 0.787293 0.645024i
\(262\) 15.8468 + 59.1410i 0.0604840 + 0.225729i
\(263\) 89.9104 24.0914i 0.341865 0.0916023i −0.0838020 0.996482i \(-0.526706\pi\)
0.425667 + 0.904880i \(0.360040\pi\)
\(264\) −18.0793 26.1452i −0.0684823 0.0990348i
\(265\) 26.1093 + 25.8377i 0.0985256 + 0.0975007i
\(266\) −168.051 + 27.5843i −0.631769 + 0.103701i
\(267\) −211.542 + 249.122i −0.792292 + 0.933042i
\(268\) −159.527 42.7450i −0.595249 0.159496i
\(269\) 248.794 + 143.641i 0.924885 + 0.533982i 0.885190 0.465229i \(-0.154028\pi\)
0.0396946 + 0.999212i \(0.487361\pi\)
\(270\) −183.788 51.6921i −0.680695 0.191452i
\(271\) 74.1622 42.8176i 0.273661 0.157998i −0.356889 0.934147i \(-0.616163\pi\)
0.630550 + 0.776148i \(0.282829\pi\)
\(272\) −12.4365 12.4365i −0.0457226 0.0457226i
\(273\) 86.2870 143.523i 0.316070 0.525724i
\(274\) 167.444i 0.611109i
\(275\) −80.6129 + 47.6726i −0.293138 + 0.173355i
\(276\) 94.9124 200.460i 0.343885 0.726306i
\(277\) −171.196 + 45.8720i −0.618038 + 0.165603i −0.554236 0.832360i \(-0.686989\pi\)
−0.0638022 + 0.997963i \(0.520323\pi\)
\(278\) −351.802 94.2650i −1.26547 0.339083i
\(279\) −113.039 + 18.5667i −0.405159 + 0.0665472i
\(280\) −92.7989 34.4727i −0.331425 0.123117i
\(281\) 318.359i 1.13295i −0.824079 0.566475i \(-0.808307\pi\)
0.824079 0.566475i \(-0.191693\pi\)
\(282\) 21.5263 118.027i 0.0763344 0.418536i
\(283\) −414.479 + 111.059i −1.46459 + 0.392436i −0.901073 0.433668i \(-0.857219\pi\)
−0.563518 + 0.826104i \(0.690552\pi\)
\(284\) −86.9495 + 150.601i −0.306160 + 0.530285i
\(285\) −44.9713 + 254.094i −0.157794 + 0.891557i
\(286\) 42.2478i 0.147720i
\(287\) −18.1685 + 182.722i −0.0633050 + 0.636661i
\(288\) −41.3588 29.6892i −0.143607 0.103087i
\(289\) −233.538 + 134.833i −0.808090 + 0.466551i
\(290\) −55.0708 201.311i −0.189899 0.694176i
\(291\) −32.3705 + 68.3683i −0.111239 + 0.234943i
\(292\) 18.7050 + 5.01200i 0.0640583 + 0.0171644i
\(293\) 100.146 100.146i 0.341794 0.341794i −0.515247 0.857041i \(-0.672300\pi\)
0.857041 + 0.515247i \(0.172300\pi\)
\(294\) 206.473 + 24.2297i 0.702288 + 0.0824138i
\(295\) −2.07506 396.899i −0.00703410 1.34542i
\(296\) 59.7911 34.5204i 0.201997 0.116623i
\(297\) 88.4722 49.0234i 0.297886 0.165062i
\(298\) 58.7164 + 219.133i 0.197035 + 0.735344i
\(299\) 255.289 147.391i 0.853809 0.492947i
\(300\) −95.8900 + 115.348i −0.319633 + 0.384493i
\(301\) −241.750 295.134i −0.803156 0.980511i
\(302\) −187.452 + 187.452i −0.620703 + 0.620703i
\(303\) −97.8386 + 536.442i −0.322900 + 1.77044i
\(304\) −34.4057 + 59.5924i −0.113177 + 0.196028i
\(305\) −238.917 136.278i −0.783334 0.446814i
\(306\) 43.2905 35.4676i 0.141472 0.115907i
\(307\) 144.662 144.662i 0.471211 0.471211i −0.431095 0.902306i \(-0.641873\pi\)
0.902306 + 0.431095i \(0.141873\pi\)
\(308\) 47.7917 21.6004i 0.155168 0.0701313i
\(309\) 22.7390 + 278.738i 0.0735889 + 0.902065i
\(310\) −22.8394 + 87.0559i −0.0736756 + 0.280826i
\(311\) −134.123 + 232.309i −0.431265 + 0.746973i −0.996983 0.0776260i \(-0.975266\pi\)
0.565717 + 0.824599i \(0.308599\pi\)
\(312\) −22.7695 63.7196i −0.0729791 0.204230i
\(313\) 121.681 454.120i 0.388757 1.45086i −0.443400 0.896324i \(-0.646228\pi\)
0.832158 0.554539i \(-0.187105\pi\)
\(314\) 0.150818i 0.000480311i
\(315\) 138.341 282.996i 0.439176 0.898401i
\(316\) −310.978 −0.984106
\(317\) −257.801 69.0776i −0.813253 0.217910i −0.171858 0.985122i \(-0.554977\pi\)
−0.641394 + 0.767211i \(0.721644\pi\)
\(318\) −29.3510 + 10.4882i −0.0922986 + 0.0329819i
\(319\) 95.7573 + 55.2855i 0.300180 + 0.173309i
\(320\) −34.5360 + 20.1808i −0.107925 + 0.0630651i
\(321\) 463.776 37.8340i 1.44478 0.117863i
