Properties

Label 210.3.w.a.17.10
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.10
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(0.941591 - 2.84840i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.72423 - 4.19268i) q^{5} +(-2.32883 + 3.54635i) q^{6} +(-5.35730 - 4.50548i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-7.22681 - 5.36406i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(0.941591 - 2.84840i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.72423 - 4.19268i) q^{5} +(-2.32883 + 3.54635i) q^{6} +(-5.35730 - 4.50548i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-7.22681 - 5.36406i) q^{9} +(-5.25600 + 4.73017i) q^{10} +(-8.15539 - 4.70851i) q^{11} +(4.47929 - 3.99199i) q^{12} +(16.1515 + 16.1515i) q^{13} +(5.66909 + 8.11550i) q^{14} +(-9.37733 - 11.7075i) q^{15} +(2.00000 + 3.46410i) q^{16} +(9.03315 - 2.42042i) q^{17} +(7.90863 + 9.97265i) q^{18} +(-13.1762 - 22.8218i) q^{19} +(8.91119 - 4.53770i) q^{20} +(-17.8778 + 11.0174i) q^{21} +(9.41703 + 9.41703i) q^{22} +(-6.16910 + 23.0234i) q^{23} +(-7.57999 + 3.81363i) q^{24} +(-10.1571 - 22.8437i) q^{25} +(-16.1515 - 27.9753i) q^{26} +(-22.0837 + 15.5341i) q^{27} +(-4.77364 - 13.1610i) q^{28} -34.0152 q^{29} +(8.52443 + 19.4251i) q^{30} +(2.88724 + 1.66695i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-21.0908 + 18.7963i) q^{33} -13.2254 q^{34} +(-33.4846 + 10.1875i) q^{35} +(-7.15314 - 16.5176i) q^{36} +(12.3909 - 46.2436i) q^{37} +(9.64561 + 35.9979i) q^{38} +(61.2143 - 30.7980i) q^{39} +(-13.8338 + 2.93689i) q^{40} -3.31953 q^{41} +(28.4542 - 8.50638i) q^{42} +(28.9282 - 28.9282i) q^{43} +(-9.41703 - 16.3108i) q^{44} +(-42.1773 + 15.6867i) q^{45} +(16.8543 - 29.1925i) q^{46} +(-0.830153 + 3.09817i) q^{47} +(11.7503 - 2.43504i) q^{48} +(8.40136 + 48.2744i) q^{49} +(5.51351 + 34.9228i) q^{50} +(1.61118 - 28.0091i) q^{51} +(11.8238 + 44.1269i) q^{52} +(56.7679 - 15.2109i) q^{53} +(35.8528 - 13.1368i) q^{54} +(-41.9585 + 21.3658i) q^{55} +(1.70365 + 19.7256i) q^{56} +(-77.4122 + 16.0422i) q^{57} +(46.4657 + 12.4504i) q^{58} +(-33.5947 - 19.3959i) q^{59} +(-4.53451 - 29.6553i) q^{60} +(80.5416 - 46.5007i) q^{61} +(-3.33389 - 3.33389i) q^{62} +(14.5485 + 61.2971i) q^{63} +8.00000i q^{64} +(111.719 - 23.7177i) q^{65} +(35.6905 - 17.9565i) q^{66} +(3.66385 - 0.981726i) q^{67} +(18.0663 + 4.84085i) q^{68} +(59.7712 + 39.2507i) q^{69} +(49.4696 - 1.66015i) q^{70} +26.4798i q^{71} +(3.72550 + 25.1818i) q^{72} +(27.3096 - 7.31758i) q^{73} +(-33.8527 + 58.6345i) q^{74} +(-74.6318 + 7.42216i) q^{75} -52.7046i q^{76} +(22.4768 + 61.9688i) q^{77} +(-94.8931 + 19.6648i) q^{78} +(38.5758 - 22.2717i) q^{79} +(19.9723 + 1.05166i) q^{80} +(23.4536 + 77.5302i) q^{81} +(4.53456 + 1.21503i) q^{82} +(70.6898 - 70.6898i) q^{83} +(-41.9827 + 1.20496i) q^{84} +(14.4603 - 44.4669i) q^{85} +(-50.1051 + 28.9282i) q^{86} +(-32.0285 + 96.8892i) q^{87} +(6.89374 + 25.7278i) q^{88} +(118.139 - 68.2077i) q^{89} +(63.3570 - 5.99052i) q^{90} +(-13.7583 - 159.299i) q^{91} +(-33.7086 + 33.7086i) q^{92} +(7.46673 - 6.65443i) q^{93} +(2.26802 - 3.92833i) q^{94} +(-131.579 - 6.92843i) q^{95} +(-16.9426 - 0.974597i) q^{96} +(-118.552 + 118.552i) q^{97} +(6.19318 - 69.0192i) q^{98} +(33.6807 + 77.7736i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 0.941591 2.84840i 0.313864 0.949468i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 2.72423 4.19268i 0.544847 0.838536i
\(6\) −2.32883 + 3.54635i −0.388138 + 0.591058i
\(7\) −5.35730 4.50548i −0.765329 0.643640i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −7.22681 5.36406i −0.802979 0.596007i
\(10\) −5.25600 + 4.73017i −0.525600 + 0.473017i
\(11\) −8.15539 4.70851i −0.741399 0.428047i 0.0811789 0.996700i \(-0.474131\pi\)
−0.822578 + 0.568653i \(0.807465\pi\)
\(12\) 4.47929 3.99199i 0.373274 0.332666i
\(13\) 16.1515 + 16.1515i 1.24243 + 1.24243i 0.958991 + 0.283436i \(0.0914742\pi\)
0.283436 + 0.958991i \(0.408526\pi\)
\(14\) 5.66909 + 8.11550i 0.404935 + 0.579679i
\(15\) −9.37733 11.7075i −0.625155 0.780500i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 9.03315 2.42042i 0.531362 0.142378i 0.0168447 0.999858i \(-0.494638\pi\)
0.514517 + 0.857480i \(0.327971\pi\)
\(18\) 7.90863 + 9.97265i 0.439368 + 0.554036i
\(19\) −13.1762 22.8218i −0.693482 1.20115i −0.970690 0.240336i \(-0.922742\pi\)
0.277208 0.960810i \(-0.410591\pi\)
\(20\) 8.91119 4.53770i 0.445559 0.226885i
\(21\) −17.8778 + 11.0174i −0.851324 + 0.524640i
\(22\) 9.41703 + 9.41703i 0.428047 + 0.428047i
\(23\) −6.16910 + 23.0234i −0.268222 + 1.00102i 0.692027 + 0.721872i \(0.256718\pi\)
−0.960249 + 0.279146i \(0.909949\pi\)
\(24\) −7.57999 + 3.81363i −0.315833 + 0.158901i
\(25\) −10.1571 22.8437i −0.406284 0.913747i
\(26\) −16.1515 27.9753i −0.621213 1.07597i
\(27\) −22.0837 + 15.5341i −0.817916 + 0.575338i
\(28\) −4.77364 13.1610i −0.170487 0.470036i
\(29\) −34.0152 −1.17294 −0.586470 0.809971i \(-0.699483\pi\)
−0.586470 + 0.809971i \(0.699483\pi\)
\(30\) 8.52443 + 19.4251i 0.284148 + 0.647503i
\(31\) 2.88724 + 1.66695i 0.0931366 + 0.0537724i 0.545845 0.837886i \(-0.316209\pi\)
−0.452708 + 0.891659i \(0.649542\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −21.0908 + 18.7963i −0.639115 + 0.569586i
\(34\) −13.2254 −0.388984
\(35\) −33.4846 + 10.1875i −0.956702 + 0.291071i
\(36\) −7.15314 16.5176i −0.198698 0.458823i
\(37\) 12.3909 46.2436i 0.334890 1.24983i −0.569098 0.822270i \(-0.692708\pi\)
0.903988 0.427557i \(-0.140626\pi\)
\(38\) 9.64561 + 35.9979i 0.253832 + 0.947314i
\(39\) 61.2143 30.7980i 1.56960 0.789692i
\(40\) −13.8338 + 2.93689i −0.345846 + 0.0734223i
\(41\) −3.31953 −0.0809641 −0.0404820 0.999180i \(-0.512889\pi\)
−0.0404820 + 0.999180i \(0.512889\pi\)
\(42\) 28.4542 8.50638i 0.677481 0.202533i
\(43\) 28.9282 28.9282i 0.672749 0.672749i −0.285600 0.958349i \(-0.592193\pi\)
0.958349 + 0.285600i \(0.0921928\pi\)
\(44\) −9.41703 16.3108i −0.214023 0.370699i
\(45\) −42.1773 + 15.6867i −0.937274 + 0.348594i
