Properties

Label 210.3.w.a.143.3
Level 210
Weight 3
Character 210.143
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 143.3
Character \(\chi\) \(=\) 210.143
Dual form 210.3.w.a.47.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-2.45437 - 1.72513i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(2.65653 + 4.23590i) q^{5} +(-3.25493 + 2.72129i) q^{6} +(3.47039 + 6.07917i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(3.04785 + 8.46821i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(-2.45437 - 1.72513i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(2.65653 + 4.23590i) q^{5} +(-3.25493 + 2.72129i) q^{6} +(3.47039 + 6.07917i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(3.04785 + 8.46821i) q^{9} +(6.75870 - 2.07845i) q^{10} +(5.23131 + 3.02030i) q^{11} +(2.52596 + 5.44238i) q^{12} +(7.33446 - 7.33446i) q^{13} +(9.57456 - 2.51551i) q^{14} +(0.787362 - 14.9793i) q^{15} +(2.00000 + 3.46410i) q^{16} +(6.03451 + 22.5211i) q^{17} +(12.6834 - 1.06386i) q^{18} +(-17.0920 - 29.6042i) q^{19} +(-0.365356 - 9.99332i) q^{20} +(1.96974 - 20.9074i) q^{21} +(6.04060 - 6.04060i) q^{22} +(26.5519 + 7.11456i) q^{23} +(8.35900 - 1.45848i) q^{24} +(-10.8856 + 22.5056i) q^{25} +(-7.33446 - 12.7037i) q^{26} +(7.12823 - 26.0420i) q^{27} +(0.0682753 - 13.9998i) q^{28} -6.86667 q^{29} +(-20.1739 - 6.55837i) q^{30} +(38.9114 + 22.4655i) q^{31} +(5.46410 - 1.46410i) q^{32} +(-7.62915 - 16.4376i) q^{33} +32.9732 q^{34} +(-16.5315 + 30.8498i) q^{35} +(3.18919 - 17.7152i) q^{36} +(34.1241 + 9.14352i) q^{37} +(-46.6962 + 12.5122i) q^{38} +(-30.6544 + 5.34857i) q^{39} +(-13.7849 - 3.15873i) q^{40} -18.2221 q^{41} +(-27.8391 - 10.3434i) q^{42} +(17.2571 + 17.2571i) q^{43} +(-6.04060 - 10.4626i) q^{44} +(-27.7738 + 35.4065i) q^{45} +(19.4373 - 33.6664i) q^{46} +(-23.3212 - 6.24890i) q^{47} +(1.06729 - 11.9524i) q^{48} +(-24.9127 + 42.1943i) q^{49} +(26.7588 + 23.1077i) q^{50} +(24.0409 - 65.6854i) q^{51} +(-20.0381 + 5.36920i) q^{52} +(20.7100 + 77.2906i) q^{53} +(-32.9650 - 19.2694i) q^{54} +(1.10348 + 30.1828i) q^{55} +(-19.0991 - 5.21756i) q^{56} +(-9.12106 + 102.145i) q^{57} +(-2.51338 + 9.38005i) q^{58} +(-97.9689 - 56.5624i) q^{59} +(-16.3431 + 25.1576i) q^{60} +(16.8856 - 9.74888i) q^{61} +(44.9310 - 44.9310i) q^{62} +(-40.9025 + 47.9164i) q^{63} -8.00000i q^{64} +(50.5523 + 11.5838i) q^{65} +(-25.2467 + 4.40503i) q^{66} +(-2.92860 - 10.9297i) q^{67} +(12.0690 - 45.0422i) q^{68} +(-52.8946 - 63.2672i) q^{69} +(36.0906 + 33.8743i) q^{70} -80.6556i q^{71} +(-23.0321 - 10.8407i) q^{72} +(-0.519481 - 1.93873i) q^{73} +(24.9805 - 43.2676i) q^{74} +(65.5425 - 36.4579i) q^{75} +68.3679i q^{76} +(-0.206212 + 42.2837i) q^{77} +(-3.91400 + 43.8324i) q^{78} +(73.1841 - 42.2528i) q^{79} +(-9.36051 + 17.6743i) q^{80} +(-62.4212 + 51.6196i) q^{81} +(-6.66976 + 24.8919i) q^{82} +(4.56113 + 4.56113i) q^{83} +(-24.3191 + 34.2430i) q^{84} +(-79.3662 + 85.3897i) q^{85} +(29.8902 - 17.2571i) q^{86} +(16.8533 + 11.8459i) q^{87} +(-16.5032 + 4.42202i) q^{88} +(-21.5716 + 12.4544i) q^{89} +(38.2002 + 50.8993i) q^{90} +(70.0410 + 19.1340i) q^{91} +(-38.8747 - 38.8747i) q^{92} +(-56.7469 - 122.266i) q^{93} +(-17.0723 + 29.5701i) q^{94} +(79.9948 - 151.044i) q^{95} +(-15.9367 - 5.83284i) q^{96} +(-38.4454 - 38.4454i) q^{97} +(48.5197 + 49.4756i) q^{98} +(-9.63229 + 53.5053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) −2.45437 1.72513i −0.818123 0.575044i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 2.65653 + 4.23590i 0.531307 + 0.847179i
\(6\) −3.25493 + 2.72129i −0.542489 + 0.453548i
\(7\) 3.47039 + 6.07917i 0.495771 + 0.868454i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 3.04785 + 8.46821i 0.338650 + 0.940913i
\(10\) 6.75870 2.07845i 0.675870 0.207845i
\(11\) 5.23131 + 3.02030i 0.475574 + 0.274573i 0.718570 0.695455i \(-0.244797\pi\)
−0.242996 + 0.970027i \(0.578130\pi\)
\(12\) 2.52596 + 5.44238i 0.210497 + 0.453532i
\(13\) 7.33446 7.33446i 0.564189 0.564189i −0.366305 0.930495i \(-0.619377\pi\)
0.930495 + 0.366305i \(0.119377\pi\)
\(14\) 9.57456 2.51551i 0.683897 0.179680i
\(15\) 0.787362 14.9793i 0.0524908 0.998621i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 6.03451 + 22.5211i 0.354971 + 1.32477i 0.880520 + 0.474008i \(0.157193\pi\)
−0.525549 + 0.850763i \(0.676140\pi\)
\(18\) 12.6834 1.06386i 0.704632 0.0591032i
\(19\) −17.0920 29.6042i −0.899578 1.55811i −0.828034 0.560678i \(-0.810541\pi\)
−0.0715438 0.997437i \(-0.522793\pi\)
\(20\) −0.365356 9.99332i −0.0182678 0.499666i
\(21\) 1.96974 20.9074i 0.0937974 0.995591i
\(22\) 6.04060 6.04060i 0.274573 0.274573i
\(23\) 26.5519 + 7.11456i 1.15443 + 0.309329i 0.784739 0.619826i \(-0.212797\pi\)
0.369691 + 0.929155i \(0.379464\pi\)
\(24\) 8.35900 1.45848i 0.348292 0.0607698i
\(25\) −10.8856 + 22.5056i −0.435426 + 0.900225i
\(26\) −7.33446 12.7037i −0.282095 0.488602i
\(27\) 7.12823 26.0420i 0.264009 0.964520i
\(28\) 0.0682753 13.9998i 0.00243840 0.499994i
\(29\) −6.86667 −0.236782 −0.118391 0.992967i \(-0.537774\pi\)
−0.118391 + 0.992967i \(0.537774\pi\)
\(30\) −20.1739 6.55837i −0.672465 0.218612i
\(31\) 38.9114 + 22.4655i 1.25520 + 0.724693i 0.972138 0.234407i \(-0.0753150\pi\)
0.283066 + 0.959100i \(0.408648\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) −7.62915 16.4376i −0.231186 0.498110i
\(34\) 32.9732 0.969800
\(35\) −16.5315 + 30.8498i −0.472330 + 0.881422i
\(36\) 3.18919 17.7152i 0.0885885 0.492090i
\(37\) 34.1241 + 9.14352i 0.922272 + 0.247122i 0.688556 0.725183i \(-0.258245\pi\)
0.233716 + 0.972305i \(0.424911\pi\)
\(38\) −46.6962 + 12.5122i −1.22885 + 0.329268i
\(39\) −30.6544 + 5.34857i −0.786010 + 0.137143i
\(40\) −13.7849 3.15873i −0.344622 0.0789681i
\(41\) −18.2221 −0.444442 −0.222221 0.974996i \(-0.571331\pi\)
−0.222221 + 0.974996i \(0.571331\pi\)
\(42\) −27.8391 10.3434i −0.662835 0.246271i
\(43\) 17.2571 + 17.2571i 0.401329 + 0.401329i 0.878701 0.477372i \(-0.158411\pi\)
−0.477372 + 0.878701i \(0.658411\pi\)
\(44\) −6.04060 10.4626i −0.137286 0.237787i
