Properties

Label 210.3.w.a.143.1
Level 210
Weight 3
Character 210.143
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 143.1
Character \(\chi\) \(=\) 210.143
Dual form 210.3.w.a.47.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-2.99647 + 0.145428i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(3.20777 - 3.83539i) q^{5} +(-0.898127 + 4.14649i) q^{6} +(6.79418 - 1.68496i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(8.95770 - 0.871542i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(-2.99647 + 0.145428i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(3.20777 - 3.83539i) q^{5} +(-0.898127 + 4.14649i) q^{6} +(6.79418 - 1.68496i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(8.95770 - 0.871542i) q^{9} +(-4.06511 - 5.78575i) q^{10} +(-13.7602 - 7.94448i) q^{11} +(5.33547 + 2.74458i) q^{12} +(-5.32844 + 5.32844i) q^{13} +(0.185142 - 9.89776i) q^{14} +(-9.05423 + 11.9591i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-4.55096 - 16.9844i) q^{17} +(2.08820 - 12.5555i) q^{18} +(-5.62474 - 9.74233i) q^{19} +(-9.39141 + 3.43532i) q^{20} +(-20.1135 + 6.03701i) q^{21} +(-15.8890 + 15.8890i) q^{22} +(-39.1036 - 10.4778i) q^{23} +(5.70209 - 6.28380i) q^{24} +(-4.42041 - 24.6061i) q^{25} +(5.32844 + 9.22913i) q^{26} +(-26.7148 + 3.91425i) q^{27} +(-13.4528 - 3.87574i) q^{28} +22.8488 q^{29} +(13.0224 + 16.7457i) q^{30} +(36.0825 + 20.8322i) q^{31} +(5.46410 - 1.46410i) q^{32} +(42.3875 + 21.8043i) q^{33} -24.8669 q^{34} +(15.3317 - 31.4633i) q^{35} +(-16.3867 - 7.44815i) q^{36} +(-28.8409 - 7.72790i) q^{37} +(-15.3671 + 4.11759i) q^{38} +(15.1916 - 16.7414i) q^{39} +(1.25523 + 14.0863i) q^{40} +55.0717 q^{41} +(0.884639 + 29.6853i) q^{42} +(-14.2521 - 14.2521i) q^{43} +(15.8890 + 27.5205i) q^{44} +(25.3916 - 37.1520i) q^{45} +(-28.6258 + 49.5814i) q^{46} +(25.2813 + 6.77411i) q^{47} +(-6.49672 - 10.0892i) q^{48} +(43.3218 - 22.8959i) q^{49} +(-35.2305 - 2.96807i) q^{50} +(16.1068 + 50.2315i) q^{51} +(14.5576 - 3.90069i) q^{52} +(15.8246 + 59.0583i) q^{53} +(-4.43132 + 37.9258i) q^{54} +(-74.6098 + 27.2918i) q^{55} +(-10.2184 + 16.9583i) q^{56} +(18.2712 + 28.3746i) q^{57} +(8.36322 - 31.2120i) q^{58} +(-10.7056 - 6.18085i) q^{59} +(27.6415 - 11.6596i) q^{60} +(14.5577 - 8.40486i) q^{61} +(41.6644 - 41.6644i) q^{62} +(59.3917 - 21.0148i) q^{63} -8.00000i q^{64} +(3.34422 + 37.5290i) q^{65} +(45.3001 - 49.9215i) q^{66} +(-27.8041 - 103.766i) q^{67} +(-9.10191 + 33.9688i) q^{68} +(118.697 + 25.7096i) q^{69} +(-37.3679 - 32.4599i) q^{70} -34.7786i q^{71} +(-16.1723 + 19.6585i) q^{72} +(-15.2213 - 56.8067i) q^{73} +(-21.1130 + 36.5688i) q^{74} +(16.8240 + 73.0887i) q^{75} +22.4989i q^{76} +(-106.876 - 30.7907i) q^{77} +(-17.3087 - 26.8799i) q^{78} +(-40.5584 + 23.4164i) q^{79} +(19.7017 + 3.44127i) q^{80} +(79.4808 - 15.6140i) q^{81} +(20.1576 - 75.2293i) q^{82} +(75.6892 + 75.6892i) q^{83} +(40.8747 + 9.65714i) q^{84} +(-79.7402 - 37.0274i) q^{85} +(-24.6854 + 14.2521i) q^{86} +(-68.4657 + 3.32285i) q^{87} +(43.4094 - 11.6315i) q^{88} +(116.275 - 67.1315i) q^{89} +(-41.4566 - 48.2841i) q^{90} +(-27.2242 + 45.1806i) q^{91} +(57.2517 + 57.2517i) q^{92} +(-111.150 - 57.1758i) q^{93} +(18.5072 - 32.0554i) q^{94} +(-55.4085 - 9.67811i) q^{95} +(-16.1601 + 5.18177i) q^{96} +(75.7669 + 75.7669i) q^{97} +(-15.4195 - 67.5592i) q^{98} +(-130.184 - 59.1716i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) −2.99647 + 0.145428i −0.998824 + 0.0484760i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 3.20777 3.83539i 0.641554 0.767078i
\(6\) −0.898127 + 4.14649i −0.149688 + 0.691081i
\(7\) 6.79418 1.68496i 0.970597 0.240709i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 8.95770 0.871542i 0.995300 0.0968380i
