Properties

Label 210.3.w.a.17.1
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.99585 - 0.157742i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.05899 + 4.55638i) q^{5} +(4.03467 + 1.31204i) q^{6} +(-6.80611 - 1.63612i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(8.95023 + 0.945145i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.99585 - 0.157742i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.05899 + 4.55638i) q^{5} +(4.03467 + 1.31204i) q^{6} +(-6.80611 - 1.63612i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(8.95023 + 0.945145i) q^{9} +(-1.14488 - 6.97777i) q^{10} +(7.66474 + 4.42524i) q^{11} +(-5.03122 - 3.26907i) q^{12} +(-5.26652 - 5.26652i) q^{13} +(8.69845 + 4.72619i) q^{14} +(-5.44969 - 13.9750i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-9.09260 + 2.43636i) q^{17} +(-11.8803 - 4.56711i) q^{18} +(-16.3775 - 28.3666i) q^{19} +(-0.990104 + 9.95086i) q^{20} +(20.1320 + 5.97519i) q^{21} +(-8.85048 - 8.85048i) q^{22} +(3.23126 - 12.0592i) q^{23} +(5.67622 + 6.30718i) q^{24} +(-16.5211 + 18.7631i) q^{25} +(5.26652 + 9.12187i) q^{26} +(-26.6645 - 4.24334i) q^{27} +(-10.1524 - 9.63996i) q^{28} -48.1807 q^{29} +(2.32920 + 21.0849i) q^{30} +(-42.0786 - 24.2941i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-22.2644 - 14.4664i) q^{33} +13.3125 q^{34} +(-6.55890 - 34.3799i) q^{35} +(14.5571 + 10.5873i) q^{36} +(4.02200 - 15.0103i) q^{37} +(11.9891 + 44.7440i) q^{38} +(14.9469 + 16.6084i) q^{39} +(4.99478 - 13.2307i) q^{40} +45.6603 q^{41} +(-25.3137 - 15.5311i) q^{42} +(-17.0633 + 17.0633i) q^{43} +(8.85048 + 15.3295i) q^{44} +(14.1220 + 42.7267i) q^{45} +(-8.82796 + 15.2905i) q^{46} +(18.2007 - 67.9259i) q^{47} +(-5.44526 - 10.6934i) q^{48} +(43.6462 + 22.2713i) q^{49} +(29.4360 - 19.5837i) q^{50} +(27.6244 - 5.86467i) q^{51} +(-3.85536 - 14.3884i) q^{52} +(23.5937 - 6.32192i) q^{53} +(34.8712 + 15.5564i) q^{54} +(-4.38145 + 44.0349i) q^{55} +(10.3400 + 16.8845i) q^{56} +(44.5898 + 87.5655i) q^{57} +(65.8160 + 17.6353i) q^{58} +(-31.3814 - 18.1181i) q^{59} +(4.53588 - 29.6551i) q^{60} +(41.5066 - 23.9639i) q^{61} +(48.5881 + 48.5881i) q^{62} +(-59.3699 - 21.0764i) q^{63} +8.00000i q^{64} +(13.1525 - 34.8399i) q^{65} +(25.1186 + 27.9108i) q^{66} +(20.6531 - 5.53399i) q^{67} +(-18.1852 - 4.87271i) q^{68} +(-11.5826 + 35.6179i) q^{69} +(-3.62431 + 49.3646i) q^{70} +42.3831i q^{71} +(-16.0102 - 19.7908i) q^{72} +(-118.781 + 31.8274i) q^{73} +(-10.9883 + 19.0323i) q^{74} +(52.4546 - 53.6052i) q^{75} -65.5098i q^{76} +(-44.9268 - 42.6591i) q^{77} +(-14.3388 - 28.1585i) q^{78} +(53.6989 - 31.0031i) q^{79} +(-11.6658 + 16.2453i) q^{80} +(79.2134 + 16.9185i) q^{81} +(-62.3731 - 16.7128i) q^{82} +(-113.897 + 113.897i) q^{83} +(28.8944 + 30.4813i) q^{84} +(-29.8225 - 36.4129i) q^{85} +(29.5545 - 17.0633i) q^{86} +(144.342 + 7.60013i) q^{87} +(-6.47900 - 24.1799i) q^{88} +(-104.881 + 60.5529i) q^{89} +(-3.65195 - 63.5347i) q^{90} +(27.2278 + 44.4611i) q^{91} +(17.6559 - 17.6559i) q^{92} +(122.229 + 79.4190i) q^{93} +(-49.7252 + 86.1265i) q^{94} +(95.5279 - 133.028i) q^{95} +(3.52431 + 16.6006i) q^{96} +(72.8209 - 72.8209i) q^{97} +(-51.4700 - 46.3987i) q^{98} +(64.4187 + 46.8512i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −2.99585 0.157742i −0.998617 0.0525808i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 2.05899 + 4.55638i 0.411798 + 0.911275i
\(6\) 4.03467 + 1.31204i 0.672445 + 0.218673i
\(7\) −6.80611 1.63612i −0.972301 0.233732i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 8.95023 + 0.945145i 0.994471 + 0.105016i
\(10\) −1.14488 6.97777i −0.114488 0.697777i
\(11\) 7.66474 + 4.42524i 0.696794 + 0.402294i 0.806152 0.591708i \(-0.201546\pi\)
−0.109358 + 0.994002i \(0.534880\pi\)
\(12\) −5.03122 3.26907i −0.419269 0.272422i
\(13\) −5.26652 5.26652i −0.405117 0.405117i 0.474915 0.880032i \(-0.342479\pi\)
−0.880032 + 0.474915i \(0.842479\pi\)
\(14\) 8.69845 + 4.72619i 0.621318 + 0.337585i
\(15\) −5.44969 13.9750i −0.363312 0.931667i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −9.09260 + 2.43636i −0.534859 + 0.143315i −0.516131 0.856510i \(-0.672628\pi\)
−0.0187279 + 0.999825i \(0.505962\pi\)
\(18\) −11.8803 4.56711i −0.660017 0.253728i
\(19\) −16.3775 28.3666i −0.861971 1.49298i −0.870023 0.493011i \(-0.835896\pi\)
0.00805170 0.999968i \(-0.497437\pi\)
\(20\) −0.990104 + 9.95086i −0.0495052 + 0.497543i
\(21\) 20.1320 + 5.97519i 0.958666 + 0.284533i
\(22\) −8.85048 8.85048i −0.402294 0.402294i
\(23\) 3.23126 12.0592i 0.140490 0.524314i −0.859425 0.511261i \(-0.829178\pi\)
0.999915 0.0130527i \(-0.00415493\pi\)
\(24\) 5.67622 + 6.30718i 0.236509 + 0.262799i
\(25\) −16.5211 + 18.7631i −0.660845 + 0.750522i
\(26\) 5.26652 + 9.12187i 0.202558 + 0.350841i
\(27\) −26.6645 4.24334i −0.987573 0.157161i
\(28\) −10.1524 9.63996i −0.362586 0.344284i
\(29\) −48.1807 −1.66140 −0.830701 0.556719i \(-0.812060\pi\)
−0.830701 + 0.556719i \(0.812060\pi\)
\(30\) 2.32920 + 21.0849i 0.0776401 + 0.702831i
\(31\) −42.0786 24.2941i −1.35737 0.783680i −0.368104 0.929785i \(-0.619993\pi\)
−0.989269 + 0.146105i \(0.953326\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −22.2644 14.4664i −0.674677 0.438376i
\(34\) 13.3125 0.391544
\(35\) −6.55890 34.3799i −0.187397 0.982284i
\(36\) 14.5571 + 10.5873i 0.404364 + 0.294091i
\(37\) 4.02200 15.0103i 0.108703 0.405684i −0.890036 0.455890i \(-0.849321\pi\)
0.998739 + 0.0502056i \(0.0159877\pi\)
\(38\) 11.9891 + 44.7440i 0.315503 + 1.17747i
\(39\) 14.9469 + 16.6084i 0.383255 + 0.425858i
\(40\) 4.99478 13.2307i 0.124869 0.330768i
\(41\) 45.6603 1.11367 0.556833 0.830625i \(-0.312016\pi\)
0.556833 + 0.830625i \(0.312016\pi\)
\(42\) −25.3137 15.5311i −0.602708 0.369788i
\(43\) −17.0633 + 17.0633i −0.396821 + 0.396821i −0.877110 0.480289i \(-0.840532\pi\)
0.480289 + 0.877110i \(0.340532\pi\)
\(44\) 8.85048 + 15.3295i 0.201147 + 0.348397i
\(45\) 14.1220 + 42.7267i 0.313822 + 0.949482i
\(46\) −8.82796 + 15.2905i −0.191912 + 0.332402i