\(46\) 16.8543 29.1925i 0.366398 0.634620i
\(47\) −0.830153 + 3.09817i −0.0176628 + 0.0659186i −0.974195 0.225709i \(-0.927530\pi\)
0.956532 + 0.291628i \(0.0941968\pi\)
\(48\) 11.7503 2.43504i 0.244799 0.0507300i
\(49\) 8.40136 + 48.2744i 0.171456 + 0.985192i
\(50\) 5.51351 + 34.9228i 0.110270 + 0.698456i
\(51\) 1.61118 28.0091i 0.0315919 0.549198i
\(52\) 11.8238 + 44.1269i 0.227380 + 0.848593i
\(53\) 56.7679 15.2109i 1.07109 0.286998i 0.320151 0.947367i \(-0.396266\pi\)
0.750942 + 0.660368i \(0.229600\pi\)
\(54\) 35.8528 13.1368i 0.663941 0.243274i
\(55\) −41.9585 + 21.3658i −0.762881 + 0.388470i
\(56\) 1.70365 + 19.7256i 0.0304223 + 0.352242i
\(57\) −77.4122 + 16.0422i −1.35811 + 0.281443i
\(58\) 46.4657 + 12.4504i 0.801133 + 0.214663i
\(59\) −33.5947 19.3959i −0.569402 0.328744i 0.187508 0.982263i \(-0.439959\pi\)
−0.756910 + 0.653519i \(0.773292\pi\)
\(60\) −4.53451 29.6553i −0.0755751 0.494255i
\(61\) 80.5416 46.5007i 1.32035 0.762307i 0.336569 0.941659i \(-0.390733\pi\)
0.983785 + 0.179352i \(0.0574002\pi\)
\(62\) −3.33389 3.33389i −0.0537724 0.0537724i
\(63\) 14.5485 + 61.2971i 0.230929 + 0.972971i
\(64\) 8.00000i 0.125000i
\(65\) 111.719 23.7177i 1.71875 0.364887i
\(66\) 35.6905 17.9565i 0.540765 0.272068i
\(67\) 3.66385 0.981726i 0.0546844 0.0146526i −0.231373 0.972865i \(-0.574322\pi\)
0.286058 + 0.958212i \(0.407655\pi\)
\(68\) 18.0663 + 4.84085i 0.265681 + 0.0711890i
\(69\) 59.7712 + 39.2507i 0.866249 + 0.568851i
\(70\) 49.4696 1.66015i 0.706709 0.0237165i
\(71\) 26.4798i 0.372956i 0.982459 + 0.186478i \(0.0597072\pi\)
−0.982459 + 0.186478i \(0.940293\pi\)
\(72\) 3.72550 + 25.1818i 0.0517430 + 0.349747i
\(73\) 27.3096 7.31758i 0.374104 0.100241i −0.0668679 0.997762i \(-0.521301\pi\)
0.440972 + 0.897521i \(0.354634\pi\)
\(74\) −33.8527 + 58.6345i −0.457468 + 0.792358i
\(75\) −74.6318 + 7.42216i −0.995091 + 0.0989621i
\(76\) 52.7046i 0.693482i
\(77\) 22.4768 + 61.9688i 0.291906 + 0.804790i
\(78\) −94.8931 + 19.6648i −1.21658 + 0.252113i
\(79\) 38.5758 22.2717i 0.488301 0.281921i −0.235568 0.971858i \(-0.575695\pi\)
0.723869 + 0.689937i \(0.242362\pi\)
\(80\) 19.9723 + 1.05166i 0.249654 + 0.0131458i
\(81\) 23.4536 + 77.5302i 0.289551 + 0.957163i
\(82\) 4.53456 + 1.21503i 0.0552995 + 0.0148175i
\(83\) 70.6898 70.6898i 0.851684 0.851684i −0.138656 0.990341i \(-0.544278\pi\)
0.990341 + 0.138656i \(0.0442783\pi\)
\(84\) −41.9827 + 1.20496i −0.499794 + 0.0143448i
\(85\) 14.4603 44.4669i 0.170122 0.523140i
\(86\) −50.1051 + 28.9282i −0.582618 + 0.336375i
\(87\) −32.0285 + 96.8892i −0.368143 + 1.11367i
\(88\) 6.89374 + 25.7278i 0.0783380 + 0.292361i
\(89\) 118.139 68.2077i 1.32741 0.766378i 0.342509 0.939515i \(-0.388723\pi\)
0.984898 + 0.173136i \(0.0553901\pi\)
\(90\) 63.3570 5.99052i 0.703967 0.0665613i
\(91\) −13.7583 159.299i −0.151190 1.75054i
\(92\) −33.7086 + 33.7086i −0.366398 + 0.366398i
\(93\) 7.46673 6.65443i 0.0802874 0.0715530i
\(94\) 2.26802 3.92833i 0.0241279 0.0417907i
\(95\) −131.579 6.92843i −1.38504 0.0729309i
\(96\) −16.9426 0.974597i −0.176485 0.0101521i
\(97\) −118.552 + 118.552i −1.22219 + 1.22219i −0.255332 + 0.966853i \(0.582185\pi\)
−0.966853 + 0.255332i \(0.917815\pi\)
\(98\) 6.19318 69.0192i 0.0631958 0.704277i
\(99\) 33.6807 + 77.7736i 0.340209 + 0.785592i
\(100\) 5.25104 49.7235i 0.0525104 0.497235i
\(101\) −18.5919 + 32.2022i −0.184078 + 0.318833i −0.943266 0.332039i \(-0.892263\pi\)
0.759187 + 0.650872i \(0.225597\pi\)
\(102\) −12.4530 + 37.6714i −0.122088 + 0.369328i
\(103\) 8.29623 30.9619i 0.0805459 0.300601i −0.913888 0.405967i \(-0.866935\pi\)
0.994434 + 0.105366i \(0.0336014\pi\)
\(104\) 64.6062i 0.621213i
\(105\) −2.51071 + 104.970i −0.0239115 + 0.999714i
\(106\) −83.1140 −0.784094
\(107\) 172.109 + 46.1165i 1.60850 + 0.430995i 0.947594 0.319477i \(-0.103507\pi\)
0.660902 + 0.750472i \(0.270174\pi\)
\(108\) −53.7843 + 4.82217i −0.498002 + 0.0446497i
\(109\) 8.16589 + 4.71458i 0.0749165 + 0.0432530i 0.536990 0.843588i \(-0.319561\pi\)
−0.462074 + 0.886841i \(0.652894\pi\)
\(110\) 65.1368 13.8284i 0.592152 0.125713i
\(111\) −120.053 78.8369i −1.08156 0.710243i
\(112\) 4.89283 27.5692i 0.0436859 0.246153i
\(113\) 89.8897 + 89.8897i 0.795485 + 0.795485i 0.982380 0.186895i \(-0.0598425\pi\)
−0.186895 + 0.982380i \(0.559843\pi\)
\(114\) 111.619 + 6.42072i 0.979113 + 0.0563221i
\(115\) 79.7237 + 88.5862i 0.693249 + 0.770315i
\(116\) −58.9161 34.0152i −0.507898 0.293235i
\(117\) −30.0863 203.362i −0.257148 1.73814i
\(118\) 38.7918 + 38.7918i 0.328744 + 0.328744i
\(119\) −59.2985 27.7317i −0.498306 0.233039i
\(120\) −4.66035 + 42.1697i −0.0388363 + 0.351414i
\(121\) −16.1598 27.9896i −0.133552 0.231319i
\(122\) −127.042 + 34.0409i −1.04133 + 0.279024i
\(123\) −3.12564 + 9.45535i −0.0254117 + 0.0768728i
\(124\) 3.33389 + 5.77447i 0.0268862 + 0.0465683i
\(125\) −123.446 19.6460i −0.987572 0.157168i
\(126\) 2.56263 89.0586i 0.0203383 0.706814i
\(127\) −25.5424 25.5424i −0.201122 0.201122i 0.599359 0.800480i \(-0.295422\pi\)
−0.800480 + 0.599359i \(0.795422\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) −55.1607 109.638i −0.427602 0.849906i
\(130\) −161.292 8.49299i −1.24071 0.0653307i
\(131\) −73.8696 127.946i −0.563890 0.976686i −0.997152 0.0754183i \(-0.975971\pi\)
0.433262 0.901268i \(-0.357363\pi\)
\(132\) −55.3267 + 11.4654i −0.419141 + 0.0868593i
\(133\) −32.2343 + 181.628i −0.242363 + 1.36562i
\(134\) −5.36425 −0.0400317
\(135\) 4.96838 + 134.909i 0.0368028 + 0.999323i
\(136\) −22.9071 13.2254i −0.168435 0.0972459i
\(137\) −55.4124 206.802i −0.404470 1.50950i −0.805031 0.593233i \(-0.797851\pi\)
0.400561 0.916270i \(-0.368815\pi\)
\(138\) −67.2822 75.4953i −0.487552 0.547067i
\(139\) 14.1012 0.101447 0.0507237 0.998713i \(-0.483847\pi\)
0.0507237 + 0.998713i \(0.483847\pi\)
\(140\) −68.1844 15.8393i −0.487032 0.113138i
\(141\) 8.04318 + 5.28182i 0.0570439 + 0.0374597i
\(142\) 9.69230 36.1721i 0.0682556 0.254733i
\(143\) −55.6723 207.772i −0.389317 1.45295i