\(45\) −27.7738 + 35.4065i −0.617195 + 0.786810i
\(46\) 19.4373 33.6664i 0.422551 0.731879i
\(47\) −23.3212 6.24890i −0.496196 0.132955i 0.00203792 0.999998i \(-0.499351\pi\)
−0.498234 + 0.867043i \(0.666018\pi\)
\(48\) 1.06729 11.9524i 0.0222352 0.249009i
\(49\) −24.9127 + 42.1943i −0.508423 + 0.861107i
\(50\) 26.7588 + 23.1077i 0.535176 + 0.462154i
\(51\) 24.0409 65.6854i 0.471391 1.28795i
\(52\) −20.0381 + 5.36920i −0.385349 + 0.103254i
\(53\) 20.7100 + 77.2906i 0.390754 + 1.45831i 0.828893 + 0.559407i \(0.188971\pi\)
−0.438139 + 0.898907i \(0.644362\pi\)
\(54\) −32.9650 19.2694i −0.610463 0.356841i
\(55\) 1.10348 + 30.1828i 0.0200633 + 0.548779i
\(56\) −19.0991 5.21756i −0.341056 0.0931707i
\(57\) −9.12106 + 102.145i −0.160019 + 1.79203i
\(58\) −2.51338 + 9.38005i −0.0433341 + 0.161725i
\(59\) −97.9689 56.5624i −1.66049 0.958684i −0.972481 0.232982i \(-0.925152\pi\)
−0.688009 0.725702i \(-0.741515\pi\)
\(60\) −16.3431 + 25.1576i −0.272385 + 0.419293i
\(61\) 16.8856 9.74888i 0.276812 0.159818i −0.355167 0.934803i \(-0.615576\pi\)
0.631979 + 0.774985i \(0.282243\pi\)
\(62\) 44.9310 44.9310i 0.724693 0.724693i
\(63\) −40.9025 + 47.9164i −0.649246 + 0.760578i
\(64\) 8.00000i 0.125000i
\(65\) 50.5523 + 11.5838i 0.777727 + 0.178212i
\(66\) −25.2467 + 4.40503i −0.382525 + 0.0667429i
\(67\) −2.92860 10.9297i −0.0437104 0.163130i 0.940621 0.339459i \(-0.110244\pi\)
−0.984331 + 0.176330i \(0.943577\pi\)
\(68\) 12.0690 45.0422i 0.177486 0.662386i
\(69\) −52.8946 63.2672i −0.766588 0.916916i
\(70\) 36.0906 + 33.8743i 0.515580 + 0.483919i
\(71\) 80.6556i 1.13599i −0.823030 0.567997i \(-0.807718\pi\)
0.823030 0.567997i \(-0.192282\pi\)
\(72\) −23.0321 10.8407i −0.319891 0.150566i
\(73\) −0.519481 1.93873i −0.00711618 0.0265579i 0.962276 0.272074i \(-0.0877094\pi\)
−0.969393 + 0.245516i \(0.921043\pi\)
\(74\) 24.9805 43.2676i 0.337575 0.584697i
\(75\) 65.5425 36.4579i 0.873900 0.486105i
\(76\) 68.3679i 0.899578i
\(77\) −0.206212 + 42.2837i −0.00267807 + 0.549139i
\(78\) −3.91400 + 43.8324i −0.0501796 + 0.561954i
\(79\) 73.1841 42.2528i 0.926381 0.534846i 0.0407156 0.999171i \(-0.487036\pi\)
0.885665 + 0.464325i \(0.153703\pi\)
\(80\) −9.36051 + 17.6743i −0.117006 + 0.220929i
\(81\) −62.4212 + 51.6196i −0.770633 + 0.637280i
\(82\) −6.66976 + 24.8919i −0.0813385 + 0.303559i
\(83\) 4.56113 + 4.56113i 0.0549533 + 0.0549533i 0.734049 0.679096i \(-0.237628\pi\)
−0.679096 + 0.734049i \(0.737628\pi\)
\(84\) −24.3191 + 34.2430i −0.289513 + 0.407654i
\(85\) −79.3662 + 85.3897i −0.933720 + 1.00458i
\(86\) 29.8902 17.2571i 0.347561 0.200664i
\(87\) 16.8533 + 11.8459i 0.193717 + 0.136160i
\(88\) −16.5032 + 4.42202i −0.187537 + 0.0502503i
\(89\) −21.5716 + 12.4544i −0.242377 + 0.139937i −0.616269 0.787536i \(-0.711357\pi\)
0.373892 + 0.927472i \(0.378023\pi\)
\(90\) 38.2002 + 50.8993i 0.424447 + 0.565548i
\(91\) 70.0410 + 19.1340i 0.769681 + 0.210264i
\(92\) −38.8747 38.8747i −0.422551 0.422551i
\(93\) −56.7469 122.266i −0.610182 1.31469i
\(94\) −17.0723 + 29.5701i −0.181620 + 0.314576i
\(95\) 79.9948 151.044i 0.842051 1.58994i
\(96\) −15.9367 5.83284i −0.166007 0.0607588i
\(97\) −38.4454 38.4454i −0.396345 0.396345i 0.480597 0.876942i \(-0.340420\pi\)
−0.876942 + 0.480597i \(0.840420\pi\)
\(98\) 48.5197 + 49.4756i 0.495099 + 0.504853i
\(99\) −9.63229 + 53.5053i −0.0972959 + 0.540457i
\(100\) 41.3601 28.0952i 0.413601 0.280952i
\(101\) 11.7303 20.3175i 0.116142 0.201163i −0.802094 0.597198i \(-0.796281\pi\)
0.918235 + 0.396035i \(0.129614\pi\)
\(102\) −80.9284 56.8831i −0.793416 0.557677i
\(103\) −181.632 48.6683i −1.76342 0.472507i −0.776015 0.630714i \(-0.782762\pi\)
−0.987406 + 0.158207i \(0.949429\pi\)
\(104\) 29.3379i 0.282095i
\(105\) 93.7944 47.1976i 0.893280 0.449501i
\(106\) 113.161 1.06756
\(107\) −21.5174 + 80.3041i −0.201097 + 0.750506i 0.789506 + 0.613742i \(0.210337\pi\)
−0.990604 + 0.136763i \(0.956330\pi\)
\(108\) −38.3885 + 37.9779i −0.355449 + 0.351647i
\(109\) −28.9994 16.7428i −0.266049 0.153604i 0.361042 0.932550i \(-0.382421\pi\)
−0.627091 + 0.778946i \(0.715755\pi\)
\(110\) 41.6344 + 9.54029i 0.378495 + 0.0867299i
\(111\) −67.9793 81.3100i −0.612426 0.732523i
\(112\) −14.1181 + 24.1801i −0.126054 + 0.215894i
\(113\) 12.6123 12.6123i 0.111613 0.111613i −0.649095 0.760708i \(-0.724852\pi\)
0.760708 + 0.649095i \(0.224852\pi\)
\(114\) 136.195 + 49.8474i 1.19469 + 0.437258i
\(115\) 40.3995 + 131.371i 0.351300 + 1.14236i
\(116\) 11.8934 + 6.86667i 0.102530 + 0.0591954i
\(117\) 84.4641 + 39.7555i 0.721916 + 0.339790i
\(118\) −113.125 + 113.125i −0.958684 + 0.958684i
\(119\) −115.968 + 114.842i −0.974518 + 0.965059i
\(120\) 28.3839 + 31.5334i 0.236533 + 0.262778i
\(121\) −42.2556 73.1888i −0.349220 0.604866i
\(122\) −7.13668 26.6344i −0.0584973 0.218315i
\(123\) 44.7238 + 31.4355i 0.363608 + 0.255573i
\(124\) −44.9310 77.8227i −0.362346 0.627602i
\(125\) −124.250 + 13.6764i −0.993997 + 0.109412i
\(126\) 50.4837 + 73.4125i 0.400664 + 0.582639i
\(127\) 147.938 147.938i 1.16486 1.16486i 0.181467 0.983397i \(-0.441915\pi\)
0.983397 0.181467i \(-0.0580847\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) −12.5846 72.1262i −0.0975547 0.559118i
\(130\) 34.3272 64.8157i 0.264055 0.498583i
\(131\) −74.8356 129.619i −0.571264 0.989459i −0.996436 0.0843465i \(-0.973120\pi\)
0.425172 0.905113i \(-0.360214\pi\)
\(132\) −3.22354 + 36.0999i −0.0244207 + 0.273484i
\(133\) 120.653 206.643i 0.907166 1.55371i
\(134\) −16.0022 −0.119419
\(135\) 129.248 38.9871i 0.957391 0.288794i
\(136\) −57.1113 32.9732i −0.419936 0.242450i
\(137\) −24.4126 + 6.54134i −0.178194 + 0.0477470i −0.346813 0.937934i \(-0.612736\pi\)
0.168619 + 0.985681i \(0.446069\pi\)
\(138\) −105.785 + 49.0979i −0.766561 + 0.355782i
\(139\) 237.437 1.70818 0.854090 0.520125i \(-0.174115\pi\)
0.854090 + 0.520125i \(0.174115\pi\)
\(140\) 59.4832 36.9018i 0.424880 0.263585i
\(141\) 46.4587 + 55.5693i 0.329494 + 0.394108i
\(142\) −110.178 29.5220i −0.775899 0.207901i
