Properties

Label 210.3.w.a.17.11
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.11
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.05588 + 2.80804i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-1.47500 + 4.77749i) q^{5} +(-0.414547 - 4.22234i) q^{6} +(6.99874 + 0.132847i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-6.77022 + 5.92993i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.05588 + 2.80804i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-1.47500 + 4.77749i) q^{5} +(-0.414547 - 4.22234i) q^{6} +(6.99874 + 0.132847i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-6.77022 + 5.92993i) q^{9} +(3.76357 - 5.98628i) q^{10} +(9.30088 + 5.36987i) q^{11} +(-0.979202 + 5.91956i) q^{12} +(-3.28522 - 3.28522i) q^{13} +(-9.51183 - 2.74319i) q^{14} +(-14.9728 + 0.902596i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-16.0246 + 4.29378i) q^{17} +(11.4188 - 5.62236i) q^{18} +(-1.04608 - 1.81186i) q^{19} +(-7.33226 + 6.79985i) q^{20} +(7.01681 + 19.7930i) q^{21} +(-10.7397 - 10.7397i) q^{22} +(-3.40405 + 12.7041i) q^{23} +(3.50432 - 7.72785i) q^{24} +(-20.6487 - 14.0936i) q^{25} +(3.28522 + 5.69017i) q^{26} +(-23.8001 - 12.7498i) q^{27} +(11.9893 + 7.22884i) q^{28} -21.8689 q^{29} +(20.7836 + 4.24746i) q^{30} +(40.3894 + 23.3188i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-5.25818 + 31.7872i) q^{33} +23.4616 q^{34} +(-10.9578 + 33.2404i) q^{35} +(-17.6563 + 3.50072i) q^{36} +(-10.9244 + 40.7704i) q^{37} +(0.765783 + 2.85794i) q^{38} +(5.75624 - 12.6939i) q^{39} +(12.5050 - 6.60497i) q^{40} +41.7957 q^{41} +(-2.34038 - 29.6061i) q^{42} +(-32.4714 + 32.4714i) q^{43} +(10.7397 + 18.6018i) q^{44} +(-18.3441 - 41.0913i) q^{45} +(9.30003 - 16.1081i) q^{46} +(18.0449 - 67.3444i) q^{47} +(-7.61558 + 9.27377i) q^{48} +(48.9647 + 1.85952i) q^{49} +(23.0481 + 26.8102i) q^{50} +(-28.9772 - 40.4641i) q^{51} +(-2.40495 - 8.97539i) q^{52} +(-31.2227 + 8.36609i) q^{53} +(27.8448 + 26.1279i) q^{54} +(-39.3733 + 36.5143i) q^{55} +(-13.7318 - 14.2632i) q^{56} +(3.98325 - 4.85055i) q^{57} +(29.8734 + 8.00456i) q^{58} +(-8.21615 - 4.74360i) q^{59} +(-26.8363 - 13.4095i) q^{60} +(100.996 - 58.3099i) q^{61} +(-46.6377 - 46.6377i) q^{62} +(-48.1708 + 40.6026i) q^{63} +8.00000i q^{64} +(20.5408 - 10.8494i) q^{65} +(18.8177 - 41.4975i) q^{66} +(-2.25609 + 0.604518i) q^{67} +(-32.0492 - 8.58756i) q^{68} +(-39.2679 + 3.85530i) q^{69} +(27.1355 - 41.3964i) q^{70} -82.6653i q^{71} +(25.4003 + 1.68059i) q^{72} +(89.0639 - 23.8646i) q^{73} +(29.8460 - 51.6948i) q^{74} +(17.7728 - 72.8638i) q^{75} -4.18431i q^{76} +(64.3811 + 38.8179i) q^{77} +(-12.5094 + 15.2332i) q^{78} +(-27.5447 + 15.9030i) q^{79} +(-19.4997 + 4.44542i) q^{80} +(10.6719 - 80.2939i) q^{81} +(-57.0939 - 15.2983i) q^{82} +(37.0831 - 37.0831i) q^{83} +(-7.63957 + 41.2994i) q^{84} +(3.12284 - 82.8906i) q^{85} +(56.2421 - 32.4714i) q^{86} +(-23.0909 - 61.4087i) q^{87} +(-7.86203 - 29.3415i) q^{88} +(136.159 - 78.6114i) q^{89} +(10.0180 + 62.8462i) q^{90} +(-22.5560 - 23.4288i) q^{91} +(-18.6001 + 18.6001i) q^{92} +(-22.8339 + 138.037i) q^{93} +(-49.2996 + 85.3893i) q^{94} +(10.1991 - 2.32513i) q^{95} +(13.7975 - 9.88071i) q^{96} +(-41.8856 + 41.8856i) q^{97} +(-66.2064 - 20.4625i) q^{98} +(-94.8120 + 18.7984i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 1.05588 + 2.80804i 0.351961 + 0.936015i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −1.47500 + 4.77749i −0.295000 + 0.955497i
\(6\) −0.414547 4.22234i −0.0690912 0.703723i
\(7\) 6.99874 + 0.132847i 0.999820 + 0.0189781i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −6.77022 + 5.92993i −0.752247 + 0.658881i
\(10\) 3.76357 5.98628i 0.376357 0.598628i
\(11\) 9.30088 + 5.36987i 0.845535 + 0.488170i 0.859142 0.511738i \(-0.170998\pi\)
−0.0136071 + 0.999907i \(0.504331\pi\)
\(12\) −0.979202 + 5.91956i −0.0816001 + 0.493296i
\(13\) −3.28522 3.28522i −0.252709 0.252709i 0.569371 0.822081i \(-0.307187\pi\)
−0.822081 + 0.569371i \(0.807187\pi\)
\(14\) −9.51183 2.74319i −0.679416 0.195942i
\(15\) −14.9728 + 0.902596i −0.998188 + 0.0601731i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −16.0246 + 4.29378i −0.942624 + 0.252575i −0.697229 0.716848i \(-0.745584\pi\)
−0.245394 + 0.969423i \(0.578917\pi\)
\(18\) 11.4188 5.62236i 0.634378 0.312353i
\(19\) −1.04608 1.81186i −0.0550568 0.0953611i 0.837183 0.546922i \(-0.184201\pi\)
−0.892240 + 0.451561i \(0.850867\pi\)
\(20\) −7.33226 + 6.79985i −0.366613 + 0.339992i
\(21\) 7.01681 + 19.7930i 0.334134 + 0.942526i
\(22\) −10.7397 10.7397i −0.488170 0.488170i
\(23\) −3.40405 + 12.7041i −0.148002 + 0.552351i 0.851601 + 0.524190i \(0.175632\pi\)
−0.999603 + 0.0281612i \(0.991035\pi\)
\(24\) 3.50432 7.72785i 0.146013 0.321994i
\(25\) −20.6487 14.0936i −0.825950 0.563744i
\(26\) 3.28522 + 5.69017i 0.126355 + 0.218853i
\(27\) −23.8001 12.7498i −0.881484 0.472214i
\(28\) 11.9893 + 7.22884i 0.428190 + 0.258173i
\(29\) −21.8689 −0.754099 −0.377049 0.926193i \(-0.623061\pi\)
−0.377049 + 0.926193i \(0.623061\pi\)
\(30\) 20.7836 + 4.24746i 0.692787 + 0.141582i
\(31\) 40.3894 + 23.3188i 1.30288 + 0.752221i 0.980898 0.194523i \(-0.0623160\pi\)
0.321987 + 0.946744i \(0.395649\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −5.25818 + 31.7872i −0.159339 + 0.963249i
\(34\) 23.4616 0.690048
\(35\) −10.9578 + 33.2404i −0.313081 + 0.949727i
\(36\) −17.6563 + 3.50072i −0.490453 + 0.0972421i
\(37\) −10.9244 + 40.7704i −0.295254 + 1.10190i 0.645762 + 0.763539i \(0.276540\pi\)
−0.941016 + 0.338363i \(0.890127\pi\)
\(38\) 0.765783 + 2.85794i 0.0201522 + 0.0752089i
\(39\) 5.75624 12.6939i 0.147596 0.325484i
\(40\) 12.5050 6.60497i 0.312624 0.165124i
\(41\) 41.7957 1.01941 0.509703 0.860350i \(-0.329755\pi\)
0.509703 + 0.860350i \(0.329755\pi\)
\(42\) −2.34038 29.6061i −0.0557234 0.704908i
\(43\) −32.4714 + 32.4714i −0.755148 + 0.755148i −0.975435 0.220287i \(-0.929301\pi\)
0.220287 + 0.975435i \(0.429301\pi\)
\(44\) 10.7397 + 18.6018i 0.244085 + 0.422767i