\(144\) 4.12804 35.7625i 0.0286669 0.248351i
\(145\) −92.6655 + 142.615i −0.639072 + 0.983552i
\(146\) −39.9840 −0.273863
\(147\) 145.416 + 21.5243i 0.989222 + 0.146424i
\(148\) 67.7053 67.7053i 0.457468 0.457468i
\(149\) 49.5021 + 85.7402i 0.332229 + 0.575437i 0.982949 0.183881i \(-0.0588660\pi\)
−0.650720 + 0.759318i \(0.725533\pi\)
\(150\) 104.666 + 17.1783i 0.697771 + 0.114522i
\(151\) 82.2460 142.454i 0.544675 0.943406i −0.453952 0.891026i \(-0.649986\pi\)
0.998627 0.0523793i \(-0.0166805\pi\)
\(152\) −19.2912 + 71.9958i −0.126916 + 0.473657i
\(153\) −78.2642 30.9624i −0.511531 0.202369i
\(154\) −8.02166 92.8781i −0.0520887 0.603104i
\(155\) 14.8545 7.56410i 0.0958353 0.0488006i
\(156\) 136.824 + 7.87062i 0.877079 + 0.0504527i
\(157\) −18.0786 67.4702i −0.115150 0.429746i 0.884148 0.467207i \(-0.154740\pi\)
−0.999298 + 0.0374608i \(0.988073\pi\)
\(158\) −60.8475 + 16.3040i −0.385111 + 0.103190i
\(159\) 10.1253 176.020i 0.0636813 1.10705i
\(160\) −26.8978 8.74698i −0.168111 0.0546686i
\(161\) 136.781 95.5486i 0.849572 0.593469i
\(162\) −3.66024 114.493i −0.0225941 0.706746i
\(163\) −149.425 40.0383i −0.916719 0.245634i −0.230536 0.973064i \(-0.574048\pi\)
−0.686182 + 0.727430i \(0.740715\pi\)
\(164\) −5.74959 3.31953i −0.0350585 0.0202410i
\(165\) 21.3508 + 139.633i 0.129399 + 0.846258i
\(166\) −122.438 + 70.6898i −0.737580 + 0.425842i
\(167\) 55.1776 + 55.1776i 0.330405 + 0.330405i 0.852740 0.522336i \(-0.174939\pi\)
−0.522336 + 0.852740i \(0.674939\pi\)
\(168\) 57.7905 + 13.7207i 0.343991 + 0.0816710i
\(169\) 352.745i 2.08725i
\(170\) −36.0292 + 55.4500i −0.211936 + 0.326177i
\(171\) −27.1958 + 235.606i −0.159040 + 1.37781i
\(172\) 79.0334 21.1769i 0.459496 0.123122i
\(173\) 128.947 + 34.5513i 0.745359 + 0.199718i 0.611459 0.791276i \(-0.290583\pi\)
0.133901 + 0.990995i \(0.457250\pi\)
\(174\) 79.2156 120.630i 0.455262 0.693275i
\(175\) −48.5069 + 168.143i −0.277182 + 0.960817i
\(176\) 37.6681i 0.214023i
\(177\) −86.8799 + 77.4283i −0.490847 + 0.437448i
\(178\) −186.347 + 49.9315i −1.04689 + 0.280514i
\(179\) −127.018 + 220.002i −0.709598 + 1.22906i 0.255409 + 0.966833i \(0.417790\pi\)
−0.965006 + 0.262226i \(0.915543\pi\)
\(180\) −88.7400 15.0071i −0.493000 0.0833727i
\(181\) 307.420i 1.69846i 0.528027 + 0.849228i \(0.322932\pi\)
−0.528027 + 0.849228i \(0.677068\pi\)
\(182\) −39.5134 + 222.643i −0.217106 + 1.22331i
\(183\) −56.6156 273.200i −0.309375 1.49289i
\(184\) 58.3850 33.7086i 0.317310 0.183199i
\(185\) −160.129 177.930i −0.865561 0.961781i
\(186\) −12.6354 + 6.35711i −0.0679324 + 0.0341780i
\(187\) −85.0654 22.7932i −0.454895 0.121889i
\(188\) −4.53604 + 4.53604i −0.0241279 + 0.0241279i
\(189\) 188.298 + 16.2767i 0.996285 + 0.0861202i
\(190\) 177.205 + 57.6258i 0.932656 + 0.303293i
\(191\) −124.117 + 71.6590i −0.649828 + 0.375178i −0.788390 0.615176i \(-0.789085\pi\)
0.138563 + 0.990354i \(0.455752\pi\)
\(192\) 22.7872 + 7.53273i 0.118684 + 0.0392330i
\(193\) 73.6622 + 274.911i 0.381670 + 1.42441i 0.843350 + 0.537364i \(0.180580\pi\)
−0.461681 + 0.887046i \(0.652753\pi\)
\(194\) 205.338 118.552i 1.05844 0.611093i
\(195\) 37.6360 340.553i 0.193005 1.74642i
\(196\) −33.7228 + 92.0151i −0.172055 + 0.469465i
\(197\) 126.936 126.936i 0.644345 0.644345i −0.307276 0.951621i \(-0.599417\pi\)
0.951621 + 0.307276i \(0.0994173\pi\)
\(198\) −17.5416 118.569i −0.0885937 0.598832i
\(199\) 43.5943 75.5075i 0.219067 0.379435i −0.735456 0.677572i \(-0.763032\pi\)
0.954523 + 0.298137i \(0.0963654\pi\)
\(200\) −25.3731 + 66.0016i −0.126866 + 0.330008i
\(201\) 0.653498 11.3605i 0.00325123 0.0565200i
\(202\) 37.1839 37.1839i 0.184078 0.184078i
\(203\) 182.230 + 153.255i 0.897684 + 0.754950i
\(204\) 30.7998 46.9020i 0.150979 0.229912i
\(205\) −9.04316 + 13.9177i −0.0441130 + 0.0678913i
\(206\) −22.6657 + 39.2582i −0.110028 + 0.190574i
\(207\) 168.082 133.294i 0.811990 0.643934i
\(208\) −23.6475 + 88.2537i −0.113690 + 0.424297i
\(209\) 248.160i 1.18737i
\(210\) 41.8514 142.473i 0.199292 0.678441i
\(211\) 285.530 1.35322 0.676612 0.736340i \(-0.263448\pi\)
0.676612 + 0.736340i \(0.263448\pi\)
\(212\) 113.536 + 30.4218i 0.535546 + 0.143499i
\(213\) 75.4253 + 24.9332i 0.354109 + 0.117057i
\(214\) −218.226 125.993i −1.01975 0.588750i
\(215\) −42.4795 200.094i −0.197579 0.930669i
\(216\) 75.2357 + 13.0992i 0.348313 + 0.0606444i
\(217\) −7.95740 21.9387i −0.0366701 0.101100i
\(218\) −9.42916 9.42916i −0.0432530 0.0432530i
\(219\) 4.87103 84.6789i 0.0222422 0.386661i
\(220\) −94.0400 4.95177i −0.427455 0.0225080i
\(221\) 184.993 + 106.806i 0.837072 + 0.483284i
\(222\) 135.139 + 151.636i 0.608736 + 0.683044i
\(223\) −92.5468 92.5468i −0.415008 0.415008i 0.468471 0.883479i \(-0.344805\pi\)
−0.883479 + 0.468471i \(0.844805\pi\)
\(224\) −16.7747 + 35.8693i −0.0748873 + 0.160131i
\(225\) −49.1314 + 219.570i −0.218362 + 0.975868i
\(226\) −89.8897 155.694i −0.397742 0.688910i
\(227\) −20.2708 + 5.43155i −0.0892988 + 0.0239275i −0.303192 0.952930i \(-0.598052\pi\)
0.213893 + 0.976857i \(0.431386\pi\)
\(228\) −150.124 49.6262i −0.658439 0.217659i
\(229\) −148.758 257.656i −0.649596 1.12513i −0.983219 0.182427i \(-0.941605\pi\)
0.333623 0.942707i \(-0.391729\pi\)
\(230\) −76.4798 150.192i −0.332521 0.653008i
\(231\) 197.676 5.67359i 0.855741 0.0245610i
\(232\) 68.0305 + 68.0305i 0.293235 + 0.293235i
\(233\) −4.96446 + 18.5276i −0.0213067 + 0.0795176i −0.975761 0.218841i \(-0.929772\pi\)
0.954454 + 0.298358i \(0.0964391\pi\)
\(234\) −33.3371 + 288.810i −0.142466 + 1.23423i
\(235\) 10.7281 + 11.9207i 0.0456515 + 0.0507264i
\(236\) −38.7918 67.1894i −0.164372 0.284701i
\(237\) −27.1163 130.850i −0.114415 0.552111i
\(238\) 70.8527 + 59.5869i 0.297700 + 0.250365i
\(239\) −138.243 −0.578425 −0.289212 0.957265i \(-0.593393\pi\)
−0.289212 + 0.957265i \(0.593393\pi\)
\(240\) 21.8013 55.8990i 0.0908389 0.232913i
\(241\) −195.863 113.081i −0.812708 0.469217i 0.0351871 0.999381i \(-0.488797\pi\)
−0.847896 + 0.530163i \(0.822131\pi\)
\(242\) 11.8298 + 44.1493i 0.0488834 + 0.182435i