\(143\) 60.5211 16.2166i 0.423225 0.113403i
\(144\) −23.2391 + 27.4945i −0.161382 + 0.190934i
\(145\) −18.2415 29.0865i −0.125804 0.200597i
\(146\) −2.83850 −0.0194418
\(147\) 133.936 60.5826i 0.911127 0.412126i
\(148\) −49.9611 49.9611i −0.337575 0.337575i
\(149\) 19.6566 + 34.0462i 0.131924 + 0.228498i 0.924418 0.381381i \(-0.124551\pi\)
−0.792494 + 0.609879i \(0.791218\pi\)
\(150\) −25.8122 102.877i −0.172081 0.685848i
\(151\) −19.0601 + 33.0130i −0.126226 + 0.218629i −0.922211 0.386686i \(-0.873620\pi\)
0.795986 + 0.605315i \(0.206953\pi\)
\(152\) 93.3923 + 25.0244i 0.614423 + 0.164634i
\(153\) −172.321 + 119.742i −1.12628 + 0.782631i
\(154\) 57.6851 + 15.7586i 0.374579 + 0.102329i
\(155\) 8.20789 + 224.505i 0.0529541 + 1.44842i
\(156\) 58.4435 + 21.3904i 0.374638 + 0.137118i
\(157\) 57.9306 15.5225i 0.368985 0.0988692i −0.0695618 0.997578i \(-0.522160\pi\)
0.438547 + 0.898708i \(0.355493\pi\)
\(158\) −30.9312 115.437i −0.195767 0.730613i
\(159\) 82.5066 225.427i 0.518909 1.41778i
\(160\) 20.7174 + 19.2559i 0.129483 + 0.120350i
\(161\) 48.8949 + 186.104i 0.303695 + 1.15592i
\(162\) 47.6660 + 104.163i 0.294234 + 0.642982i
\(163\) −1.51316 + 5.64718i −0.00928317 + 0.0346453i −0.970412 0.241455i \(-0.922375\pi\)
0.961129 + 0.276100i \(0.0890421\pi\)
\(164\) 31.5616 + 18.2221i 0.192449 + 0.111110i
\(165\) 49.3610 75.9834i 0.299157 0.460505i
\(166\) 7.90010 4.56113i 0.0475910 0.0274767i
\(167\) 6.13829 6.13829i 0.0367562 0.0367562i −0.688490 0.725246i \(-0.741726\pi\)
0.725246 + 0.688490i \(0.241726\pi\)
\(168\) 37.8753 + 45.7543i 0.225448 + 0.272347i
\(169\) 61.4113i 0.363381i
\(170\) 87.5944 + 139.671i 0.515261 + 0.821595i
\(171\) 198.601 234.968i 1.16141 1.37408i
\(172\) −12.6331 47.1474i −0.0734483 0.274113i
\(173\) 52.1359 194.574i 0.301363 1.12470i −0.634668 0.772785i \(-0.718863\pi\)
0.936031 0.351918i \(-0.114470\pi\)
\(174\) 22.3506 18.6862i 0.128451 0.107392i
\(175\) −174.593 + 11.9276i −0.997675 + 0.0681577i
\(176\) 24.1624i 0.137286i
\(177\) 142.874 + 307.834i 0.807199 + 1.73918i
\(178\) 9.11722 + 34.0259i 0.0512203 + 0.191157i
\(179\) −17.6436 + 30.5596i −0.0985676 + 0.170724i −0.911092 0.412203i \(-0.864759\pi\)
0.812524 + 0.582927i \(0.198093\pi\)
\(180\) 83.5120 33.5520i 0.463956 0.186400i
\(181\) 194.579i 1.07502i −0.843258 0.537510i \(-0.819365\pi\)
0.843258 0.537510i \(-0.180635\pi\)
\(182\) 51.7743 88.6742i 0.284474 0.487221i
\(183\) −58.2615 5.20245i −0.318369 0.0284287i
\(184\) −67.3329 + 38.8747i −0.365940 + 0.211275i
\(185\) 51.9208 + 168.836i 0.280653 + 0.912628i
\(186\) −187.789 + 32.7653i −1.00962 + 0.176158i
\(187\) −36.4521 + 136.041i −0.194931 + 0.727492i
\(188\) 34.1446 + 34.1446i 0.181620 + 0.181620i
\(189\) 183.052 47.0424i 0.968529 0.248902i
\(190\) −177.050 164.561i −0.931844 0.866111i
\(191\) 114.428 66.0651i 0.599100 0.345890i −0.169588 0.985515i \(-0.554244\pi\)
0.768687 + 0.639625i \(0.220910\pi\)
\(192\) −13.8010 + 19.6349i −0.0718804 + 0.102265i
\(193\) −203.018 + 54.3985i −1.05191 + 0.281858i −0.743039 0.669248i \(-0.766617\pi\)
−0.308867 + 0.951105i \(0.599950\pi\)
\(194\) −66.5894 + 38.4454i −0.343244 + 0.198172i
\(195\) −104.090 115.640i −0.533797 0.593026i
\(196\) 85.3444 48.1699i 0.435430 0.245765i
\(197\) −94.5121 94.5121i −0.479757 0.479757i 0.425297 0.905054i \(-0.360170\pi\)
−0.905054 + 0.425297i \(0.860170\pi\)
\(198\) 69.5639 + 32.7422i 0.351333 + 0.165365i
\(199\) −182.775 + 316.575i −0.918465 + 1.59083i −0.116717 + 0.993165i \(0.537237\pi\)
−0.801748 + 0.597663i \(0.796096\pi\)
\(200\) −23.2399 66.7825i −0.116200 0.333913i
\(201\) −11.6673 + 31.8777i −0.0580461 + 0.158595i
\(202\) −23.4606 23.4606i −0.116142 0.116142i
\(203\) −23.8301 41.7437i −0.117389 0.205634i
\(204\) −107.326 + 89.7296i −0.526106 + 0.439851i
\(205\) −48.4077 77.1870i −0.236135 0.376522i
\(206\) −132.964 + 230.301i −0.645457 + 1.11796i
\(207\) 20.6785 + 246.531i 0.0998963 + 1.19097i
\(208\) 40.0763 + 10.7384i 0.192674 + 0.0516269i
\(209\) 206.492i 0.987998i
\(210\) −30.1421 145.401i −0.143534 0.692386i
\(211\) 49.4419 0.234322 0.117161 0.993113i \(-0.462621\pi\)
0.117161 + 0.993113i \(0.462621\pi\)
\(212\) 41.4199 154.581i 0.195377 0.729157i
\(213\) −139.141 + 197.959i −0.653246 + 0.929383i
\(214\) 101.822 + 58.7867i 0.475801 + 0.274704i
\(215\) −27.2553 + 118.944i −0.126769 + 0.553226i
\(216\) 37.8276 + 66.3406i 0.175128 + 0.307132i
\(217\) −1.53384 + 314.513i −0.00706837 + 1.44937i
\(218\) −33.4856 + 33.4856i −0.153604 + 0.153604i
\(219\) −2.06956 + 5.65453i −0.00945006 + 0.0258198i
\(220\) 28.2715 53.3817i 0.128507 0.242644i
\(221\) 209.440 + 120.920i 0.947693 + 0.547151i
\(222\) −135.954 + 63.0999i −0.612404 + 0.284234i
\(223\) 147.669 147.669i 0.662195 0.662195i −0.293702 0.955897i \(-0.594887\pi\)
0.955897 + 0.293702i \(0.0948873\pi\)
\(224\) 27.8631 + 28.1362i 0.124389 + 0.125608i
\(225\) −223.760 23.5883i −0.994489 0.104837i
\(226\) −12.6123 21.8451i −0.0558066 0.0966599i
\(227\) −56.9475 212.531i −0.250870 0.936259i −0.970342 0.241738i \(-0.922283\pi\)
0.719472 0.694522i \(-0.244384\pi\)
\(228\) 117.944 167.800i 0.517297 0.735965i
\(229\) −149.624 259.157i −0.653380 1.13169i −0.982297 0.187329i \(-0.940017\pi\)
0.328917 0.944359i \(-0.393316\pi\)
\(230\) 194.244 7.10154i 0.844537 0.0308762i
\(231\) 73.4510 103.424i 0.317970 0.447723i
\(232\) 13.7333 13.7333i 0.0591954 0.0591954i
\(233\) 115.890 + 31.0526i 0.497381 + 0.133273i 0.498784 0.866726i \(-0.333780\pi\)
−0.00140324 + 0.999999i \(0.500447\pi\)
\(234\) 85.2230 100.829i 0.364201 0.430892i
\(235\) −35.4839 115.387i −0.150995 0.491007i
\(236\) 113.125 + 195.938i 0.479342 + 0.830245i
\(237\) −252.512 22.5481i −1.06545 0.0951395i
\(238\) 114.430 + 200.450i 0.480798 + 0.842226i
\(239\) −395.609 −1.65527 −0.827634 0.561268i \(-0.810314\pi\)
−0.827634 + 0.561268i \(0.810314\pi\)
\(240\) 53.4646 27.2311i 0.222769 0.113463i
\(241\) −191.579 110.608i −0.794934 0.458956i 0.0467624 0.998906i \(-0.485110\pi\)
−0.841697 + 0.539950i \(0.818443\pi\)
\(242\) −115.444 + 30.9332i −0.477043 + 0.127823i