\(10\) −4.06511 5.78575i −0.406511 0.578575i
\(11\) −13.7602 7.94448i −1.25093 0.722225i −0.279636 0.960106i \(-0.590214\pi\)
−0.971294 + 0.237881i \(0.923547\pi\)
\(12\) 5.33547 + 2.74458i 0.444623 + 0.228715i
\(13\) −5.32844 + 5.32844i −0.409880 + 0.409880i −0.881697 0.471817i \(-0.843598\pi\)
0.471817 + 0.881697i \(0.343598\pi\)
\(14\) 0.185142 9.89776i 0.0132244 0.706983i
\(15\) −9.05423 + 11.9591i −0.603615 + 0.797276i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −4.55096 16.9844i −0.267703 0.999083i −0.960575 0.278021i \(-0.910321\pi\)
0.692872 0.721061i \(-0.256345\pi\)
\(18\) 2.08820 12.5555i 0.116011 0.697525i
\(19\) −5.62474 9.74233i −0.296039 0.512754i 0.679187 0.733965i \(-0.262332\pi\)
−0.975226 + 0.221211i \(0.928999\pi\)
\(20\) −9.39141 + 3.43532i −0.469571 + 0.171766i
\(21\) −20.1135 + 6.03701i −0.957788 + 0.287477i
\(22\) −15.8890 + 15.8890i −0.722225 + 0.722225i
\(23\) −39.1036 10.4778i −1.70016 0.455556i −0.727178 0.686449i \(-0.759168\pi\)
−0.972979 + 0.230893i \(0.925835\pi\)
\(24\) 5.70209 6.28380i 0.237587 0.261825i
\(25\) −4.42041 24.6061i −0.176816 0.984244i
\(26\) 5.32844 + 9.22913i 0.204940 + 0.354966i
\(27\) −26.7148 + 3.91425i −0.989436 + 0.144972i
\(28\) −13.4528 3.87574i −0.480458 0.138419i
\(29\) 22.8488 0.787888 0.393944 0.919134i \(-0.371110\pi\)
0.393944 + 0.919134i \(0.371110\pi\)
\(30\) 13.0224 + 16.7457i 0.434080 + 0.558188i
\(31\) 36.0825 + 20.8322i 1.16395 + 0.672007i 0.952248 0.305327i \(-0.0987658\pi\)
0.211703 + 0.977334i \(0.432099\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) 42.3875 + 21.8043i 1.28447 + 0.660736i
\(34\) −24.8669 −0.731379
\(35\) 15.3317 31.4633i 0.438048 0.898951i
\(36\) −16.3867 7.44815i −0.455187 0.206893i
\(37\) −28.8409 7.72790i −0.779484 0.208862i −0.152927 0.988238i \(-0.548870\pi\)
−0.626557 + 0.779375i \(0.715537\pi\)
\(38\) −15.3671 + 4.11759i −0.404396 + 0.108358i
\(39\) 15.1916 16.7414i 0.389529 0.429267i
\(40\) 1.25523 + 14.0863i 0.0313809 + 0.352158i
\(41\) 55.0717 1.34321 0.671606 0.740909i \(-0.265605\pi\)
0.671606 + 0.740909i \(0.265605\pi\)
\(42\) 0.884639 + 29.6853i 0.0210628 + 0.706793i
\(43\) −14.2521 14.2521i −0.331445 0.331445i 0.521690 0.853135i \(-0.325302\pi\)
−0.853135 + 0.521690i \(0.825302\pi\)
\(44\) 15.8890 + 27.5205i 0.361113 + 0.625465i
\(45\) 25.3916 37.1520i 0.564257 0.825599i
\(46\) −28.6258 + 49.5814i −0.622301 + 1.07786i
\(47\) 25.2813 + 6.77411i 0.537900 + 0.144130i 0.517534 0.855663i \(-0.326850\pi\)
0.0203662 + 0.999793i \(0.493517\pi\)
\(48\) −6.49672 10.0892i −0.135348 0.210192i
\(49\) 43.3218 22.8959i 0.884118 0.467263i
\(50\) −35.2305 2.96807i −0.704611 0.0593614i
\(51\) 16.1068 + 50.2315i 0.315820 + 0.984931i
\(52\) 14.5576 3.90069i 0.279953 0.0750132i
\(53\) 15.8246 + 59.0583i 0.298578 + 1.11431i 0.938334 + 0.345730i \(0.112369\pi\)
−0.639756 + 0.768578i \(0.720965\pi\)
\(54\) −4.43132 + 37.9258i −0.0820614 + 0.702329i
\(55\) −74.6098 + 27.2918i −1.35654 + 0.496214i
\(56\) −10.2184 + 16.9583i −0.182472 + 0.302827i
\(57\) 18.2712 + 28.3746i 0.320547 + 0.497801i
\(58\) 8.36322 31.2120i 0.144194 0.538138i
\(59\) −10.7056 6.18085i −0.181450 0.104760i 0.406524 0.913640i \(-0.366741\pi\)
−0.587974 + 0.808880i \(0.700074\pi\)
\(60\) 27.6415 11.6596i 0.460692 0.194327i
\(61\) 14.5577 8.40486i 0.238650 0.137785i −0.375906 0.926658i \(-0.622668\pi\)
0.614556 + 0.788873i \(0.289335\pi\)
\(62\) 41.6644 41.6644i 0.672007 0.672007i
\(63\) 59.3917 21.0148i 0.942726 0.333568i
\(64\) 8.00000i 0.125000i
\(65\) 3.34422 + 37.5290i 0.0514495 + 0.577370i
\(66\) 45.3001 49.9215i 0.686366 0.756387i
\(67\) −27.8041 103.766i −0.414987 1.54875i −0.784862 0.619671i \(-0.787266\pi\)