\(243\) 242.921 + 6.19632i 0.999675 + 0.0254993i
\(244\) 186.003 0.762307
\(245\) 225.286 + 96.2865i 0.919536 + 0.393006i
\(246\) 7.73060 11.7722i 0.0314252 0.0478544i
\(247\) 155.792 581.422i 0.630735 2.35394i
\(248\) −2.44058 9.10836i −0.00984104 0.0367273i
\(249\) −134.792 267.914i −0.541334 1.07596i
\(250\) 161.440 + 72.0215i 0.645760 + 0.288086i
\(251\) −172.595 −0.687631 −0.343816 0.939037i \(-0.611720\pi\)
−0.343816 + 0.939037i \(0.611720\pi\)
\(252\) −36.0983 + 120.718i −0.143247 + 0.479041i
\(253\) 158.717 158.717i 0.627342 0.627342i
\(254\) 25.5424 + 44.2408i 0.100561 + 0.174176i
\(255\) −113.044 83.0585i −0.443310 0.325720i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −122.676 + 457.834i −0.477339 + 1.78145i 0.134985 + 0.990848i \(0.456901\pi\)
−0.612324 + 0.790607i \(0.709765\pi\)
\(258\) 35.2207 + 169.958i 0.136514 + 0.658753i
\(259\) −274.731 + 191.914i −1.06074 + 0.740980i
\(260\) 217.220 + 70.6386i 0.835463 + 0.271687i
\(261\) 245.822 + 182.460i 0.941846 + 0.699080i
\(262\) 54.0763 + 201.816i 0.206398 + 0.770288i
\(263\) 272.280 72.9572i 1.03529 0.277404i 0.299127 0.954213i \(-0.403305\pi\)
0.736158 + 0.676809i \(0.236638\pi\)
\(264\) 79.7743 + 4.58890i 0.302175 + 0.0173822i
\(265\) 90.8746 279.448i 0.342923 1.05452i
\(266\) 110.513 236.310i 0.415464 0.888383i
\(267\) −83.0442 400.732i −0.311027 1.50087i
\(268\) 7.32770 + 1.96345i 0.0273422 + 0.00732631i
\(269\) −106.164 61.2938i −0.394662 0.227858i 0.289516 0.957173i \(-0.406506\pi\)
−0.684178 + 0.729315i \(0.739839\pi\)
\(270\) 42.5930 186.107i 0.157752 0.689285i
\(271\) −88.7006 + 51.2113i −0.327308 + 0.188972i −0.654645 0.755936i \(-0.727182\pi\)
0.327337 + 0.944908i \(0.393849\pi\)
\(272\) 26.4509 + 26.4509i 0.0972459 + 0.0972459i
\(273\) −466.703 110.805i −1.70953 0.405881i
\(274\) 302.779i 1.10503i
\(275\) −24.7246 + 234.124i −0.0899076 + 0.851359i
\(276\) 64.2760 + 127.755i 0.232884 + 0.462882i
\(277\) 210.515 56.4074i 0.759983 0.203637i 0.142042 0.989861i \(-0.454633\pi\)
0.617942 + 0.786224i \(0.287967\pi\)
\(278\) −19.2626 5.16139i −0.0692898 0.0185662i
\(279\) −11.9239 27.5340i −0.0427380 0.0986882i
\(280\) 87.3441 + 46.5942i 0.311943 + 0.166408i
\(281\) 160.860i 0.572457i 0.958161 + 0.286228i \(0.0924016\pi\)
−0.958161 + 0.286228i \(0.907598\pi\)
\(282\) −9.05391 10.1591i −0.0321061 0.0360252i
\(283\) −114.655 + 30.7218i −0.405143 + 0.108558i −0.455635 0.890167i \(-0.650588\pi\)
0.0504921 + 0.998724i \(0.483921\pi\)
\(284\) −26.4798 + 45.8644i −0.0932389 + 0.161494i
\(285\) −143.629 + 368.267i −0.503961 + 1.29217i
\(286\) 304.199i 1.06363i
\(287\) 17.7837 + 14.9561i 0.0619641 + 0.0521117i
\(288\) −18.7290 + 47.3416i −0.0650313 + 0.164380i
\(289\) −174.542 + 100.772i −0.603952 + 0.348692i
\(290\) 178.784 160.898i 0.616497 0.554820i
\(291\) 226.056 + 449.311i 0.776826 + 1.54403i
\(292\) 54.6191 + 14.6352i 0.187052 + 0.0501204i
\(293\) −38.3008 + 38.3008i −0.130719 + 0.130719i −0.769439 0.638720i \(-0.779464\pi\)
0.638720 + 0.769439i \(0.279464\pi\)
\(294\) −190.763 82.6285i −0.648854 0.281049i
\(295\) −172.841 + 88.0129i −0.585901 + 0.298349i
\(296\) −117.269 + 67.7053i −0.396179 + 0.228734i
\(297\) 253.244 22.7053i 0.852673 0.0764487i
\(298\) −36.2381 135.242i −0.121604 0.453833i
\(299\) −471.504 + 272.223i −1.57694 + 0.910445i
\(300\) −136.688 61.7763i −0.455628 0.205921i
\(301\) −285.313 + 24.6418i −0.947882 + 0.0818664i
\(302\) −164.492 + 164.492i −0.544675 + 0.544675i
\(303\) 74.2188 + 83.2786i 0.244946 + 0.274847i
\(304\) 52.7046 91.2871i 0.173370 0.300286i
\(305\) 24.4515 464.364i 0.0801689 1.52250i
\(306\) 95.5778 + 70.9421i 0.312346 + 0.231837i
\(307\) −178.315 + 178.315i −0.580830 + 0.580830i −0.935131 0.354301i \(-0.884719\pi\)
0.354301 + 0.935131i \(0.384719\pi\)
\(308\) −23.0379 + 129.810i −0.0747985 + 0.421461i
\(309\) −80.3805 52.7845i −0.260131 0.170824i
\(310\) −23.0602 + 4.89564i −0.0743879 + 0.0157924i
\(311\) 36.9045 63.9205i 0.118664 0.205532i −0.800574 0.599233i \(-0.795472\pi\)
0.919238 + 0.393701i \(0.128806\pi\)
\(312\) −184.025 60.8326i −0.589822 0.194976i
\(313\) 57.2987 213.842i 0.183063 0.683201i −0.811974 0.583694i \(-0.801607\pi\)
0.995037 0.0995068i \(-0.0317265\pi\)
\(314\) 98.7832i 0.314596i
\(315\) 296.633 + 105.990i 0.941692 + 0.336477i
\(316\) 89.0870 0.281921
\(317\) −137.782 36.9186i −0.434644 0.116463i 0.0348611 0.999392i \(-0.488901\pi\)
−0.469505 + 0.882930i \(0.655568\pi\)
\(318\) −78.2594 + 236.742i −0.246099 + 0.744473i
\(319\) 277.408 + 160.161i 0.869616 + 0.502073i
\(320\) 33.5414 + 21.7939i 0.104817 + 0.0681058i
\(321\) 293.415 446.813i 0.914065 1.39194i
\(322\) −221.820 + 80.4564i −0.688881 + 0.249865i
\(323\) −174.260 174.260i −0.539506 0.539506i
\(324\) −36.9073 + 157.740i −0.113911 + 0.486851i
\(325\) 204.908 533.014i 0.630485 1.64004i
\(326\) 189.463 + 109.387i 0.581176 + 0.335542i
\(327\) 21.1180 18.8206i 0.0645809 0.0575552i
\(328\) 6.63905 + 6.63905i 0.0202410 + 0.0202410i
\(329\) 18.4061 12.8576i 0.0559457 0.0390809i
\(330\) 21.9433 198.557i 0.0664950 0.601686i
\(331\) 260.816 + 451.747i 0.787964 + 1.36479i 0.927212 + 0.374537i \(0.122198\pi\)
−0.139248 + 0.990258i \(0.544468\pi\)
\(332\) 193.128 51.7485i 0.581711 0.155869i
\(333\) −337.601 + 267.728i −1.01382 + 0.803988i
\(334\) −55.1776 95.5703i −0.165202 0.286139i
\(335\) 5.86512 18.0358i 0.0175078 0.0538382i
\(336\) −73.9212 39.8957i −0.220003 0.118737i
\(337\) −132.357 132.357i −0.392750 0.392750i 0.482916 0.875667i \(-0.339578\pi\)
−0.875667 + 0.482916i \(0.839578\pi\)
\(338\) 129.114 481.859i 0.381993 1.42562i
\(339\) 340.682 171.403i 1.00496 0.505613i
\(340\) 69.5129 62.5586i 0.204450 0.183996i
\(341\) −15.6977 27.1892i −0.0460343 0.0797337i
\(342\) 123.388 311.890i 0.360784 0.911959i
\(343\) 172.491 296.473i 0.502888 0.864352i
\(344\) −115.713 −0.336375
\(345\) 327.396 143.673i 0.948975 0.416444i
\(346\) −163.498 94.3959i −0.472539 0.272821i
\(347\) −50.9331 190.085i −0.146781 0.547796i −0.999670 0.0257021i \(-0.991818\pi\)