\(243\) 242.255 19.0088i 0.996936 0.0782256i
\(244\) −38.9955 −0.159818
\(245\) −244.912 + 6.56277i −0.999641 + 0.0267868i
\(246\) 59.3118 49.5876i 0.241105 0.201576i
\(247\) −342.491 91.7703i −1.38660 0.371540i
\(248\) −122.754 + 32.8917i −0.494974 + 0.132628i
\(249\) −3.32615 19.0632i −0.0133580 0.0765591i
\(250\) −26.7961 + 174.734i −0.107184 + 0.698936i
\(251\) −231.794 −0.923482 −0.461741 0.887015i \(-0.652775\pi\)
−0.461741 + 0.887015i \(0.652775\pi\)
\(252\) 118.762 42.0912i 0.471276 0.167029i
\(253\) 117.413 + 117.413i 0.464083 + 0.464083i
\(254\) −147.938 256.236i −0.582432 1.00880i
\(255\) 342.102 72.6607i 1.34158 0.284944i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 31.1578 + 8.34872i 0.121237 + 0.0324853i 0.318927 0.947779i \(-0.396677\pi\)
−0.197691 + 0.980264i \(0.563344\pi\)
\(258\) −103.132 9.20920i −0.399738 0.0356946i
\(259\) 62.8389 + 239.178i 0.242621 + 0.923466i
\(260\) −75.9753 70.6160i −0.292213 0.271600i
\(261\) −20.9286 58.1484i −0.0801861 0.222791i
\(262\) −204.455 + 54.7835i −0.780362 + 0.209097i
\(263\) 43.2538 + 161.425i 0.164463 + 0.613785i 0.998108 + 0.0614840i \(0.0195833\pi\)
−0.833645 + 0.552301i \(0.813750\pi\)
\(264\) 48.1335 + 17.6169i 0.182324 + 0.0667308i
\(265\) −272.378 + 293.051i −1.02784 + 1.10585i
\(266\) −238.118 240.452i −0.895180 0.903954i
\(267\) 74.4300 + 6.64621i 0.278764 + 0.0248922i
\(268\) −5.85720 + 21.8594i −0.0218552 + 0.0815648i
\(269\) 302.162 + 174.453i 1.12328 + 0.648526i 0.942236 0.334949i \(-0.108719\pi\)
0.181043 + 0.983475i \(0.442053\pi\)
\(270\) −5.94944 190.826i −0.0220349 0.706763i
\(271\) 17.0749 9.85817i 0.0630068 0.0363770i −0.468166 0.883641i \(-0.655085\pi\)
0.531172 + 0.847264i \(0.321752\pi\)
\(272\) −65.9464 + 65.9464i −0.242450 + 0.242450i
\(273\) −138.898 167.792i −0.508783 0.614622i
\(274\) 35.7425i 0.130447i
\(275\) −124.920 + 84.8559i −0.454254 + 0.308567i
\(276\) 28.3489 + 162.477i 0.102713 + 0.588683i
\(277\) −57.9983 216.453i −0.209380 0.781417i −0.988070 0.154008i \(-0.950782\pi\)
0.778690 0.627409i \(-0.215885\pi\)
\(278\) 86.9080 324.345i 0.312619 1.16671i
\(279\) −71.6466 + 397.981i −0.256798 + 1.42646i
\(280\) −28.6365 94.7626i −0.102273 0.338438i
\(281\) 226.986i 0.807780i −0.914808 0.403890i \(-0.867658\pi\)
0.914808 0.403890i \(-0.132342\pi\)
\(282\) 92.9141 43.1240i 0.329483 0.152922i
\(283\) −24.8120 92.5997i −0.0876750 0.327208i 0.908132 0.418683i \(-0.137508\pi\)
−0.995807 + 0.0914758i \(0.970842\pi\)
\(284\) −80.6556 + 139.700i −0.283999 + 0.491900i
\(285\) −456.908 + 232.717i −1.60319 + 0.816551i
\(286\) 88.6091i 0.309822i
\(287\) −63.2379 110.775i −0.220341 0.385977i
\(288\) 29.0521 + 41.8088i 0.100875 + 0.145169i
\(289\) −220.504 + 127.308i −0.762989 + 0.440512i
\(290\) −46.4098 + 14.2720i −0.160034 + 0.0492138i
\(291\) 28.0358 + 160.683i 0.0963431 + 0.552174i
\(292\) −1.03896 + 3.87746i −0.00355809 + 0.0132790i
\(293\) 190.809 + 190.809i 0.651224 + 0.651224i 0.953288 0.302064i \(-0.0976755\pi\)
−0.302064 + 0.953288i \(0.597675\pi\)
\(294\) −33.7335 205.134i −0.114740 0.697735i
\(295\) −20.6654 565.246i −0.0700521 1.91609i
\(296\) −86.5352 + 49.9611i −0.292349 + 0.168787i
\(297\) 115.945 114.705i 0.390386 0.386211i
\(298\) 53.7028 14.3896i 0.180211 0.0482874i
\(299\) 246.925 142.562i 0.825837 0.476797i
\(300\) −149.981 2.39559i −0.499936 0.00798529i
\(301\) −45.0201 + 164.798i −0.149568 + 0.547502i
\(302\) 38.1201 + 38.1201i 0.126226 + 0.126226i
\(303\) −63.8407 + 29.6303i −0.210696 + 0.0977896i
\(304\) 68.3679 118.417i 0.224895 0.389529i
\(305\) 86.1523 + 45.6272i 0.282467 + 0.149598i
\(306\) 100.497 + 279.224i 0.328423 + 0.912497i
\(307\) 34.1553 + 34.1553i 0.111255 + 0.111255i 0.760543 0.649288i \(-0.224933\pi\)
−0.649288 + 0.760543i \(0.724933\pi\)
\(308\) 42.6408 73.0313i 0.138444 0.237114i
\(309\) 361.834 + 432.789i 1.17098 + 1.40061i
\(310\) 309.684 + 70.9623i 0.998979 + 0.228911i
\(311\) −272.168 + 471.409i −0.875139 + 1.51579i −0.0185247 + 0.999828i \(0.505897\pi\)
−0.856614 + 0.515957i \(0.827436\pi\)
\(312\) 50.6116 72.0059i 0.162217 0.230788i
\(313\) 444.072 + 118.989i 1.41876 + 0.380155i 0.885043 0.465509i \(-0.154129\pi\)
0.533716 + 0.845664i \(0.320795\pi\)
\(314\) 84.8163i 0.270116i
\(315\) −311.628 45.9672i −0.989295 0.145927i
\(316\) −169.011 −0.534846
\(317\) −4.81445 + 17.9678i −0.0151875 + 0.0566806i −0.973104 0.230367i \(-0.926007\pi\)
0.957916 + 0.287048i \(0.0926739\pi\)
\(318\) −277.740 195.218i −0.873395 0.613894i
\(319\) −35.9217 20.7394i −0.112607 0.0650138i
\(320\) 33.8872 21.2523i 0.105897 0.0664134i
\(321\) 191.347 159.975i 0.596096 0.498366i
\(322\) 272.119 + 1.32709i 0.845091 + 0.00412139i
\(323\) 563.577 563.577i 1.74482 1.74482i
\(324\) 159.736 26.9866i 0.493014 0.0832920i
\(325\) 85.2262 + 244.907i 0.262234 + 0.753560i
\(326\) 7.16033 + 4.13402i 0.0219642 + 0.0126810i
\(327\) 42.2917 + 91.1208i 0.129332 + 0.278657i
\(328\) 36.4442 36.4442i 0.111110 0.111110i
\(329\) −42.9457 163.460i −0.130534 0.496839i
\(330\) −85.7279 95.2402i −0.259782 0.288607i
\(331\) −82.1070 142.213i −0.248057 0.429648i 0.714929 0.699197i \(-0.246459\pi\)
−0.962987 + 0.269549i \(0.913125\pi\)
\(332\) −3.33898 12.4612i −0.0100572 0.0375338i
\(333\) 26.5757 + 316.838i 0.0798070 + 0.951465i
\(334\) −6.13829 10.6318i −0.0183781 0.0318318i
\(335\) 38.5171 41.4403i 0.114976 0.123702i
\(336\) 76.3649 34.9914i 0.227277 0.104141i
\(337\) 182.945 182.945i 0.542865 0.542865i −0.381503 0.924368i \(-0.624593\pi\)
0.924368 + 0.381503i \(0.124593\pi\)
\(338\) 83.8894 + 22.4781i 0.248194 + 0.0665033i
\(339\) −52.7131 + 9.19736i −0.155496 + 0.0271309i
\(340\) 222.856 68.5331i 0.655459 0.201568i
\(341\) 135.705 + 235.048i 0.397962 + 0.689290i
\(342\) −248.279 357.298i −0.725961 1.04473i
\(343\) −342.963 5.01807i −0.999893 0.0146300i
\(344\) −69.0285 −0.200664
\(345\) 127.477 392.127i 0.369499 1.13660i
\(346\) −246.710 142.438i −0.713033 0.411670i
\(347\) 73.7960 19.7736i 0.212669 0.0569844i −0.150912 0.988547i \(-0.548221\pi\)