\(45\) −18.3441 41.0913i −0.407646 0.913140i
\(46\) 9.30003 16.1081i 0.202175 0.350177i
\(47\) 18.0449 67.3444i 0.383934 1.43286i −0.455907 0.890028i \(-0.650685\pi\)
0.839841 0.542833i \(-0.182648\pi\)
\(48\) −7.61558 + 9.27377i −0.158658 + 0.193204i
\(49\) 48.9647 + 1.85952i 0.999280 + 0.0379493i
\(50\) 23.0481 + 26.8102i 0.460962 + 0.536203i
\(51\) −28.9772 40.4641i −0.568181 0.793413i
\(52\) −2.40495 8.97539i −0.0462490 0.172604i
\(53\) −31.2227 + 8.36609i −0.589107 + 0.157851i −0.541045 0.840994i \(-0.681971\pi\)
−0.0480619 + 0.998844i \(0.515304\pi\)
\(54\) 27.8448 + 26.1279i 0.515644 + 0.483851i
\(55\) −39.3733 + 36.5143i −0.715878 + 0.663896i
\(56\) −13.7318 14.2632i −0.245210 0.254699i
\(57\) 3.98325 4.85055i 0.0698816 0.0850973i
\(58\) 29.8734 + 8.00456i 0.515059 + 0.138010i
\(59\) −8.21615 4.74360i −0.139257 0.0804000i 0.428753 0.903422i \(-0.358953\pi\)
−0.568010 + 0.823022i \(0.692286\pi\)
\(60\) −26.8363 13.4095i −0.447271 0.223491i
\(61\) 100.996 58.3099i 1.65567 0.955901i 0.680989 0.732294i \(-0.261550\pi\)
0.974679 0.223607i \(-0.0717832\pi\)
\(62\) −46.6377 46.6377i −0.752221 0.752221i
\(63\) −48.1708 + 40.6026i −0.764616 + 0.644486i
\(64\) 8.00000i 0.125000i
\(65\) 20.5408 10.8494i 0.316012 0.166914i
\(66\) 18.8177 41.4975i 0.285117 0.628751i
\(67\) −2.25609 + 0.604518i −0.0336730 + 0.00902266i −0.275616 0.961268i \(-0.588882\pi\)
0.241943 + 0.970290i \(0.422215\pi\)
\(68\) −32.0492 8.58756i −0.471312 0.126288i
\(69\) −39.2679 + 3.85530i −0.569100 + 0.0558739i
\(70\) 27.1355 41.3964i 0.387650 0.591378i
\(71\) 82.6653i 1.16430i −0.813082 0.582150i \(-0.802212\pi\)
0.813082 0.582150i \(-0.197788\pi\)
\(72\) 25.4003 + 1.68059i 0.352782 + 0.0233415i
\(73\) 89.0639 23.8646i 1.22005 0.326912i 0.409355 0.912375i \(-0.365754\pi\)
0.810699 + 0.585463i \(0.199087\pi\)
\(74\) 29.8460 51.6948i 0.403324 0.698578i
\(75\) 17.7728 72.8638i 0.236971 0.971517i
\(76\) 4.18431i 0.0550568i
\(77\) 64.3811 + 38.8179i 0.836118 + 0.504128i
\(78\) −12.5094 + 15.2332i −0.160377 + 0.195297i
\(79\) −27.5447 + 15.9030i −0.348668 + 0.201303i −0.664098 0.747645i \(-0.731184\pi\)
0.315431 + 0.948949i \(0.397851\pi\)
\(80\) −19.4997 + 4.44542i −0.243746 + 0.0555677i
\(81\) 10.6719 80.2939i 0.131751 0.991283i
\(82\) −57.0939 15.2983i −0.696268 0.186564i
\(83\) 37.0831 37.0831i 0.446785 0.446785i −0.447499 0.894284i \(-0.647685\pi\)
0.894284 + 0.447499i \(0.147685\pi\)
\(84\) −7.63957 + 41.2994i −0.0909473 + 0.491659i
\(85\) 3.12284 82.8906i 0.0367393 0.975184i
\(86\) 56.2421 32.4714i 0.653977 0.377574i
\(87\) −23.0909 61.4087i −0.265413 0.705847i
\(88\) −7.86203 29.3415i −0.0893412 0.333426i
\(89\) 136.159 78.6114i 1.52987 0.883274i 0.530509 0.847680i \(-0.322001\pi\)
0.999366 0.0355942i \(-0.0113324\pi\)
\(90\) 10.0180 + 62.8462i 0.111311 + 0.698291i
\(91\) −22.5560 23.4288i −0.247868 0.257460i
\(92\) −18.6001 + 18.6001i −0.202175 + 0.202175i
\(93\) −22.8339 + 138.037i −0.245525 + 1.48427i
\(94\) −49.2996 + 85.3893i −0.524463 + 0.908397i
\(95\) 10.1991 2.32513i 0.107359 0.0244750i
\(96\) 13.7975 9.88071i 0.143724 0.102924i
\(97\) −41.8856 + 41.8856i −0.431810 + 0.431810i −0.889244 0.457434i \(-0.848769\pi\)
0.457434 + 0.889244i \(0.348769\pi\)
\(98\) −66.2064 20.4625i −0.675575 0.208801i
\(99\) −94.8120 + 18.7984i −0.957697 + 0.189883i
\(100\) −21.6711 45.0596i −0.216711 0.450596i
\(101\) −92.9876 + 161.059i −0.920670 + 1.59465i −0.122288 + 0.992495i \(0.539023\pi\)
−0.798381 + 0.602152i \(0.794310\pi\)
\(102\) 24.7727 + 65.8813i 0.242870 + 0.645895i
\(103\) −19.6216 + 73.2287i −0.190501 + 0.710958i 0.802885 + 0.596134i \(0.203297\pi\)
−0.993386 + 0.114824i \(0.963370\pi\)
\(104\) 13.1409i 0.126355i
\(105\) −104.911 + 4.32795i −0.999150 + 0.0412185i
\(106\) 45.7132 0.431256
\(107\) 127.816 + 34.2483i 1.19454 + 0.320077i 0.800681 0.599092i \(-0.204471\pi\)
0.393864 + 0.919169i \(0.371138\pi\)
\(108\) −28.4732 45.8833i −0.263640 0.424846i
\(109\) 140.071 + 80.8701i 1.28506 + 0.741927i 0.977768 0.209689i \(-0.0672452\pi\)
0.307288 + 0.951617i \(0.400579\pi\)
\(110\) 67.1500 35.4678i 0.610455 0.322435i
\(111\) −126.020 + 12.3726i −1.13531 + 0.111465i
\(112\) 13.5373 + 24.5100i 0.120869 + 0.218840i
\(113\) −15.2685 15.2685i −0.135119 0.135119i 0.636312 0.771432i \(-0.280459\pi\)
−0.771432 + 0.636312i \(0.780459\pi\)
\(114\) −7.21664 + 5.16800i −0.0633039 + 0.0453333i
\(115\) −55.6726 35.0013i −0.484109 0.304359i
\(116\) −37.8780 21.8689i −0.326534 0.188525i
\(117\) 41.7228 + 2.76055i 0.356605 + 0.0235944i
\(118\) 9.48720 + 9.48720i 0.0804000 + 0.0804000i
\(119\) −112.722 + 27.9222i −0.947247 + 0.234641i
\(120\) 31.7508 + 28.1404i 0.264590 + 0.234504i
\(121\) −2.82907 4.90010i −0.0233808 0.0404967i
\(122\) −159.306 + 42.6858i −1.30578 + 0.349884i
\(123\) 44.1313 + 117.364i 0.358791 + 0.954179i
\(124\) 46.6377 + 80.7789i 0.376110 + 0.651442i
\(125\) 97.7889 77.8610i 0.782311 0.622888i
\(126\) 80.6641 37.8325i 0.640192 0.300258i
\(127\) −60.5483 60.5483i −0.476758 0.476758i 0.427335 0.904093i \(-0.359453\pi\)
−0.904093 + 0.427335i \(0.859453\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) −125.467 56.8951i −0.972612 0.441047i
\(130\) −32.0304 + 7.30209i −0.246388 + 0.0561699i
\(131\) 85.5142 + 148.115i 0.652780 + 1.13065i 0.982445 + 0.186550i \(0.0597307\pi\)
−0.329666 + 0.944098i \(0.606936\pi\)
\(132\) −40.8947 + 49.7989i −0.309808 + 0.377265i
\(133\) −7.08053 12.8197i −0.0532371 0.0963888i
\(134\) 3.30315 0.0246504
\(135\) 96.0170 94.8986i 0.711237 0.702952i
\(136\) 40.6368 + 23.4616i 0.298800 + 0.172512i
\(137\) 9.73567 + 36.3340i 0.0710633 + 0.265212i 0.992312 0.123763i \(-0.0394961\pi\)
−0.921249 + 0.388974i \(0.872829\pi\)
\(138\) 55.0521 + 9.10660i 0.398928 + 0.0659899i
\(139\) 167.962 1.20836 0.604180 0.796848i \(-0.293501\pi\)
0.604180 + 0.796848i \(0.293501\pi\)
\(140\) −52.2199 + 46.6163i −0.373000 + 0.332974i
\(141\) 208.159 20.4370i 1.47631 0.144943i
\(142\) −30.2576 + 112.923i −0.213082 + 0.795231i
\(143\) −12.9143 48.1967i −0.0903095 0.337040i