0.369875 0.929082i \(-0.379400\pi\)
\(68\) −9.10191 + 33.9688i −0.133852 + 0.499541i
\(69\) 118.697 + 25.7096i 1.72024 + 0.372603i
\(70\) −37.3679 32.4599i −0.533827 0.463712i
\(71\) 34.7786i 0.489840i −0.969543 0.244920i \(-0.921238\pi\)
0.969543 0.244920i \(-0.0787617\pi\)
\(72\) −16.1723 + 19.6585i −0.224616 + 0.273035i
\(73\) −15.2213 56.8067i −0.208511 0.778175i −0.988351 0.152195i \(-0.951366\pi\)
0.779839 0.625980i \(-0.215301\pi\)
\(74\) −21.1130 + 36.5688i −0.285311 + 0.494173i
\(75\) 16.8240 + 73.0887i 0.224321 + 0.974515i
\(76\) 22.4989i 0.296039i
\(77\) −106.876 30.7907i −1.38800 0.399880i
\(78\) −17.3087 26.8799i −0.221906 0.344614i
\(79\) −40.5584 + 23.4164i −0.513398 + 0.296410i −0.734229 0.678902i \(-0.762456\pi\)
0.220831 + 0.975312i \(0.429123\pi\)
\(80\) 19.7017 + 3.44127i 0.246271 + 0.0430159i
\(81\) 79.4808 15.6140i 0.981245 0.192766i
\(82\) 20.1576 75.2293i 0.245825 0.917431i
\(83\) 75.6892 + 75.6892i 0.911918 + 0.911918i 0.996423 0.0845048i \(-0.0269308\pi\)
−0.0845048 + 0.996423i \(0.526931\pi\)
\(84\) 40.8747 + 9.65714i 0.486603 + 0.114966i
\(85\) −79.7402 37.0274i −0.938120 0.435616i
\(86\) −24.6854 + 14.2521i −0.287040 + 0.165722i
\(87\) −68.4657 + 3.32285i −0.786962 + 0.0381936i
\(88\) 43.4094 11.6315i 0.493289 0.132176i
\(89\) 116.275 67.1315i 1.30646 0.754286i 0.324958 0.945728i \(-0.394650\pi\)
0.981504 + 0.191442i \(0.0613163\pi\)
\(90\) −41.4566 48.2841i −0.460629 0.536490i
\(91\) −27.2242 + 45.1806i −0.299167 + 0.496490i
\(92\) 57.2517 + 57.2517i 0.622301 + 0.622301i
\(93\) −111.150 57.1758i −1.19516 0.614793i
\(94\) 18.5072 32.0554i 0.196885 0.341015i
\(95\) −55.4085 9.67811i −0.583247 0.101875i
\(96\) −16.1601 + 5.18177i −0.168334 + 0.0539768i
\(97\) 75.7669 + 75.7669i 0.781102 + 0.781102i 0.980017 0.198915i \(-0.0637416\pi\)
−0.198915 + 0.980017i \(0.563742\pi\)
\(98\) −15.4195 67.5592i −0.157342 0.689379i
\(99\) −130.184 59.1716i −1.31499 0.597693i
\(100\) −16.9497 + 47.0394i −0.169497 + 0.470394i
\(101\) 39.6447 68.6665i 0.392521 0.679867i −0.600260 0.799805i \(-0.704936\pi\)
0.992781 + 0.119938i \(0.0382696\pi\)
\(102\) 74.5130 3.61634i 0.730519 0.0354543i
\(103\) 48.2373 + 12.9252i 0.468323 + 0.125487i 0.485260 0.874370i \(-0.338725\pi\)
−0.0169370 + 0.999857i \(0.505391\pi\)
\(104\) 21.3138i 0.204940i
\(105\) −41.3654 + 96.5086i −0.393956 + 0.919129i
\(106\) 86.4673 0.815730
\(107\) −47.7857 + 178.339i −0.446595 + 1.66672i 0.265094 + 0.964223i \(0.414597\pi\)
−0.711690 + 0.702494i \(0.752070\pi\)
\(108\) 50.1856 + 19.9351i 0.464681 + 0.184584i
\(109\) 70.6679 + 40.8002i 0.648330 + 0.374313i 0.787816 0.615911i \(-0.211212\pi\)
−0.139486 + 0.990224i \(0.544545\pi\)
\(110\) 9.97218 + 111.908i 0.0906562 + 1.01735i
\(111\) 87.5449 + 18.9622i 0.788692 + 0.170830i
\(112\) 19.4252 + 20.1658i 0.173440 + 0.180052i
\(113\) 56.2695 56.2695i 0.497960 0.497960i −0.412842 0.910803i \(-0.635464\pi\)
0.910803 + 0.412842i \(0.135464\pi\)
\(114\) 45.4482 14.5731i 0.398668 0.127834i
\(115\) −165.622 + 116.367i −1.44019 + 1.01189i
\(116\) −39.5752 22.8488i −0.341166 0.196972i
\(117\) −43.0866 + 52.3745i −0.368262 + 0.447645i
\(118\) −12.3617 + 12.3617i −0.104760 + 0.104760i
\(119\) −59.5381 107.727i −0.500320 0.905268i
\(120\) −5.80982 42.0267i −0.0484152 0.350223i
\(121\) 65.7294 + 113.847i 0.543218 + 0.940882i
\(122\) −6.15279 22.9625i −0.0504327 0.188217i
\(123\) −165.021 + 8.00896i −1.34163 + 0.0651135i
\(124\) −41.6644 72.1649i −0.336004 0.581975i
\(125\) −108.554 61.9767i −0.868429 0.495814i
\(126\) −6.96787 88.8226i −0.0553006 0.704941i
\(127\) 29.9204 29.9204i 0.235594 0.235594i −0.579429 0.815023i \(-0.696724\pi\)