\(47\) 18.2007 67.9259i 0.387249 1.44523i −0.447343 0.894362i \(-0.647630\pi\)
0.834592 0.550869i \(-0.185704\pi\)
\(48\) −5.44526 10.6934i −0.113443 0.222779i
\(49\) 43.6462 + 22.2713i 0.890739 + 0.454516i
\(50\) 29.4360 19.5837i 0.588721 0.391673i
\(51\) 27.6244 5.86467i 0.541655 0.114993i
\(52\) −3.85536 14.3884i −0.0741415 0.276700i
\(53\) 23.5937 6.32192i 0.445165 0.119281i −0.0292714 0.999572i \(-0.509319\pi\)
0.474436 + 0.880290i \(0.342652\pi\)
\(54\) 34.8712 + 15.5564i 0.645762 + 0.288081i
\(55\) −4.38145 + 44.0349i −0.0796626 + 0.800635i
\(56\) 10.3400 + 16.8845i 0.184642 + 0.301508i
\(57\) 44.5898 + 87.5655i 0.782277 + 1.53624i
\(58\) 65.8160 + 17.6353i 1.13476 + 0.304058i
\(59\) −31.3814 18.1181i −0.531888 0.307086i 0.209897 0.977724i \(-0.432687\pi\)
−0.741785 + 0.670638i \(0.766021\pi\)
\(60\) 4.53588 29.6551i 0.0755979 0.494252i
\(61\) 41.5066 23.9639i 0.680436 0.392850i −0.119583 0.992824i \(-0.538156\pi\)
0.800019 + 0.599974i \(0.204822\pi\)
\(62\) 48.5881 + 48.5881i 0.783680 + 0.783680i
\(63\) −59.3699 21.0764i −0.942379 0.334547i
\(64\) 8.00000i 0.125000i
\(65\) 13.1525 34.8399i 0.202347 0.535999i
\(66\) 25.1186 + 27.9108i 0.380585 + 0.422891i
\(67\) 20.6531 5.53399i 0.308256 0.0825968i −0.101375 0.994848i \(-0.532324\pi\)
0.409631 + 0.912251i \(0.365658\pi\)
\(68\) −18.1852 4.87271i −0.267429 0.0716575i
\(69\) −11.5826 + 35.6179i −0.167864 + 0.516202i
\(70\) −3.62431 + 49.3646i −0.0517758 + 0.705209i
\(71\) 42.3831i 0.596945i 0.954418 + 0.298473i \(0.0964772\pi\)
−0.954418 + 0.298473i \(0.903523\pi\)
\(72\) −16.0102 19.7908i −0.222364 0.274872i
\(73\) −118.781 + 31.8274i −1.62714 + 0.435991i −0.953088 0.302692i \(-0.902115\pi\)
−0.674053 + 0.738683i \(0.735448\pi\)
\(74\) −10.9883 + 19.0323i −0.148491 + 0.257194i
\(75\) 52.4546 53.6052i 0.699394 0.714736i
\(76\) 65.5098i 0.861971i
\(77\) −44.9268 42.6591i −0.583465 0.554014i
\(78\) −14.3388 28.1585i −0.183831 0.361007i
\(79\) 53.6989 31.0031i 0.679733 0.392444i −0.120021 0.992771i \(-0.538296\pi\)
0.799755 + 0.600327i \(0.204963\pi\)
\(80\) −11.6658 + 16.2453i −0.145822 + 0.203066i
\(81\) 79.2134 + 16.9185i 0.977943 + 0.208871i
\(82\) −62.3731 16.7128i −0.760648 0.203815i
\(83\) −113.897 + 113.897i −1.37225 + 1.37225i −0.515150 + 0.857100i \(0.672264\pi\)
−0.857100 + 0.515150i \(0.827736\pi\)
\(84\) 28.8944 + 30.4813i 0.343981 + 0.362873i
\(85\) −29.8225 36.4129i −0.350853 0.428387i
\(86\) 29.5545 17.0633i 0.343657 0.198411i
\(87\) 144.342 + 7.60013i 1.65910 + 0.0873578i
\(88\) −6.47900 24.1799i −0.0736250 0.274772i
\(89\) −104.881 + 60.5529i −1.17843 + 0.680369i −0.955652 0.294499i \(-0.904847\pi\)
−0.222783 + 0.974868i \(0.571514\pi\)
\(90\) −3.65195 63.5347i −0.0405772 0.705942i
\(91\) 27.2278 + 44.4611i 0.299207 + 0.488584i
\(92\) 17.6559 17.6559i 0.191912 0.191912i
\(93\) 122.229 + 79.4190i 1.31429 + 0.853967i
\(94\) −49.7252 + 86.1265i −0.528991 + 0.916240i
\(95\) 95.5279 133.028i 1.00556 1.40030i
\(96\) 3.52431 + 16.6006i 0.0367115 + 0.172923i
\(97\) 72.8209 72.8209i 0.750731 0.750731i −0.223885 0.974616i \(-0.571874\pi\)
0.974616 + 0.223885i \(0.0718739\pi\)
\(98\) −51.4700 46.3987i −0.525204 0.473456i
\(99\) 64.4187 + 46.8512i 0.650694 + 0.473244i
\(100\) −47.3785 + 15.9774i −0.473785 + 0.159774i
\(101\) −13.5712 + 23.5061i −0.134369 + 0.232733i −0.925356 0.379099i \(-0.876234\pi\)
0.790987 + 0.611832i \(0.209567\pi\)
\(102\) −39.8822 2.09994i −0.391002 0.0205877i
\(103\) 6.34326 23.6734i 0.0615851 0.229839i −0.928273 0.371900i \(-0.878706\pi\)
0.989858 + 0.142061i \(0.0453731\pi\)
\(104\) 21.0661i 0.202558i
\(105\) 14.2263 + 104.032i 0.135489 + 0.990779i
\(106\) −34.5436 −0.325883
\(107\) 2.07187 + 0.555157i 0.0193633 + 0.00518838i 0.268488 0.963283i \(-0.413476\pi\)
−0.249124 + 0.968471i \(0.580143\pi\)
\(108\) −41.9409 34.0142i −0.388341 0.314946i
\(109\) −82.9111 47.8687i −0.760652 0.439163i 0.0688777 0.997625i \(-0.478058\pi\)
−0.829530 + 0.558462i \(0.811392\pi\)
\(110\) 22.1031 58.5491i 0.200937 0.532265i
\(111\) −14.4171 + 44.3342i −0.129884 + 0.399408i
\(112\) −7.94452 26.8493i −0.0709332 0.239726i
\(113\) 38.2568 + 38.2568i 0.338556 + 0.338556i 0.855824 0.517268i \(-0.173051\pi\)
−0.517268 + 0.855824i \(0.673051\pi\)
\(114\) −28.8596 135.938i −0.253154 1.19244i
\(115\) 61.5995 10.1070i 0.535648 0.0878867i
\(116\) −83.4514 48.1807i −0.719408 0.415351i
\(117\) −42.1589 52.1142i −0.360333 0.445420i
\(118\) 36.2361 + 36.2361i 0.307086 + 0.307086i
\(119\) 65.8714 1.70548i 0.553541 0.0143317i
\(120\) −17.0506 + 38.8494i −0.142089 + 0.323745i
\(121\) −21.3345 36.9525i −0.176319 0.305393i
\(122\) −65.4705 + 17.5428i −0.536643 + 0.143793i
\(123\) −136.791 7.20256i −1.11212 0.0585574i
\(124\) −48.5881 84.1571i −0.391840 0.678687i
\(125\) −119.508 36.6436i −0.956067 0.293149i
\(126\) 73.3863 + 50.5218i 0.582431 + 0.400967i
\(127\) 3.69352 + 3.69352i 0.0290828 + 0.0290828i 0.721499 0.692416i \(-0.243454\pi\)
−0.692416 + 0.721499i \(0.743454\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 53.8108 48.4275i 0.417138 0.375407i
\(130\) −30.7190 + 42.7781i −0.236300 + 0.329062i
\(131\) −5.87228 10.1711i −0.0448266 0.0776419i 0.842742 0.538318i \(-0.180940\pi\)
−0.887568 + 0.460676i \(0.847607\pi\)
\(132\) −24.0966 47.3209i −0.182550 0.358492i
\(133\) 65.0555 + 219.862i 0.489139 + 1.65309i
\(134\) −30.2383 −0.225659
\(135\) −35.5676 130.230i −0.263463 0.964669i
\(136\) 23.0579 + 13.3125i 0.169544 + 0.0978860i
\(137\) 40.2367 + 150.166i 0.293699 + 1.09610i 0.942245 + 0.334924i \(0.108711\pi\)
−0.648546 + 0.761175i \(0.724623\pi\)
\(138\) 28.8592 44.4155i 0.209125 0.321851i
\(139\) −183.552 −1.32052 −0.660259 0.751038i \(-0.729553\pi\)
−0.660259 + 0.751038i \(0.729553\pi\)
\(140\) 23.0196 66.1067i 0.164426 0.472191i
\(141\) −65.2413 + 200.625i −0.462704 + 1.42287i
\(142\) 15.5133 57.8964i 0.109249 0.407721i
\(143\) −17.0609 63.6720i −0.119307 0.445259i
\(144\) 14.6264 + 32.8948i 0.101572 + 0.228436i