0.363580 + 0.931563i \(0.381554\pi\)
\(348\) −17.3449 37.3710i −0.0498418 0.107388i
\(349\) 601.421 1.72327 0.861634 0.507529i \(-0.169441\pi\)
0.861634 + 0.507529i \(0.169441\pi\)
\(350\) −47.6121 + 242.864i −0.136035 + 0.693898i
\(351\) −138.723 243.286i −0.395221 0.693123i
\(352\) 33.0064 + 8.84405i 0.0937683 + 0.0251251i
\(353\) 439.162 117.673i 1.24408 0.333351i 0.424036 0.905645i \(-0.360613\pi\)
0.820048 + 0.572294i \(0.193946\pi\)
\(354\) 472.805 82.4948i 1.33561 0.233036i
\(355\) 341.649 214.264i 0.962391 0.603562i
\(356\) 49.8174 0.139937
\(357\) 482.745 81.8053i 1.35223 0.229146i
\(358\) 35.2872 + 35.2872i 0.0985676 + 0.0985676i
\(359\) −99.2457 171.899i −0.276450 0.478826i 0.694050 0.719927i \(-0.255825\pi\)
−0.970500 + 0.241101i \(0.922491\pi\)
\(360\) −15.2654 126.360i −0.0424039 0.351001i
\(361\) −403.772 + 699.353i −1.11848 + 1.93727i
\(362\) −265.799 71.2207i −0.734252 0.196742i
\(363\) −22.5495 + 252.529i −0.0621199 + 0.695672i
\(364\) −102.180 103.182i −0.280716 0.283467i
\(365\) 6.83224 7.35077i 0.0187185 0.0201391i
\(366\) −28.4319 + 77.6824i −0.0776827 + 0.212247i
\(367\) 454.536 121.793i 1.23852 0.331860i 0.420628 0.907233i \(-0.361810\pi\)
0.817891 + 0.575373i \(0.195143\pi\)
\(368\) 28.4582 + 106.208i 0.0773321 + 0.288607i
\(369\) −55.5382 154.309i −0.150510 0.418181i
\(370\) 249.639 9.12678i 0.674699 0.0246670i
\(371\) −397.992 + 394.129i −1.07275 + 1.06234i
\(372\) −23.9772 + 268.517i −0.0644549 + 0.721821i
\(373\) −70.1213 + 261.696i −0.187993 + 0.701599i 0.805977 + 0.591947i \(0.201640\pi\)
−0.993970 + 0.109652i \(0.965026\pi\)
\(374\) 172.493 + 99.5889i 0.461211 + 0.266281i
\(375\) 328.548 + 180.780i 0.876128 + 0.482079i
\(376\) 59.1402 34.1446i 0.157288 0.0908102i
\(377\) −50.3633 + 50.3633i −0.133590 + 0.133590i
\(378\) 2.74053 267.272i 0.00725009 0.707070i
\(379\) 478.536i 1.26263i −0.775528 0.631314i \(-0.782516\pi\)
0.775528 0.631314i \(-0.217484\pi\)
\(380\) −289.600 + 181.622i −0.762104 + 0.477952i
\(381\) −618.306 + 107.882i −1.62285 + 0.283154i
\(382\) −48.3630 180.493i −0.126605 0.472495i
\(383\) −110.418 + 412.087i −0.288299 + 1.07595i 0.658096 + 0.752934i \(0.271362\pi\)
−0.946395 + 0.323012i \(0.895305\pi\)
\(384\) 21.7703 + 26.0395i 0.0566935 + 0.0678111i
\(385\) −179.657 + 111.455i −0.466642 + 0.289492i
\(386\) 297.239i 0.770049i
\(387\) −93.5400 + 198.734i −0.241705 + 0.513525i
\(388\) 28.1440 + 105.035i 0.0725361 + 0.270708i
\(389\) 116.515 201.810i 0.299524 0.518791i −0.676503 0.736440i \(-0.736505\pi\)
0.976027 + 0.217649i \(0.0698387\pi\)
\(390\) −196.067 + 99.8629i −0.502736 + 0.256059i
\(391\) 640.911i 1.63916i
\(392\) −34.5631 134.214i −0.0881711 0.342383i
\(393\) −39.9357 + 447.234i −0.101618 + 1.13800i
\(394\) −163.700 + 94.5121i −0.415482 + 0.239878i
\(395\) 373.395 + 197.754i 0.945303 + 0.500643i
\(396\) 70.1889 83.0415i 0.177245 0.209701i
\(397\) 14.1665 52.8700i 0.0356838 0.133174i −0.945786 0.324790i \(-0.894706\pi\)
0.981470 + 0.191616i \(0.0613730\pi\)
\(398\) 365.549 + 365.549i 0.918465 + 0.918465i
\(399\) −652.614 + 299.037i −1.63562 + 0.749465i
\(400\) −99.7330 + 7.30223i −0.249333 + 0.0182556i
\(401\) 396.262 228.782i 0.988184 0.570528i 0.0834527 0.996512i \(-0.473405\pi\)
0.904731 + 0.425984i \(0.140072\pi\)
\(402\) 39.2752 + 27.6058i 0.0976995 + 0.0686712i
\(403\) 450.166 120.622i 1.11704 0.299309i
\(404\) −40.6349 + 23.4606i −0.100582 + 0.0580708i
\(405\) −384.480 127.281i −0.949333 0.314273i
\(406\) −65.7453 + 17.2732i −0.161934 + 0.0425449i
\(407\) 150.897 + 150.897i 0.370755 + 0.370755i
\(408\) 83.2890 + 179.453i 0.204140 + 0.439835i
\(409\) 166.436 288.276i 0.406935 0.704832i −0.587609 0.809145i \(-0.699931\pi\)
0.994545 + 0.104312i \(0.0332642\pi\)
\(410\) −123.158 + 37.8737i −0.300385 + 0.0923749i
\(411\) 71.2022 + 26.0601i 0.173241 + 0.0634066i
\(412\) 265.928 + 265.928i 0.645457 + 0.645457i
\(413\) 3.86181 791.864i 0.00935064 1.91735i
\(414\) 344.337 + 61.9892i 0.831731 + 0.149732i
\(415\) −7.20367 + 31.4373i −0.0173583 + 0.0757524i
\(416\) 29.3379 50.8146i 0.0705237 0.122151i
\(417\) −582.758 409.610i −1.39750 0.982278i
\(418\) −282.073 75.5812i −0.674815 0.180816i
\(419\) 377.243i 0.900341i −0.892943 0.450171i \(-0.851363\pi\)
0.892943 0.450171i \(-0.148637\pi\)
\(420\) −209.654 12.0457i −0.499177 0.0286801i
\(421\) 197.759 0.469736 0.234868 0.972027i \(-0.424534\pi\)
0.234868 + 0.972027i \(0.424534\pi\)
\(422\) 18.0970 67.5389i 0.0428839 0.160045i
\(423\) −18.1625 216.535i −0.0429374 0.511902i
\(424\) −196.001 113.161i −0.462267 0.266890i
\(425\) −572.541 109.347i −1.34716 0.257286i
\(426\) 219.487 + 262.529i 0.515228 + 0.616265i
\(427\) 117.865 + 68.8178i 0.276030 + 0.161166i
\(428\) 117.573 117.573i 0.274704 0.274704i
\(429\) −176.517 64.6054i −0.411461 0.150595i
\(430\) 152.504 + 80.7678i 0.354660 + 0.187832i
\(431\) 142.518 + 82.2828i 0.330668 + 0.190911i 0.656138 0.754641i \(-0.272189\pi\)
−0.325469 + 0.945553i \(0.605522\pi\)
\(432\) 104.469 27.3912i 0.241826 0.0634055i
\(433\) 346.623 346.623i 0.800515 0.800515i −0.182661 0.983176i \(-0.558471\pi\)
0.983176 + 0.182661i \(0.0584710\pi\)
\(434\) 429.071 + 117.215i 0.988644 + 0.270081i
\(435\) −5.40656 + 102.858i −0.0124289 + 0.236455i
\(436\) 33.4856 + 57.9988i 0.0768019 + 0.133025i
\(437\) −243.204 907.649i −0.556530 2.07700i
\(438\) 6.96672 + 4.89678i 0.0159057 + 0.0111799i
\(439\) 269.647 + 467.043i 0.614230 + 1.06388i 0.990519 + 0.137376i \(0.0438668\pi\)
−0.376289 + 0.926502i \(0.622800\pi\)
\(440\) −62.5726 58.1587i −0.142210 0.132179i
\(441\) −433.240 82.3646i −0.982404 0.186768i
\(442\) 241.841 241.841i 0.547151 0.547151i
\(443\) −341.272 91.4437i −0.770367 0.206419i −0.147833 0.989012i \(-0.547230\pi\)
−0.622533 + 0.782593i \(0.713897\pi\)
\(444\) 36.4335 + 208.812i 0.0820575 + 0.470298i
\(445\) −110.061 58.2896i −0.247328 0.130988i
\(446\) −147.669 255.771i −0.331097 0.573478i
\(447\) 10.4897 117.472i 0.0234668 0.262801i
\(448\) 48.6334 27.7632i 0.108557 0.0619713i