\(144\) −34.0823 11.5929i −0.236683 0.0805061i
\(145\) 32.2566 104.478i 0.222459 0.720539i
\(146\) −130.399 −0.893141
\(147\) 46.4794 + 139.458i 0.316186 + 0.948697i
\(148\) −59.6920 + 59.6920i −0.403324 + 0.403324i
\(149\) 137.856 + 238.773i 0.925207 + 1.60251i 0.791228 + 0.611522i \(0.209442\pi\)
0.133979 + 0.990984i \(0.457224\pi\)
\(150\) −50.9481 + 93.0285i −0.339654 + 0.620190i
\(151\) −60.5110 + 104.808i −0.400735 + 0.694093i −0.993815 0.111051i \(-0.964578\pi\)
0.593080 + 0.805144i \(0.297912\pi\)
\(152\) −1.53157 + 5.71588i −0.0100761 + 0.0376045i
\(153\) 83.0283 124.095i 0.542669 0.811076i
\(154\) −73.7379 76.5913i −0.478817 0.497346i
\(155\) −170.980 + 158.565i −1.10310 + 1.02300i
\(156\) 22.6640 16.2302i 0.145282 0.104040i
\(157\) −23.3449 87.1243i −0.148694 0.554932i −0.999563 0.0295549i \(-0.990591\pi\)
0.850870 0.525377i \(-0.176076\pi\)
\(158\) 43.4477 11.6418i 0.274986 0.0736821i
\(159\) −56.4598 78.8410i −0.355093 0.495855i
\(160\) 28.2642 + 1.06483i 0.176651 + 0.00665520i
\(161\) −25.5117 + 88.4603i −0.158458 + 0.549443i
\(162\) −43.9676 + 105.777i −0.271405 + 0.652947i
\(163\) −60.2571 16.1458i −0.369676 0.0990543i 0.0691984 0.997603i \(-0.477956\pi\)
−0.438874 + 0.898549i \(0.644623\pi\)
\(164\) 72.3922 + 41.7957i 0.441416 + 0.254852i
\(165\) −144.107 72.0071i −0.873377 0.436407i
\(166\) −64.2299 + 37.0831i −0.386927 + 0.223392i
\(167\) −5.23730 5.23730i −0.0313611 0.0313611i 0.691252 0.722613i \(-0.257059\pi\)
−0.722613 + 0.691252i \(0.757059\pi\)
\(168\) 25.5525 53.6197i 0.152098 0.319165i
\(169\) 147.415i 0.872276i
\(170\) −34.6060 + 112.088i −0.203564 + 0.659339i
\(171\) 17.8264 + 6.06353i 0.104248 + 0.0354593i
\(172\) −88.7134 + 23.7707i −0.515776 + 0.138202i
\(173\) −117.733 31.5466i −0.680540 0.182350i −0.0980419 0.995182i \(-0.531258\pi\)
−0.582498 + 0.812832i \(0.697925\pi\)
\(174\) 9.06567 + 92.3377i 0.0521016 + 0.530677i
\(175\) −142.643 101.381i −0.815102 0.579317i
\(176\) 42.9589i 0.244085i
\(177\) 4.64494 28.0800i 0.0262426 0.158644i
\(178\) −214.770 + 57.5475i −1.20657 + 0.323301i
\(179\) 32.0467 55.5065i 0.179032 0.310092i −0.762517 0.646968i \(-0.776037\pi\)
0.941549 + 0.336876i \(0.109370\pi\)
\(180\) 9.31844 89.5163i 0.0517691 0.497313i
\(181\) 305.611i 1.68846i −0.535984 0.844228i \(-0.680059\pi\)
0.535984 0.844228i \(-0.319941\pi\)
\(182\) 22.2365 + 40.2605i 0.122179 + 0.221211i
\(183\) 270.377 + 222.032i 1.47747 + 1.21329i
\(184\) 32.2162 18.6001i 0.175088 0.101087i
\(185\) −178.666 112.327i −0.965764 0.607175i
\(186\) 81.7168 180.205i 0.439337 0.968842i
\(187\) −172.100 46.1140i −0.920321 0.246599i
\(188\) 98.5991 98.5991i 0.524463 0.524463i
\(189\) −164.877 92.3941i −0.872364 0.488858i
\(190\) −14.7833 0.556949i −0.0778068 0.00293131i
\(191\) 91.1439 52.6220i 0.477193 0.275508i −0.242053 0.970263i \(-0.577821\pi\)
0.719246 + 0.694755i \(0.244487\pi\)
\(192\) −22.4644 + 8.44706i −0.117002 + 0.0439951i
\(193\) 30.3272 + 113.183i 0.157136 + 0.586439i 0.998913 + 0.0466140i \(0.0148431\pi\)
−0.841777 + 0.539825i \(0.818490\pi\)
\(194\) 72.5479 41.8856i 0.373958 0.215905i
\(195\) 52.1543 + 46.2238i 0.267458 + 0.237045i
\(196\) 82.9498 + 52.1855i 0.423213 + 0.266252i
\(197\) 227.255 227.255i 1.15358 1.15358i 0.167748 0.985830i \(-0.446351\pi\)
0.985830 0.167748i \(-0.0536494\pi\)
\(198\) 136.396 + 9.02453i 0.688870 + 0.0455784i
\(199\) −53.7513 + 93.1000i −0.270107 + 0.467839i −0.968889 0.247495i \(-0.920392\pi\)
0.698782 + 0.715335i \(0.253726\pi\)
\(200\) 13.1103 + 69.4847i 0.0655515 + 0.347423i
\(201\) −4.07968 5.69690i −0.0202969 0.0283428i
\(202\) 185.975 185.975i 0.920670 0.920670i
\(203\) −153.054 2.90520i −0.753963 0.0143113i
\(204\) −9.72596 99.0630i −0.0476763 0.485603i
\(205\) −61.6487 + 199.678i −0.300725 + 0.974040i
\(206\) 53.6071 92.8502i 0.260229 0.450729i
\(207\) −52.2881 106.195i −0.252600 0.513020i
\(208\) 4.80990 17.9508i 0.0231245 0.0863019i
\(209\) 22.4692i 0.107508i
\(210\) 144.895 + 32.4879i 0.689976 + 0.154704i
\(211\) −297.536 −1.41012 −0.705061 0.709147i \(-0.749080\pi\)
−0.705061 + 0.709147i \(0.749080\pi\)
\(212\) −62.4453 16.7322i −0.294553 0.0789254i
\(213\) 232.128 87.2848i 1.08980 0.409788i
\(214\) −162.065 93.5680i −0.757311 0.437234i
\(215\) −107.236 203.027i −0.498773 0.944311i
\(216\) 22.1006 + 73.0997i 0.102318 + 0.338424i
\(217\) 279.577 + 168.568i 1.28837 + 0.776812i
\(218\) −161.740 161.740i −0.741927 0.741927i
\(219\) 161.054 + 224.897i 0.735406 + 1.02693i
\(220\) −104.711 + 23.8713i −0.475958 + 0.108506i
\(221\) 66.7504 + 38.5384i 0.302038 + 0.174382i
\(222\) 176.675 + 29.2252i 0.795833 + 0.131645i
\(223\) −194.026 194.026i −0.870074 0.870074i 0.122406 0.992480i \(-0.460939\pi\)
−0.992480 + 0.122406i \(0.960939\pi\)
\(224\) −9.52098 38.4363i −0.0425044 0.171591i
\(225\) 223.371 27.0288i 0.992758 0.120128i
\(226\) 15.2685 + 26.4458i 0.0675597 + 0.117017i
\(227\) 64.3983 17.2555i 0.283693 0.0760153i −0.114167 0.993462i \(-0.536420\pi\)
0.397860 + 0.917446i \(0.369753\pi\)
\(228\) 11.7497 4.41815i 0.0515339 0.0193778i
\(229\) −22.0393 38.1732i −0.0962416 0.166695i 0.813885 0.581027i \(-0.197349\pi\)
−0.910126 + 0.414331i \(0.864015\pi\)
\(230\) 63.2388 + 68.1903i 0.274951 + 0.296479i
\(231\) −41.0235 + 221.772i −0.177591 + 0.960052i
\(232\) 43.7377 + 43.7377i 0.188525 + 0.188525i
\(233\) 7.91167 29.5268i 0.0339557 0.126724i −0.946868 0.321624i \(-0.895771\pi\)
0.980823 + 0.194899i \(0.0624381\pi\)
\(234\) −55.9840 19.0426i −0.239248 0.0813786i
\(235\) 295.121 + 185.542i 1.25583 + 0.789542i
\(236\) −9.48720 16.4323i −0.0402000 0.0696284i
\(237\) −73.7403 60.5552i −0.311140 0.255507i
\(238\) 164.202 + 3.11680i 0.689924 + 0.0130958i
\(239\) −213.748 −0.894343 −0.447171 0.894448i \(-0.647569\pi\)
−0.447171 + 0.894448i \(0.647569\pi\)
\(240\) −33.0723 50.0622i −0.137801 0.208592i
\(241\) 63.6195 + 36.7307i 0.263981 + 0.152410i 0.626149 0.779703i \(-0.284630\pi\)
−0.362168 + 0.932113i \(0.617963\pi\)
\(242\) 2.07103 + 7.72917i 0.00855796 + 0.0319387i