\(145\) −99.2034 219.529i −0.684162 1.51399i
\(146\) 173.908 1.19115
\(147\) −127.244 73.6062i −0.865608 0.500723i
\(148\) 21.9766 21.9766i 0.148491 0.148491i
\(149\) −9.59314 16.6158i −0.0643835 0.111515i 0.832037 0.554720i \(-0.187175\pi\)
−0.896420 + 0.443205i \(0.853841\pi\)
\(150\) −91.2751 + 54.0264i −0.608501 + 0.360176i
\(151\) −19.4616 + 33.7084i −0.128885 + 0.223235i −0.923245 0.384212i \(-0.874473\pi\)
0.794360 + 0.607447i \(0.207806\pi\)
\(152\) −23.9783 + 89.4881i −0.157752 + 0.588737i
\(153\) −83.6836 + 13.2121i −0.546952 + 0.0863538i
\(154\) 45.7568 + 74.7178i 0.297122 + 0.485180i
\(155\) 24.0537 241.747i 0.155185 1.55966i
\(156\) 9.28041 + 43.7136i 0.0594898 + 0.280215i
\(157\) 57.1880 + 213.429i 0.364255 + 1.35942i 0.868428 + 0.495815i \(0.165131\pi\)
−0.504173 + 0.863602i \(0.668203\pi\)
\(158\) −84.7020 + 22.6958i −0.536089 + 0.143645i
\(159\) −71.6805 + 15.2178i −0.450821 + 0.0957094i
\(160\) 21.8819 17.9215i 0.136762 0.112010i
\(161\) −41.7227 + 76.7896i −0.259147 + 0.476954i
\(162\) −102.015 52.1053i −0.629722 0.321637i
\(163\) 124.346 + 33.3184i 0.762858 + 0.204407i 0.619214 0.785222i \(-0.287451\pi\)
0.143644 + 0.989629i \(0.454118\pi\)
\(164\) 79.0859 + 45.6603i 0.482231 + 0.278416i
\(165\) 20.0723 131.231i 0.121650 0.795339i
\(166\) 197.275 113.897i 1.18840 0.686125i
\(167\) 10.7074 + 10.7074i 0.0641162 + 0.0641162i 0.738438 0.674322i \(-0.235564\pi\)
−0.674322 + 0.738438i \(0.735564\pi\)
\(168\) −28.3136 52.2144i −0.168533 0.310800i
\(169\) 113.528i 0.671761i
\(170\) 27.4103 + 60.6567i 0.161237 + 0.356804i
\(171\) −119.772 269.367i −0.700418 1.57524i
\(172\) −46.6179 + 12.4912i −0.271034 + 0.0726234i
\(173\) 122.782 + 32.8994i 0.709723 + 0.190170i 0.595582 0.803295i \(-0.296922\pi\)
0.114141 + 0.993465i \(0.463588\pi\)
\(174\) −194.393 63.2148i −1.11720 0.363304i
\(175\) 143.143 100.673i 0.817962 0.575273i
\(176\) 35.4019i 0.201147i
\(177\) 91.1560 + 59.2292i 0.515006 + 0.334628i
\(178\) 165.434 44.3278i 0.929402 0.249032i
\(179\) −131.749 + 228.196i −0.736028 + 1.27484i 0.218243 + 0.975894i \(0.429967\pi\)
−0.954271 + 0.298943i \(0.903366\pi\)
\(180\) −18.2667 + 88.1268i −0.101482 + 0.489593i
\(181\) 119.753i 0.661621i −0.943697 0.330811i \(-0.892678\pi\)
0.943697 0.330811i \(-0.107322\pi\)
\(182\) −20.9200 70.7011i −0.114945 0.388468i
\(183\) −128.128 + 65.2448i −0.700151 + 0.356529i
\(184\) −30.5810 + 17.6559i −0.166201 + 0.0959561i
\(185\) 76.6740 12.5803i 0.414454 0.0680017i
\(186\) −137.898 153.227i −0.741389 0.823802i
\(187\) −80.4739 21.5629i −0.430341 0.115310i
\(188\) 99.4504 99.4504i 0.528991 0.528991i
\(189\) 174.539 + 72.5070i 0.923485 + 0.383635i
\(190\) −179.185 + 146.754i −0.943080 + 0.772392i
\(191\) −66.1056 + 38.1661i −0.346103 + 0.199822i −0.662967 0.748648i \(-0.730703\pi\)
0.316865 + 0.948471i \(0.397370\pi\)
\(192\) 1.26194 23.9668i 0.00657260 0.124827i
\(193\) −58.3311 217.695i −0.302234 1.12795i −0.935300 0.353855i \(-0.884871\pi\)
0.633067 0.774097i \(-0.281796\pi\)
\(194\) −126.130 + 72.8209i −0.650152 + 0.375366i
\(195\) −44.8988 + 102.300i −0.230250 + 0.524618i
\(196\) 53.3262 + 82.2212i 0.272072 + 0.419496i
\(197\) −71.0326 + 71.0326i −0.360572 + 0.360572i −0.864023 0.503452i \(-0.832063\pi\)
0.503452 + 0.864023i \(0.332063\pi\)
\(198\) −70.8489 87.5788i −0.357822 0.442317i
\(199\) −68.8006 + 119.166i −0.345732 + 0.598825i −0.985486 0.169754i \(-0.945703\pi\)
0.639755 + 0.768579i \(0.279036\pi\)
\(200\) 70.5684 4.48384i 0.352842 0.0224192i
\(201\) −62.7466 + 13.3211i −0.312172 + 0.0662743i
\(202\) 27.1425 27.1425i 0.134369 0.134369i
\(203\) 327.923 + 78.8295i 1.61538 + 0.388323i
\(204\) 53.7115 + 17.4665i 0.263292 + 0.0856200i
\(205\) 94.0140 + 208.045i 0.458605 + 1.01486i
\(206\) −17.3301 + 30.0166i −0.0841268 + 0.145712i
\(207\) 40.3182 104.879i 0.194774 0.506661i
\(208\) 7.71072 28.7768i 0.0370707 0.138350i
\(209\) 289.897i 1.38706i
\(210\) 18.6448 147.317i 0.0887846 0.701511i
\(211\) −9.16581 −0.0434399 −0.0217199 0.999764i \(-0.506914\pi\)
−0.0217199 + 0.999764i \(0.506914\pi\)
\(212\) 47.1874 + 12.6438i 0.222582 + 0.0596407i
\(213\) 6.68561 126.973i 0.0313879 0.596120i
\(214\) −2.62703 1.51672i −0.0122758 0.00708746i
\(215\) −112.880 42.6137i −0.525024 0.198203i
\(216\) 44.8423 + 61.8156i 0.207603 + 0.286183i
\(217\) 246.643 + 234.194i 1.13660 + 1.07923i
\(218\) 95.7375 + 95.7375i 0.439163 + 0.439163i
\(219\) 360.871 76.6131i 1.64781 0.349832i
\(220\) −51.6238 + 71.8893i −0.234654 + 0.326770i
\(221\) 60.7174 + 35.0552i 0.274740 + 0.158621i
\(222\) 35.9216 55.2847i 0.161809 0.249030i
\(223\) 107.480 + 107.480i 0.481975 + 0.481975i 0.905762 0.423787i \(-0.139300\pi\)
−0.423787 + 0.905762i \(0.639300\pi\)
\(224\) 1.02489 + 39.5847i 0.00457539 + 0.176717i
\(225\) −165.602 + 152.319i −0.736008 + 0.676973i
\(226\) −38.2568 66.2628i −0.169278 0.293198i
\(227\) −219.799 + 58.8950i −0.968278 + 0.259449i −0.708101 0.706112i \(-0.750448\pi\)
−0.260177 + 0.965561i \(0.583781\pi\)
\(228\) −10.3337 + 196.258i −0.0453231 + 0.860779i
\(229\) 185.194 + 320.766i 0.808708 + 1.40072i 0.913759 + 0.406256i \(0.133166\pi\)
−0.105051 + 0.994467i \(0.533501\pi\)
\(230\) −87.8459 8.74060i −0.381939 0.0380026i
\(231\) 127.865 + 134.887i 0.553527 + 0.583927i
\(232\) 96.3613 + 96.3613i 0.415351 + 0.415351i
\(233\) 68.7703 256.654i 0.295151 1.10152i −0.645945 0.763384i \(-0.723537\pi\)
0.941097 0.338137i \(-0.109797\pi\)
\(234\) 38.5151 + 86.6205i 0.164594 + 0.370173i
\(235\) 346.971 56.9294i 1.47647 0.242253i
\(236\) −36.2361 62.7628i −0.153543 0.265944i
\(237\) −165.764 + 84.4100i −0.699428 + 0.356160i
\(238\) −90.6063 21.7809i −0.380699 0.0915163i
\(239\) 212.376 0.888604 0.444302 0.895877i \(-0.353452\pi\)
0.444302 + 0.895877i \(0.353452\pi\)
\(240\) 37.5115 46.8283i 0.156298 0.195118i
\(241\) −27.9403 16.1313i −0.115935 0.0669350i 0.440911 0.897551i \(-0.354655\pi\)
−0.556846 + 0.830616i \(0.687989\pi\)
\(242\) 15.6180 + 58.2871i 0.0645371 + 0.240856i
\(243\) −234.643 63.1807i −0.965608 0.260003i