\(322\) 297.256 + 213.430i 0.923155 + 0.662827i
\(323\) −53.4860 53.4860i −0.165591 0.165591i
\(324\) 107.016 121.621i 0.330295 0.375373i
\(325\) −192.019 + 53.6093i −0.590827 + 0.164952i
\(326\) 308.358 + 178.031i 0.945884 + 0.546106i
\(327\) 296.568 + 54.0893i 0.906935 + 0.165411i
\(328\) 52.4636 + 52.4636i 0.159950 + 0.159950i
\(329\) 185.195 + 69.8996i 0.562902 + 0.212461i
\(330\) −6.87542 79.1703i −0.0208346 0.239910i
\(331\) 206.482 + 357.637i 0.623811 + 1.08047i 0.988769 + 0.149449i \(0.0477500\pi\)
−0.364958 + 0.931024i \(0.618917\pi\)
\(332\) 187.298 50.1864i 0.564151 0.151164i
\(333\) 90.5003 + 200.180i 0.271773 + 0.601140i
\(334\) −179.100 310.210i −0.536227 0.928772i
\(335\) −293.476 290.424i −0.876049 0.866936i
\(336\) 60.4395 58.3358i 0.179879 0.173619i
\(337\) 9.78615 + 9.78615i 0.0290390 + 0.0290390i 0.721477 0.692438i \(-0.243463\pi\)
−0.692438 + 0.721477i \(0.743463\pi\)
\(338\) −38.5819 + 143.990i −0.114148 + 0.426005i
\(339\) −471.699 223.336i −1.39144 0.658808i
\(340\) −11.6021 42.4115i −0.0341239 0.124740i
\(341\) −23.8410 41.2939i −0.0699150 0.121096i
\(342\) −177.872 127.685i −0.520095 0.373347i
\(343\) −100.485 + 327.951i −0.292960 + 0.956125i
\(344\) −154.152 −0.448116
\(345\) 454.412 317.749i 1.31714 0.921012i
\(346\) −93.2564 53.8416i −0.269527 0.155612i
\(347\) −74.2461 277.090i −0.213966 0.798530i −0.986528 0.163592i \(-0.947692\pi\)
0.772563 0.634939i \(-0.218975\pi\)
\(348\) 174.221 + 31.7751i 0.500634 + 0.0913077i
\(349\) 494.587 1.41715 0.708577 0.705633i \(-0.249337\pi\)
0.708577 + 0.705633i \(0.249337\pi\)
\(350\) −158.819 189.806i −0.453769 0.542304i
\(351\) 208.923 52.0567i 0.595222 0.148310i
\(352\) 5.48477 20.4694i 0.0155817 0.0581518i
\(353\) 160.565 + 599.237i 0.454859 + 1.69756i 0.688503 + 0.725233i \(0.258268\pi\)
−0.233644 + 0.972322i \(0.575065\pi\)
\(354\) 304.390 + 144.120i 0.859858 + 0.407119i
\(355\) −375.361 + 219.339i −1.05735 + 0.617857i
\(356\) −217.881 −0.612024
\(357\) 44.7450 + 80.7709i 0.125336 + 0.226249i
\(358\) 341.531 341.531i 0.953998 0.953998i
\(359\) 134.178 + 232.404i 0.373756 + 0.647364i 0.990140 0.140081i \(-0.0447364\pi\)
−0.616384 + 0.787446i \(0.711403\pi\)
\(360\) −53.0386 115.702i −0.147329 0.321394i
\(361\) 32.5310 56.3453i 0.0901135 0.156081i
\(362\) −51.0006 + 190.337i −0.140886 + 0.525792i
\(363\) −244.608 207.709i −0.673851 0.572200i
\(364\) 110.168 18.0834i 0.302660 0.0496796i
\(365\) 34.4111 + 34.0532i 0.0942770 + 0.0932963i
\(366\) 191.963 132.742i 0.524489 0.362683i
\(367\) −62.5507 233.442i −0.170438 0.636083i −0.997284 0.0736543i \(-0.976534\pi\)
0.826846 0.562428i \(-0.190133\pi\)
\(368\) 142.825 38.2697i 0.388110 0.103994i
\(369\) −182.621 + 149.620i −0.494908 + 0.405475i
\(370\) 172.600 0.902382i 0.466486 0.00243887i
\(371\) −8.32968 50.7465i −0.0224520 0.136783i
\(372\) −58.2132 49.4317i −0.156487 0.132881i
\(373\) 625.194 + 167.520i 1.67612 + 0.449116i 0.966751 0.255719i \(-0.0823120\pi\)
0.709372 + 0.704834i \(0.248979\pi\)
\(374\) 20.1738 + 11.6474i 0.0539407 + 0.0311427i
\(375\) −351.109 + 131.710i −0.936290 + 0.351228i
\(376\) 69.2671 39.9914i 0.184221 0.106360i
\(377\) 166.434 + 166.434i 0.441468 + 0.441468i
\(378\) 165.706 + 209.723i 0.438375 + 0.554822i
\(379\) 176.481i 0.465649i −0.972519 0.232824i \(-0.925203\pi\)
0.972519 0.232824i \(-0.0747968\pi\)
\(380\) −148.529 + 86.7920i −0.390867 + 0.228400i
\(381\) −393.148 186.144i −1.03188 0.488568i
\(382\) −137.671 + 36.8887i −0.360394 + 0.0965673i
\(383\) 465.776 + 124.804i 1.21613 + 0.325860i 0.809163 0.587585i \(-0.199921\pi\)
0.406963 + 0.913445i \(0.366588\pi\)