0.815023 + 0.579429i \(0.196724\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) 44.7788 + 40.6335i 0.347122 + 0.314988i
\(130\) 52.4897 + 9.16829i 0.403767 + 0.0705253i
\(131\) 82.2110 + 142.394i 0.627565 + 1.08697i 0.988039 + 0.154205i \(0.0492816\pi\)
−0.360474 + 0.932769i \(0.617385\pi\)
\(132\) −51.6131 80.1537i −0.391008 0.607225i
\(133\) −54.6309 56.7137i −0.410759 0.426419i
\(134\) −151.925 −1.13377
\(135\) −70.6822 + 115.018i −0.523572 + 0.851982i
\(136\) 43.0707 + 24.8669i 0.316696 + 0.182845i
\(137\) −34.5846 + 9.26691i −0.252442 + 0.0676417i −0.382821 0.923823i \(-0.625047\pi\)
0.130379 + 0.991464i \(0.458381\pi\)
\(138\) 78.5660 152.732i 0.569319 1.10676i
\(139\) 29.1666 0.209832 0.104916 0.994481i \(-0.466543\pi\)
0.104916 + 0.994481i \(0.466543\pi\)
\(140\) −58.0186 + 39.1643i −0.414418 + 0.279745i
\(141\) −76.7399 16.6218i −0.544255 0.117885i
\(142\) −47.5085 12.7299i −0.334567 0.0896469i
\(143\) 115.652 30.9889i 0.808757 0.216706i
\(144\) 20.9345 + 29.2873i 0.145379 + 0.203384i
\(145\) 73.2936 87.6338i 0.505473 0.604371i
\(146\) −83.1709 −0.569663
\(147\) −126.483 + 74.9071i −0.860428 + 0.509572i
\(148\) 42.2260 + 42.2260i 0.285311 + 0.285311i
\(149\) −62.7849 108.747i −0.421375 0.729843i 0.574699 0.818365i \(-0.305119\pi\)
−0.996074 + 0.0885216i \(0.971786\pi\)
\(150\) 105.999 + 3.77023i 0.706660 + 0.0251349i
\(151\) −93.1064 + 161.265i −0.616599 + 1.06798i 0.373503 + 0.927629i \(0.378157\pi\)
−0.990102 + 0.140352i \(0.955177\pi\)
\(152\) 30.7341 + 8.23519i 0.202198 + 0.0541788i
\(153\) −55.5687 148.175i −0.363194 0.968463i
\(154\) −81.1801 + 134.725i −0.527144 + 0.874836i
\(155\) 195.644 71.5653i 1.26222 0.461711i
\(156\) −43.0541 + 13.8054i −0.275988 + 0.0884960i
\(157\) −101.730 + 27.2585i −0.647962 + 0.173621i −0.567807 0.823162i \(-0.692208\pi\)
−0.0801548 + 0.996782i \(0.525541\pi\)
\(158\) 17.1420 + 63.9748i 0.108494 + 0.404904i
\(159\) −56.0068 174.665i −0.352244 1.09852i
\(160\) 11.9122 25.6535i 0.0744512 0.160334i
\(161\) −283.332 5.29983i −1.75982 0.0329182i
\(162\) 7.76285 114.288i 0.0479188 0.705481i
\(163\) 52.7878 197.007i 0.323852 1.20863i −0.591610 0.806225i \(-0.701507\pi\)
0.915461 0.402406i \(-0.131826\pi\)
\(164\) −95.3870 55.0717i −0.581628 0.335803i
\(165\) 219.597 92.6295i 1.33089 0.561391i
\(166\) 131.098 75.6892i 0.789744 0.455959i
\(167\) 168.308 168.308i 1.00783 1.00783i 0.00786180 0.999969i \(-0.497497\pi\)
0.999969 0.00786180i \(-0.00250252\pi\)
\(168\) 28.1531 52.3011i 0.167578 0.311316i
\(169\) 112.215i 0.663997i
\(170\) −79.7673 + 95.3742i −0.469219 + 0.561025i
\(171\) −58.8756 82.3667i −0.344301 0.481676i
\(172\) 10.4333 + 38.9375i 0.0606586 + 0.226381i
\(173\) −37.5901 + 140.288i −0.217284 + 0.810914i 0.768066 + 0.640370i \(0.221219\pi\)
−0.985350 + 0.170544i \(0.945448\pi\)
\(174\) −20.5211 + 94.7421i −0.117937 + 0.544495i
\(175\) −71.4934 159.730i −0.408534 0.912743i
\(176\) 63.5558i 0.361113i
\(177\) 32.9778 + 16.9639i 0.186315 + 0.0958411i
\(178\) −49.1437 183.407i −0.276088 1.03037i
\(179\) 53.3572 92.4174i 0.298085 0.516298i −0.677613 0.735419i \(-0.736985\pi\)
0.975698 + 0.219120i \(0.0703188\pi\)
\(180\) −81.1314 + 38.9575i −0.450730 + 0.216431i
\(181\) 16.9570i 0.0936850i −0.998902 0.0468425i \(-0.985084\pi\)
0.998902 0.0468425i \(-0.0149159\pi\)
\(182\) 51.7531 + 53.7261i 0.284358 + 0.295199i
\(183\) −42.3993 + 27.3020i −0.231690 + 0.149191i
\(184\) 99.1628 57.2517i 0.538928 0.311150i
\(185\) −122.155 + 85.8268i −0.660295 + 0.463928i
\(186\) −118.787 + 130.906i −0.638641 + 0.703793i
\(187\) −72.3099 + 269.864i −0.386684 + 1.44313i
\(188\) −37.0144 37.0144i −0.196885 0.196885i
\(189\) −174.910 + 71.6075i −0.925448 + 0.378876i
\(190\) −33.5015 + 72.1470i −0.176323 + 0.379721i