\(244\) 95.8554 0.392850
\(245\) −11.6092 + 244.725i −0.0473847 + 0.998877i
\(246\) 184.224 + 59.9080i 0.748879 + 0.243528i
\(247\) −63.1410 + 235.645i −0.255631 + 0.954029i
\(248\) 35.5690 + 132.745i 0.143423 + 0.535263i
\(249\) 359.184 323.251i 1.44251 1.29820i
\(250\) 149.839 + 93.7992i 0.599356 + 0.375197i
\(251\) −50.2807 −0.200321 −0.100161 0.994971i \(-0.531936\pi\)
−0.100161 + 0.994971i \(0.531936\pi\)
\(252\) −81.7552 95.8754i −0.324425 0.380458i
\(253\) 78.1317 78.1317i 0.308821 0.308821i
\(254\) −3.69352 6.39736i −0.0145414 0.0251865i
\(255\) 83.5999 + 113.792i 0.327843 + 0.446243i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 37.7635 140.935i 0.146940 0.548386i −0.852722 0.522365i \(-0.825050\pi\)
0.999661 0.0260209i \(-0.00828363\pi\)
\(258\) −91.2326 + 46.4571i −0.353615 + 0.180066i
\(259\) −51.9329 + 95.5814i −0.200513 + 0.369040i
\(260\) 57.6208 47.1920i 0.221618 0.181508i
\(261\) −431.228 45.5377i −1.65222 0.174474i
\(262\) 4.29881 + 16.0434i 0.0164077 + 0.0612343i
\(263\) 171.317 45.9044i 0.651397 0.174541i 0.0820366 0.996629i \(-0.473858\pi\)
0.569360 + 0.822088i \(0.307191\pi\)
\(264\) 15.5959 + 73.4615i 0.0590754 + 0.278263i
\(265\) 77.3842 + 94.4851i 0.292016 + 0.356548i
\(266\) −8.39253 324.148i −0.0315509 1.21860i
\(267\) 323.758 164.863i 1.21258 0.617465i
\(268\) 41.3063 + 11.0680i 0.154128 + 0.0412984i
\(269\) −98.0087 56.5853i −0.364345 0.210354i 0.306640 0.951825i \(-0.400795\pi\)
−0.670985 + 0.741471i \(0.734128\pi\)
\(270\) 0.918579 + 190.917i 0.00340214 + 0.707099i
\(271\) 1.31107 0.756945i 0.00483789 0.00279316i −0.497579 0.867419i \(-0.665778\pi\)
0.502417 + 0.864625i \(0.332444\pi\)
\(272\) −26.6250 26.6250i −0.0978860 0.0978860i
\(273\) −74.5570 137.494i −0.273103 0.503641i
\(274\) 219.858i 0.802400i
\(275\) −209.661 + 70.7039i −0.762404 + 0.257105i
\(276\) −55.6796 + 50.1094i −0.201738 + 0.181556i
\(277\) 39.7694 10.6562i 0.143572 0.0384700i −0.186317 0.982490i \(-0.559655\pi\)
0.329889 + 0.944020i \(0.392989\pi\)
\(278\) 250.737 + 67.1847i 0.901930 + 0.241671i
\(279\) −353.652 257.208i −1.26757 0.921893i
\(280\) −55.6421 + 81.8777i −0.198722 + 0.292420i
\(281\) 361.849i 1.28772i −0.765143 0.643860i \(-0.777332\pi\)
0.765143 0.643860i \(-0.222668\pi\)
\(282\) 162.555 250.178i 0.576436 0.887158i
\(283\) −492.711 + 132.022i −1.74103 + 0.466507i −0.982675 0.185336i \(-0.940663\pi\)
−0.758354 + 0.651843i \(0.773996\pi\)
\(284\) −42.3831 + 73.4097i −0.149236 + 0.258485i
\(285\) −307.171 + 383.464i −1.07779 + 1.34549i
\(286\) 93.2224i 0.325952i
\(287\) −310.769 74.7059i −1.08282 0.260299i
\(288\) −7.93969 50.2888i −0.0275684 0.174614i
\(289\) −173.542 + 100.194i −0.600490 + 0.346693i
\(290\) 55.1611 + 336.194i 0.190211 + 1.15929i
\(291\) −229.647 + 206.674i −0.789167 + 0.710219i
\(292\) −237.563 63.6547i −0.813571 0.217996i
\(293\) −122.654 + 122.654i −0.418614 + 0.418614i −0.884726 0.466112i \(-0.845655\pi\)
0.466112 + 0.884726i \(0.345655\pi\)
\(294\) 146.877 + 147.123i 0.499583 + 0.500417i
\(295\) 17.9388 180.290i 0.0608094 0.611154i
\(296\) −38.0647 + 21.9766i −0.128597 + 0.0742454i
\(297\) −185.598 150.521i −0.624910 0.506804i
\(298\) 7.02267 + 26.2089i 0.0235660 + 0.0879495i
\(299\) −80.5276 + 46.4926i −0.269323 + 0.155494i
\(300\) 144.459 40.3924i 0.481531 0.134641i
\(301\) 144.052 88.2171i 0.478580 0.293080i
\(302\) 38.9231 38.9231i 0.128885 0.128885i
\(303\) 44.3653 68.2799i 0.146420 0.225346i
\(304\) 65.5098 113.466i 0.215493 0.373245i
\(305\) 194.650 + 139.778i 0.638197 + 0.458290i
\(306\) 119.150 + 12.5822i 0.389379 + 0.0411184i
\(307\) 280.523 280.523i 0.913755 0.913755i −0.0828102 0.996565i \(-0.526390\pi\)
0.996565 + 0.0828102i \(0.0263895\pi\)
\(308\) −35.1564 118.815i −0.114144 0.385761i
\(309\) −22.7378 + 69.9213i −0.0735850 + 0.226282i
\(310\) −121.343 + 321.428i −0.391431 + 1.03687i
\(311\) 238.362 412.854i 0.766436 1.32751i −0.173048 0.984913i \(-0.555362\pi\)
0.939484 0.342593i \(-0.111305\pi\)
\(312\) 3.32301 63.1108i 0.0106507 0.202278i
\(313\) 23.7295 88.5595i 0.0758130 0.282938i −0.917603 0.397497i \(-0.869879\pi\)
0.993416 + 0.114559i \(0.0365456\pi\)
\(314\) 312.481i 0.995163i
\(315\) −26.2097 313.908i −0.0832053 0.996532i
\(316\) 124.012 0.392444
\(317\) 404.762 + 108.456i 1.27685 + 0.342131i 0.832652 0.553797i \(-0.186822\pi\)
0.444199 + 0.895928i \(0.353488\pi\)
\(318\) 103.487 + 5.44899i 0.325432 + 0.0171352i
\(319\) −369.292 213.211i −1.15766 0.668373i
\(320\) −36.4510 + 16.4719i −0.113909 + 0.0514747i
\(321\) −6.11945 1.98999i −0.0190637 0.00619934i
\(322\) 85.1012 89.6250i 0.264289 0.278339i
\(323\) 218.025 + 218.025i 0.674999 + 0.674999i
\(324\) 120.283 + 108.517i 0.371244 + 0.334930i
\(325\) 185.825 11.8071i 0.571768 0.0363296i
\(326\) −157.664 91.0275i −0.483632 0.279225i
\(327\) 240.838 + 156.486i 0.736508 + 0.478551i
\(328\) −91.3206 91.3206i −0.278416 0.278416i
\(329\) −235.011 + 432.532i −0.714319 + 1.31469i
\(330\) −75.4532 + 171.918i −0.228646 + 0.520963i
\(331\) 123.440 + 213.804i 0.372930 + 0.645933i 0.990015 0.140963i \(-0.0450199\pi\)
−0.617085 + 0.786896i \(0.711687\pi\)
\(332\) −311.172 + 83.3782i −0.937264 + 0.251139i
\(333\) 50.1848 130.545i 0.150705 0.392026i
\(334\) −10.7074 18.5458i −0.0320581 0.0555263i
\(335\) 67.7395 + 82.7090i 0.202207 + 0.246893i
\(336\) 19.5653 + 81.6896i 0.0582301 + 0.243124i
\(337\) −278.585 278.585i −0.826661 0.826661i 0.160392 0.987053i \(-0.448724\pi\)
−0.987053 + 0.160392i \(0.948724\pi\)
\(338\) −41.5540 + 155.082i −0.122941 + 0.458821i
\(339\) −108.577 120.646i −0.320286 0.355889i
\(340\) −15.2412 92.8915i −0.0448271 0.273210i
\(341\) −215.014 372.415i −0.630540 1.09213i
\(342\) 65.0159 + 411.801i 0.190105 + 1.20410i
\(343\) −260.622 222.991i −0.759831 0.650120i
\(344\) 68.2533 0.198411
\(345\) −186.137 + 20.5621i −0.539528 + 0.0596003i
\(346\) −155.681 89.8827i −0.449946 0.259777i