0.852888 0.522093i \(-0.174849\pi\)
\(348\) −152.364 + 135.789i −0.437828 + 0.390197i
\(349\) −282.056 −0.808184 −0.404092 0.914718i \(-0.632412\pi\)
−0.404092 + 0.914718i \(0.632412\pi\)
\(350\) 127.806 211.933i 0.365161 0.605523i
\(351\) −607.587 105.786i −1.73102 0.301385i
\(352\) −13.7875 + 51.4556i −0.0391690 + 0.146181i
\(353\) 116.873 + 436.174i 0.331084 + 1.23562i 0.908053 + 0.418855i \(0.137569\pi\)
−0.576969 + 0.816766i \(0.695765\pi\)
\(354\) 147.021 73.9688i 0.415313 0.208951i
\(355\) 111.021 + 72.1373i 0.312737 + 0.203204i
\(356\) 272.831 0.766378
\(357\) −134.826 + 142.794i −0.377664 + 0.399983i
\(358\) 254.036 254.036i 0.709598 0.709598i
\(359\) −167.547 290.199i −0.466703 0.808354i 0.532573 0.846384i \(-0.321225\pi\)
−0.999277 + 0.0380300i \(0.987892\pi\)
\(360\) 115.728 + 52.9812i 0.321467 + 0.147170i
\(361\) −166.722 + 288.771i −0.461834 + 0.799919i
\(362\) 112.524 419.944i 0.310839 1.16007i
\(363\) −94.9415 + 19.6749i −0.261547 + 0.0542007i
\(364\) 135.469 289.673i 0.372168 0.795804i
\(365\) 43.7174 134.435i 0.119774 0.368315i
\(366\) −22.6597 + 393.920i −0.0619118 + 1.07629i
\(367\) 160.378 + 598.537i 0.436996 + 1.63089i 0.736244 + 0.676716i \(0.236597\pi\)
−0.299248 + 0.954175i \(0.596736\pi\)
\(368\) −92.0936 + 24.6764i −0.250254 + 0.0670555i
\(369\) 23.9896 + 17.8062i 0.0650125 + 0.0482552i
\(370\) 153.613 + 301.667i 0.415171 + 0.815317i
\(371\) −372.655 174.277i −1.00446 0.469750i
\(372\) 19.5872 4.05908i 0.0526537 0.0109115i
\(373\) −316.330 84.7604i −0.848070 0.227240i −0.191488 0.981495i \(-0.561331\pi\)
−0.656581 + 0.754255i \(0.727998\pi\)
\(374\) 107.859 + 62.2722i 0.288392 + 0.166503i
\(375\) −172.196 + 333.127i −0.459189 + 0.888339i
\(376\) 7.85665 4.53604i 0.0208953 0.0120639i
\(377\) −549.399 549.399i −1.45729 1.45729i
\(378\) −251.262 91.1562i −0.664714 0.241154i
\(379\) 119.151i 0.314382i −0.987568 0.157191i \(-0.949756\pi\)
0.987568 0.157191i \(-0.0502438\pi\)
\(380\) −220.973 143.580i −0.581509 0.377841i
\(381\) −96.8058 + 48.7047i −0.254083 + 0.127834i
\(382\) 195.776 52.4581i 0.512503 0.137325i
\(383\) 319.180 + 85.5240i 0.833368 + 0.223300i 0.650183 0.759778i \(-0.274692\pi\)
0.183186 + 0.983078i \(0.441359\pi\)
\(384\) −28.3708 18.6306i −0.0738822 0.0485172i
\(385\) 321.047 + 74.5797i 0.833889 + 0.193714i
\(386\) 402.498i 1.04274i
\(387\) −364.232 + 53.8860i −0.941167 + 0.139240i
\(388\) −323.890 + 86.7861i −0.834768 + 0.223675i
\(389\) 148.817 257.759i 0.382564 0.662620i −0.608864 0.793274i \(-0.708375\pi\)
0.991428 + 0.130655i \(0.0417079\pi\)
\(390\) −176.063 + 451.428i −0.451443 + 1.15751i
\(391\) 222.906i 0.570091i
\(392\) 79.7461 113.352i 0.203434 0.289162i
\(393\) −433.997 + 89.9378i −1.10432 + 0.228849i
\(394\) −219.860 + 126.936i −0.558019 + 0.322172i
\(395\) 11.7112 222.409i 0.0296486 0.563062i
\(396\) −19.4369 + 168.388i −0.0490832 + 0.425223i
\(397\) 303.837 + 81.4129i 0.765333 + 0.205070i 0.620309 0.784358i \(-0.287007\pi\)
0.145024 + 0.989428i \(0.453674\pi\)
\(398\) −87.1886 + 87.1886i −0.219067 + 0.219067i
\(399\) 486.998 + 262.836i 1.22055 + 0.658736i
\(400\) 58.8186 80.8726i 0.147046 0.202181i
\(401\) 160.034 92.3959i 0.399088 0.230414i −0.287002 0.957930i \(-0.592659\pi\)
0.686090 + 0.727516i \(0.259325\pi\)
\(402\) −5.05093 + 15.2796i −0.0125645 + 0.0380088i
\(403\) 19.7096 + 73.5571i 0.0489071 + 0.182524i
\(404\) −64.4043 + 37.1839i −0.159417 + 0.0920392i
\(405\) 388.952 + 112.877i 0.960376 + 0.278708i
\(406\) −192.836 276.051i −0.474964 0.679928i
\(407\) −318.791 + 318.791i −0.783271 + 0.783271i
\(408\) −59.2406 + 52.7958i −0.145198 + 0.129402i
\(409\) 211.032 365.519i 0.515972 0.893689i −0.483856 0.875147i \(-0.660764\pi\)
0.999828 0.0185417i \(-0.00590236\pi\)
\(410\) 17.4474 15.7019i 0.0425547 0.0382974i
\(411\) −641.231 36.8859i −1.56017 0.0897468i
\(412\) 45.3314 45.3314i 0.110028 0.110028i
\(413\) 92.5892 + 255.270i 0.224187 + 0.618087i
\(414\) −278.393 + 120.561i −0.672448 + 0.291211i
\(415\) −103.804 488.955i −0.250130 1.17821i
\(416\) 64.6062 111.901i 0.155303 0.268993i
\(417\) 13.2776 40.1659i 0.0318407 0.0963210i
\(418\) 90.8330 338.993i 0.217304 0.810989i
\(419\) 583.700i 1.39308i 0.717519 + 0.696539i \(0.245278\pi\)
−0.717519 + 0.696539i \(0.754722\pi\)
\(420\) −109.319 + 179.303i −0.260283 + 0.426911i
\(421\) 634.883 1.50804 0.754018 0.656853i \(-0.228113\pi\)
0.754018 + 0.656853i \(0.228113\pi\)
\(422\) −390.041 104.511i −0.924269 0.247657i
\(423\) 22.6182 17.9369i 0.0534708 0.0424041i
\(424\) −143.958 83.1140i −0.339523 0.196024i
\(425\) −147.042 181.766i −0.345981 0.427684i
\(426\) −93.9067 61.6669i −0.220438 0.144758i
\(427\) −640.993 113.760i −1.50116 0.266417i
\(428\) 251.985 + 251.985i 0.588750 + 0.588750i
\(429\) −644.239 37.0590i −1.50172 0.0863845i
\(430\) −15.2114 + 288.882i −0.0353753 + 0.671819i
\(431\) 13.8237 + 7.98112i 0.0320736 + 0.0185177i 0.515951 0.856618i \(-0.327439\pi\)
−0.483877 + 0.875136i \(0.660772\pi\)
\(432\) −97.9792 45.4320i −0.226804 0.105167i
\(433\) −106.458 106.458i −0.245862 0.245862i 0.573408 0.819270i \(-0.305621\pi\)
−0.819270 + 0.573408i \(0.805621\pi\)
\(434\) 2.83989 + 32.8814i 0.00654353 + 0.0757637i
\(435\) 318.972 + 398.234i 0.733269 + 0.915480i
\(436\) 9.42916 + 16.3318i 0.0216265 + 0.0374582i
\(437\) 606.720 162.570i 1.38837 0.372014i
\(438\) −37.6486 + 113.891i −0.0859556 + 0.260024i
\(439\) 86.9506 + 150.603i 0.198065 + 0.343059i 0.947901 0.318565i \(-0.103201\pi\)
−0.749836 + 0.661624i \(0.769868\pi\)
\(440\) 126.649 + 41.1853i 0.287838 + 0.0936029i
\(441\) 198.232 393.935i 0.449505 0.893278i
\(442\) −213.611 213.611i −0.483284 0.483284i
\(443\) 6.66345 24.8683i 0.0150416 0.0561362i −0.957997 0.286778i \(-0.907416\pi\)
0.973039 + 0.230642i \(0.0740825\pi\)
\(444\) −129.101 256.603i −0.290769 0.577934i
\(445\) 35.8657 681.133i 0.0805971 1.53064i
\(446\) 92.5468 + 160.296i 0.207504 + 0.359408i
\(447\) 290.833 60.2698i 0.650634 0.134832i
\(448\) 36.0438 42.8584i 0.0804549 0.0956661i