\(384\) −2.75969 33.8287i −0.00718670 0.0880957i
\(385\) 130.539 + 12.2910i 0.339061 + 0.0319246i
\(386\) 38.5483i 0.0998660i
\(387\) 48.4826 488.106i 0.125278 1.26126i
\(388\) −48.7112 + 13.0521i −0.125544 + 0.0336395i
\(389\) −276.163 + 478.329i −0.709931 + 1.22964i 0.254951 + 0.966954i \(0.417941\pi\)
−0.964882 + 0.262683i \(0.915393\pi\)
\(390\) 29.4817 166.575i 0.0755941 0.427116i
\(391\) 162.538i 0.415697i
\(392\) 76.7831 + 115.379i 0.195875 + 0.294335i
\(393\) −99.0043 84.0695i −0.251919 0.213917i
\(394\) 306.335 176.862i 0.777499 0.448889i
\(395\) −675.309 385.197i −1.70964 0.975182i
\(396\) 63.0894 + 23.8049i 0.159317 + 0.0601133i
\(397\) −162.344 43.4998i −0.408926 0.109571i 0.0484914 0.998824i \(-0.484559\pi\)
−0.457417 + 0.889252i \(0.651225\pi\)
\(398\) 8.08594 8.08594i 0.0203164 0.0203164i
\(399\) 259.933 250.886i 0.651461 0.628786i
\(400\) −99.9945 + 1.04561i −0.249986 + 0.00261402i
\(401\) 143.692 82.9605i 0.358334 0.206884i −0.310016 0.950731i \(-0.600334\pi\)
0.668350 + 0.743847i \(0.267001\pi\)
\(402\) 329.914 117.891i 0.820681 0.293261i
\(403\) −26.2703 98.0422i −0.0651869 0.243281i
\(404\) −314.824 + 181.764i −0.779268 + 0.449911i
\(405\) 383.039 131.552i 0.945776 0.324819i
\(406\) −103.179 + 273.367i −0.254136 + 0.673318i
\(407\) −64.6596 + 64.6596i −0.158869 + 0.158869i
\(408\) 36.7042 + 6.69426i 0.0899612 + 0.0164075i
\(409\) −147.497 + 255.473i −0.360629 + 0.624628i −0.988065 0.154041i \(-0.950771\pi\)
0.627435 + 0.778669i \(0.284105\pi\)
\(410\) 48.9436 + 178.913i 0.119375 + 0.436374i
\(411\) −202.025 292.155i −0.491544 0.710840i
\(412\) −131.835 + 131.835i −0.319988 + 0.319988i
\(413\) −324.084 + 451.369i −0.784707 + 1.09290i
\(414\) 76.2572 + 464.276i 0.184196 + 1.12144i
\(415\) 468.895 + 123.016i 1.12987 + 0.296424i
\(416\) 22.5552 39.0668i 0.0542193 0.0939105i
\(417\) 727.554 259.983i 1.74473 0.623461i
\(418\) 23.5884 88.0332i 0.0564316 0.210606i
\(419\) 74.6773i 0.178227i −0.996021 0.0891137i \(-0.971597\pi\)
0.996021 0.0891137i \(-0.0284035\pi\)
\(420\) 203.507 51.8161i 0.484540 0.123372i
\(421\) 326.906 0.776499 0.388249 0.921554i \(-0.373080\pi\)
0.388249 + 0.921554i \(0.373080\pi\)
\(422\) −89.1646 23.8916i −0.211291 0.0566151i
\(423\) 104.843 + 231.905i 0.247857 + 0.548239i
\(424\) −17.9952 10.3895i −0.0424415 0.0245036i
\(425\) 27.3388 106.471i 0.0643266 0.250519i
\(426\) −29.9942 367.674i −0.0704090 0.863084i
\(427\) 158.595 + 350.896i 0.371416 + 0.821770i
\(428\) 219.352 + 219.352i 0.512505 + 0.512505i
\(429\) 50.9729 + 73.7138i 0.118818 + 0.171827i
\(430\) −334.751 190.942i −0.778491 0.444052i
\(431\) −122.945 70.9823i −0.285255 0.164692i 0.350545 0.936546i \(-0.385996\pi\)
−0.635800 + 0.771854i \(0.719330\pi\)
\(432\) 107.983 + 1.90126i 0.249961 + 0.00440107i
\(433\) −61.0659 61.0659i −0.141030 0.141030i 0.633067 0.774097i \(-0.281796\pi\)
−0.774097 + 0.633067i \(0.781796\pi\)
\(434\) 97.4760 79.8445i 0.224599 0.183974i
\(435\) 338.973 + 284.802i 0.779249 + 0.654718i
\(436\) 100.487 + 174.048i 0.230474 + 0.399193i
\(437\) 614.248 164.587i 1.40560 0.376630i
\(438\) −38.6835 + 13.8231i −0.0883185 + 0.0315596i
\(439\) −374.114 647.984i −0.852195 1.47604i −0.879223 0.476410i \(-0.841938\pi\)
0.0270281 0.999635i \(-0.491396\pi\)
\(440\) 37.2653 37.6570i 0.0846939 0.0855842i
\(441\) −389.486 + 206.838i −0.883188 + 0.469020i
\(442\) 35.0636 + 35.0636i 0.0793295 + 0.0793295i
\(443\) 131.478 490.684i 0.296791 1.10764i −0.642994 0.765871i \(-0.722308\pi\)
0.939785 0.341767i \(-0.111025\pi\)
\(444\) −62.6736 + 132.370i −0.141157 + 0.298131i
\(445\) −473.143 269.881i −1.06324 0.606474i
\(446\) 6.16064 + 10.6705i 0.0138131 + 0.0239250i