\(347\) 162.413 + 606.133i 0.468049 + 1.74678i 0.646578 + 0.762848i \(0.276199\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(348\) 242.408 + 157.506i 0.696574 + 0.452603i
\(349\) 526.765 1.50936 0.754678 0.656095i \(-0.227793\pi\)
0.754678 + 0.656095i \(0.227793\pi\)
\(350\) −232.386 + 85.1274i −0.663960 + 0.243221i
\(351\) 118.081 + 162.777i 0.336414 + 0.463751i
\(352\) 12.9580 48.3599i 0.0368125 0.137386i
\(353\) −11.9979 44.7768i −0.0339884 0.126846i 0.946847 0.321684i \(-0.104249\pi\)
−0.980836 + 0.194837i \(0.937582\pi\)
\(354\) −102.842 114.274i −0.290514 0.322808i
\(355\) −193.113 + 87.2664i −0.543982 + 0.245821i
\(356\) −242.212 −0.680369
\(357\) −197.610 5.28136i −0.553529 0.0147937i
\(358\) 263.498 263.498i 0.736028 0.736028i
\(359\) −319.570 553.512i −0.890168 1.54182i −0.839673 0.543092i \(-0.817253\pi\)
−0.0504954 0.998724i \(-0.516080\pi\)
\(360\) 57.2094 113.697i 0.158915 0.315826i
\(361\) −355.942 + 616.510i −0.985990 + 1.70778i
\(362\) −43.8328 + 163.586i −0.121085 + 0.451896i
\(363\) 58.0861 + 114.070i 0.160017 + 0.314241i
\(364\) 2.69880 + 104.237i 0.00741427 + 0.286365i
\(365\) −389.587 475.680i −1.06736 1.30323i
\(366\) 198.907 42.2280i 0.543461 0.115377i
\(367\) −95.3454 355.834i −0.259797 0.969575i −0.965359 0.260926i \(-0.915972\pi\)
0.705562 0.708648i \(-0.250695\pi\)
\(368\) 48.2369 12.9250i 0.131079 0.0351224i
\(369\) 408.670 + 43.1556i 1.10751 + 0.116953i
\(370\) −109.343 10.8796i −0.295522 0.0294043i
\(371\) −170.925 + 4.42542i −0.460714 + 0.0119284i
\(372\) 132.288 + 259.787i 0.355612 + 0.698351i
\(373\) −285.521 76.5051i −0.765472 0.205108i −0.145102 0.989417i \(-0.546351\pi\)
−0.620370 + 0.784309i \(0.713018\pi\)
\(374\) 102.037 + 58.9110i 0.272826 + 0.157516i
\(375\) 352.249 + 128.630i 0.939330 + 0.343014i
\(376\) −172.253 + 99.4504i −0.458120 + 0.264496i
\(377\) 253.744 + 253.744i 0.673062 + 0.673062i
\(378\) −211.885 162.932i −0.560542 0.431037i
\(379\) 545.688i 1.43981i −0.694073 0.719905i \(-0.744185\pi\)
0.694073 0.719905i \(-0.255815\pi\)
\(380\) 298.487 134.884i 0.785493 0.354958i
\(381\) −10.4826 11.6479i −0.0275134 0.0305718i
\(382\) 104.272 27.9395i 0.272963 0.0731401i
\(383\) 475.888 + 127.514i 1.24253 + 0.332934i 0.819445 0.573157i \(-0.194282\pi\)
0.423082 + 0.906091i \(0.360948\pi\)
\(384\) −10.4963 + 32.2774i −0.0273341 + 0.0840556i
\(385\) 101.867 292.538i 0.264590 0.759839i
\(386\) 318.727i 0.825718i
\(387\) −168.848 + 136.593i −0.436300 + 0.352955i
\(388\) 198.950 53.3086i 0.512759 0.137393i
\(389\) 156.619 271.272i 0.402620 0.697358i −0.591422 0.806363i \(-0.701433\pi\)
0.994041 + 0.109005i \(0.0347664\pi\)
\(390\) 98.7774 123.311i 0.253275 0.316182i
\(391\) 117.522i 0.300568i
\(392\) −42.7499 131.835i −0.109056 0.336314i
\(393\) 15.9881 + 31.3974i 0.0406821 + 0.0798916i
\(394\) 123.032 71.0326i 0.312264 0.180286i
\(395\) 251.827 + 180.838i 0.637537 + 0.457816i
\(396\) 64.7253 + 145.567i 0.163448 + 0.367594i
\(397\) −119.378 31.9871i −0.300699 0.0805721i 0.105315 0.994439i \(-0.466415\pi\)
−0.406014 + 0.913867i \(0.633082\pi\)
\(398\) 137.601 137.601i 0.345732 0.345732i
\(399\) −160.215 668.934i −0.401541 1.67653i
\(400\) −98.0394 19.7048i −0.245098 0.0492619i
\(401\) −252.981 + 146.059i −0.630876 + 0.364237i −0.781091 0.624417i \(-0.785337\pi\)
0.150215 + 0.988653i \(0.452003\pi\)
\(402\) 90.5893 + 4.76986i 0.225347 + 0.0118653i
\(403\) 93.6623 + 349.553i 0.232413 + 0.867376i
\(404\) −47.0121 + 27.1425i −0.116367 + 0.0671843i
\(405\) 86.0123 + 395.761i 0.212376 + 0.977188i
\(406\) −419.097 227.711i −1.03226 0.560865i
\(407\) 97.2519 97.2519i 0.238948 0.238948i
\(408\) −66.9781 43.5194i −0.164162 0.106665i
\(409\) 177.930 308.183i 0.435036 0.753504i −0.562263 0.826959i \(-0.690069\pi\)
0.997299 + 0.0734545i \(0.0234024\pi\)
\(410\) −52.2756 318.607i −0.127501 0.777090i
\(411\) −96.8558 456.221i −0.235659 1.11003i
\(412\) 34.6602 34.6602i 0.0841268 0.0841268i
\(413\) 183.942 + 174.657i 0.445380 + 0.422899i
\(414\) −93.4641 + 128.510i −0.225759 + 0.310410i
\(415\) −753.469 284.444i −1.81559 0.685408i
\(416\) −21.0661 + 36.4875i −0.0506396 + 0.0877103i
\(417\) 549.894 + 28.9539i 1.31869 + 0.0694338i
\(418\) −106.110 + 396.006i −0.253851 + 0.947383i
\(419\) 642.877i 1.53431i 0.641460 + 0.767157i \(0.278329\pi\)
−0.641460 + 0.767157i \(0.721671\pi\)
\(420\) −79.3911 + 194.415i −0.189026 + 0.462892i
\(421\) −350.397 −0.832296 −0.416148 0.909297i \(-0.636620\pi\)
−0.416148 + 0.909297i \(0.636620\pi\)
\(422\) 12.5207 + 3.35492i 0.0296700 + 0.00795005i
\(423\) 227.100 590.750i 0.536880 1.39657i
\(424\) −59.8313 34.5436i −0.141112 0.0814708i
\(425\) 104.507 210.856i 0.245898 0.496133i
\(426\) −55.6082 + 171.002i −0.130536 + 0.401413i
\(427\) −321.706 + 95.1906i −0.753410 + 0.222929i
\(428\) 3.03343 + 3.03343i 0.00708746 + 0.00708746i
\(429\) 41.0680 + 193.443i 0.0957297 + 0.450916i
\(430\) 138.599 + 99.5284i 0.322324 + 0.231461i
\(431\) −428.870 247.608i −0.995059 0.574497i −0.0882761 0.996096i \(-0.528136\pi\)
−0.906783 + 0.421599i \(0.861469\pi\)
\(432\) −38.6296 100.855i −0.0894203 0.233461i
\(433\) −215.228 215.228i −0.497063 0.497063i 0.413460 0.910522i \(-0.364320\pi\)
−0.910522 + 0.413460i \(0.864320\pi\)
\(434\) −251.200 410.192i −0.578802 0.945144i
\(435\) 262.570 + 673.325i 0.603608 + 1.54787i
\(436\) −95.7375 165.822i −0.219581 0.380326i
\(437\) −394.999 + 105.840i −0.903888 + 0.242196i
\(438\) −521.002 27.4326i −1.18950 0.0626316i
\(439\) 105.622 + 182.943i 0.240598 + 0.416728i 0.960885 0.276949i \(-0.0893232\pi\)
−0.720287 + 0.693676i \(0.755990\pi\)
\(440\) 96.8328 79.3070i 0.220074 0.180243i
\(441\) 369.594 + 240.585i 0.838082 + 0.545544i
\(442\) −70.1105 70.1105i −0.158621 0.158621i
\(443\) −152.850 + 570.445i −0.345034 + 1.28769i 0.547538 + 0.836781i \(0.315565\pi\)
−0.892572 + 0.450905i \(0.851101\pi\)
\(444\) −69.3054 + 62.3721i −0.156093 + 0.140478i
\(445\) −491.850 353.198i −1.10528 0.793704i
\(446\) −107.480 186.161i −0.240987 0.417402i
\(447\) 26.1186 + 51.2917i 0.0584309 + 0.114747i
\(448\) 13.0890 54.4489i 0.0292165 0.121538i