\(243\) 236.737 54.8139i 0.974227 0.225572i
\(244\) 233.240 0.955901
\(245\) −81.1068 + 231.185i −0.331048 + 0.943614i
\(246\) −17.3263 176.475i −0.0704320 0.717380i
\(247\) −2.51577 + 9.38897i −0.0101853 + 0.0380120i
\(248\) −34.1412 127.417i −0.137666 0.513776i
\(249\) 143.287 + 64.9757i 0.575448 + 0.260946i
\(250\) −162.081 + 70.5669i −0.648325 + 0.282268i
\(251\) −235.026 −0.936358 −0.468179 0.883634i \(-0.655090\pi\)
−0.468179 + 0.883634i \(0.655090\pi\)
\(252\) −124.037 + 22.1550i −0.492210 + 0.0879168i
\(253\) −99.8798 + 99.8798i −0.394782 + 0.394782i
\(254\) 60.5483 + 104.873i 0.238379 + 0.412885i
\(255\) 236.058 78.7537i 0.925717 0.308838i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 98.9522 369.295i 0.385028 1.43694i −0.453095 0.891462i \(-0.649680\pi\)
0.838123 0.545482i \(-0.183653\pi\)
\(258\) 150.566 + 123.644i 0.583589 + 0.479241i
\(259\) −81.8731 + 283.890i −0.316113 + 1.09610i
\(260\) 46.4271 + 1.74911i 0.178566 + 0.00672733i
\(261\) 148.057 129.681i 0.567268 0.496861i
\(262\) −62.6007 233.629i −0.238934 0.891714i
\(263\) 294.961 79.0345i 1.12152 0.300511i 0.350024 0.936741i \(-0.386174\pi\)
0.771500 + 0.636230i \(0.219507\pi\)
\(264\) 74.0908 53.0581i 0.280647 0.200978i
\(265\) 6.08461 161.506i 0.0229608 0.609456i
\(266\) 4.97985 + 20.1037i 0.0187212 + 0.0755779i
\(267\) 364.512 + 299.336i 1.36521 + 1.12111i
\(268\) −4.51218 1.20904i −0.0168365 0.00451133i
\(269\) 153.231 + 88.4680i 0.569632 + 0.328877i 0.757002 0.653412i \(-0.226663\pi\)
−0.187370 + 0.982289i \(0.559996\pi\)
\(270\) −165.897 + 94.4892i −0.614433 + 0.349960i
\(271\) −334.108 + 192.897i −1.23287 + 0.711798i −0.967627 0.252383i \(-0.918786\pi\)
−0.265243 + 0.964182i \(0.585452\pi\)
\(272\) −46.9233 46.9233i −0.172512 0.172512i
\(273\) 41.9728 88.0763i 0.153746 0.322624i
\(274\) 53.1967i 0.194149i
\(275\) −116.371 241.964i −0.423166 0.879869i
\(276\) −71.8693 32.5903i −0.260396 0.118081i
\(277\) −446.379 + 119.607i −1.61148 + 0.431794i −0.948482 0.316831i \(-0.897381\pi\)
−0.662994 + 0.748625i \(0.730714\pi\)
\(278\) −229.440 61.4783i −0.825325 0.221145i
\(279\) −411.725 + 81.6327i −1.47572 + 0.292590i
\(280\) 88.3965 44.5652i 0.315702 0.159161i
\(281\) 100.962i 0.359295i −0.983731 0.179647i \(-0.942504\pi\)
0.983731 0.179647i \(-0.0574957\pi\)
\(282\) −291.832 48.2742i −1.03486 0.171185i
\(283\) 371.789 99.6207i 1.31374 0.352016i 0.467113 0.884198i \(-0.345294\pi\)
0.846630 + 0.532181i \(0.178628\pi\)
\(284\) 82.6653 143.180i 0.291075 0.504157i
\(285\) 17.2981 + 26.1845i 0.0606952 + 0.0918754i
\(286\) 70.5648i 0.246730i
\(287\) 292.517 + 5.55241i 1.01922 + 0.0193464i
\(288\) 42.3140 + 28.3112i 0.146924 + 0.0983027i
\(289\) −11.9300 + 6.88780i −0.0412804 + 0.0238332i
\(290\) −82.3050 + 130.913i −0.283810 + 0.451424i
\(291\) −161.843 73.3903i −0.556161 0.252200i
\(292\) 178.128 + 47.7292i 0.610027 + 0.163456i
\(293\) −259.252 + 259.252i −0.884820 + 0.884820i −0.994020 0.109200i \(-0.965171\pi\)
0.109200 + 0.994020i \(0.465171\pi\)
\(294\) −12.4467 207.516i −0.0423356 0.705838i
\(295\) 34.7813 32.2557i 0.117903 0.109341i
\(296\) 103.390 59.6920i 0.349289 0.201662i
\(297\) −152.897 246.387i −0.514805 0.829587i
\(298\) −100.917 376.629i −0.338649 1.26386i
\(299\) 52.9188 30.5527i 0.176986 0.102183i
\(300\) 103.647 108.431i 0.345490 0.361436i
\(301\) −231.572 + 222.945i −0.769343 + 0.740681i
\(302\) 121.022 121.022i 0.400735 0.400735i
\(303\) −550.446 91.0537i −1.81665 0.300507i
\(304\) 4.18431 7.24745i 0.0137642 0.0238403i
\(305\) 129.606 + 568.513i 0.424938 + 1.86398i
\(306\) −158.841 + 139.126i −0.519087 + 0.454660i
\(307\) 150.022 150.022i 0.488672 0.488672i −0.419215 0.907887i \(-0.637695\pi\)
0.907887 + 0.419215i \(0.137695\pi\)
\(308\) 72.6934 + 131.616i 0.236018 + 0.427323i
\(309\) −226.347 + 22.2227i −0.732516 + 0.0719180i
\(310\) 291.602 154.020i 0.940650 0.496840i
\(311\) −29.8412 + 51.6864i −0.0959523 + 0.166194i −0.910006 0.414596i \(-0.863923\pi\)
0.814053 + 0.580790i \(0.197256\pi\)
\(312\) −36.9002 + 13.8752i −0.118270 + 0.0444719i
\(313\) 32.8475 122.588i 0.104944 0.391656i −0.893395 0.449272i \(-0.851683\pi\)
0.998339 + 0.0576160i \(0.0183499\pi\)
\(314\) 127.559i 0.406238i
\(315\) −122.927 290.024i −0.390243 0.920712i
\(316\) −63.6119 −0.201303
\(317\) −270.266 72.4174i −0.852573 0.228446i −0.194036 0.980994i \(-0.562158\pi\)
−0.658537 + 0.752548i \(0.728824\pi\)
\(318\) 48.2677 + 128.365i 0.151785 + 0.403662i
\(319\) −203.400 117.433i −0.637616 0.368128i
\(320\) −38.2199 11.8000i −0.119437 0.0368750i
\(321\) 38.7883 + 395.076i 0.120836 + 1.23077i
\(322\) 67.2284 111.501i 0.208784 0.346277i
\(323\) 24.5427 + 24.5427i 0.0759837 + 0.0759837i
\(324\) 98.7781 128.401i 0.304871 0.396300i
\(325\) 21.5351 + 114.136i 0.0662619 + 0.351189i
\(326\) 76.4030 + 44.1113i 0.234365 + 0.135311i
\(327\) −79.1881 + 478.715i −0.242166 + 1.46396i
\(328\) −83.5913 83.5913i −0.254852 0.254852i
\(329\) 135.238 468.929i 0.411058 1.42532i
\(330\) 170.498 + 151.110i 0.516660 + 0.457910i
\(331\) 74.7861 + 129.533i 0.225940 + 0.391339i 0.956601 0.291401i \(-0.0941214\pi\)
−0.730661 + 0.682740i \(0.760788\pi\)
\(332\) 101.313 27.1467i 0.305160 0.0817673i
\(333\) −167.805 340.805i −0.503919 1.02344i
\(334\) 5.23730 + 9.07126i 0.0156805 + 0.0271595i
\(335\) 0.439662 11.6701i 0.00131242 0.0348362i
\(336\) −54.5315 + 63.8930i −0.162296 + 0.190158i
\(337\) 217.610 + 217.610i 0.645728 + 0.645728i 0.951958 0.306230i \(-0.0990676\pi\)
−0.306230 + 0.951958i \(0.599068\pi\)
\(338\) −53.9575 + 201.372i −0.159638 + 0.595776i
\(339\) 26.7529 58.9963i 0.0789170 0.174031i
\(340\) 88.2996 140.448i 0.259705 0.413082i
\(341\) 250.438 + 433.772i 0.734423 + 1.27206i
\(342\) −22.1319 14.8079i −0.0647132 0.0432978i
\(343\) 342.444 + 19.5191i 0.998379 + 0.0569069i
\(344\) 129.885 0.377574
\(345\) 39.5015 193.288i 0.114497 0.560256i
\(346\) 149.280 + 86.1868i 0.431445 + 0.249095i
\(347\) −18.6415 69.5709i −0.0537218 0.200492i 0.933849 0.357668i \(-0.116428\pi\)