\(447\) −366.836 311.499i −0.820663 0.696865i
\(448\) 55.7252 + 5.54092i 0.124387 + 0.0123681i
\(449\) 405.923 0.904060 0.452030 0.892003i \(-0.350700\pi\)
0.452030 + 0.892003i \(0.350700\pi\)
\(450\) 28.1387 316.951i 0.0625304 0.704337i
\(451\) −85.1033 49.1344i −0.188699 0.108945i
\(452\) −90.0516 336.077i −0.199229 0.743533i
\(453\) 100.901 553.231i 0.222739 1.22126i
\(454\) −26.2054 −0.0577211
\(455\) 261.637 + 97.1923i 0.575027 + 0.213609i
\(456\) −11.8686 145.488i −0.0260277 0.319052i
\(457\) −56.8867 + 212.304i −0.124478 + 0.464560i −0.999821 0.0189442i \(-0.993970\pi\)
0.875342 + 0.483504i \(0.160636\pi\)
\(458\) −57.9417 216.241i −0.126510 0.472143i
\(459\) −32.7406 + 114.115i −0.0713303 + 0.248616i
\(460\) 357.557 + 93.8063i 0.777297 + 0.203927i
\(461\) 7.26924 0.0157684 0.00788421 0.999969i \(-0.497490\pi\)
0.00788421 + 0.999969i \(0.497490\pi\)
\(462\) −57.3252 + 95.3499i −0.124081 + 0.206385i
\(463\) −432.392 + 432.392i −0.933893 + 0.933893i −0.997946 0.0640535i \(-0.979597\pi\)
0.0640535 + 0.997946i \(0.479597\pi\)
\(464\) 59.0315 + 102.246i 0.127223 + 0.220357i
\(465\) −65.1847 179.451i −0.140182 0.385916i
\(466\) −109.767 + 190.121i −0.235551 + 0.407986i
\(467\) −21.7406 + 81.1369i −0.0465537 + 0.173741i −0.985288 0.170900i \(-0.945333\pi\)
0.938735 + 0.344641i \(0.111999\pi\)
\(468\) 116.607 + 83.7058i 0.249161 + 0.178859i
\(469\) 93.6282 + 570.406i 0.199634 + 1.21622i
\(470\) 199.954 1.04540i 0.425434 0.00222425i
\(471\) 0.181965 + 0.263146i 0.000386337 + 0.000558696i
\(472\) 58.1108 + 216.872i 0.123116 + 0.459476i
\(473\) 197.213 52.8430i 0.416940 0.111719i
\(474\) 542.592 375.201i 1.14471 0.791563i
\(475\) −430.048 + 4.49686i −0.905364 + 0.00946707i
\(476\) −21.7374 + 57.5920i −0.0456669 + 0.120992i
\(477\) 38.5571 53.7124i 0.0808325 0.112605i
\(478\) −506.514 135.720i −1.05965 0.283933i
\(479\) −212.902 122.919i −0.444472 0.256616i 0.261021 0.965333i \(-0.415941\pi\)
−0.705493 + 0.708717i \(0.749274\pi\)
\(480\) 35.9096 76.8798i 0.0748116 0.160166i
\(481\) −168.575 + 97.3269i −0.350468 + 0.202343i
\(482\) −171.075 171.075i −0.354928 0.354928i
\(483\) −776.159 13.7465i −1.60695 0.0284607i
\(484\) 213.932i 0.442009i
\(485\) −121.947 31.9932i −0.251437 0.0659654i
\(486\) −39.9822 + 341.320i −0.0822679 + 0.702305i
\(487\) 33.4029 8.95029i 0.0685892 0.0183784i −0.224361 0.974506i \(-0.572030\pi\)
0.292950 + 0.956128i \(0.405363\pi\)
\(488\) 150.291 + 40.2703i 0.307973 + 0.0825210i
\(489\) −752.819 + 61.4137i −1.53951 + 0.125590i
\(490\) 23.8237 + 345.662i 0.0486199 + 0.705433i
\(491\) 349.689i 0.712197i −0.934448 0.356099i \(-0.884107\pi\)
0.934448 0.356099i \(-0.115893\pi\)
\(492\) −154.837 28.2398i −0.314709 0.0573979i
\(493\) −125.358 + 33.5896i −0.254276 + 0.0681331i
\(494\) 97.0035 168.015i 0.196363 0.340111i
\(495\) 107.517 + 129.840i 0.217206 + 0.262304i
\(496\) 50.9129i 0.102647i
\(497\) 605.660 + 60.2225i 1.21863 + 0.121172i
\(498\) −266.246 + 313.544i −0.534630 + 0.629606i
\(499\) −348.423 + 201.162i −0.698243 + 0.403131i −0.806693 0.590971i \(-0.798745\pi\)
0.108450 + 0.994102i \(0.465411\pi\)
\(500\) −218.440 121.589i −0.436880 0.243178i
\(501\) 686.767 + 325.165i 1.37079 + 0.649031i
\(502\) −578.513 155.012i −1.15242 0.308789i
\(503\) −90.3121 + 90.3121i −0.179547 + 0.179547i −0.791158 0.611611i \(-0.790522\pi\)
0.611611 + 0.791158i \(0.290522\pi\)
\(504\) −35.0710 + 174.706i −0.0695853 + 0.346638i
\(505\) −908.807 + 4.75141i −1.79962 + 0.00940873i
\(506\) −169.602 + 97.9200i −0.335183 + 0.193518i
\(507\) −106.409 297.782i −0.209880 0.587342i
\(508\) −75.0555 280.111i −0.147747 0.551399i