\(191\) 30.1768 17.4226i 0.157994 0.0912178i −0.418919 0.908024i \(-0.637591\pi\)
0.576912 + 0.816806i \(0.304257\pi\)
\(192\) 1.16342 + 23.9718i 0.00605950 + 0.124853i
\(193\) 187.117 50.1378i 0.969517 0.259781i 0.260893 0.965368i \(-0.415983\pi\)
0.708624 + 0.705586i \(0.249316\pi\)
\(194\) 131.232 75.7669i 0.676454 0.390551i
\(195\) −15.4786 111.968i −0.0793776 0.574197i
\(196\) −97.9314 3.66498i −0.499650 0.0186989i
\(197\) −48.4192 48.4192i −0.245783 0.245783i 0.573455 0.819237i \(-0.305603\pi\)
−0.819237 + 0.573455i \(0.805603\pi\)
\(198\) −128.481 + 156.176i −0.648892 + 0.788770i
\(199\) −30.8142 + 53.3717i −0.154845 + 0.268200i −0.933003 0.359870i \(-0.882821\pi\)
0.778157 + 0.628069i \(0.216155\pi\)
\(200\) 58.0530 + 40.3714i 0.290265 + 0.201857i
\(201\) 98.4048 + 306.890i 0.489576 + 1.52681i
\(202\) −79.2893 79.2893i −0.392521 0.392521i
\(203\) 155.239 38.4993i 0.764722 0.189652i
\(204\) 22.3336 103.110i 0.109479 0.505443i
\(205\) 176.657 211.221i 0.861743 1.03035i
\(206\) 35.3122 61.1625i 0.171418 0.296905i
\(207\) −359.410 59.7764i −1.73628 0.288775i
\(208\) −29.1151 7.80137i −0.139977 0.0375066i
\(209\) 178.742i 0.855227i
\(210\) 116.692 + 91.8307i 0.555678 + 0.437289i
\(211\) 312.769 1.48232 0.741158 0.671331i \(-0.234277\pi\)
0.741158 + 0.671331i \(0.234277\pi\)
\(212\) 31.6492 118.117i 0.149289 0.557154i
\(213\) 5.05779 + 104.213i 0.0237455 + 0.489264i
\(214\) 226.124 + 130.553i 1.05666 + 0.610061i
\(215\) −100.380 + 8.94488i −0.466884 + 0.0416041i
\(216\) 45.6010 61.2580i 0.211116 0.283602i
\(217\) 280.252 + 80.7403i 1.29149 + 0.372075i
\(218\) 81.6003 81.6003i 0.374313 0.374313i
\(219\) 53.8716 + 168.006i 0.245989 + 0.767152i
\(220\) 156.520 + 27.3391i 0.711454 + 0.124269i
\(221\) 114.750 + 66.2508i 0.519230 + 0.299778i
\(222\) 57.9464 112.648i 0.261020 0.507423i
\(223\) −128.865 + 128.865i −0.577870 + 0.577870i −0.934316 0.356446i \(-0.883988\pi\)
0.356446 + 0.934316i \(0.383988\pi\)
\(224\) 34.6571 19.1542i 0.154719 0.0855097i
\(225\) −61.0419 216.561i −0.271297 0.962496i
\(226\) −56.2695 97.4616i −0.248980 0.431246i
\(227\) −97.9428 365.528i −0.431466 1.61025i −0.749384 0.662135i \(-0.769650\pi\)
0.317918 0.948118i \(-0.397016\pi\)
\(228\) −3.27198 67.4175i −0.0143508 0.295691i
\(229\) 78.9305 + 136.712i 0.344675 + 0.596994i 0.985295 0.170864i \(-0.0546558\pi\)
−0.640620 + 0.767858i \(0.721323\pi\)
\(230\) 98.3388 + 268.837i 0.427560 + 1.16886i
\(231\) 324.728 + 76.7209i 1.40575 + 0.332125i
\(232\) −45.6975 + 45.6975i −0.196972 + 0.196972i
\(233\) 88.7869 + 23.7904i 0.381060 + 0.102105i 0.444264 0.895896i \(-0.353465\pi\)
−0.0632042 + 0.998001i \(0.520132\pi\)
\(234\) 55.7741 + 78.0278i 0.238351 + 0.333452i
\(235\) 107.078 75.2338i 0.455651 0.320144i
\(236\) 12.3617 + 21.4111i 0.0523801 + 0.0907250i
\(237\) 118.127 76.0650i 0.498425 0.320949i
\(238\) −168.950 + 41.8998i −0.709875 + 0.176049i
\(239\) −77.3170 −0.323502 −0.161751 0.986832i \(-0.551714\pi\)
−0.161751 + 0.986832i \(0.551714\pi\)
\(240\) −59.5361 7.44649i −0.248067 0.0310270i
\(241\) −372.723 215.192i −1.54657 0.892912i −0.998400 0.0565436i \(-0.981992\pi\)
−0.548168 0.836368i \(-0.684675\pi\)
\(242\) 179.576 48.1173i 0.742050 0.198832i
\(243\) −235.891 + 58.3457i −0.970747 + 0.240106i
\(244\) −33.6195 −0.137785
\(245\) 51.1518 239.601i 0.208783 0.977962i
\(246\) −49.4614 + 228.354i −0.201062 + 0.928269i
\(247\) 81.8824 + 21.9403i 0.331508 + 0.0888273i
\(248\) −113.829 + 30.5005i −0.458989 + 0.122986i
\(249\) −237.808 215.793i −0.955052 0.866640i
\(250\) −124.395 + 125.602i −0.497581 + 0.502408i
\(251\) 17.9306 0.0714367 0.0357184 0.999362i \(-0.488628\pi\)
0.0357184 + 0.999362i \(0.488628\pi\)
\(252\) −123.884 22.9930i −0.491604 0.0912422i