\(449\) 436.761 0.972742 0.486371 0.873752i \(-0.338320\pi\)
0.486371 + 0.873752i \(0.338320\pi\)
\(450\) −114.124 + 297.028i −0.253609 + 0.660062i
\(451\) −95.3255 55.0362i −0.211365 0.122032i
\(452\) −34.4574 + 9.23284i −0.0762333 + 0.0204266i
\(453\) 103.732 48.1450i 0.228989 0.106280i
\(454\) −311.167 −0.685389
\(455\) 105.017 + 347.516i 0.230806 + 0.763772i
\(456\) −186.049 222.533i −0.408002 0.488011i
\(457\) 30.3524 + 8.13289i 0.0664166 + 0.0177963i 0.291874 0.956457i \(-0.405721\pi\)
−0.225458 + 0.974253i \(0.572388\pi\)
\(458\) −408.781 + 109.532i −0.892534 + 0.239154i
\(459\) 629.511 + 3.38462i 1.37148 + 0.00737389i
\(460\) 61.3972 267.941i 0.133472 0.582480i
\(461\) 154.115 0.334305 0.167152 0.985931i \(-0.446543\pi\)
0.167152 + 0.985931i \(0.446543\pi\)
\(462\) −114.395 138.192i −0.247608 0.299116i
\(463\) −200.474 200.474i −0.432989 0.432989i 0.456655 0.889644i \(-0.349047\pi\)
−0.889644 + 0.456655i \(0.849047\pi\)
\(464\) −13.7333 23.7868i −0.0295977 0.0512648i
\(465\) 367.155 565.177i 0.789581 1.21543i
\(466\) 84.8372 146.942i 0.182054 0.315327i
\(467\) −93.6060 25.0817i −0.200441 0.0537081i 0.157202 0.987567i \(-0.449753\pi\)
−0.357643 + 0.933858i \(0.616419\pi\)
\(468\) −106.541 153.323i −0.227651 0.327612i
\(469\) 56.2800 55.7338i 0.120000 0.118835i
\(470\) −170.609 + 6.23747i −0.362998 + 0.0132712i
\(471\) −168.961 61.8400i −0.358729 0.131295i
\(472\) 309.063 82.8131i 0.654794 0.175451i
\(473\) 38.1557 + 142.399i 0.0806675 + 0.301055i
\(474\) −123.227 + 336.685i −0.259973 + 0.710306i
\(475\) 852.318 62.4048i 1.79435 0.131379i
\(476\) 315.704 82.9446i 0.663243 0.174253i
\(477\) −591.393 + 410.947i −1.23982 + 0.861523i
\(478\) −144.803 + 540.412i −0.302935 + 1.13057i
\(479\) −92.7005 53.5207i −0.193529 0.111734i 0.400104 0.916470i \(-0.368974\pi\)
−0.593634 + 0.804735i \(0.702307\pi\)
\(480\) −17.6290 83.0013i −0.0367271 0.172919i
\(481\) 317.344 183.219i 0.659760 0.380912i
\(482\) −221.217 + 221.217i −0.458956 + 0.458956i
\(483\) 201.047 541.117i 0.416247 1.12033i
\(484\) 169.022i 0.349220i
\(485\) 60.7193 264.982i 0.125194 0.546356i
\(486\) 62.7051 337.885i 0.129023 0.695236i
\(487\) −122.238 456.200i −0.251003 0.936756i −0.970271 0.242023i \(-0.922189\pi\)
0.719268 0.694733i \(-0.244478\pi\)
\(488\) −14.2734 + 53.2689i −0.0292487 + 0.109158i
\(489\) 13.4560 11.2499i 0.0275173 0.0230059i
\(490\) −80.6791 + 336.958i −0.164651 + 0.687670i
\(491\) 228.035i 0.464431i 0.972664 + 0.232215i \(0.0745974\pi\)
−0.972664 + 0.232215i \(0.925403\pi\)
\(492\) −46.0283 99.1717i −0.0935535 0.201569i
\(493\) −41.4370 154.645i −0.0840508 0.313682i
\(494\) −250.721 + 434.262i −0.507532 + 0.879072i
\(495\) −252.231 + 101.337i −0.509558 + 0.204722i
\(496\) 179.724i 0.362346i
\(497\) 490.320 279.907i 0.986559 0.563193i
\(498\) −27.2583 2.43403i −0.0547356 0.00488760i
\(499\) −706.586 + 407.948i −1.41600 + 0.817530i −0.995945 0.0899668i \(-0.971324\pi\)
−0.420059 + 0.907497i \(0.637991\pi\)
\(500\) 228.883 + 100.561i 0.457766 + 0.201123i
\(501\) −25.6550 + 4.47627i −0.0512075 + 0.00893467i
\(502\) −84.8425 + 316.636i −0.169009 + 0.630750i
\(503\) −493.203 493.203i −0.980522 0.980522i 0.0192915 0.999814i \(-0.493859\pi\)
−0.999814 + 0.0192915i \(0.993859\pi\)
\(504\) −14.0279 177.638i −0.0278330 0.352456i
\(505\) 117.225 4.28573i 0.232128 0.00848659i
\(506\) 203.365 117.413i 0.401908 0.232042i
\(507\) 105.943 150.726i 0.208960 0.297290i
\(508\) −404.174 + 108.298i −0.795617 + 0.213185i
\(509\) −715.344 + 413.004i −1.40539 + 0.811403i −0.994939 0.100479i \(-0.967962\pi\)
−0.410452 + 0.911882i \(0.634629\pi\)
\(510\) 25.9619 493.916i 0.0509056 0.968463i
\(511\) 9.98307 9.88617i 0.0195363 0.0193467i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −892.789 + 234.085i −1.74033 + 0.456306i
\(514\) 22.8091 39.5066i 0.0443757 0.0768610i
\(515\) −276.359 898.665i −0.536619 1.74498i
\(516\) −50.3291 + 137.511i −0.0975370 + 0.266494i
\(517\) −103.127 103.127i −0.199472 0.199472i
\(518\) 349.724 + 1.70555i 0.675142 + 0.00329258i
\(519\) −463.626 + 387.614i −0.893306 + 0.746848i
\(520\) −124.272 + 77.9370i −0.238985 + 0.149879i
\(521\) 70.0727 121.369i 0.134497 0.232955i −0.790908 0.611934i \(-0.790392\pi\)
0.925405 + 0.378980i \(0.123725\pi\)
\(522\) −87.0926 + 7.30515i −0.166844 + 0.0139945i
\(523\) −165.558 44.3611i −0.316554 0.0848204i 0.0970437 0.995280i \(-0.469061\pi\)
−0.413598 + 0.910460i \(0.635728\pi\)
\(524\) 299.343i 0.571264i
\(525\) 449.092 + 271.921i 0.855414 + 0.517945i
\(526\) 236.343 0.449322
\(527\) −271.137 + 1011.90i −0.514491 + 1.92011i
\(528\) 41.6833 59.3034i 0.0789456 0.112317i
\(529\) 196.258 + 113.310i 0.370999 + 0.214196i
\(530\) 300.617 + 479.340i 0.567202 + 0.904415i
\(531\) 180.388 1002.02i 0.339714 1.88703i
\(532\) −415.621 + 237.264i −0.781242 + 0.445984i
\(533\) −133.649 + 133.649i −0.250749 + 0.250749i
\(534\) 36.3222 99.2406i 0.0680190 0.185844i
\(535\) −397.322 + 122.185i −0.742657 + 0.228383i
\(536\) 27.7166 + 16.0022i 0.0517100 + 0.0298548i
\(537\) 96.0233 44.5670i 0.178814 0.0829926i
\(538\) 348.907 348.907i 0.648526 0.648526i
\(539\) −257.765 + 145.487i −0.478229 + 0.269921i
\(540\) −262.851 61.7201i −0.486761 0.114297i
\(541\) 271.403 + 470.083i 0.501669 + 0.868916i 0.999998 + 0.00192801i \(0.000613704\pi\)
−0.498329 + 0.866988i \(0.666053\pi\)
\(542\) −7.21668 26.9330i −0.0133149 0.0496919i
\(543\) −335.673 + 477.567i −0.618183 + 0.879498i
\(544\) 65.9464 + 114.223i 0.121225 + 0.209968i
\(545\) −6.11708 167.316i −0.0112240 0.307002i
\(546\) −280.048 + 128.322i −0.512908 + 0.235021i
\(547\) −764.656 + 764.656i −1.39791 + 1.39791i −0.591892 + 0.806017i \(0.701619\pi\)
−0.806017 + 0.591892i \(0.798381\pi\)
\(548\) 48.8252 + 13.0827i 0.0890971 + 0.0238735i
\(549\) 134.020 + 113.277i 0.244117 + 0.206334i
\(550\) 70.1915 + 201.703i 0.127621 + 0.366733i
\(551\) 117.365 + 203.282i 0.213004 + 0.368933i
\(552\) 232.324 + 20.7453i 0.420876 + 0.0375821i
\(553\) 510.840 + 298.265i 0.923761 + 0.539358i
\(554\) −316.909 −0.572037