\(449\) 590.012 1.31406 0.657029 0.753866i \(-0.271813\pi\)
0.657029 + 0.753866i \(0.271813\pi\)
\(450\) 147.483 281.955i 0.327740 0.626567i
\(451\) 27.0720 + 15.6300i 0.0600267 + 0.0346564i
\(452\) 65.8039 + 245.583i 0.145584 + 0.543326i
\(453\) −328.325 368.403i −0.724780 0.813253i
\(454\) 29.6786 0.0653713
\(455\) −705.371 376.284i −1.55027 0.826998i
\(456\) 186.909 + 122.740i 0.409888 + 0.269166i
\(457\) −108.396 + 404.540i −0.237191 + 0.885208i 0.739958 + 0.672653i \(0.234845\pi\)
−0.977149 + 0.212555i \(0.931821\pi\)
\(458\) 108.898 + 406.413i 0.237769 + 0.887365i
\(459\) −161.886 + 193.774i −0.352694 + 0.422166i
\(460\) 49.4993 + 233.159i 0.107607 + 0.506868i
\(461\) 630.123 1.36686 0.683431 0.730015i \(-0.260487\pi\)
0.683431 + 0.730015i \(0.260487\pi\)
\(462\) −272.107 64.6042i −0.588977 0.139836i
\(463\) 109.680 109.680i 0.236889 0.236889i −0.578672 0.815561i \(-0.696429\pi\)
0.815561 + 0.578672i \(0.196429\pi\)
\(464\) −68.0305 117.832i −0.146617 0.253949i
\(465\) −7.55878 49.4338i −0.0162554 0.106309i
\(466\) 13.5631 23.4921i 0.0291055 0.0504121i
\(467\) −227.552 + 849.236i −0.487264 + 1.81849i 0.0823804 + 0.996601i \(0.473748\pi\)
−0.569644 + 0.821892i \(0.692919\pi\)
\(468\) 151.251 382.320i 0.323186 0.816923i
\(469\) −24.0515 11.2480i −0.0512825 0.0239829i
\(470\) −10.2916 20.2108i −0.0218970 0.0430016i
\(471\) −209.205 12.0342i −0.444172 0.0255504i
\(472\) 28.3976 + 105.981i 0.0601644 + 0.224537i
\(473\) −372.130 + 99.7119i −0.786744 + 0.210807i
\(474\) −10.8530 + 188.670i −0.0228966 + 0.398038i
\(475\) −387.501 + 532.795i −0.815792 + 1.12167i
\(476\) −74.9763 107.331i −0.157513 0.225486i
\(477\) −491.843 194.580i −1.03112 0.407925i
\(478\) 188.844 + 50.6006i 0.395071 + 0.105859i
\(479\) 90.6955 + 52.3631i 0.189344 + 0.109318i 0.591675 0.806176i \(-0.298467\pi\)
−0.402332 + 0.915494i \(0.631800\pi\)
\(480\) −50.2416 + 68.3797i −0.104670 + 0.142458i
\(481\) 947.038 546.773i 1.96889 1.13674i
\(482\) 226.163 + 226.163i 0.469217 + 0.469217i
\(483\) −143.369 479.576i −0.296830 0.992910i
\(484\) 64.6391i 0.133552i
\(485\) 174.087 + 820.014i 0.358943 + 1.69075i
\(486\) −329.568 97.3796i −0.678124 0.200370i
\(487\) 534.720 143.278i 1.09799 0.294205i 0.336043 0.941847i \(-0.390911\pi\)
0.761945 + 0.647642i \(0.224245\pi\)
\(488\) −254.085 68.0818i −0.520665 0.139512i
\(489\) −254.743 + 387.923i −0.520946 + 0.793299i
\(490\) −272.503 213.990i −0.556130 0.436715i
\(491\) 212.339i 0.432463i −0.976342 0.216231i \(-0.930623\pi\)
0.976342 0.216231i \(-0.0693766\pi\)
\(492\) −14.8691 + 13.2515i −0.0302218 + 0.0269340i
\(493\) −307.265 + 82.3313i −0.623255 + 0.167001i
\(494\) −425.631 + 737.214i −0.861600 + 1.49234i
\(495\) 417.834 + 70.6611i 0.844108 + 0.142750i
\(496\) 13.3356i 0.0268862i
\(497\) 119.304 141.861i 0.240049 0.285434i
\(498\) 86.0663 + 415.315i 0.172824 + 0.833965i
\(499\) −144.944 + 83.6836i −0.290470 + 0.167703i −0.638154 0.769909i \(-0.720302\pi\)
0.347684 + 0.937612i \(0.386968\pi\)
\(500\) −194.170 157.474i −0.388339 0.314949i
\(501\) 209.123 105.213i 0.417411 0.210007i
\(502\) 235.770 + 63.1743i 0.469661 + 0.125845i
\(503\) 292.158 292.158i 0.580831 0.580831i −0.354301 0.935131i \(-0.615281\pi\)
0.935131 + 0.354301i \(0.115281\pi\)
\(504\) 93.4972 151.691i 0.185510 0.300975i
\(505\) 84.3646 + 165.676i 0.167059 + 0.328072i
\(506\) −274.907 + 158.717i −0.543294 + 0.313671i
\(507\) 1004.76 + 332.142i 1.98178 + 0.655112i
\(508\) −18.6984 69.7833i −0.0368078 0.137369i
\(509\) −72.6555 + 41.9477i −0.142742 + 0.0824120i −0.569670 0.821874i \(-0.692929\pi\)
0.426928 + 0.904285i \(0.359596\pi\)
\(510\) 124.019 + 154.837i 0.243175 + 0.303602i
\(511\) −179.275 83.8402i −0.350831 0.164071i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 645.495 + 299.310i 1.25827 + 0.583449i
\(514\) 335.158 580.510i 0.652058 1.12940i
\(515\) −107.213 119.131i −0.208180 0.231322i
\(516\) 14.0967 245.059i 0.0273191 0.474920i
\(517\) 21.3580 21.3580i 0.0413114 0.0413114i
\(518\) 445.535 161.600i 0.860107 0.311970i
\(519\) 219.832 334.761i 0.423568 0.645011i
\(520\) −270.873 176.002i −0.520910 0.338466i
\(521\) −240.730 + 416.957i −0.462054 + 0.800302i −0.999063 0.0432749i \(-0.986221\pi\)
0.537009 + 0.843577i \(0.319554\pi\)
\(522\) −269.014 339.222i −0.515352 0.649851i
\(523\) −116.586 + 435.105i −0.222918 + 0.831941i 0.760310 + 0.649560i \(0.225047\pi\)
−0.983228 + 0.182381i \(0.941620\pi\)
\(524\) 295.478i 0.563890i
\(525\) 433.266 + 296.489i 0.825268 + 0.564741i
\(526\) −398.646 −0.757881
\(527\) 30.1155 + 8.06943i 0.0571452 + 0.0153120i
\(528\) −107.294 35.4680i −0.203208 0.0671742i
\(529\) −33.8918 19.5674i −0.0640677 0.0369895i
\(530\) −226.422 + 348.470i −0.427211 + 0.657491i
\(531\) 138.742 + 320.375i 0.261284 + 0.603343i
\(532\) −237.459 + 282.354i −0.446352 + 0.530742i
\(533\) −53.6155 53.6155i −0.100592 0.100592i
\(534\) −33.2375 + 577.806i −0.0622425 + 1.08203i
\(535\) 662.217 595.966i 1.23779 1.11395i
\(536\) −9.29116 5.36425i −0.0173342 0.0100079i
\(537\) 507.055 + 568.950i 0.944236 + 1.05950i
\(538\) 122.588 + 122.588i 0.227858 + 0.227858i
\(539\) 158.784 433.254i 0.294591 0.803811i
\(540\) −126.303 + 238.637i −0.233895 + 0.441920i
\(541\) 24.3231 + 42.1289i 0.0449596 + 0.0778723i 0.887629 0.460558i \(-0.152351\pi\)
−0.842670 + 0.538431i \(0.819017\pi\)
\(542\) 139.912 37.4893i 0.258140 0.0691684i
\(543\) 875.658 + 289.464i 1.61263 + 0.533084i
\(544\) −26.4509 45.8143i −0.0486230 0.0842174i
\(545\) 42.0125 21.3934i 0.0770872 0.0392539i
\(546\) 596.971 + 322.188i 1.09335 + 0.590088i
\(547\) 463.843 + 463.843i 0.847977 + 0.847977i 0.989880 0.141904i \(-0.0453224\pi\)
−0.141904 + 0.989880i \(0.545322\pi\)
\(548\) 110.825 413.604i 0.202235 0.754751i
\(549\) −831.492 95.9784i −1.51456 0.174824i
\(550\) 119.470 310.769i 0.217218 0.565035i
\(551\) 448.190 + 776.288i 0.813412 + 1.40887i
\(552\) −41.0409 198.044i −0.0743495 0.358775i
\(553\) −307.007 54.4859i −0.555166 0.0985278i
\(554\) −308.216 −0.556347