−0.987571 + 0.157175i \(0.949761\pi\)
\(348\) 21.4140 129.454i 0.0615345 0.371994i
\(349\) −257.887 −0.738932 −0.369466 0.929244i \(-0.620459\pi\)
−0.369466 + 0.929244i \(0.620459\pi\)
\(350\) 157.746 + 190.699i 0.450703 + 0.544855i
\(351\) 36.3027 + 120.074i 0.103426 + 0.342092i
\(352\) 15.7241 58.6830i 0.0446706 0.166713i
\(353\) 33.7279 + 125.874i 0.0955466 + 0.356585i 0.997102 0.0760795i \(-0.0242403\pi\)
−0.901555 + 0.432664i \(0.857574\pi\)
\(354\) −16.6231 + 36.6578i −0.0469579 + 0.103553i
\(355\) 394.932 + 121.931i 1.11249 + 0.343469i
\(356\) 314.445 0.883274
\(357\) −197.429 287.047i −0.553021 0.804053i
\(358\) −64.0933 + 64.0933i −0.179032 + 0.179032i
\(359\) −315.396 546.282i −0.878540 1.52168i −0.852943 0.522004i \(-0.825185\pi\)
−0.0255973 0.999672i \(-0.508149\pi\)
\(360\) −45.4945 + 118.871i −0.126374 + 0.330197i
\(361\) 178.311 308.844i 0.493938 0.855525i
\(362\) −111.861 + 417.472i −0.309009 + 1.15324i
\(363\) 10.7725 13.1181i 0.0296764 0.0361380i
\(364\) −15.6393 63.1359i −0.0429650 0.173450i
\(365\) −17.3566 + 460.702i −0.0475523 + 1.26220i
\(366\) −288.072 402.266i −0.787082 1.09909i
\(367\) 41.5321 + 155.000i 0.113167 + 0.422343i 0.999143 0.0413865i \(-0.0131775\pi\)
−0.885977 + 0.463730i \(0.846511\pi\)
\(368\) −50.8163 + 13.6162i −0.138088 + 0.0370005i
\(369\) −282.966 + 247.845i −0.766845 + 0.671668i
\(370\) 202.948 + 218.839i 0.548508 + 0.591456i
\(371\) −219.631 + 54.4042i −0.591997 + 0.146642i
\(372\) −177.587 + 216.254i −0.477383 + 0.581327i
\(373\) −3.96685 1.06291i −0.0106350 0.00284963i 0.253498 0.967336i \(-0.418419\pi\)
−0.264133 + 0.964486i \(0.585086\pi\)
\(374\) 218.214 + 125.986i 0.583460 + 0.336861i
\(375\) 321.891 + 192.383i 0.858375 + 0.513022i
\(376\) −170.779 + 98.5991i −0.454199 + 0.262232i
\(377\) 71.8441 + 71.8441i 0.190568 + 0.190568i
\(378\) 191.407 + 186.562i 0.506368 + 0.493550i
\(379\) 282.119i 0.744377i −0.928157 0.372189i \(-0.878607\pi\)
0.928157 0.372189i \(-0.121393\pi\)
\(380\) 19.9905 + 6.17187i 0.0526066 + 0.0162418i
\(381\) 106.090 233.954i 0.278453 0.614053i
\(382\) −143.766 + 38.5220i −0.376351 + 0.100843i
\(383\) −525.594 140.832i −1.37231 0.367709i −0.503986 0.863712i \(-0.668134\pi\)
−0.868321 + 0.496003i \(0.834800\pi\)
\(384\) 33.7787 3.31638i 0.0879654 0.00863640i
\(385\) −280.414 + 250.323i −0.728348 + 0.650190i
\(386\) 165.711i 0.429303i
\(387\) 27.2855 412.391i 0.0705051 1.06561i
\(388\) −114.433 + 30.6624i −0.294932 + 0.0790267i
\(389\) 22.1584 38.3795i 0.0569626 0.0986621i −0.836138 0.548519i \(-0.815192\pi\)
0.893101 + 0.449857i \(0.148525\pi\)
\(390\) −54.3250 82.2327i −0.139295 0.210853i
\(391\) 218.194i 0.558041i
\(392\) −94.2104 101.648i −0.240333 0.259307i
\(393\) −325.620 + 396.519i −0.828550 + 1.00896i
\(394\) −393.617 + 227.255i −0.999028 + 0.576789i
\(395\) −35.3477 155.052i −0.0894878 0.392536i
\(396\) −183.018 62.2522i −0.462166 0.157203i
\(397\) 273.314 + 73.2343i 0.688448 + 0.184469i 0.586051 0.810274i \(-0.300682\pi\)
0.102398 + 0.994744i \(0.467349\pi\)
\(398\) 107.503 107.503i 0.270107 0.270107i
\(399\) 28.5221 33.4186i 0.0714840 0.0837558i
\(400\) 7.52416 99.7165i 0.0188104 0.249291i
\(401\) −359.724 + 207.687i −0.897067 + 0.517922i −0.876247 0.481861i \(-0.839961\pi\)
−0.0208196 + 0.999783i \(0.506628\pi\)
\(402\) 3.48774 + 9.27538i 0.00867596 + 0.0230731i
\(403\) −56.0806 209.296i −0.139158 0.519344i
\(404\) −322.119 + 185.975i −0.797323 + 0.460335i
\(405\) 367.862 + 169.418i 0.908301 + 0.418317i
\(406\) 208.013 + 59.9904i 0.512347 + 0.147760i
\(407\) −320.538 + 320.538i −0.787562 + 0.787562i
\(408\) −22.9737 + 138.883i −0.0563080 + 0.340398i
\(409\) 257.340 445.725i 0.629192 1.08979i −0.358522 0.933521i \(-0.616719\pi\)
0.987714 0.156272i \(-0.0499475\pi\)
\(410\) 157.301 250.200i 0.383661 0.610245i
\(411\) −91.7478 + 65.7027i −0.223231 + 0.159860i
\(412\) −107.214 + 107.214i −0.260229 + 0.260229i
\(413\) −56.8725 34.2907i −0.137706 0.0830283i
\(414\) 32.5568 + 164.204i 0.0786395 + 0.396628i
\(415\) 122.467 + 231.862i 0.295100 + 0.558703i
\(416\) −13.1409 + 22.7607i −0.0315887 + 0.0547132i
\(417\) 177.348 + 471.645i 0.425295 + 1.13104i
\(418\) −8.22430 + 30.6935i −0.0196754 + 0.0734295i
\(419\) 18.1550i 0.0433294i 0.999765 + 0.0216647i \(0.00689662\pi\)
−0.999765 + 0.0216647i \(0.993103\pi\)
\(420\) −186.039 97.4145i −0.442949 0.231939i
\(421\) −744.462 −1.76832 −0.884160 0.467185i \(-0.845268\pi\)
−0.884160 + 0.467185i \(0.845268\pi\)
\(422\) 406.441 + 108.906i 0.963131 + 0.258070i
\(423\) 277.180 + 562.942i 0.655272 + 1.33083i
\(424\) 79.1775 + 45.7132i 0.186739 + 0.107814i
\(425\) 391.403 + 137.183i 0.920947 + 0.322784i
\(426\) −349.041 + 34.2686i −0.819345 + 0.0804428i
\(427\) 714.589 394.679i 1.67351 0.924307i
\(428\) 187.136 + 187.136i 0.437234 + 0.437234i
\(429\) 121.702 87.1538i 0.283689 0.203156i
\(430\) 72.1744 + 316.591i 0.167847 + 0.736258i
\(431\) −250.590 144.678i −0.581416 0.335681i 0.180280 0.983615i \(-0.442300\pi\)
−0.761696 + 0.647935i \(0.775633\pi\)
\(432\) −3.43362 107.945i −0.00794819 0.249874i
\(433\) 71.7806 + 71.7806i 0.165775 + 0.165775i 0.785119 0.619344i \(-0.212602\pi\)
−0.619344 + 0.785119i \(0.712602\pi\)
\(434\) −320.209 332.601i −0.737810 0.766361i
\(435\) 327.438 19.7387i 0.752732 0.0453764i
\(436\) 161.740 + 280.142i 0.370964 + 0.642528i
\(437\) 26.5789 7.12180i 0.0608213 0.0162970i
\(438\) −137.686 366.165i −0.314351 0.835993i
\(439\) −387.852 671.779i −0.883489 1.53025i −0.847435 0.530899i \(-0.821854\pi\)
−0.0360543 0.999350i \(-0.511479\pi\)
\(440\) 151.775 + 5.71801i 0.344943 + 0.0129955i
\(441\) −342.529 + 277.768i −0.776709 + 0.629859i
\(442\) −77.0767 77.0767i −0.174382 0.174382i
\(443\) 95.9678 358.157i 0.216632 0.808480i −0.768954 0.639304i \(-0.779223\pi\)
0.985586 0.169176i \(-0.0541108\pi\)
\(444\) −230.645 104.590i −0.519472 0.235563i
\(445\) 174.730 + 766.449i 0.392652 + 1.72236i
\(446\) 194.026 + 336.064i 0.435037 + 0.753506i
\(447\) −524.927 + 639.222i −1.17433 + 1.43003i
\(448\) −1.06277 + 55.9899i −0.00237226 + 0.124977i