\(555\) 163.832 503.956i 0.295192 0.908029i
\(556\) −411.253 237.437i −0.739664 0.427045i
\(557\) 2.78102 0.745171i 0.00499285 0.00133783i −0.256322 0.966592i \(-0.582511\pi\)
0.261315 + 0.965254i \(0.415844\pi\)
\(558\) 517.428 + 243.542i 0.927290 + 0.436456i
\(559\) 253.144 0.452851
\(560\) −139.930 + 4.43262i −0.249875 + 0.00791539i
\(561\) 324.155 271.010i 0.577817 0.483084i
\(562\) −310.069 83.0827i −0.551724 0.147834i
\(563\) 216.776 58.0850i 0.385038 0.103171i −0.0611074 0.998131i \(-0.519463\pi\)
0.446145 + 0.894961i \(0.352797\pi\)
\(564\) −24.8996 142.707i −0.0441481 0.253027i
\(565\) 86.9294 + 19.9194i 0.153857 + 0.0352556i
\(566\) −135.575 −0.239533
\(567\) −530.431 200.329i −0.935505 0.353314i
\(568\) 161.311 + 161.311i 0.283999 + 0.283999i
\(569\) −395.156 684.429i −0.694474 1.20286i −0.970358 0.241673i \(-0.922304\pi\)
0.275884 0.961191i \(-0.411029\pi\)
\(570\) 150.657 + 709.329i 0.264311 + 1.24444i
\(571\) −124.910 + 216.351i −0.218757 + 0.378899i −0.954428 0.298440i \(-0.903534\pi\)
0.735671 + 0.677339i \(0.236867\pi\)
\(572\) −121.042 32.4332i −0.211612 0.0567013i
\(573\) −394.820 35.2553i −0.689039 0.0615277i
\(574\) −174.469 + 45.8380i −0.303953 + 0.0798571i
\(575\) −449.152 + 520.120i −0.781134 + 0.904556i
\(576\) 67.7457 24.3828i 0.117614 0.0423312i
\(577\) 82.7885 22.1831i 0.143481 0.0384456i −0.186364 0.982481i \(-0.559670\pi\)
0.329845 + 0.944035i \(0.393004\pi\)
\(578\) 93.1959 + 347.812i 0.161239 + 0.601751i
\(579\) 592.125 + 216.719i 1.02267 + 0.374298i
\(580\) 2.50878 + 68.6209i 0.00432548 + 0.118312i
\(581\) −11.8990 + 43.5568i −0.0204802 + 0.0749687i
\(582\) 229.758 + 20.5162i 0.394774 + 0.0352513i
\(583\) −125.101 + 466.882i −0.214581 + 0.800826i
\(584\) 4.91642 + 2.83850i 0.00841853 + 0.00486044i
\(585\) 55.9818 + 463.393i 0.0956954 + 0.792125i
\(586\) 330.490 190.809i 0.563977 0.325612i
\(587\) 198.002 198.002i 0.337312 0.337312i −0.518043 0.855355i \(-0.673339\pi\)
0.855355 + 0.518043i \(0.173339\pi\)
\(588\) −292.566 29.0036i −0.497561 0.0493258i
\(589\) 1535.92i 2.60767i
\(590\) −779.705 178.665i −1.32153 0.302822i
\(591\) 68.9218 + 395.013i 0.116619 + 0.668381i
\(592\) 36.5741 + 136.496i 0.0617805 + 0.230568i
\(593\) −256.540 + 957.421i −0.432614 + 1.61454i 0.314097 + 0.949391i \(0.398298\pi\)
−0.746712 + 0.665148i \(0.768369\pi\)
\(594\) −114.251 200.368i −0.192341 0.337320i
\(595\) −794.531 186.145i −1.33535 0.312849i
\(596\) 78.6264i 0.131924i
\(597\) 994.729 461.681i 1.66621 0.773335i
\(598\) −104.363 389.488i −0.174520 0.651317i
\(599\) −58.5042 + 101.332i −0.0976698 + 0.169169i −0.910720 0.413025i \(-0.864472\pi\)
0.813050 + 0.582194i \(0.197806\pi\)
\(600\) −58.1692 + 204.001i −0.0969487 + 0.340001i
\(601\) 258.350i 0.429867i 0.976629 + 0.214933i \(0.0689534\pi\)
−0.976629 + 0.214933i \(0.931047\pi\)
\(602\) 208.640 + 121.819i 0.346578 + 0.202357i
\(603\) 83.6289 58.1120i 0.138688 0.0963715i
\(604\) 66.0260 38.1201i 0.109315 0.0631128i
\(605\) 197.767 373.419i 0.326888 0.617222i
\(606\) 17.1083 + 98.0535i 0.0282316 + 0.161804i
\(607\) −246.615 + 920.381i −0.406285 + 1.51628i 0.395387 + 0.918514i \(0.370610\pi\)
−0.801673 + 0.597763i \(0.796056\pi\)
\(608\) −136.736 136.736i −0.224895 0.224895i
\(609\) −13.5256 + 143.564i −0.0222095 + 0.235738i
\(610\) 93.8619 100.986i 0.153872 0.165550i
\(611\) −216.881 + 125.216i −0.354961 + 0.204937i
\(612\) 418.212 35.0788i 0.683353 0.0573182i
\(613\) −226.001 + 60.5569i −0.368681 + 0.0987878i −0.438403 0.898779i \(-0.644456\pi\)
0.0697216 + 0.997566i \(0.477789\pi\)
\(614\) 59.1587 34.1553i 0.0963497 0.0556275i
\(615\) −14.3474 + 272.955i −0.0233291 + 0.443829i
\(616\) −84.1549 84.9798i −0.136615 0.137954i
\(617\) 722.963 + 722.963i 1.17174 + 1.17174i 0.981795 + 0.189945i \(0.0608308\pi\)
0.189945 + 0.981795i \(0.439169\pi\)
\(618\) 723.642 335.862i 1.17094 0.543466i
\(619\) −164.472 + 284.874i −0.265706 + 0.460217i −0.967748 0.251919i \(-0.918938\pi\)
0.702042 + 0.712135i \(0.252272\pi\)
\(620\) 210.288 397.062i 0.339175 0.640422i
\(621\) 374.546 640.751i 0.603133 1.03181i
\(622\) 544.337 + 544.337i 0.875139 + 0.875139i
\(623\) −150.574 87.9159i −0.241692 0.141117i
\(624\) −79.8367 95.4928i −0.127943 0.153033i
\(625\) −388.005 489.976i −0.620808 0.783962i
\(626\) 325.083 563.060i 0.519302 0.899457i
\(627\) −356.225 + 506.806i −0.568142 + 0.808304i
\(628\) −115.861 31.0449i −0.184492 0.0494346i
\(629\) 823.689i 1.30952i
\(630\) −176.856 + 408.867i −0.280724 + 0.648995i
\(631\) −184.344 −0.292145 −0.146073 0.989274i \(-0.546663\pi\)
−0.146073 + 0.989274i \(0.546663\pi\)
\(632\) −61.8625 + 230.874i −0.0978836 + 0.365307i
\(633\) −121.349 85.2938i −0.191704 0.134745i
\(634\) 22.7822 + 13.1533i 0.0359341 + 0.0207465i
\(635\) 1019.65 + 233.647i 1.60575 + 0.367949i
\(636\) −368.333 + 307.945i −0.579139 + 0.484190i
\(637\) 126.751 + 492.194i 0.198981 + 0.772675i
\(638\) −41.4788 + 41.4788i −0.0650138 + 0.0650138i
\(639\) 683.009 245.826i 1.06887 0.384704i
\(640\) −16.6276 54.0696i −0.0259806 0.0844838i
\(641\) −706.892 408.124i −1.10280 0.636699i −0.165841 0.986152i \(-0.553034\pi\)
−0.936954 + 0.349453i \(0.886367\pi\)
\(642\) −148.493 319.940i −0.231297 0.498348i
\(643\) −18.6427 + 18.6427i −0.0289933 + 0.0289933i −0.721455 0.692462i \(-0.756526\pi\)
0.692462 + 0.721455i \(0.256526\pi\)
\(644\) 101.415 371.236i 0.157477 0.576454i
\(645\) 272.088 244.913i 0.421842 0.379709i
\(646\) −563.577 976.145i −0.872411 1.51106i
\(647\) −250.884 936.314i −0.387766 1.44716i −0.833761 0.552126i \(-0.813817\pi\)
0.445995 0.895036i \(-0.352850\pi\)
\(648\) 21.6032 228.082i 0.0333383 0.351978i
\(649\) −341.671 591.791i −0.526457 0.911850i
\(650\) 365.744 26.7790i 0.562683 0.0411984i
\(651\) 546.341 769.285i 0.839233 1.18170i
\(652\) 8.26804 8.26804i 0.0126810 0.0126810i
\(653\) −58.3491 15.6346i −0.0893554 0.0239427i 0.213864 0.976863i \(-0.431395\pi\)
−0.303220 + 0.952921i \(0.598062\pi\)
\(654\) 139.953 24.4190i 0.213996 0.0373379i
\(655\) 350.250 661.334i 0.534733 1.00967i