\(253\) 454.834 + 454.834i 1.79776 + 1.79776i
\(254\) −29.9204 51.8237i −0.117797 0.204030i
\(255\) 244.324 + 99.3551i 0.958134 + 0.389628i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −146.201 39.1745i −0.568876 0.152430i −0.0370950 0.999312i \(-0.511810\pi\)
−0.531781 + 0.846882i \(0.678477\pi\)
\(258\) 71.8965 46.2961i 0.278669 0.179442i
\(259\) −208.972 3.90890i −0.806840 0.0150923i
\(260\) 31.7367 68.3464i 0.122064 0.262871i
\(261\) 204.672 19.9136i 0.784185 0.0762975i
\(262\) 224.605 60.1826i 0.857270 0.229705i
\(263\) 114.591 + 427.661i 0.435709 + 1.62609i 0.739364 + 0.673306i \(0.235126\pi\)
−0.303655 + 0.952782i \(0.598207\pi\)
\(264\) −128.384 + 41.1665i −0.486302 + 0.155934i
\(265\) 277.273 + 128.752i 1.04631 + 0.485856i
\(266\) −97.4686 + 53.8686i −0.366423 + 0.202514i
\(267\) −338.653 + 218.067i −1.26836 + 0.816732i
\(268\) −55.6082 + 207.533i −0.207493 + 0.774376i
\(269\) 53.4816 + 30.8776i 0.198817 + 0.114787i 0.596103 0.802908i \(-0.296715\pi\)
−0.397287 + 0.917694i \(0.630048\pi\)
\(270\) 131.245 + 138.653i 0.486094 + 0.513530i
\(271\) 100.182 57.8400i 0.369675 0.213432i −0.303642 0.952786i \(-0.598203\pi\)
0.673316 + 0.739355i \(0.264869\pi\)
\(272\) 49.7338 49.7338i 0.182845 0.182845i
\(273\) 75.0059 139.342i 0.274747 0.510409i
\(274\) 50.6354i 0.184801i
\(275\) −134.657 + 373.704i −0.489661 + 1.35892i
\(276\) −179.879 163.227i −0.651736 0.591402i
\(277\) −96.8189 361.333i −0.349527 1.30445i −0.887234 0.461320i \(-0.847376\pi\)
0.537707 0.843132i \(-0.319291\pi\)
\(278\) 10.6757 39.8424i 0.0384019 0.143318i
\(279\) 341.372 + 155.161i 1.22356 + 0.556134i
\(280\) 32.2632 + 93.5900i 0.115226 + 0.334250i
\(281\) 236.224i 0.840656i 0.907372 + 0.420328i \(0.138085\pi\)
−0.907372 + 0.420328i \(0.861915\pi\)
\(282\) −50.7946 + 98.7446i −0.180123 + 0.350158i
\(283\) −6.13887 22.9106i −0.0216921 0.0809561i 0.954231 0.299070i \(-0.0966763\pi\)
−0.975923 + 0.218114i \(0.930010\pi\)
\(284\) −34.7786 + 60.2384i −0.122460 + 0.212107i
\(285\) 167.437 + 20.9423i 0.587500 + 0.0734816i
\(286\) 169.327i 0.592051i
\(287\) 374.167 92.7937i 1.30372 0.323323i
\(288\) 47.6698 17.8772i 0.165520 0.0620735i
\(289\) −17.4774 + 10.0906i −0.0604754 + 0.0349155i
\(290\) −92.8827 132.197i −0.320285 0.455852i
\(291\) −238.052 216.015i −0.818049 0.742319i
\(292\) −30.4426 + 113.613i −0.104256 + 0.389087i
\(293\) 89.0653 + 89.0653i 0.303977 + 0.303977i 0.842568 0.538591i \(-0.181043\pi\)
−0.538591 + 0.842568i \(0.681043\pi\)
\(294\) 56.0290 + 200.197i 0.190575 + 0.680941i
\(295\) −58.0469 + 21.2332i −0.196769 + 0.0719769i
\(296\) 73.1376 42.2260i 0.247087 0.142655i
\(297\) 398.698 + 158.374i 1.34242 + 0.533245i
\(298\) −171.532 + 45.9617i −0.575609 + 0.154234i
\(299\) 264.191 152.531i 0.883583 0.510137i
\(300\) 43.9486 143.417i 0.146495 0.478058i
\(301\) −120.846 72.8172i −0.401481 0.241918i
\(302\) 186.213 + 186.213i 0.616599 + 0.616599i
\(303\) −108.808 + 211.523i −0.359103 + 0.698095i
\(304\) 22.4989 38.9693i 0.0740097 0.128189i
\(305\) 14.4617 82.7951i 0.0474154 0.271459i
\(306\) −222.750 + 21.6725i −0.727942 + 0.0708253i
\(307\) −79.6418 79.6418i −0.259419 0.259419i 0.565398 0.824818i \(-0.308722\pi\)
−0.824818 + 0.565398i \(0.808722\pi\)
\(308\) 154.323 + 160.207i 0.501050 + 0.520152i
\(309\) −146.422 31.7148i −0.473856 0.102637i
\(310\) −26.1493 293.449i −0.0843526 0.946611i
\(311\) −53.4146 + 92.5167i −0.171751 + 0.297481i −0.939032 0.343829i \(-0.888276\pi\)
0.767281 + 0.641311i \(0.221609\pi\)
\(312\) 3.09962 + 63.8661i 0.00993466 + 0.204699i
\(313\) −130.207 34.8889i −0.415998 0.111466i 0.0447483 0.998998i \(-0.485751\pi\)
−0.460746 + 0.887532i \(0.652418\pi\)
\(314\) 148.943i 0.474341i