\(449\) −253.156 −0.563821 −0.281911 0.959441i \(-0.590968\pi\)
−0.281911 + 0.959441i \(0.590968\pi\)
\(450\) 281.969 147.457i 0.626597 0.327682i
\(451\) 349.974 + 202.058i 0.775996 + 0.448021i
\(452\) 28.0059 + 104.520i 0.0619600 + 0.231238i
\(453\) 63.6212 97.9155i 0.140444 0.216149i
\(454\) 321.808 0.708829
\(455\) −146.520 + 215.605i −0.322022 + 0.473857i
\(456\) 85.9513 264.311i 0.188490 0.579628i
\(457\) −54.5974 + 203.760i −0.119469 + 0.445865i −0.999582 0.0288990i \(-0.990800\pi\)
0.880113 + 0.474764i \(0.157467\pi\)
\(458\) −135.571 505.960i −0.296008 1.10472i
\(459\) 252.788 26.3811i 0.550736 0.0574752i
\(460\) 116.800 + 44.0937i 0.253914 + 0.0958559i
\(461\) −515.538 −1.11830 −0.559152 0.829065i \(-0.688873\pi\)
−0.559152 + 0.829065i \(0.688873\pi\)
\(462\) −125.294 231.061i −0.271200 0.500132i
\(463\) 191.269 191.269i 0.413108 0.413108i −0.469712 0.882820i \(-0.655642\pi\)
0.882820 + 0.469712i \(0.155642\pi\)
\(464\) −96.3613 166.903i −0.207675 0.359704i
\(465\) −110.195 + 720.444i −0.236978 + 1.54934i
\(466\) −187.884 + 325.425i −0.403184 + 0.698336i
\(467\) −42.8783 + 160.024i −0.0918166 + 0.342664i −0.996518 0.0833830i \(-0.973428\pi\)
0.904701 + 0.426047i \(0.140094\pi\)
\(468\) −20.9072 132.423i −0.0446736 0.282956i
\(469\) −149.622 + 3.87386i −0.319023 + 0.00825982i
\(470\) −494.809 49.2331i −1.05278 0.104751i
\(471\) −137.660 648.421i −0.292272 1.37669i
\(472\) 26.5267 + 98.9990i 0.0562006 + 0.209744i
\(473\) −206.295 + 55.2766i −0.436142 + 0.116864i
\(474\) 257.335 54.6322i 0.542900 0.115258i
\(475\) 802.818 + 161.357i 1.69014 + 0.339699i
\(476\) 115.798 + 62.9174i 0.243273 + 0.132179i
\(477\) 217.144 34.2832i 0.455230 0.0718725i
\(478\) −290.111 77.7351i −0.606928 0.162626i
\(479\) 396.050 + 228.660i 0.826827 + 0.477369i 0.852765 0.522294i \(-0.174924\pi\)
−0.0259377 + 0.999664i \(0.508257\pi\)
\(480\) −68.3820 + 50.2385i −0.142462 + 0.104663i
\(481\) −100.234 + 57.8702i −0.208387 + 0.120312i
\(482\) 32.2626 + 32.2626i 0.0669350 + 0.0669350i
\(483\) 137.108 223.469i 0.283867 0.462668i
\(484\) 85.3382i 0.176319i
\(485\) 481.737 + 181.862i 0.993272 + 0.374973i
\(486\) 297.402 + 172.192i 0.611939 + 0.354304i
\(487\) 85.5199 22.9150i 0.175606 0.0470534i −0.169945 0.985454i \(-0.554359\pi\)
0.345550 + 0.938400i \(0.387692\pi\)
\(488\) −130.941 35.0855i −0.268322 0.0718965i
\(489\) −367.266 119.431i −0.751055 0.244236i
\(490\) 105.434 330.051i 0.215171 0.673573i
\(491\) 807.024i 1.64363i 0.569751 + 0.821817i \(0.307040\pi\)
−0.569751 + 0.821817i \(0.692960\pi\)
\(492\) −229.727 149.267i −0.466925 0.303387i
\(493\) 438.088 117.385i 0.888616 0.238104i
\(494\) 172.504 298.786i 0.349199 0.604830i
\(495\) −80.8344 + 389.982i −0.163302 + 0.787842i
\(496\) 194.353i 0.391840i
\(497\) 69.3440 288.464i 0.139525 0.580411i
\(498\) −608.972 + 310.099i −1.22284 + 0.622689i
\(499\) −542.063 + 312.960i −1.08630 + 0.627175i −0.932588 0.360942i \(-0.882455\pi\)
−0.153710 + 0.988116i \(0.549122\pi\)
\(500\) −170.351 182.977i −0.340702 0.365954i
\(501\) −30.3888 33.7668i −0.0606563 0.0673988i
\(502\) 68.6847 + 18.4040i 0.136822 + 0.0366614i
\(503\) 171.104 171.104i 0.340167 0.340167i −0.516263 0.856430i \(-0.672677\pi\)
0.856430 + 0.516263i \(0.172677\pi\)
\(504\) 76.5869 + 160.893i 0.151958 + 0.319231i
\(505\) −135.045 13.4369i −0.267417 0.0266078i
\(506\) −135.328 + 78.1317i −0.267447 + 0.154410i
\(507\) −17.9081 + 340.112i −0.0353217 + 0.670832i
\(508\) 2.70384 + 10.0909i 0.00532253 + 0.0198639i
\(509\) 642.599 371.005i 1.26247 0.728890i 0.288921 0.957353i \(-0.406703\pi\)
0.973553 + 0.228463i \(0.0733700\pi\)
\(510\) −72.5489 186.042i −0.142253 0.364789i
\(511\) 860.512 22.2795i 1.68398 0.0435998i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 316.327 + 825.875i 0.616622 + 1.60989i
\(514\) −103.172 + 178.699i −0.200723 + 0.347663i
\(515\) 120.926 19.8409i 0.234807 0.0385261i
\(516\) 141.631 30.0682i 0.274478 0.0582717i
\(517\) 440.092 440.092i 0.851241 0.851241i
\(518\) 105.927 111.558i 0.204492 0.215363i
\(519\) −362.647 117.929i −0.698742 0.227224i
\(520\) −95.9849 + 43.3748i −0.184586 + 0.0834131i
\(521\) 502.617 870.558i 0.964716 1.67094i 0.254338 0.967115i \(-0.418142\pi\)
0.710377 0.703821i \(-0.248524\pi\)
\(522\) 572.401 + 220.046i 1.09655 + 0.421544i
\(523\) −198.660 + 741.410i −0.379848 + 1.41761i 0.466283 + 0.884635i \(0.345593\pi\)
−0.846131 + 0.532975i \(0.821074\pi\)
\(524\) 23.4891i 0.0448266i
\(525\) −444.716 + 279.021i −0.847078 + 0.531468i
\(526\) −250.826 −0.476856
\(527\) 441.793 + 118.378i 0.838316 + 0.224626i
\(528\) 5.58438 106.059i 0.0105765 0.200869i
\(529\) 323.144 + 186.567i 0.610857 + 0.352679i
\(530\) −71.1249 157.394i −0.134198 0.296969i
\(531\) −263.747 191.821i −0.496698 0.361245i
\(532\) −107.182 + 445.867i −0.201470 + 0.838096i
\(533\) −240.471 240.471i −0.451164 0.451164i
\(534\) −502.606 + 106.704i −0.941211 + 0.199819i
\(535\) 1.73646 + 10.5833i 0.00324572 + 0.0197819i
\(536\) −52.3742 30.2383i −0.0977131 0.0564147i
\(537\) 430.696 662.858i 0.802042 1.23437i
\(538\) 113.171 + 113.171i 0.210354 + 0.210354i
\(539\) 235.981 + 363.848i 0.437813 + 0.675043i
\(540\) 68.6255 261.133i 0.127084 0.483580i
\(541\) −122.649 212.434i −0.226708 0.392669i 0.730123 0.683316i \(-0.239463\pi\)
−0.956830 + 0.290647i \(0.906130\pi\)
\(542\) −2.06801 + 0.554123i −0.00381552 + 0.00102237i
\(543\) −18.8902 + 358.763i −0.0347886 + 0.660706i
\(544\) 26.6250 + 46.1158i 0.0489430 + 0.0847718i
\(545\) 47.3950 476.335i 0.0869634 0.874010i
\(546\) 51.5205 + 215.110i 0.0943599 + 0.393974i
\(547\) −163.143 163.143i −0.298250 0.298250i 0.542078 0.840328i \(-0.317638\pi\)
−0.840328 + 0.542078i \(0.817638\pi\)
\(548\) −80.4735 + 300.331i −0.146849 + 0.548050i
\(549\) 394.143 175.252i 0.717929 0.319221i
\(550\) 312.282 19.8421i 0.567785 0.0360765i
\(551\) 789.077 + 1366.72i 1.43208 + 2.48044i
\(552\) 94.4011 48.0706i 0.171016 0.0870844i
\(553\) −416.206 + 123.152i −0.752632 + 0.222699i