\(656\) −36.4442 63.1233i −0.0555552 0.0962245i
\(657\) 14.8343 10.3080i 0.0225788 0.0156895i
\(658\) −239.010 1.16562i −0.363236 0.00177145i
\(659\) 397.461 0.603127 0.301564 0.953446i \(-0.402491\pi\)
0.301564 + 0.953446i \(0.402491\pi\)
\(660\) −161.479 + 82.2462i −0.244665 + 0.124615i
\(661\) 417.970 + 241.315i 0.632330 + 0.365076i 0.781654 0.623712i \(-0.214376\pi\)
−0.149324 + 0.988788i \(0.547710\pi\)
\(662\) −224.320 + 60.1065i −0.338853 + 0.0907953i
\(663\) −305.440 658.095i −0.460694 0.992602i
\(664\) −18.2445 −0.0274767
\(665\) 1195.84 37.8811i 1.79825 0.0569641i
\(666\) 442.536 + 79.6676i 0.664468 + 0.119621i
\(667\) −182.323 48.8533i −0.273348 0.0732434i
\(668\) −16.7701 + 4.49354i −0.0251050 + 0.00672685i
\(669\) −617.184 + 107.686i −0.922548 + 0.160966i
\(670\) −42.5103 67.7835i −0.0634482 0.101169i
\(671\) 117.778 0.175526
\(672\) −19.8477 117.124i −0.0295353 0.174292i
\(673\) 594.528 + 594.528i 0.883400 + 0.883400i 0.993879 0.110479i \(-0.0352384\pi\)
−0.110479 + 0.993879i \(0.535238\pi\)
\(674\) −182.945 316.871i −0.271432 0.470135i
\(675\) 508.497 + 443.910i 0.753329 + 0.657644i
\(676\) 61.4113 106.368i 0.0908451 0.157348i
\(677\) 107.544 + 28.8163i 0.158854 + 0.0425647i 0.337369 0.941372i \(-0.390463\pi\)
−0.178516 + 0.983937i \(0.557130\pi\)
\(678\) −6.73050 + 75.3739i −0.00992699 + 0.111171i
\(679\) 100.296 367.137i 0.147711 0.540703i
\(680\) −12.0469 329.512i −0.0177161 0.484576i
\(681\) −226.873 + 619.871i −0.333147 + 0.910236i
\(682\) 370.753 99.3429i 0.543626 0.145664i
\(683\) −101.877 380.211i −0.149161 0.556678i −0.999535 0.0304984i \(-0.990291\pi\)
0.850373 0.526180i \(-0.176376\pi\)
\(684\) −578.954 + 208.375i −0.846424 + 0.304642i
\(685\) −92.5614 86.0320i −0.135126 0.125594i
\(686\) −132.388 + 466.660i −0.192986 + 0.680262i
\(687\) −79.8463 + 894.187i −0.116225 + 1.30158i
\(688\) −25.2662 + 94.2947i −0.0367241 + 0.137056i
\(689\) 718.782 + 414.989i 1.04322 + 0.602306i
\(690\) −488.996 317.666i −0.708690 0.460385i
\(691\) 675.459 389.977i 0.977510 0.564366i 0.0759924 0.997108i \(-0.475788\pi\)
0.901517 + 0.432743i \(0.142454\pi\)
\(692\) −284.876 + 284.876i −0.411670 + 0.411670i
\(693\) −358.696 + 127.128i −0.517598 + 0.183446i
\(694\) 108.045i 0.155684i
\(695\) 630.760 + 1005.76i 0.907568 + 1.44714i
\(696\) −57.3985 + 10.0149i −0.0824691 + 0.0143892i
\(697\) −109.962 410.382i −0.157764 0.588784i
\(698\) 220.135 821.556i 0.315380 1.17701i
\(699\) −230.866 276.139i −0.330281 0.395049i
\(700\) 314.332 + 153.934i 0.449045 + 0.219906i
\(701\) 1193.31i 1.70229i −0.524928 0.851147i \(-0.675908\pi\)
0.524928 0.851147i \(-0.324092\pi\)
\(702\) −383.111 + 100.450i −0.545742 + 0.143091i
\(703\) −312.562 1166.50i −0.444611 1.65931i
\(704\) 24.1624 41.8505i 0.0343216 0.0594467i
\(705\) −111.967 + 344.416i −0.158818 + 0.488533i
\(706\) 642.977i 0.910733i
\(707\) 164.222 + 0.800889i 0.232280 + 0.00113280i
\(708\) 60.3685 676.059i 0.0852663 0.954885i
\(709\) 787.987 454.944i 1.11141 0.641671i 0.172213 0.985060i \(-0.444908\pi\)
0.939193 + 0.343389i \(0.111575\pi\)
\(710\) −167.638 545.127i −0.236111 0.767785i
\(711\) 580.860 + 490.958i 0.816962 + 0.690518i
\(712\) 18.2344 68.0519i 0.0256102 0.0955785i
\(713\) 873.338 + 873.338i 1.22488 + 1.22488i
\(714\) 64.9488 689.384i 0.0909647 0.965525i
\(715\) 229.468 + 213.281i 0.320935 + 0.298296i
\(716\) 61.1192 35.2872i 0.0853621 0.0492838i
\(717\) 970.971 + 682.478i 1.35421 + 0.951852i
\(718\) −271.144 + 72.6529i −0.377638 + 0.101188i
\(719\) −276.671 + 159.736i −0.384800 + 0.222164i −0.679905 0.733301i \(-0.737979\pi\)
0.295105 + 0.955465i \(0.404645\pi\)
\(720\) −178.199 25.3982i −0.247499 0.0352753i
\(721\) −334.473 1273.07i −0.463902 1.76570i
\(722\) 807.544 + 807.544i 1.11848 + 1.11848i
\(723\) 279.392 + 601.973i 0.386435 + 0.832604i
\(724\) −194.579 + 337.020i −0.268755 + 0.465497i
\(725\) 74.7482 154.539i 0.103101 0.213157i
\(726\) 336.707 + 123.235i 0.463784 + 0.169745i
\(727\) −962.101 962.101i −1.32338 1.32338i −0.911018 0.412367i \(-0.864702\pi\)
−0.412367 0.911018i \(-0.635298\pi\)
\(728\) −178.350 + 101.814i −0.244986 + 0.139854i
\(729\) −627.377 371.268i −0.860599 0.509283i
\(730\) −7.54057 12.0236i −0.0103295 0.0164707i
\(731\) −284.511 + 492.788i −0.389209 + 0.674129i
\(732\) 95.7094 + 67.2724i 0.130751 + 0.0919021i
\(733\) −377.079 101.038i −0.514433 0.137842i −0.00774251 0.999970i \(-0.502465\pi\)
−0.506690 + 0.862128i \(0.669131\pi\)
\(734\) 665.487i 0.906658i
\(735\) 612.426 + 406.398i 0.833233 + 0.552922i
\(736\) 155.499 0.211275
\(737\) 17.6905 66.0218i 0.0240034 0.0895818i
\(738\) −231.118 + 19.3857i −0.313168 + 0.0262679i
\(739\) 665.653 + 384.315i 0.900749 + 0.520047i 0.877443 0.479681i \(-0.159248\pi\)
0.0233056 + 0.999728i \(0.492581\pi\)
\(740\) 78.9067 344.353i 0.106631 0.465342i
\(741\) 682.284 + 816.080i 0.920761 + 1.10132i
\(742\) 392.715 + 687.928i 0.529265 + 0.927126i
\(743\) −411.294 + 411.294i −0.553559 + 0.553559i −0.927466 0.373907i \(-0.878018\pi\)
0.373907 + 0.927466i \(0.378018\pi\)
\(744\) 358.025 + 131.038i 0.481217 + 0.176126i
\(745\) −91.9979 + 173.708i −0.123487 + 0.233166i
\(746\) 331.818 + 191.575i 0.444796 + 0.256803i
\(747\) −24.7230 + 52.5262i −0.0330963 + 0.0703162i
\(748\) 199.178 199.178i 0.266281 0.266281i
\(749\) −562.857 + 147.879i −0.751477 + 0.197435i
\(750\) 367.207 382.635i 0.489609 0.510180i
\(751\) 569.327 + 986.103i 0.758091 + 1.31305i 0.943823 + 0.330452i \(0.107201\pi\)
−0.185731 + 0.982601i \(0.559465\pi\)
\(752\) −24.9956 93.2849i −0.0332388 0.124049i
\(753\) 568.908 + 399.875i 0.755522 + 0.531042i
\(754\) 50.3633 + 87.2319i 0.0667949 + 0.115692i
\(755\) −190.473 + 6.96370i −0.252283 + 0.00922345i
\(756\) −364.098 101.572i −0.481611 0.134355i
\(757\) −264.443 + 264.443i −0.349331 + 0.349331i −0.859860 0.510530i \(-0.829449\pi\)
0.510530 + 0.859860i \(0.329449\pi\)
\(758\) −653.692 175.156i −0.862390 0.231077i
\(759\) −85.6220 490.728i −0.112809 0.646545i
\(760\) 142.099 + 462.079i 0.186973 + 0.607998i
\(761\) −692.515 1199.47i </