\(315\) 109.915 295.201i 0.348937 0.937146i
\(316\) 93.6657 0.296410
\(317\) −85.1391 + 317.743i −0.268578 + 1.00235i 0.691447 + 0.722428i \(0.256974\pi\)
−0.960024 + 0.279917i \(0.909693\pi\)
\(318\) −259.097 + 12.5748i −0.814771 + 0.0395433i
\(319\) −314.404 181.521i −0.985593 0.569033i
\(320\) −30.6831 25.6622i −0.0958847 0.0801943i
\(321\) 117.253 541.336i 0.365275 1.68641i
\(322\) −110.946 + 385.098i −0.344554 + 1.19596i
\(323\) −139.870 + 139.870i −0.433033 + 0.433033i
\(324\) −153.279 52.4365i −0.473083 0.161841i
\(325\) 154.666 + 107.558i 0.475895 + 0.330948i
\(326\) −249.795 144.219i −0.766241 0.442390i
\(327\) −217.688 111.979i −0.665713 0.342445i
\(328\) −110.143 + 110.143i −0.335803 + 0.335803i
\(329\) 183.180 + 3.42645i 0.556778 + 0.0104148i
\(330\) −46.1560 333.880i −0.139867 1.01176i
\(331\) −275.493 477.168i −0.832305 1.44160i −0.896206 0.443639i \(-0.853687\pi\)
0.0639004 0.997956i \(-0.479646\pi\)
\(332\) −55.4084 206.787i −0.166893 0.622852i
\(333\) −265.083 44.0882i −0.796046 0.132397i
\(334\) −168.308 291.518i −0.503915 0.872807i
\(335\) −487.174 226.219i −1.45425 0.675281i
\(336\) −61.1399 57.6013i −0.181964 0.171433i
\(337\) 174.856 174.856i 0.518861 0.518861i −0.398366 0.917227i \(-0.630423\pi\)
0.917227 + 0.398366i \(0.130423\pi\)
\(338\) 153.289 + 41.0737i 0.453518 + 0.121520i
\(339\) −160.427 + 176.793i −0.473236 + 0.521514i
\(340\) 101.087 + 143.874i 0.297314 + 0.423157i
\(341\) −331.002 573.313i −0.970681 1.68127i
\(342\) −134.065 + 50.2772i −0.392003 + 0.147009i
\(343\) 255.758 228.554i 0.745649 0.666339i
\(344\) 57.0085 0.165722
\(345\) 479.358 372.777i 1.38944 1.08051i
\(346\) 177.878 + 102.698i 0.514099 + 0.296815i
\(347\) 121.043 32.4333i 0.348827 0.0934678i −0.0801515 0.996783i \(-0.525540\pi\)
0.428978 + 0.903315i \(0.358874\pi\)
\(348\) 121.909 + 62.7103i 0.350313 + 0.180202i
\(349\) −82.2163 −0.235577 −0.117788 0.993039i \(-0.537580\pi\)
−0.117788 + 0.993039i \(0.537580\pi\)
\(350\) −244.364 + 39.1965i −0.698182 + 0.111990i
\(351\) 121.491 163.205i 0.346129 0.464971i
\(352\) −86.8189 23.2630i −0.246644 0.0660882i
\(353\) −405.413 + 108.630i −1.14848 + 0.307734i −0.782356 0.622832i \(-0.785982\pi\)
−0.366124 + 0.930566i \(0.619315\pi\)
\(354\) 35.2438 38.8393i 0.0995587 0.109715i
\(355\) −133.390 111.562i −0.375745 0.314259i
\(356\) −268.526 −0.754286
\(357\) 194.071 + 314.142i 0.543616 + 0.879950i
\(358\) −106.714 106.714i −0.298085 0.298085i
\(359\) −222.108 384.703i −0.618687 1.07160i −0.989726 0.142979i \(-0.954332\pi\)
0.371039 0.928617i \(-0.379002\pi\)
\(360\) 23.5208 + 125.087i 0.0653356 + 0.347464i
\(361\) 117.225 203.039i 0.324722 0.562435i
\(362\) −23.1637 6.20669i −0.0639880 0.0171455i
\(363\) −213.513 331.580i −0.588190 0.913443i
\(364\) 92.3342 51.0309i 0.253665 0.140195i
\(365\) −266.702 123.843i −0.730692 0.339297i
\(366\) 21.7761 + 67.9118i 0.0594974 + 0.185551i
\(367\) 538.984 144.420i 1.46862 0.393516i 0.566163 0.824293i \(-0.308427\pi\)
0.902458 + 0.430777i \(0.141761\pi\)
\(368\) −41.9111 156.414i −0.113889 0.425039i
\(369\) 493.316 47.9973i 1.33690 0.130074i
\(370\) 72.5299 + 198.281i 0.196027 + 0.535895i
\(371\) 207.026 + 374.589i 0.558023 + 1.00967i
\(372\) 135.341 + 210.181i 0.363820 + 0.565003i
\(373\) −79.6048 + 297.089i −0.213418 + 0.796485i 0.773300 + 0.634040i \(0.218605\pi\)
−0.986718 + 0.162445i \(0.948062\pi\)
\(374\) 342.174 + 197.554i 0.914905 + 0.528220i
\(375\) 334.291 + 169.925i 0.891443 + 0.453133i
\(376\) −64.1108 + 37.0144i −0.170507 + 0.0984425i
\(377\) −121.748 + 121.748i −0.322939 + 0.322939i
\(378\) 33.7963 + 265.141i 0.0894083 + 0.701432i
\(379\) 7.39316i 0.0195070i −0.999952 0.00975351i \(-0.996895\pi\)
0.999952 0.00975351i \(-0.00310469\pi\)