\(554\) −58.2264 −0.105102
\(555\) −231.688 + 25.5940i −0.417456 + 0.0461153i
\(556\) −317.921 183.552i −0.571801 0.330129i
\(557\) −108.749 405.857i −0.195241 0.728649i −0.992204 0.124621i \(-0.960228\pi\)
0.796963 0.604027i \(-0.206438\pi\)
\(558\) 388.952 + 480.798i 0.697047 + 0.861645i
\(559\) 179.729 0.321518
\(560\) 105.978 91.4806i 0.189246 0.163358i
\(561\) 237.686 + 77.2934i 0.423683 + 0.137778i
\(562\) −132.446 + 494.296i −0.235669 + 0.879529i
\(563\) 12.5901 + 46.9869i 0.0223625 + 0.0834581i 0.976205 0.216848i \(-0.0695777\pi\)
−0.953843 + 0.300306i \(0.902911\pi\)
\(564\) −313.626 + 282.251i −0.556074 + 0.500445i
\(565\) −95.5421 + 253.083i −0.169101 + 0.447934i
\(566\) 721.379 1.27452
\(567\) −511.454 244.752i −0.902035 0.431662i
\(568\) 84.7662 84.7662i 0.149236 0.149236i
\(569\) 174.644 + 302.493i 0.306932 + 0.531621i 0.977690 0.210055i \(-0.0673643\pi\)
−0.670758 + 0.741676i \(0.734031\pi\)
\(570\) 559.962 411.389i 0.982389 0.721736i
\(571\) 412.798 714.987i 0.722939 1.25217i −0.236878 0.971539i \(-0.576124\pi\)
0.959817 0.280627i \(-0.0905425\pi\)
\(572\) 34.1217 127.344i 0.0596534 0.222630i
\(573\) 204.063 103.912i 0.356131 0.181348i
\(574\) 397.174 + 215.799i 0.691940 + 0.375957i
\(575\) 172.884 + 259.860i 0.300667 + 0.451931i
\(576\) −7.56116 + 71.6019i −0.0131270 + 0.124309i
\(577\) 83.4080 + 311.283i 0.144555 + 0.539485i 0.999775 + 0.0212204i \(0.00675517\pi\)
−0.855220 + 0.518265i \(0.826578\pi\)
\(578\) 273.736 73.3474i 0.473592 0.126899i
\(579\) 140.412 + 661.382i 0.242507 + 1.14228i
\(580\) 47.7039 479.439i 0.0822481 0.826619i
\(581\) 961.543 588.844i 1.65498 1.01350i
\(582\) 389.352 198.265i 0.668990 0.340661i
\(583\) 208.816 + 55.9520i 0.358174 + 0.0959725i
\(584\) 301.217 + 173.908i 0.515783 + 0.297787i
\(585\) 150.647 299.394i 0.257516 0.511785i
\(586\) 212.443 122.654i 0.362531 0.209307i
\(587\) 175.759 + 175.759i 0.299419 + 0.299419i 0.840786 0.541367i \(-0.182093\pi\)
−0.541367 + 0.840786i \(0.682093\pi\)
\(588\) −146.787 254.734i −0.249639 0.433221i
\(589\) 1591.50i 2.70204i
\(590\) −90.4957 + 239.715i −0.153383 + 0.406297i
\(591\) 224.008 201.598i 0.379032 0.341114i
\(592\) 60.0413 16.0880i 0.101421 0.0271757i
\(593\) −449.905 120.552i −0.758693 0.203291i −0.141322 0.989964i \(-0.545135\pi\)
−0.617371 + 0.786672i \(0.711802\pi\)
\(594\) 198.438 + 273.549i 0.334070 + 0.460520i
\(595\) 143.399 + 296.623i 0.241007 + 0.498527i
\(596\) 38.3726i 0.0643835i
\(597\) 224.914 346.151i 0.376740 0.579817i
\(598\) 127.020 34.0350i 0.212408 0.0569147i
\(599\) −89.3224 + 154.711i −0.149119 + 0.258282i −0.930902 0.365269i \(-0.880977\pi\)
0.781783 + 0.623551i \(0.214310\pi\)
\(600\) −212.120 + 2.30129i −0.353533 + 0.00383548i
\(601\) 641.037i 1.06662i 0.845921 + 0.533309i \(0.179052\pi\)
−0.845921 + 0.533309i \(0.820948\pi\)
\(602\) −229.069 + 67.7799i −0.380513 + 0.112591i
\(603\) 190.081 30.0103i 0.315225 0.0497683i
\(604\) −67.4169 + 38.9231i −0.111617 + 0.0644423i
\(605\) 124.442 173.293i 0.205689 0.286435i
\(606\) −85.5962 + 77.0332i −0.141248 + 0.127118i
\(607\) −632.907 169.587i −1.04268 0.279385i −0.303457 0.952845i \(-0.598141\pi\)
−0.739224 + 0.673460i \(0.764807\pi\)
\(608\) −131.020 + 131.020i −0.215493 + 0.215493i
\(609\) −969.973 287.889i −1.59273 0.472724i
\(610\) −214.734 262.188i −0.352023 0.429816i
\(611\) −453.587 + 261.879i −0.742368 + 0.428606i
\(612\) −158.156 60.7996i −0.258426 0.0993457i
\(613\) −177.898 663.923i −0.290208 1.08307i −0.944949 0.327218i \(-0.893889\pi\)
0.654741 0.755853i \(-0.272778\pi\)
\(614\) −485.880 + 280.523i −0.791335 + 0.456878i
\(615\) −248.834 638.103i −0.404609 1.03757i
\(616\) 4.53537 + 175.172i 0.00736262 + 0.284370i
\(617\) 45.9474 45.9474i 0.0744690 0.0744690i −0.668891 0.743360i \(-0.733231\pi\)
0.743360 + 0.668891i \(0.233231\pi\)
\(618\) 56.6533 87.1916i 0.0916720 0.141087i
\(619\) 489.622 848.050i 0.790989 1.37003i −0.134366 0.990932i \(-0.542900\pi\)
0.925355 0.379101i \(-0.123767\pi\)
\(620\) 283.409 394.664i 0.457112 0.636556i
\(621\) −137.331 + 307.841i −0.221145 + 0.495719i
\(622\) −476.723 + 476.723i −0.766436 + 0.766436i
\(623\) 812.901 240.532i 1.30482 0.386086i
\(624\) −27.6395 + 84.9946i −0.0442940 + 0.136209i
\(625\) −79.1043 619.974i −0.126567 0.991958i
\(626\) −64.8301 + 112.289i −0.103562 + 0.179375i
\(627\) −45.7290 + 868.487i −0.0729330 + 1.38515i
\(628\) −114.376 + 426.857i −0.182127 + 0.679709i
\(629\) 146.282i 0.232563i
\(630\) −79.0951 + 438.399i −0.125548 + 0.695872i
\(631\) −246.070 −0.389968 −0.194984 0.980806i \(-0.562466\pi\)
−0.194984 + 0.980806i \(0.562466\pi\)
\(632\) −169.404 45.3917i −0.268044 0.0718223i
\(633\) 27.4594 + 1.44584i 0.0433798 + 0.00228410i
\(634\) −513.217 296.306i −0.809491 0.467360i
\(635\) −9.22415 + 24.4340i −0.0145262 + 0.0384787i
\(636\) −139.372 45.3225i −0.219138 0.0712618i
\(637\) −112.571 347.155i −0.176721 0.544985i
\(638\) 426.422 + 426.422i 0.668373 + 0.668373i
\(639\) −40.0582 + 379.339i −0.0626889 + 0.593645i
\(640\) 55.8221 9.15905i 0.0872221 0.0143110i
\(641\) −522.908 301.901i −0.815769 0.470984i 0.0331865 0.999449i \(-0.489434\pi\)
−0.848955 + 0.528465i \(0.822768\pi\)
\(642\) 7.63094 + 4.95825i 0.0118862 + 0.00772313i
\(643\) 97.5075 + 97.5075i 0.151645 + 0.151645i 0.778852 0.627208i \(-0.215802\pi\)
−0.627208 + 0.778852i \(0.715802\pi\)
\(644\) −149.055 + 91.2809i −0.231453 + 0.141740i
\(645\) 331.450 + 145.470i 0.513876 + 0.225535i
\(646\) −218.025 377.630i −0.337500 0.584567i
\(647\) −1197.90 + 320.976i −1.85147 + 0.496099i −0.999617 0.0276875i \(-0.991186\pi\)
−0.851850 + 0.523786i \(0.824519\pi\)
\(648\) −124.590 192.264i −0.192268 0.296704i
\(649\) −160.354 277.740i −0.247078 0.427951i
\(650\) −258.163 51.8878i −0.397174 0.0798273i
\(651\) −701.964 740.516i −1.07829 1.13750i
\(652\) 182.055 + 182.055i 0.279225 + 0.279225i
\(653\) 217.062 810.085i 0.332407 1.24056i −0.574246 0.818683i \(-0.694705\pi\)
0.906653 0.421877i \(-0.138629\pi\)
\(654\) −271.713 301.917i −0.415464 0.461647i