\(509\) −350.651 + 202.448i −0.688902 + 0.397738i −0.803200 0.595709i \(-0.796871\pi\)
0.114299 + 0.993446i \(0.463538\pi\)
\(510\) 71.4137 + 60.0012i 0.140027 + 0.117649i
\(511\) −10.9782 66.8821i −0.0214838 0.130885i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 464.405 + 8.17678i 0.905273 + 0.0159391i
\(514\) −93.8761 + 162.598i −0.182638 + 0.316339i
\(515\) −449.588 + 122.989i −0.872986 + 0.238815i
\(516\) 268.963 185.987i 0.521246 0.360441i
\(517\) −74.9072 + 74.9072i −0.144888 + 0.144888i
\(518\) −196.287 140.935i −0.378933 0.272075i
\(519\) 227.674 18.5733i 0.438679 0.0357867i
\(520\) 97.3708 56.8979i 0.187252 0.109419i
\(521\) −76.6393 + 132.743i −0.147100 + 0.254785i −0.930155 0.367168i \(-0.880327\pi\)
0.783054 + 0.621953i \(0.213661\pi\)
\(522\) −342.316 + 154.760i −0.655778 + 0.296475i
\(523\) 36.8434 137.502i 0.0704464 0.262909i −0.921716 0.387866i \(-0.873212\pi\)
0.992162 + 0.124956i \(0.0398791\pi\)
\(524\) 86.5885i 0.165245i
\(525\) 506.112 + 139.554i 0.964023 + 0.265818i
\(526\) −131.638 −0.250262
\(527\) 54.0588 + 14.4850i 0.102578 + 0.0274858i
\(528\) 15.1270 + 42.3325i 0.0286497 + 0.0801751i
\(529\) −725.266 418.732i −1.37101 0.791555i
\(530\) −26.2087 44.8516i −0.0494503 0.0846256i
\(531\) −704.981 + 115.793i −1.32765 + 0.218066i
\(532\) 239.658 + 23.8299i 0.450485 + 0.0447931i
\(533\) −147.916 147.916i −0.277516 0.277516i
\(534\) 380.157 262.878i 0.711904 0.492280i
\(535\) 204.635 + 748.042i 0.382495 + 1.39821i
\(536\) 202.272 + 116.782i 0.377373 + 0.217876i
\(537\) −183.837 + 1007.97i −0.342341 + 1.87703i
\(538\) −287.283 287.283i −0.533982 0.533982i
\(539\) −137.783 121.288i −0.255628 0.225024i
\(540\) 232.138 + 137.884i 0.429885 + 0.255340i
\(541\) 102.682 + 177.850i 0.189800 + 0.328744i 0.945184 0.326540i \(-0.105883\pi\)
−0.755383 + 0.655283i \(0.772549\pi\)
\(542\) −116.980 + 31.3446i −0.215830 + 0.0578314i
\(543\) −140.660 393.632i −0.259042 0.724920i
\(544\) 12.4365 + 21.5407i 0.0228613 + 0.0395969i
\(545\) 2.62678 + 502.426i 0.00481977 + 0.921883i
\(546\) −170.403 + 164.472i −0.312094 + 0.301231i
\(547\) −125.258 125.258i −0.228990 0.228990i 0.583281 0.812271i \(-0.301769\pi\)
−0.812271 + 0.583281i \(0.801769\pi\)
\(548\) 61.2887 228.733i 0.111841 0.417395i
\(549\) −174.780 + 463.215i −0.318361 + 0.843743i
\(550\) 127.569 35.6156i 0.231943 0.0647557i
\(551\) 253.877 + 439.729i 0.460758 + 0.798056i
\(552\) −203.026 + 239.094i −0.367801 + 0.433141i
\(553\) 448.275 + 991.822i 0.810623 + 1.79353i
\(554\) 250.649 0.452435
\(555\) −300.062 + 209.820i −0.540652 + 0.378053i
\(556\) 446.067 + 257.537i 0.802278 + 0.463195i
\(557\) −165.128 616.265i −0.296459 1.10640i −0.940052 0.341032i \(-0.889223\pi\)
0.643592 0.765368i \(-0.277443\pi\)
\(558\) 161.210 + 16.0127i 0.288908 + 0.0286966i
\(559\) 434.616 0.777488
\(560\) 114.148 + 81.0573i 0.203835 + 0.144745i
\(561\) −49.2519 + 4.01789i −0.0877931 + 0.00716201i
\(562\) −116.527 + 434.886i −0.207344 + 0.773819i
\(563\) −133.603 498.612i −0.237305 0.885635i −0.977096 0.212798i \(-0.931742\pi\)
0.739791 0.672837i \(-0.234924\pi\)
\(564\) −72.6064 + 153.349i −0.128735 + 0.271895i
\(565\) 220.733 841.358i 0.390678 1.48913i
\(566\) 606.839 1.07215
\(567\) −542.157 165.996i −0.956185 0.292762i
\(568\) 173.899 173.899i 0.306160 0.306160i
\(569\) −91.8656 159.116i −0.161451 0.279641i 0.773938 0.633261i \(-0.218284\pi\)
−0.935389 + 0.353620i \(0.884951\pi\)
\(570\) 154.437 330.638i 0.270942 0.580066i
\(571\) 258.910 448.446i 0.453433 0.785370i −0.545163 0.838330i \(-0.683532\pi\)
0.998597 + 0.0529602i \(0.0168657\pi\)