\(555\) −657.591 + 288.574i −1.18485 + 0.519954i
\(556\) 24.4240 + 14.1012i 0.0439280 + 0.0253618i
\(557\) 84.0919 + 313.835i 0.150973 + 0.563438i 0.999417 + 0.0341527i \(0.0108733\pi\)
−0.848444 + 0.529285i \(0.822460\pi\)
\(558\) 6.21020 + 41.9766i 0.0111294 + 0.0752269i
\(559\) 934.471 1.67168
\(560\) −102.260 95.6189i −0.182606 0.170748i
\(561\) −145.021 + 220.839i −0.258505 + 0.393652i
\(562\) 58.8790 219.739i 0.104767 0.390995i
\(563\) −36.4063 135.870i −0.0646649 0.241333i 0.926027 0.377458i \(-0.123202\pi\)
−0.990692 + 0.136125i \(0.956535\pi\)
\(564\) 8.64938 + 17.1916i 0.0153358 + 0.0304815i
\(565\) 621.759 131.998i 1.10046 0.233625i
\(566\) 167.867 0.296585
\(567\) 223.662 521.022i 0.394466 0.918911i
\(568\) 52.9597 52.9597i 0.0932389 0.0932389i
\(569\) −371.512 643.477i −0.652920 1.13089i −0.982411 0.186732i \(-0.940210\pi\)
0.329491 0.944159i \(-0.393123\pi\)
\(570\) 330.996 450.490i 0.580694 0.790334i
\(571\) 90.1507 156.146i 0.157882 0.273460i −0.776223 0.630459i \(-0.782867\pi\)
0.934105 + 0.356999i \(0.116200\pi\)
\(572\) 111.345 415.544i 0.194658 0.726475i
\(573\) 87.2463 + 421.009i 0.152262 + 0.734745i
\(574\) −18.8187 26.9396i −0.0327852 0.0469332i
\(575\) 588.599 92.9263i 1.02365 0.161611i
\(576\) 42.9125 57.8145i 0.0745009 0.100372i
\(577\) −250.300 934.133i −0.433796 1.61895i −0.743931 0.668256i \(-0.767041\pi\)
0.310135 0.950692i \(-0.399626\pi\)
\(578\) 275.314 73.7701i 0.476322 0.127630i
\(579\) 852.418 + 49.0341i 1.47222 + 0.0846876i
\(580\) −303.116 + 154.351i −0.522614 + 0.266122i
\(581\) −697.198 + 60.2153i −1.20000 + 0.103641i
\(582\) −144.339 696.513i −0.248006 1.19676i
\(583\) −534.585 143.242i −0.916956 0.245698i
\(584\) −69.2543 39.9840i −0.118586 0.0684657i
\(585\) −934.594 427.864i −1.59760 0.731391i
\(586\) 66.3389 38.3008i 0.113206 0.0653597i
\(587\) 777.398 + 777.398i 1.32436 + 1.32436i 0.910210 + 0.414147i \(0.135920\pi\)
0.414147 + 0.910210i \(0.364080\pi\)
\(588\) 230.343 + 182.697i 0.391740 + 0.310709i
\(589\) 87.8557i 0.149161i
\(590\) 268.320 56.9637i 0.454779 0.0965487i
\(591\) −242.043 481.087i −0.409548 0.814022i
\(592\) 184.974 49.5637i 0.312457 0.0837225i
\(593\) −521.442 139.720i −0.879328 0.235615i −0.209211 0.977871i \(-0.567090\pi\)
−0.670117 + 0.742255i \(0.733756\pi\)
\(594\) −354.248 61.6778i −0.596378 0.103835i
\(595\) −277.813 + 173.072i −0.466912 + 0.290877i
\(596\) 198.008i 0.332229i
\(597\) −174.028 195.271i −0.291504 0.327088i
\(598\) 743.727 199.281i 1.24369 0.333246i
\(599\) −334.255 + 578.947i −0.558022 + 0.966523i 0.439639 + 0.898174i \(0.355106\pi\)
−0.997662 + 0.0683484i \(0.978227\pi\)
\(600\) 164.108 + 134.419i 0.273513 + 0.224032i
\(601\) 586.870i 0.976488i 0.872707 + 0.488244i \(0.162362\pi\)
−0.872707 + 0.488244i \(0.837638\pi\)
\(602\) 398.764 + 70.7704i 0.662398 + 0.117559i
\(603\) −31.7440 12.5584i −0.0526435 0.0208265i
\(604\) 284.908 164.492i 0.471703 0.272338i
\(605\) −161.374 8.49731i −0.266734 0.0140451i
\(606\) −70.9027 140.927i −0.117001 0.232552i
\(607\) −692.161 185.464i −1.14030 0.305542i −0.361228 0.932478i \(-0.617642\pi\)
−0.779071 + 0.626936i \(0.784309\pi\)
\(608\) −105.409 + 105.409i −0.173370 + 0.173370i
\(609\) 608.118 374.761i 0.998552 0.615371i
\(610\) −203.370 + 625.383i −0.333394 + 1.02522i
\(611\) −63.4485 + 36.6320i −0.103844 + 0.0599542i
\(612\) −104.595 131.893i −0.170907 0.215511i
\(613\) 57.8477 + 215.891i 0.0943682 + 0.352187i 0.996923 0.0783882i \(-0.0249774\pi\)
−0.902555 + 0.430575i \(0.858311\pi\)
\(614\) 308.850 178.315i 0.503013 0.290415i
\(615\) 31.1283 + 38.8634i 0.0506151 + 0.0631925i
\(616\) 78.9842 168.891i 0.128221 0.274174i
\(617\) −371.341 + 371.341i −0.601849 + 0.601849i −0.940803 0.338954i \(-0.889927\pi\)
0.338954 + 0.940803i \(0.389927\pi\)
\(618\) 90.4813 + 101.526i 0.146410 + 0.164282i
\(619\) −364.934 + 632.084i −0.589554 + 1.02114i 0.404737 + 0.914433i \(0.367363\pi\)
−0.994291 + 0.106704i \(0.965970\pi\)
\(620\) 33.2928 + 1.75306i 0.0536981 + 0.00282752i
\(621\) −221.412 604.274i −0.356541 0.973066i
\(622\) −73.8090 + 73.8090i −0.118664 + 0.118664i
\(623\) −940.215 166.864i −1.50917 0.267840i
\(624\) 229.116 + 150.457i 0.367173 + 0.241116i
\(625\) −418.666 + 464.051i −0.669866 + 0.742482i
\(626\) −156.543 + 271.141i −0.250069 + 0.433132i
\(627\) 706.861 + 233.666i 1.12737 + 0.372673i
\(628\) 36.1571 134.940i 0.0575751 0.214873i
\(629\) 447.717i 0.711791i
\(630\) −366.413 253.361i −0.581608 0.402160i
\(631\) 678.904 1.07592 0.537958 0.842971i \(-0.319196\pi\)
0.537958 + 0.842971i \(0.319196\pi\)
\(632\) −121.695 32.6081i −0.192555 0.0515951i
\(633\) 268.853 813.305i 0.424728 1.28484i
\(634\) 174.701 + 100.864i 0.275553 + 0.159091i
\(635\) −176.675 + 37.5077i −0.278228 + 0.0590672i
\(636\) 193.558 294.751i 0.304337 0.463445i
\(637\) −644.011 + 915.401i −1.01101 + 1.43705i
\(638\) −320.323 320.323i −0.502073 0.502073i
\(639\) 142.040 191.365i 0.222284 0.299476i
\(640\) −37.8413 42.0480i −0.0591271 0.0657000i
\(641\) −512.506 295.895i −0.799541 0.461615i 0.0437699 0.999042i \(-0.486063\pi\)
−0.843310 + 0.537427i \(0.819396\pi\)
\(642\) −564.357 + 502.961i −0.879061 + 0.783428i
\(643\) 462.272 + 462.272i 0.718930 + 0.718930i 0.968386 0.249456i \(-0.0802519\pi\)
−0.249456 + 0.968386i \(0.580252\pi\)
\(644\) 332.460 28.7138i 0.516243 0.0445867i
\(645\) −609.947 67.4078i −0.945654 0.104508i
\(646\) 174.260 + 301.828i 0.269753 + 0.467226i
\(647\) −111.765 + 29.9472i −0.172743 + 0.0462863i −0.344154 0.938913i \(-0.611834\pi\)
0.171411 + 0.985200i \(0.445167\pi\)
\(648\) 108.153 201.968i 0.166903 0.311678i
\(649\) 182.652 + 316.362i 0.281436 + 0.487461i
\(650\) −475.005 + 653.109i −0.730778 + 1.00478i
\(651\) −69.9829 + 2.00861i −0.107501 + 0.00308542i
\(652\) −218.774 218.774i −0.335542 0.335542i
\(653\) 53.9679 201.411i 0.0826460 0.308439i −0.912212 0.409719i \(-0.865627\pi\)
0.994858 + 0.101279i \(0.0322936\pi\)
\(654\) −35.7365 + 17.9796i −0.0546429 + 0.0274918i