\(449\) 777.510 1.73165 0.865825 0.500348i \(-0.166794\pi\)
0.865825 + 0.500348i \(0.166794\pi\)
\(450\) −315.023 44.8373i −0.700052 0.0996384i
\(451\) 388.736 + 224.437i 0.861943 + 0.497643i
\(452\) −11.1773 41.7143i −0.0247286 0.0922883i
\(453\) −358.198 59.2524i −0.790724 0.130800i
\(454\) −94.2856 −0.207678
\(455\) 145.201 73.2033i 0.319123 0.160886i
\(456\) −17.6676 + 1.73460i −0.0387447 + 0.00380394i
\(457\) −195.875 + 731.014i −0.428609 + 1.59959i 0.327303 + 0.944919i \(0.393860\pi\)
−0.755912 + 0.654673i \(0.772806\pi\)
\(458\) 16.1339 + 60.2126i 0.0352269 + 0.131468i
\(459\) 436.131 + 102.118i 0.950177 + 0.222479i
\(460\) −61.4264 116.297i −0.133536 0.252819i
\(461\) 199.974 0.433783 0.216892 0.976196i \(-0.430408\pi\)
0.216892 + 0.976196i \(0.430408\pi\)
\(462\) 137.213 287.931i 0.296998 0.623226i
\(463\) 508.040 508.040i 1.09728 1.09728i 0.102550 0.994728i \(-0.467300\pi\)
0.994728 0.102550i \(-0.0327002\pi\)
\(464\) −43.7377 75.7559i −0.0942623 0.163267i
\(465\) −625.791 312.694i −1.34579 0.672459i
\(466\) −21.6151 + 37.4384i −0.0463843 + 0.0803400i
\(467\) −67.3165 + 251.229i −0.144147 + 0.537963i 0.855645 + 0.517563i \(0.173161\pi\)
−0.999792 + 0.0204000i \(0.993506\pi\)
\(468\) 69.5055 + 46.5042i 0.148516 + 0.0993680i
\(469\) −15.8701 + 3.93115i −0.0338382 + 0.00838198i
\(470\) −335.229 361.477i −0.713254 0.769101i
\(471\) 219.999 157.547i 0.467090 0.334494i
\(472\) 6.94511 + 25.9195i 0.0147142 + 0.0549142i
\(473\) −476.379 + 127.645i −1.00714 + 0.269863i
\(474\) 78.5663 + 109.711i 0.165752 + 0.231457i
\(475\) −3.93543 + 52.1557i −0.00828512 + 0.109801i
\(476\) −223.163 64.3597i −0.468830 0.135209i
\(477\) 161.774 241.789i 0.339149 0.506894i
\(478\) 291.985 + 78.2372i 0.610847 + 0.163676i
\(479\) 559.185 + 322.846i 1.16740 + 0.674000i 0.953067 0.302761i \(-0.0979082\pi\)
0.214335 + 0.976760i \(0.431242\pi\)
\(480\) 26.8536 + 80.4915i 0.0559450 + 0.167691i
\(481\) 169.829 98.0507i 0.353074 0.203848i
\(482\) −73.4615 73.4615i −0.152410 0.152410i
\(483\) −275.338 + 21.7656i −0.570058 + 0.0450634i
\(484\) 11.3163i 0.0233808i
\(485\) −138.326 261.889i −0.285209 0.539977i
\(486\) −343.452 11.7746i −0.706692 0.0242275i
\(487\) −523.382 + 140.240i −1.07471 + 0.287967i −0.752426 0.658677i \(-0.771116\pi\)
−0.322281 + 0.946644i \(0.604450\pi\)
\(488\) −318.611 85.3717i −0.652892 0.174942i
\(489\) −18.2862 186.253i −0.0373951 0.380885i
\(490\) 195.414 286.118i 0.398803 0.583914i
\(491\) 663.596i 1.35152i −0.737122 0.675760i \(-0.763816\pi\)
0.737122 0.675760i \(-0.236184\pi\)
\(492\) −40.9264 + 247.412i −0.0831837 + 0.502870i
\(493\) 350.440 93.9000i 0.710831 0.190467i
\(494\) 6.87320 11.9047i 0.0139134 0.0240987i
\(495\) 50.0388 480.691i 0.101088 0.971092i
\(496\) 186.551i 0.376110i
\(497\) 10.9818 578.553i 0.0220962 1.16409i
\(498\) −171.950 141.205i −0.345282 0.283544i
\(499\) 632.196 364.999i 1.26693 0.731460i 0.292521 0.956259i \(-0.405506\pi\)
0.974405 + 0.224799i \(0.0721725\pi\)
\(500\) 247.236 37.0703i 0.494473 0.0741407i
\(501\) 9.17659 20.2365i 0.0183165 0.0403923i
\(502\) 321.051 + 86.0255i 0.639545 + 0.171365i
\(503\) 151.136 151.136i 0.300470 0.300470i −0.540728 0.841198i \(-0.681851\pi\)
0.841198 + 0.540728i \(0.181851\pi\)
\(504\) 177.547 + 15.1363i 0.352276 + 0.0300324i
\(505\) −632.302 681.810i −1.25208 1.35012i
\(506\) 172.997 99.8798i 0.341891 0.197391i
\(507\) 413.947 155.653i 0.816463 0.307007i
\(508\) −44.3244 165.421i −0.0872528 0.325632i
\(509\) −315.266 + 182.019i −0.619383 + 0.357601i −0.776629 0.629959i \(-0.783072\pi\)
0.157246 + 0.987560i \(0.449739\pi\)
\(510\) −351.287 + 21.1764i −0.688798 + 0.0415223i
\(511\) 626.506 155.190i 1.22604 0.303699i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 1.79592 + 56.4597i 0.00350081 + 0.110058i
\(514\) −270.342 + 468.247i −0.525958 + 0.910986i
\(515\) −320.907 201.754i −0.623120 0.391756i
\(516\) −160.420 224.012i −0.310892 0.434132i
\(517\) 529.464 529.464i 1.02411 1.02411i
\(518\) 215.752 357.833i 0.416509 0.690798i
\(519\) −35.7285 363.910i −0.0688410 0.701175i
\(520\) −62.7804 19.3828i −0.120732 0.0372747i
\(521\) 98.0617 169.848i 0.188218 0.326003i −0.756438 0.654065i \(-0.773062\pi\)
0.944656 + 0.328062i \(0.106395\pi\)
\(522\) −249.716 + 122.955i −0.478383 + 0.235545i
\(523\) −182.310 + 680.391i −0.348586 + 1.30094i 0.539781 + 0.841805i \(0.318507\pi\)
−0.888367 + 0.459134i \(0.848160\pi\)
\(524\) 342.057i 0.652780i
\(525\) 134.067 507.593i 0.255365 0.966845i
\(526\) −431.852 −0.821012
\(527\) −747.350 200.252i −1.41812 0.379985i
\(528\) −120.631 + 45.3596i −0.228467 + 0.0859083i
\(529\) 308.321 + 178.009i 0.582838 + 0.336502i
\(530\) −67.4270 + 218.394i −0.127221 + 0.412064i
\(531\) 83.7544 16.6060i 0.157730 0.0312731i
\(532\) 0.555872 29.2849i 0.00104487 0.0550469i
\(533\) −137.308 137.308i −0.257614 0.257614i
\(534\) −388.368 542.321i −0.727281 1.01558i
\(535\) −352.150 + 560.124i −0.658224 + 1.04696i
\(536\) 5.72122 + 3.30315i 0.0106739 + 0.00616259i
\(537\) 189.702 + 31.3802i 0.353263 + 0.0584360i
\(538\) −176.936 176.936i −0.328877 0.328877i
\(539\) 445.430 + 280.229i 0.826400 + 0.519905i
\(540\) 261.205 68.3521i 0.483713 0.126578i
\(541\) −36.0002 62.3542i −0.0665438 0.115257i 0.830834 0.556520i \(-0.187864\pi\)
−0.897378 + 0.441263i \(0.854531\pi\)
\(542\) 527.005 141.211i 0.972334 0.260536i
\(543\) 858.168 322.689i 1.58042 0.594271i
\(544\) 46.9233 + 81.2735i 0.0862560 + 0.149400i
\(545\) −592.961 + 549.904i −1.08800 + 1.00900i
\(546\) −89.5740 + 104.951i −0.164055 + 0.192219i
\(547\) 369.252 + 369.252i 0.675049 + 0.675049i 0.958876 0.283827i \(-0.0916040\pi\)
−0.283827 + 0.958876i \(0.591604\pi\)
\(548\) −19.4713 + 72.6680i −0.0355316 + 0.132606i
\(549\) −337.990 + 993.669i −0.615647 + 1.80996i
\(550\) 70.4005 + 373.123i 0.128001 + 0.678406i
\(551\) 22.8765 + 39.6233i 0.0415182 + 0.0719117i
\(552\) 86.2464 + 70.8252i 0.156243 + 0.128306i
\(553\) −194.891 + 107.641i −0.352425 + 0.194650i
\(554\) 653.544 1.17968