\(572\) −15.4638 + 57.7116i −0.0270346 + 0.100894i
\(573\) 195.700 230.466i 0.341535 0.402209i
\(574\) 91.6995 242.952i 0.159755 0.423262i
\(575\) 660.265 + 646.599i 1.14829 + 1.12452i
\(576\) 45.6302 + 55.6946i 0.0792191 + 0.0966920i
\(577\) 166.029 + 619.630i 0.287746 + 1.07388i 0.946809 + 0.321795i \(0.104286\pi\)
−0.659063 + 0.752087i \(0.729047\pi\)
\(578\) 368.371 98.7048i 0.637321 0.170770i
\(579\) 46.5093 + 67.2588i 0.0803269 + 0.116164i
\(580\) 1.54312 + 295.153i 0.00266054 + 0.508885i
\(581\) −430.053 525.019i −0.740195 0.903647i
\(582\) 69.2434 81.5444i 0.118975 0.140111i
\(583\) 26.5835 + 7.12303i 0.0455978 + 0.0122179i
\(584\) −23.7170 13.6930i −0.0406114 0.0234470i
\(585\) 149.537 + 326.210i 0.255619 + 0.557624i
\(586\) −173.457 + 100.146i −0.296002 + 0.170897i
\(587\) −541.415 541.415i −0.922343 0.922343i 0.0748515 0.997195i \(-0.476152\pi\)
−0.997195 + 0.0748515i \(0.976152\pi\)
\(588\) −273.178 108.673i −0.464589 0.184817i
\(589\) 218.962i 0.371751i
\(590\) −142.440 + 542.933i −0.241425 + 0.920226i
\(591\) −321.103 + 678.188i −0.543321 + 1.14753i
\(592\) −94.3115 + 25.2707i −0.159310 + 0.0426870i
\(593\) −719.913 192.900i −1.21402 0.325295i −0.405681 0.914015i \(-0.632966\pi\)
−0.808338 + 0.588719i \(0.799632\pi\)
\(594\) −138.799 + 34.5841i −0.233669 + 0.0582224i
\(595\) −118.542 + 98.1397i −0.199229 + 0.164941i
\(596\) 320.832i 0.538309i
\(597\) −4.35245 + 23.8642i −0.00729053 + 0.0399735i
\(598\) −402.680 + 107.898i −0.673378 + 0.180431i
\(599\) 130.218 225.544i 0.217392 0.376533i −0.736618 0.676309i \(-0.763578\pi\)
0.954010 + 0.299775i \(0.0969118\pi\)
\(600\) 173.208 122.470i 0.288681 0.204116i
\(601\) 241.172i 0.401284i −0.979665 0.200642i \(-0.935697\pi\)
0.979665 0.200642i \(-0.0643028\pi\)
\(602\) 222.210 + 491.647i 0.369120 + 0.816689i
\(603\) −433.394 + 603.744i −0.718730 + 1.00123i
\(604\) 324.677 187.452i 0.537545 0.310352i
\(605\) 264.990 464.569i 0.438001 0.767883i
\(606\) 330.002 696.983i 0.544557 1.15014i
\(607\) 250.866 + 67.2194i 0.413289 + 0.110740i 0.459471 0.888193i \(-0.348039\pi\)
−0.0461826 + 0.998933i \(0.514706\pi\)
\(608\) 68.8114 68.8114i 0.113177 0.113177i
\(609\) −149.797 601.457i −0.245972 0.987615i
\(610\) 276.485 + 273.609i 0.453254 + 0.448540i
\(611\) −195.292 + 112.752i −0.319627 + 0.184536i
\(612\) −72.1180 + 32.6043i −0.117840 + 0.0532749i
\(613\) 211.390 + 788.920i 0.344846 + 1.28698i 0.892792 + 0.450468i \(0.148743\pi\)
−0.547947 + 0.836513i \(0.684590\pi\)
\(614\) −250.561 + 144.662i −0.408081 + 0.235605i
\(615\) −301.259 253.115i −0.489852 0.411569i
\(616\) −73.1909 + 12.0138i −0.118816 + 0.0195029i
\(617\) −440.576 + 440.576i −0.714062 + 0.714062i −0.967383 0.253320i \(-0.918477\pi\)
0.253320 + 0.967383i \(0.418477\pi\)
\(618\) 70.9632 389.086i 0.114827 0.629590i
\(619\) 296.751 513.988i 0.479404 0.830353i −0.520317 0.853973i \(-0.674186\pi\)
0.999721 + 0.0236207i \(0.00751939\pi\)
\(620\) 63.0639 110.561i 0.101716 0.178324i
\(621\) −693.212 718.060i −1.11628 1.15630i
\(622\) 268.247 268.247i 0.431265 0.431265i
\(623\) 314.075 + 694.902i 0.504134 + 1.11541i
\(624\) 7.78068 + 95.3768i 0.0124690 + 0.152847i
\(625\) −323.750 534.613i −0.518000 0.855381i
\(626\) −332.439 + 575.801i −0.531053 + 0.919810i
\(627\) 65.0570 + 182.060i 0.103759 + 0.290366i
\(628\) −0.0552031 + 0.206021i −8.79030e−5 + 0.000328058i
\(629\) 107.329i 0.170634i
\(630\) −292.561 + 335.944i −0.464382 + 0.533244i
\(631\) 145.713 0.230925 0.115462 0.993312i \(-0.463165\pi\)
0.115462 + 0.993312i \(0.463165\pi\)
\(632\) 424.803 + 113.826i 0.672157 + 0.180104i
\(633\) 184.400 65.8931i 0.291311 0.104097i