\(655\) −737.674 38.8429i −1.12622 0.0593022i
\(656\) −6.63905 11.4992i −0.0101205 0.0175292i
\(657\) −236.613 93.6075i −0.360142 0.142477i
\(658\) −29.8494 + 10.8267i −0.0453639 + 0.0164540i
\(659\) 971.092 1.47358 0.736792 0.676119i \(-0.236340\pi\)
0.736792 + 0.676119i \(0.236340\pi\)
\(660\) −102.652 + 263.201i −0.155533 + 0.398790i
\(661\) −578.822 334.183i −0.875676 0.505572i −0.00644601 0.999979i \(-0.502052\pi\)
−0.869230 + 0.494407i \(0.835385\pi\)
\(662\) −190.931 712.563i −0.288415 1.07638i
\(663\) 478.414 426.367i 0.721589 0.643088i
\(664\) −282.759 −0.425842
\(665\) 673.694 + 629.945i 1.01307 + 0.947286i
\(666\) 559.166 242.153i 0.839589 0.363593i
\(667\) 209.844 783.147i 0.314608 1.17413i
\(668\) 40.3928 + 150.748i 0.0604682 + 0.225670i
\(669\) −350.752 + 176.469i −0.524293 + 0.263781i
\(670\) −14.6135 + 22.4906i −0.0218111 + 0.0335680i
\(671\) −875.797 −1.30521
\(672\) 86.3754 + 81.5555i 0.128535 + 0.121362i
\(673\) 43.2365 43.2365i 0.0642445 0.0642445i −0.674255 0.738499i \(-0.735535\pi\)
0.738499 + 0.674255i \(0.235535\pi\)
\(674\) 132.357 + 229.249i 0.196375 + 0.340132i
\(675\) 579.163 + 346.691i 0.858020 + 0.513617i
\(676\) −352.745 + 610.972i −0.521812 + 0.903805i
\(677\) 216.148 806.676i 0.319273 1.19154i −0.600671 0.799496i \(-0.705100\pi\)
0.919945 0.392048i \(-0.128233\pi\)
\(678\) −528.118 + 109.443i −0.778935 + 0.161420i
\(679\) 1169.25 100.986i 1.72202 0.148727i
\(680\) −117.854 + 60.0131i −0.173315 + 0.0882546i
\(681\) −3.61558 + 62.8538i −0.00530922 + 0.0922963i
\(682\) 11.4915 + 42.8869i 0.0168497 + 0.0628840i
\(683\) 903.320 242.044i 1.32258 0.354383i 0.472634 0.881259i \(-0.343303\pi\)
0.849942 + 0.526876i \(0.176637\pi\)
\(684\) −282.711 + 380.886i −0.413320 + 0.556851i
\(685\) −1018.01 331.050i −1.48615 0.483285i
\(686\) −344.143 + 341.853i −0.501666 + 0.498328i
\(687\) −873.976 + 181.115i −1.27216 + 0.263632i
\(688\) 158.067 + 42.3539i 0.229748 + 0.0615608i
\(689\) 1162.57 + 671.210i 1.68733 + 0.974180i
\(690\) −499.820 + 76.4259i −0.724376 + 0.110762i
\(691\) −893.269 + 515.729i −1.29272 + 0.746352i −0.979136 0.203208i \(-0.934863\pi\)
−0.313584 + 0.949560i \(0.601530\pi\)
\(692\) 188.792 + 188.792i 0.272821 + 0.272821i
\(693\) 169.970 568.404i 0.245266 0.820208i
\(694\) 278.304i 0.401014i
\(695\) 38.4149 59.1217i 0.0552733 0.0850672i
\(696\) 257.835 129.721i 0.370453 0.186381i
\(697\) −29.9858 + 8.03466i −0.0430212 + 0.0115275i
\(698\) 385.296 + 103.240i 0.552000 + 0.147908i
\(699\) 48.0996 + 31.5862i 0.0688120 + 0.0451877i
\(700\) −252.159 + 242.725i −0.360228 + 0.346751i
\(701\) 508.656i 0.725615i −0.931864 0.362807i \(-0.881818\pi\)
0.931864 0.362807i \(-0.118182\pi\)
\(702\) 791.258 + 366.899i 1.12715 + 0.522648i
\(703\) −1218.63 + 326.530i −1.73346 + 0.464480i
\(704\) 37.6681 65.2431i 0.0535059 0.0926749i
\(705\) 44.0565 19.3336i 0.0624915 0.0274235i
\(706\) 638.604i 0.904538i
\(707\) 244.689 88.7512i 0.346094 0.125532i
\(708\) −227.909 + 47.2299i −0.321905 + 0.0667088i
\(709\) 86.1429 49.7346i 0.121499 0.0701476i −0.438019 0.898966i \(-0.644320\pi\)
0.559518 + 0.828818i \(0.310986\pi\)
\(710\) −125.254 139.178i −0.176414 0.196025i
\(711\) −398.247 45.9693i −0.560122 0.0646545i
\(712\) −372.694 99.8630i −0.523446 0.140257i
\(713\) −56.1904 + 56.1904i −0.0788084 + 0.0788084i
\(714\) 236.442 145.711i 0.331151 0.204076i
\(715\) −1022.79 332.603i −1.43047 0.465179i
\(716\) −440.003 + 254.036i −0.614530 + 0.354799i
\(717\) −130.169 + 393.773i −0.181546 + 0.549196i
\(718\) 122.653 + 457.746i 0.170825 + 0.637529i
\(719\) −497.276 + 287.102i −0.691621 + 0.399308i −0.804219 0.594333i \(-0.797416\pi\)
0.112598 + 0.993641i \(0.464083\pi\)
\(720\) −138.695 114.733i −0.192632 0.159351i
\(721\) −183.944 + 128.494i −0.255123 + 0.178216i
\(722\) 333.444 333.444i 0.461834 0.461834i
\(723\) −506.524 + 451.420i −0.700587 + 0.624370i
\(724\) −307.420 + 532.468i −0.424614 + 0.735453i
\(725\) 345.497 + 777.033i 0.476547 + 1.07177i
\(726\) 136.894 + 7.87463i 0.188559 + 0.0108466i
\(727\) 538.164 538.164i 0.740254 0.740254i −0.232373 0.972627i \(-0.574649\pi\)
0.972627 + 0.232373i \(0.0746491\pi\)
\(728\) −291.082 + 346.115i −0.399838 + 0.475433i
\(729\) 246.382 686.103i 0.337972 0.941156i
\(730\) −108.926 + 167.640i −0.149213 + 0.229644i
\(731\) 191.294 331.331i 0.261689 0.453258i
\(732\) 175.139 529.811i 0.239260 0.723786i
\(733\) −336.084 + 1254.28i −0.458505 + 1.71116i 0.219069 + 0.975709i \(0.429698\pi\)
−0.677574 + 0.735454i \(0.736969\pi\)
\(734\) 876.319i 1.19390i
\(735\) 486.390 551.044i 0.661756 0.749720i
\(736\) 134.834 0.183199
\(737\) −34.5026 9.24494i −0.0468149 0.0125440i
\(738\) −26.2529 33.1045i −0.0355730 0.0448570i
\(739\) −1252.93 723.380i −1.69544 0.978863i −0.949979 0.312314i \(-0.898896\pi\)
−0.745462 0.666549i \(-0.767771\pi\)
\(740\) −99.4216 468.312i −0.134353 0.632854i
\(741\) −1509.43 991.219i −2.03702 1.33768i
\(742\) 445.267 + 374.468i 0.600090 + 0.504674i
\(743\) −213.369 213.369i −0.287173 0.287173i 0.548788 0.835961i \(-0.315089\pi\)
−0.835961 + 0.548788i \(0.815089\pi\)
\(744\) −28.2423 1.62460i −0.0379601 0.00218360i
\(745\) 494.336 + 26.0298i 0.663539 + 0.0349393i
\(746\) 401.090 + 231.570i 0.537655 + 0.310415i
\(747\) −890.047 + 131.677i −1.19149 + 0.176275i
\(748\) −124.544 124.544i −0.166503 0.166503i
\(749\) −714.263 1022.49i −0.953623 1.36514i
\(750\) 357.157 392.032i 0.476209 0.522709i
\(751\) −439.885 761.904i −0.585733 1.01452i −0.994784 0.102008i \(-0.967473\pi\)
0.409051 0.912512i \(-0.365860\pi\)
\(752\) −12.3927 + 3.32061i −0.0164796 + 0.00441571i
\(753\) −162.514 + 491.622i −0.215823 + 0.652884i
\(754\) 549.399 + 951.587i 0.728646 + 1.26205i
\(755\) −373.208 732.910i −0.494315 0.970741i
\(756\) 309.865 + 216.490i 0.409874 + 0.286362i
\(757\) 38.0541 + 38.0541i 0.0502697 + 0.0502697i 0.731795 0.681525i \(-0.238683\pi\)
−0.681525 + 0.731795i \(0.738683\pi\)
\(758\) −43.6122 + 162.763i −0.0575359 + 0.214727i
\(759\) −302.644 601.538i −0.398741 0.792541i
\(760\) 249.302 +