\(555\) 126.770 620.308i 0.228414 1.11767i
\(556\) 290.919 + 167.962i 0.523235 + 0.302090i
\(557\) −60.6241 226.252i −0.108840 0.406198i 0.889912 0.456132i \(-0.150766\pi\)
−0.998753 + 0.0499341i \(0.984099\pi\)
\(558\) 592.306 + 39.1893i 1.06148 + 0.0702318i
\(559\) 213.351 0.381666
\(560\) −137.064 + 28.5218i −0.244757 + 0.0509319i
\(561\) −52.2271 531.955i −0.0930964 0.948227i
\(562\) −36.9546 + 137.916i −0.0657555 + 0.245403i
\(563\) −13.3709 49.9008i −0.0237494 0.0886338i 0.953034 0.302863i \(-0.0979426\pi\)
−0.976783 + 0.214230i \(0.931276\pi\)
\(564\) 380.980 + 172.762i 0.675496 + 0.306315i
\(565\) 95.4661 50.4240i 0.168966 0.0892460i
\(566\) −544.337 −0.961727
\(567\) 85.3563 560.538i 0.150540 0.988604i
\(568\) −165.331 + 165.331i −0.291075 + 0.291075i
\(569\) 79.3283 + 137.401i 0.139417 + 0.241477i 0.927276 0.374378i \(-0.122144\pi\)
−0.787859 + 0.615856i \(0.788811\pi\)
\(570\) −14.0455 42.1002i −0.0246412 0.0738600i
\(571\) 396.116 686.092i 0.693723 1.20156i −0.276887 0.960903i \(-0.589303\pi\)
0.970609 0.240660i \(-0.0773640\pi\)
\(572\) 25.8285 96.3933i 0.0451547 0.168520i
\(573\) 244.002 + 200.374i 0.425833 + 0.349692i
\(574\) −397.553 114.653i −0.692601 0.199745i
\(575\) 249.335 214.348i 0.433627 0.372779i
\(576\) −47.4394 54.1618i −0.0823601 0.0940309i
\(577\) −218.523 815.540i −0.378723 1.41341i −0.847828 0.530271i \(-0.822090\pi\)
0.469105 0.883142i \(-0.344577\pi\)
\(578\) 18.8178 5.04222i 0.0325568 0.00872357i
\(579\) −285.800 + 204.668i −0.493610 + 0.353485i
\(580\) 160.348 148.705i 0.276462 0.256388i
\(581\) 264.462 254.609i 0.455184 0.438225i
\(582\) 194.219 + 159.492i 0.333709 + 0.274040i
\(583\) −335.323 89.8495i −0.575168 0.154116i
\(584\) −225.857 130.399i −0.386742 0.223285i
\(585\) −74.7297 + 195.258i −0.127743 + 0.333775i
\(586\) 449.038 259.252i 0.766276 0.442410i
\(587\) 395.180 + 395.180i 0.673220 + 0.673220i 0.958457 0.285237i \(-0.0920724\pi\)
−0.285237 + 0.958457i \(0.592072\pi\)
\(588\) −58.9538 + 288.029i −0.100262 + 0.489844i
\(589\) 97.5734i 0.165659i
\(590\) −59.3186 + 31.3313i −0.100540 + 0.0531039i
\(591\) 878.096 + 398.187i 1.48578 + 0.673751i
\(592\) −163.081 + 43.6976i −0.275475 + 0.0738134i
\(593\) −116.227 31.1428i −0.195998 0.0525174i 0.159485 0.987200i \(-0.449017\pi\)
−0.355482 + 0.934683i \(0.615683\pi\)
\(594\) 118.677 + 392.536i 0.199793 + 0.660834i
\(595\) 32.8677 579.715i 0.0552398 0.974311i
\(596\) 551.423i 0.925207i
\(597\) −318.184 52.6334i −0.532972 0.0881631i
\(598\) −83.4714 + 22.3661i −0.139584 + 0.0374015i
\(599\) −598.910 + 1037.34i −0.999850 + 1.73179i −0.484920 + 0.874558i \(0.661151\pi\)
−0.514930 + 0.857232i \(0.672182\pi\)
\(600\) −181.273 + 110.182i −0.302122 + 0.183637i
\(601\) 170.669i 0.283975i −0.989868 0.141988i \(-0.954651\pi\)
0.989868 0.141988i \(-0.0453493\pi\)
\(602\) 397.937 219.787i 0.661025 0.365095i
\(603\) 11.6895 17.4712i 0.0193856 0.0289738i
\(604\) −209.616 + 121.022i −0.347047 + 0.200367i
\(605\) 27.5830 6.28821i 0.0455918 0.0103937i
\(606\) 718.595 + 325.859i 1.18580 + 0.537721i
\(607\) −375.584 100.638i −0.618755 0.165795i −0.0641933 0.997937i \(-0.520447\pi\)
−0.554562 + 0.832143i \(0.687114\pi\)
\(608\) −8.36863 + 8.36863i −0.0137642 + 0.0137642i
\(609\) −153.450 432.851i −0.251970 0.710757i
\(610\) 31.0452 824.042i 0.0508937 1.35089i
\(611\) −280.523 + 161.960i −0.459121 + 0.265074i
\(612\) 267.904 131.910i 0.437751 0.215539i
\(613\) 71.3663 + 266.343i 0.116421 + 0.434490i 0.999389 0.0349428i \(-0.0111249\pi\)
−0.882968 + 0.469433i \(0.844458\pi\)
\(614\) −259.846 + 150.022i −0.423202 + 0.244336i
\(615\) −625.799 + 37.7246i −1.01756 + 0.0613408i
\(616\) −51.1264 206.398i −0.0829974 0.335062i
\(617\) −140.458 + 140.458i −0.227647 + 0.227647i −0.811709 0.584062i \(-0.801462\pi\)
0.584062 + 0.811709i \(0.301462\pi\)
\(618\) 317.330 + 52.4922i 0.513479 + 0.0849388i
\(619\) −514.196 + 890.614i −0.830688 + 1.43879i 0.0668049 + 0.997766i \(0.478719\pi\)
−0.897493 + 0.441028i \(0.854614\pi\)
\(620\) −454.710 + 103.662i −0.733404 + 0.167197i
\(621\) 242.991 258.957i 0.391289 0.417000i
\(622\) 59.6823 59.6823i 0.0959523 0.0959523i
\(623\) 963.384 532.092i 1.54636 0.854081i
\(624\) 55.4853 5.44752i 0.0889187 0.00872999i
\(625\) 227.741 + 582.030i 0.364386 + 0.931248i
\(626\) −89.7410 + 155.436i −0.143356 + 0.248300i
\(627\) 63.0945 23.7248i 0.100629 0.0378387i
\(628\) 46.6898 174.249i 0.0743468 0.277466i
\(629\) 700.236i 1.11325i
\(630\) 61.7645 + 441.175i 0.0980389 + 0.700277i
\(631\) −328.983 −0.521367 −0.260684 0.965424i \(-0.583948\pi\)
−0.260684 + 0.965424i \(0.583948\pi\)
\(632\) 86.8954 + 23.2836i 0.137493 + 0.0368411i
\(633\) −314.163 835.493i −0.496307 1.31989i
\(634\) 342.683 + 197.848i 0.540509 + 0.312063i
\(635\) 378.578 199.960i 0.596185 0.314897i
\(636\) −18.9503 193.016i −0.0297960 0.303485i
\(637\) −154.751 166.969i −0.242937 0.262117i
\(638\) 234.866 + 234.866i 0.368128 + 0.368128i
\(639\) 490.199 + 559.662i 0.767135 + 0.875841i
\(640\) 47.8902 + 30.1086i 0.0748285 + 0.0470446i
\(641\) −199.327 115.081i −0.310962 0.179534i 0.336395 0.941721i \(-0.390792\pi\)
−0.647357 + 0.762187i \(0.724126\pi\)
\(642\) 91.6219 553.881i 0.142713 0.862743i
\(643\) 301.400 + 301.400i 0.468740 + 0.468740i 0.901506 0.432766i \(-0.142462\pi\)
−0.432766 + 0.901506i \(0.642462\pi\)
\(644\) −132.648 + 127.706i −0.205975 + 0.198301i
\(645\) 456.879 515.496i 0.708340 0.799219i
\(646\) −24.5427 42.5092i −0.0379918 0.0658038i
\(647\) −623.121 + 166.965i −0.963092 + 0.258060i −0.705909 0.708303i \(-0.749461\pi\)
−0.257184 + 0.966363i \(0.582794\pi\)
\(648\) −181.932 + 139.244i −0.280759 + 0.214883i
\(649\) −50.9450 88.2393i −0.0784977 0.135962i
\(650\) 12.3593 163.795i 0.0190143 0.251993i
\(651\) −178.146 + 963.053i −0.273650 + 1.47934i
\(652\) −88.2225 88.2225i −0.135311 0.135311i
\(653\) 187.337 699.151i 0.286886 1.07067i −0.660563 0.750770i \(-0.729682\pi\)
0.947450 0.319905i \(-0.103651\pi\)
\(654\) 283.395 624.952i 0.433326 0.955584i