\(634\) 326.879 + 188.724i 0.515582 + 0.297671i
\(635\) 183.975 701.249i 0.289724 1.10433i
\(636\) 43.9331 3.58399i 0.0690772 0.00563520i
\(637\) −216.482 325.300i −0.339847 0.510676i
\(638\) −110.571 110.571i −0.173309 0.173309i
\(639\) 495.940 + 605.327i 0.776119 + 0.947303i
\(640\) 54.5637 14.9265i 0.0852558 0.0233226i
\(641\) 414.926 + 239.558i 0.647311 + 0.373725i 0.787425 0.616410i \(-0.211414\pi\)
−0.140114 + 0.990135i \(0.544747\pi\)
\(642\) −647.377 118.071i −1.00838 0.183912i
\(643\) −32.5220 32.5220i −0.0505786 0.0505786i 0.681365 0.731944i \(-0.261387\pi\)
−0.731944 + 0.681365i \(0.761387\pi\)
\(644\) −327.938 400.354i −0.509221 0.621668i
\(645\) 814.448 70.7295i 1.26271 0.109658i
\(646\) 53.4860 + 92.6405i 0.0827957 + 0.143406i
\(647\) 248.105 66.4795i 0.383470 0.102750i −0.0619339 0.998080i \(-0.519727\pi\)
0.445404 + 0.895330i \(0.353060\pi\)
\(648\) −190.702 + 126.967i −0.294294 + 0.195936i
\(649\) −148.687 257.533i −0.229102 0.396816i
\(650\) 281.925 2.94799i 0.433730 0.00453537i
\(651\) −73.7415 + 256.919i −0.113274 + 0.394653i
\(652\) −356.061 356.061i −0.546106 0.546106i
\(653\) 287.966 1074.70i 0.440989 1.64579i −0.285325 0.958431i \(-0.592102\pi\)
0.726314 0.687363i \(-0.241232\pi\)
\(654\) −385.321 182.439i −0.589176 0.278958i
\(655\) 107.254 188.033i 0.163747 0.287073i
\(656\) −52.4636 90.8697i −0.0799750 0.138521i
\(657\) 50.8169 70.7910i 0.0773469 0.107749i
\(658\) −227.396 163.271i −0.345586 0.248132i
\(659\) −1213.51 −1.84145 −0.920723 0.390218i \(-0.872400\pi\)
−0.920723 + 0.390218i \(0.872400\pi\)
\(660\) −19.5863 + 110.665i −0.0296762 + 0.167674i
\(661\) −66.7459 38.5358i −0.100977 0.0582992i 0.448661 0.893702i \(-0.351901\pi\)
−0.549638 + 0.835403i \(0.685234\pi\)
\(662\) −151.155 564.118i −0.228331 0.852142i
\(663\) −103.484 18.8738i −0.156084 0.0284673i
\(664\) −274.223 −0.412987
\(665\) 490.917 + 348.604i 0.738221 + 0.524217i
\(666\) −50.3550 306.576i −0.0756081 0.460324i
\(667\) 282.390 1053.89i 0.423373 1.58005i
\(668\) 131.110 + 489.310i 0.196273 + 0.732499i
\(669\) −23.6233 11.1849i −0.0353113 0.0167189i
\(670\) 294.594 + 504.146i 0.439692 + 0.752457i
\(671\) −206.077 −0.307120
\(672\) −103.914 + 57.5659i −0.154634 + 0.0856635i
\(673\) 171.706 171.706i 0.255134 0.255134i −0.567937 0.823072i \(-0.692258\pi\)
0.823072 + 0.567937i \(0.192258\pi\)
\(674\) −9.78615 16.9501i −0.0145195 0.0251485i
\(675\) 333.312 + 586.965i 0.493796 + 0.869578i
\(676\) 105.408 182.572i 0.155929 0.270076i
\(677\) −214.280 + 799.704i −0.316514 + 1.18125i 0.606057 + 0.795421i \(0.292750\pi\)
−0.922572 + 0.385826i \(0.873916\pi\)
\(678\) 562.606 + 477.736i 0.829802 + 0.704626i
\(679\) 111.845 + 136.543i 0.164721 + 0.201095i
\(680\) 0.325098 + 62.1819i 0.000478086 + 0.0914440i
\(681\) 45.7230 31.6173i 0.0671409 0.0464278i
\(682\) 17.4528 + 65.1349i 0.0255907 + 0.0955057i
\(683\) 372.075 99.6971i 0.544765 0.145969i 0.0240672 0.999710i \(-0.492338\pi\)
0.520698 + 0.853741i \(0.325672\pi\)
\(684\) 196.242 + 239.526i 0.286904 + 0.350185i
\(685\) 416.416 420.793i 0.607906 0.614296i
\(686\) 257.304 411.209i 0.375079 0.599430i
\(687\) 361.996 + 307.389i 0.526923 + 0.447436i
\(688\) 210.575 + 56.4235i 0.306069 + 0.0820109i
\(689\) 50.7357 + 29.2923i 0.0736367 + 0.0425142i
\(690\) −737.042 + 267.727i −1.06818 + 0.388010i
\(691\) 635.479 366.894i 0.919651 0.530961i 0.0361273 0.999347i \(-0.488498\pi\)
0.883524 + 0.468386i \(0.155164\pi\)
\(692\) 107.683 + 107.683i 0.155612 + 0.155612i
\(693\) −15.0210 235.530i −0.0216753 0.339870i
\(694\) 405.688i 0.584565i
\(695\) 649.663 + 1111.79i 0.934767 + 1.59969i
\(696\) −226.359 107.175i −0.325229 0.153987i