\(655\) 34.2524 47.6985i 0.0522937 0.0728221i
\(656\) 91.3206 + 158.172i 0.139208 + 0.241116i
\(657\) −1093.20 + 172.597i −1.66393 + 0.262704i
\(658\) 479.349 504.830i 0.728493 0.767219i
\(659\) −1274.81 −1.93445 −0.967227 0.253913i \(-0.918282\pi\)
−0.967227 + 0.253913i \(0.918282\pi\)
\(660\) 165.997 207.226i 0.251511 0.313979i
\(661\) 396.873 + 229.135i 0.600413 + 0.346648i 0.769204 0.639003i \(-0.220653\pi\)
−0.168791 + 0.985652i \(0.553986\pi\)
\(662\) −90.3642 337.244i −0.136502 0.509432i
\(663\) −176.371 114.598i −0.266019 0.172848i
\(664\) 455.587 0.686125
\(665\) −867.824 + 749.110i −1.30500 + 1.12648i
\(666\) −116.336 + 159.958i −0.174679 + 0.240178i
\(667\) −155.684 + 581.021i −0.233410 + 0.871097i
\(668\) 7.83837 + 29.2532i 0.0117341 + 0.0437922i
\(669\) −305.041 338.949i −0.455965 0.506651i
\(670\) −62.2603 137.777i −0.0929258 0.205637i
\(671\) 424.183 0.632165
\(672\) 3.17377 118.752i 0.00472288 0.176714i
\(673\) 823.229 823.229i 1.22322 1.22322i 0.256744 0.966480i \(-0.417350\pi\)
0.966480 0.256744i \(-0.0826496\pi\)
\(674\) 278.585 + 482.523i 0.413330 + 0.715909i
\(675\) 520.145 430.202i 0.770586 0.637336i
\(676\) 113.528 196.636i 0.167940 0.290881i
\(677\) 279.627 1043.58i 0.413039 1.54148i −0.375693 0.926744i \(-0.622595\pi\)
0.788732 0.614737i \(-0.210738\pi\)
\(678\) 104.159 + 204.548i 0.153627 + 0.301693i
\(679\) −614.771 + 376.483i −0.905407 + 0.554467i
\(680\) −13.1808 + 132.471i −0.0193835 + 0.194810i
\(681\) 667.775 141.769i 0.980581 0.208178i
\(682\) 157.401 + 587.429i 0.230794 + 0.861334i
\(683\) −1286.90 + 344.824i −1.88419 + 0.504867i −0.884956 + 0.465675i \(0.845812\pi\)
−0.999232 + 0.0391919i \(0.987522\pi\)
\(684\) 61.9163 586.328i 0.0905209 0.857205i
\(685\) −601.364 + 492.523i −0.877904 + 0.719012i
\(686\) 274.396 + 400.006i 0.399994 + 0.583099i
\(687\) −504.215 990.178i −0.733938 1.44131i
\(688\) −93.2357 24.9824i −0.135517 0.0363117i
\(689\) −157.551 90.9622i −0.228667 0.132021i
\(690\) 261.794 + 40.0426i 0.379412 + 0.0580327i
\(691\) 859.716 496.357i 1.24416 0.718317i 0.274223 0.961666i \(-0.411579\pi\)
0.969939 + 0.243349i \(0.0782461\pi\)
\(692\) 179.765 + 179.765i 0.259777 + 0.259777i
\(693\) −361.786 424.271i −0.522058 0.612224i
\(694\) 887.441i 1.27873i
\(695\) −377.931 836.332i −0.543786 1.20335i
\(696\) −273.484 303.884i −0.392937 0.436615i
\(697\) −415.171 + 111.245i −0.595654 + 0.159605i
\(698\) −719.575 192.809i −1.03091 0.276231i
\(699\) −246.511 + 758.050i −0.352662 + 1.08448i
\(700\) 348.604 31.2270i 0.498006 0.0446100i
\(701\) 560.828i 0.800040i 0.916506 + 0.400020i \(0.130997\pi\)
−0.916506 + 0.400020i \(0.869003\pi\)
\(702\) −101.722 265.578i −0.144903 0.378316i
\(703\) −491.662 + 131.740i −0.699377 + 0.187397i
\(704\) −35.4019 + 61.3179i −0.0502868 + 0.0870993i
\(705\) −1048.45 + 115.820i −1.48717 + 0.164284i
\(706\) 65.5578i 0.0928580i
\(707\) 130.826 137.781i 0.185044 0.194881i
\(708\) 98.6577 + 193.744i 0.139347 + 0.273650i
\(709\) 127.980 73.8894i 0.180508 0.104216i −0.407023 0.913418i \(-0.633433\pi\)
0.587531 + 0.809201i \(0.300100\pi\)
\(710\) 295.740 48.5236i 0.416535 0.0683431i
\(711\) 509.920 226.732i 0.717188 0.318891i
\(712\) 330.867 + 88.6556i 0.464701 + 0.124516i
\(713\) −428.934 + 428.934i −0.601591 + 0.601591i
\(714\) 268.007 + 79.5447i 0.375360 + 0.111407i
\(715\) 254.986 208.836i 0.356623 0.292078i
\(716\) −456.392 + 263.498i −0.637419 + 0.368014i
\(717\) −636.248 33.5007i −0.887375 0.0467235i
\(718\) 233.942 + 873.083i 0.325824 + 1.21599i
\(719\) 45.0723 26.0225i 0.0626875 0.0361926i −0.468329 0.883554i \(-0.655144\pi\)
0.531016 + 0.847362i \(0.321810\pi\)
\(720\) −119.766 + 134.373i −0.166341 + 0.186630i
\(721\) −81.9055 + 150.745i −0.113600 + 0.209078i
\(722\) 711.885 711.885i 0.985990 0.985990i
\(723\) 81.1603 + 52.7344i 0.112255 + 0.0729383i
\(724\) 119.753 207.419i 0.165405 0.286490i
\(725\) 795.999 904.016i 1.09793 1.24692i
\(726\) −37.5948 177.083i −0.0517834 0.243916i
\(727\) 315.391 315.391i 0.433826 0.433826i −0.456102 0.889928i \(-0.650755\pi\)
0.889928 + 0.456102i \(0.150755\pi\)
\(728\) 34.4667 143.378i 0.0473443 0.196948i
\(729\) 692.988 + 226.293i 0.950601 + 0.310416i
\(730\) 358.074 + 792.390i 0.490513 + 1.08547i
\(731\) 113.578 196.722i 0.155373 0.269114i
\(732\) −287.168 15.1205i −0.392307 0.0206564i
\(733\) 60.1306 224.410i 0.0820335 0.306153i −0.912702 0.408625i \(-0.866008\pi\)
0.994736 + 0.102472i \(0.0326751\pi\)
\(734\) 520.977i 0.709778i
\(735\) 73.3830 731.328i 0.0998408 0.995003i
\(736\) −70.6237 −0.0959561
\(737\) 182.790 + 48.9784i 0.248019 + 0.0664565i
\(738\) −542.458 208.535i −0.735038 0.282568i
\(739\) 248.595 + 143.526i 0.336393 + 0.194217i 0.658676 0.752427i \(-0.271117\pi\)
−0.322283 + 0.946643i \(0.604450\pi\)
\(740\) 145.384 + 54.8842i 0.196464 + 0.0741678i
\(741\) 226.332 695.998i 0.305441 0.939268i
\(742\) 235.108 + 56.5176i 0.316856 + 0.0761693i
\(743\) 296.361 + 296.361i 0.398870 + 0.398870i 0.877834 0.478964i \(-0.158988\pi\)
−0.478964 + 0.877834i \(0.658988\pi\)
\(744\) −85.6198 403.296i −0.115080 0.542064i
\(745\) 55.9557 77.9217i 0.0751083 0.104593i
\(746\) 362.026 + 209.016i 0.485290 + 0.280182i
\(747\) −1127.05 + 911.754i −1.50877 + 1.22055i
\(748\) −117.822 117.822i −0.157516 0.157516i
\(749\) −13.1931 7.16830i −0.0176143 0.00957050i
\(750\) −434.099 304.644i −0.578799 0.406192i
\(751\) 408.674 + 707.844i 0.544173 + 0.942535i 0.998658 + 0.0517809i \(0.0164897\pi\)
−0.454486 + 0.890754i \(0.650177\pi\)
\(752\) 271.703 72.8027i 0.361308 0.0968121i
\(753\) 150.633 + 7.93139i 0.200044 + 0.0105331i
\(754\) −253.744 439.498i −0.336531 0.582889i
\(755\) −193.659 19.2690i −0.256503 0.0255218i
\(756\) 229.803 + 300.124i 0.303972 + 0.396990i
\(757\) −835.287 835.287i −1.10342 1.10342i −0.993995 0.109422i \(-0.965100\pi\)
−0.109422 0.993995i \(-0.534900\pi\)
\(758\) −199.736 + 745.423i −0.263503 + 0.983408i
\(759\) −246.395 + 221.746i −0.324632 + 0.292156i
\(760\) −457.112