\(655\) −833.750 + 190.073i −1.27290 + 0.290188i
\(656\) 83.5913 + 144.784i 0.127426 + 0.220708i
\(657\) −461.467 + 689.712i −0.702385 + 1.04979i
\(658\) −356.378 + 591.068i −0.541609 + 0.898280i
\(659\) −1009.35 −1.53165 −0.765823 0.643052i \(-0.777668\pi\)
−0.765823 + 0.643052i \(0.777668\pi\)
\(660\) −177.594 268.827i −0.269082 0.407314i
\(661\) −305.298 176.264i −0.461873 0.266663i 0.250958 0.967998i \(-0.419254\pi\)
−0.712832 + 0.701335i \(0.752588\pi\)
\(662\) −54.7472 204.319i −0.0826997 0.308640i
\(663\) −37.7368 + 228.130i −0.0569183 + 0.344088i
\(664\) −148.333 −0.223392
\(665\) 71.6898 14.9180i 0.107804 0.0224332i
\(666\) 104.482 + 526.970i 0.156880 + 0.791246i
\(667\) 74.4426 277.824i 0.111608 0.416527i
\(668\) −3.83397 14.3086i −0.00573947 0.0214200i
\(669\) 339.966 749.704i 0.508170 1.12063i
\(670\) −4.87215 + 15.7807i −0.00727186 + 0.0235533i
\(671\) 1252.47 1.86657
\(672\) 97.8779 67.3196i 0.145652 0.100178i
\(673\) −328.459 + 328.459i −0.488052 + 0.488052i −0.907691 0.419639i \(-0.862157\pi\)
0.419639 + 0.907691i \(0.362157\pi\)
\(674\) −217.610 376.912i −0.322864 0.559217i
\(675\) 311.751 + 598.695i 0.461854 + 0.886956i
\(676\) 147.415 255.330i 0.218069 0.377707i
\(677\) 97.5907 364.214i 0.144152 0.537982i −0.855640 0.517572i \(-0.826836\pi\)
0.999792 0.0204101i \(-0.00649720\pi\)
\(678\) −58.1393 + 70.7983i −0.0857511 + 0.104422i
\(679\) −298.711 + 287.582i −0.439927 + 0.423537i
\(680\) −172.027 + 159.536i −0.252981 + 0.234611i
\(681\) 116.451 + 162.613i 0.171000 + 0.238786i
\(682\) −183.333 684.210i −0.268817 1.00324i
\(683\) 197.306 52.8679i 0.288881 0.0774054i −0.111469 0.993768i \(-0.535555\pi\)
0.400349 + 0.916363i \(0.368889\pi\)
\(684\) 24.8127 + 28.3287i 0.0362759 + 0.0414163i
\(685\) −187.945 7.08069i −0.274373 0.0103368i
\(686\) −460.643 152.007i −0.671491 0.221584i
\(687\) 83.9212 102.194i 0.122156 0.148754i
\(688\) −177.427 47.5414i −0.257888 0.0691008i
\(689\) 130.058 + 75.0889i 0.188763 + 0.108982i
\(690\) −124.709 + 249.578i −0.180737 + 0.361708i
\(691\) −30.3995 + 17.5512i −0.0439935 + 0.0253996i −0.521835 0.853046i \(-0.674752\pi\)
0.477842 + 0.878446i \(0.341419\pi\)
\(692\) −172.374 172.374i −0.249095 0.249095i
\(693\) −666.062 + 118.970i −0.961128 + 0.171673i
\(694\) 101.859i 0.146771i
\(695\) −247.744 + 802.436i −0.356466 + 1.15458i
\(696\) −76.6355 + 168.999i −0.110109 + 0.242815i
\(697\) −669.759 + 179.461i −0.960917 + 0.257477i
\(698\) 352.280 + 94.3933i 0.504700 + 0.135234i
\(699\) 91.2662 8.96047i 0.130567 0.0128190i
\(700\) −145.684 318.239i −0.208120 0.454627i
\(701\) 1035.40i 1.47703i 0.674238 + 0.738514i \(0.264472\pi\)
−0.674238 + 0.738514i \(0.735528\pi\)
\(702\) −5.64010 177.312i −0.00803432 0.252582i
\(703\) 85.2980 22.8555i 0.121334 0.0325114i
\(704\) −42.9589 + 74.4070i −0.0610212 + 0.105692i
\(705\) −209.398 + 1024.62i −0.297019 + 1.45337i
\(706\) 184.293i 0.261038i
\(707\) −672.192 + 1114.86i −0.950767 + 1.57689i
\(708\) 36.1253 43.9911i 0.0510244 0.0621343i
\(709\) −362.406 + 209.235i −0.511151 + 0.295113i −0.733307 0.679898i \(-0.762024\pi\)
0.222156 + 0.975011i \(0.428691\pi\)
\(710\) −494.857 311.117i −0.696982 0.438192i
\(711\) 92.1806 271.005i 0.129649 0.381160i
\(712\) −429.540 115.095i −0.603287 0.161650i
\(713\) −433.732 + 433.732i −0.608320 + 0.608320i
\(714\) 164.626 + 464.377i 0.230568 + 0.650388i
\(715\) 249.307 + 9.39246i 0.348682 + 0.0131363i
\(716\) 111.013 64.0933i 0.155046 0.0895158i
\(717\) −225.693 600.214i −0.314774 0.837118i
\(718\) 230.886 + 861.678i 0.321568 + 1.20011i
\(719\) −393.739 + 227.325i −0.547621 + 0.316169i −0.748162 0.663516i \(-0.769063\pi\)
0.200541 + 0.979685i \(0.435730\pi\)
\(720\) 105.656 145.728i 0.146745 0.202400i
\(721\) −147.054 + 509.902i −0.203959 + 0.707214i
\(722\) −356.623 + 356.623i −0.493938 + 0.493938i
\(723\) −35.9668 + 217.430i −0.0497466 + 0.300733i
\(724\) 305.611 529.333i 0.422114 0.731123i
\(725\) 451.564 + 308.211i 0.622847 + 0.425118i
\(726\) −19.5171 + 13.9766i −0.0268831 + 0.0192516i
\(727\) −707.691 + 707.691i −0.973441 + 0.973441i −0.999656 0.0262157i \(-0.991654\pi\)
0.0262157 + 0.999656i \(0.491654\pi\)
\(728\) −1.74572 + 91.9696i −0.00239797 + 0.126332i
\(729\) 403.886 + 606.891i 0.554028 + 0.832498i
\(730\) 192.338 622.978i 0.263477 0.853394i
\(731\) 380.916 659.766i 0.521089 0.902552i
\(732\) 246.274 + 654.947i 0.336440 + 0.894737i
\(733\) −216.868 + 809.364i −0.295864 + 1.10418i 0.644664 + 0.764466i \(0.276997\pi\)
−0.940529 + 0.339715i \(0.889670\pi\)
\(734\) 226.936i 0.309177i
\(735\) −734.818 + 16.3531i −0.999752 + 0.0222492i
\(736\) 74.4002 0.101087
\(737\) −24.2298 6.49236i −0.0328763 0.00880917i
\(738\) 477.256 234.990i 0.646689 0.318415i
\(739\) 605.923 + 349.830i 0.819923 + 0.473383i 0.850390 0.526153i \(-0.176366\pi\)
−0.0304668 + 0.999536i \(0.509699\pi\)
\(740\) −197.132 373.223i −0.266394 0.504356i
\(741\) −29.0210 + 2.84927i −0.0391646 + 0.00384516i
\(742\) 319.934 + 6.07283i 0.431179 + 0.00818441i
\(743\) 116.105 + 116.105i 0.156265 + 0.156265i 0.780910 0.624644i \(-0.214756\pi\)
−0.624644 + 0.780910i \(0.714756\pi\)
\(744\) 321.742 230.407i 0.432449 0.309687i
\(745\) −1344.07 + 306.413i −1.80413 + 0.411293i
\(746\) 5.02976 + 2.90393i 0.00674231 + 0.00389267i
\(747\) −31.1607 + 470.962i −0.0417145 + 0.630471i
\(748\) −251.972 251.972i −0.336861 0.336861i
\(749\) 890.003 + 256.675i 1.18825 + 0.342690i
\(750\) −369.294 380.621i −0.492392 0.507494i
\(751\) −533.815 924.595i −0.710806 1.23115i −0.964555 0.263882i \(-0.914997\pi\)
0.253749 0.967270i \(-0.418336\pi\)
\(752\) 269.378 72.1796i 0.358215 0.0959835i
\(753\) −248.160 659.963i −0.329562 0.876445i
\(754\) −71.8441 124.438i −0.0952839 0.165037i
\(755\) −411.465 443.682i −0.544987 0.587659i
\(756\) −193.181 324.908i −0.255530 0.429772i
\(757\) 549.837 + 549.837i 0.726336 + 0.726336i 0.969888 0.243552i \(-0.0783125\pi\)
−0.243552 + 0.969888i \(0.578313\pi\)
\(758\) −103.263 + 385.382i −0.136230 + 0.508419i
\(759\) −385.928 175.006i −0.508470 0.230574i
\(760\)