\(697\) 111.411 29.8524i 0.159843 0.0428299i
\(698\) −675.618 181.031i −0.967934 0.259357i
\(699\) −37.8652 464.158i −0.0541706 0.664032i
\(700\) 147.477 + 317.412i 0.210682 + 0.453446i
\(701\) 113.641i 0.162112i −0.996710 0.0810561i \(-0.974171\pi\)
0.996710 0.0810561i \(-0.0258293\pi\)
\(702\) −304.448 5.36042i −0.433687 0.00763593i
\(703\) −405.607 + 108.682i −0.576965 + 0.154597i
\(704\) −14.9847 + 25.9542i −0.0212850 + 0.0368668i
\(705\) −347.618 + 243.073i −0.493075 + 0.344784i
\(706\) 877.344i 1.24270i
\(707\) 1033.53 + 742.078i 1.46186 + 1.04961i
\(708\) −363.053 308.286i −0.512786 0.435432i
\(709\) −9.40250 + 5.42853i −0.0132616 + 0.00765661i −0.506616 0.862172i \(-0.669104\pi\)
0.493355 + 0.869828i \(0.335771\pi\)
\(710\) 593.036 162.231i 0.835262 0.228495i
\(711\) −494.023 + 1309.30i −0.694829 + 1.84149i
\(712\) 297.630 + 79.7498i 0.418020 + 0.112008i
\(713\) −332.699 + 332.699i −0.466619 + 0.466619i
\(714\) −31.5587 126.713i −0.0441998 0.177469i
\(715\) −105.066 + 106.170i −0.146945 + 0.148490i
\(716\) −591.550 + 341.531i −0.826187 + 0.476999i
\(717\) 1047.51 374.316i 1.46096 0.522059i
\(718\) −98.2254 366.582i −0.136804 0.510560i
\(719\) 1084.80 626.312i 1.50877 0.871087i 0.508819 0.860873i \(-0.330082\pi\)
0.999948 0.0102138i \(-0.00325120\pi\)
\(720\) 30.1023 + 177.465i 0.0418087 + 0.246479i
\(721\) 610.510 + 230.430i 0.846755 + 0.319598i
\(722\) −65.0620 + 65.0620i −0.0901135 + 0.0901135i
\(723\) 504.897 + 92.0853i 0.698337 + 0.127366i
\(724\) 139.336 241.337i 0.192453 0.333339i
\(725\) −362.245 + 642.857i −0.499648 + 0.886700i
\(726\) 258.114 + 373.268i 0.355529 + 0.514143i
\(727\) 694.416 694.416i 0.955181 0.955181i −0.0438572 0.999038i \(-0.513965\pi\)
0.999038 + 0.0438572i \(0.0139647\pi\)
\(728\) −157.112 15.6221i −0.215813 0.0214589i
\(729\) −342.049 643.773i −0.469203 0.883090i
\(730\) −34.5421 59.1128i −0.0473180 0.0809764i
\(731\) −119.820 + 207.534i −0.163912 + 0.283904i
\(732\) −310.813 + 111.066i −0.424608 + 0.151729i
\(733\) −191.444 + 714.480i −0.261179 + 0.974734i 0.703369 + 0.710825i \(0.251678\pi\)
−0.964548 + 0.263908i \(0.914988\pi\)
\(734\) 341.783i 0.465645i
\(735\) −458.616 574.366i −0.623968 0.781450i
\(736\) −209.110 −0.284116
\(737\) −298.807 80.0650i −0.405437 0.108636i
\(738\) 304.230 137.541i 0.412236 0.186370i
\(739\) 385.966 + 222.838i 0.522281 + 0.301539i 0.737868 0.674945i \(-0.235833\pi\)
−0.215586 + 0.976485i \(0.569166\pi\)
\(740\) −236.106 61.9432i −0.319062 0.0837070i
\(741\) 33.4625 + 410.188i 0.0451585 + 0.553561i
\(742\) −7.19595 + 72.3699i −0.00969804 + 0.0975335i
\(743\) −363.087 363.087i −0.488677 0.488677i 0.419212 0.907889i \(-0.362306\pi\)
−0.907889 + 0.419212i \(0.862306\pi\)
\(744\) 61.4274 + 88.8325i 0.0825637 + 0.119398i
\(745\) 397.403 696.710i 0.533427 0.935181i
\(746\) −792.714 457.674i −1.06262 0.613504i
\(747\) 86.2465 868.300i 0.115457 1.16238i
\(748\) −23.2947 23.2947i −0.0311427 0.0311427i
\(749\) 383.398 1015.79i 0.511880 1.35620i
\(750\) 527.833 51.4049i 0.703777 0.0685399i
\(751\) −257.662 446.284i −0.343092 0.594252i 0.641913 0.766777i \(-0.278141\pi\)
−0.985005 + 0.172525i \(0.944808\pi\)
\(752\) −109.258 + 29.2757i −0.145291 + 0.0389305i
\(753\) 1196.41 427.524i 1.58886 0.567761i
\(754\) −166.434 288.271i −0.220734 0.382323i
\(755\) 937.249 4.90011i 1.24139 0.00649021i
\(756\) −149.594 347.139i −0.197876 0.459179i
\(757\) 298.739 + 298.739i 0.394635 + 0.394635i 0.876336 0.481701i \(-0.159981\pi\)
−0.481701 + 0.876336i \(0.659981\pi\)
\(758\) −64.5965 + 241.077i −0.0852197 + 0.318044i
\(759\) 177.779 375.479i 0.234228 0.494703i
\(760\) 234.663