\(380\) 86.2922 + 72.1715i 0.227085 + 0.189925i
\(381\) −85.3045 + 94.0070i −0.223896 + 0.246738i
\(382\) −12.7542 47.5994i −0.0333880 0.124606i
\(383\) 42.7344 159.487i 0.111578 0.416415i −0.887430 0.460942i \(-0.847512\pi\)
0.999008 + 0.0445273i \(0.0141782\pi\)
\(384\) 33.1719 + 7.18502i 0.0863852 + 0.0187110i
\(385\) −460.927 + 311.140i −1.19721 + 0.808156i
\(386\) 273.958i 0.709736i
\(387\) −140.088 115.245i −0.361984 0.297791i
\(388\) −55.4652 206.999i −0.142952 0.533503i
\(389\) −209.686 + 363.187i −0.539038 + 0.933641i 0.459918 + 0.887961i \(0.347879\pi\)
−0.998956 + 0.0456801i \(0.985455\pi\)
\(390\) −158.617 19.8391i −0.406711 0.0508694i
\(391\) 711.835i 1.82055i
\(392\) −40.8518 + 132.435i −0.104214 + 0.337845i
\(393\) −267.051 414.723i −0.679519 1.05527i
\(394\) −83.8645 + 48.4192i −0.212854 + 0.122891i
\(395\) −40.2911 + 230.672i −0.102003 + 0.583979i
\(396\) 166.314 + 232.672i 0.419984 + 0.587556i
\(397\) −78.2133 + 291.896i −0.197011 + 0.735255i 0.794726 + 0.606968i \(0.207614\pi\)
−0.991737 + 0.128287i \(0.959052\pi\)
\(398\) 61.6284 + 61.6284i 0.154845 + 0.154845i
\(399\) 171.948 + 161.996i 0.430947 + 0.406005i
\(400\) 76.3972 64.5249i 0.190993 0.161312i
\(401\) 322.132 185.983i 0.803320 0.463797i −0.0413104 0.999146i \(-0.513153\pi\)
0.844631 + 0.535349i \(0.179820\pi\)
\(402\) 455.238 22.0941i 1.13243 0.0549604i
\(403\) −303.266 + 81.2600i −0.752522 + 0.201638i
\(404\) −137.333 + 79.2893i −0.339933 + 0.196261i
\(405\) 195.070 354.926i 0.481655 0.876361i
\(406\) 4.23026 226.152i 0.0104193 0.557024i
\(407\) 335.464 + 335.464i 0.824235 + 0.824235i
\(408\) −132.677 68.2493i −0.325188 0.167278i
\(409\) −148.294 + 256.853i −0.362577 + 0.628001i −0.988384 0.151976i \(-0.951436\pi\)
0.625807 + 0.779978i \(0.284770\pi\)
\(410\) −223.873 318.631i −0.546031 0.777148i
\(411\) 102.284 32.7976i 0.248866 0.0797996i
\(412\) −70.6243 70.6243i −0.171418 0.171418i
\(413\) −83.1500 23.9554i −0.201332 0.0580033i
\(414\) −213.209 + 469.084i −0.514998 + 1.13305i
\(415\) 533.091 47.5038i 1.28456 0.114467i
\(416\) −21.3138 + 36.9165i −0.0512350 + 0.0887416i
\(417\) −87.3971 + 4.24165i −0.209585 + 0.0101718i
\(418\) 244.167 + 65.4242i 0.584131 + 0.156517i
\(419\) 564.525i 1.34732i −0.739044 0.673658i \(-0.764722\pi\)
0.739044 0.673658i \(-0.235278\pi\)
\(420\) 168.156 125.792i 0.400370 0.299506i
\(421\) −576.949 −1.37043 −0.685213 0.728343i \(-0.740291\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(422\) 114.481 427.250i 0.271283 1.01244i
\(423\) 232.366 + 38.6467i 0.549329 + 0.0913633i
\(424\) −149.766 86.4673i −0.353221 0.203932i
\(425\) −397.803 + 187.059i −0.936007 + 0.440139i
\(426\) 144.209 + 31.2356i 0.338519 + 0.0733231i
\(427\) 84.7454 81.6333i 0.198467 0.191179i
\(428\) 261.106 261.106i 0.610061 0.610061i
\(429\) −342.042 + 109.677i −0.797301 + 0.255656i
\(430\) −24.5227 + 140.396i −0.0570295 + 0.326502i
\(431\) −443.346 255.966i −1.02864 0.593888i −0.112048 0.993703i \(-0.535741\pi\)
−0.916596 + 0.399815i \(0.869075\pi\)
\(432\) −66.9889 84.7142i −0.155067 0.196098i
\(433\) −545.122 + 545.122i −1.25894 + 1.25894i −0.307343 + 0.951599i \(0.599440\pi\)
−0.951599 + 0.307343i \(0.900560\pi\)
\(434\) 212.873 353.279i 0.490490 0.814006i
\(435\) −206.878 + 273.251i −0.475581 + 0.628164i
\(436\) −81.6003 141.336i −0.187157 0.324165i
\(437\) 117.869 + 439.895i 0.269724 + 1.00662i
\(438\) 249.219 12.0954i 0.568994 0.0276150i
\(439\) 135.516 + 234.721i 0.308693 + 0.534673i 0.978077 0.208245i \(-0.0667750\pi\)
−0.669383 + 0.742917i \(0.733442\pi\)
\(440\) 94.6361 203.803i 0.215082 0.463189i
\(441\) 368.109 242.851i 0.834714 0.550683i
\(442\) 132.502 132.502i 0.299778 0.299778i
\(443\) −110.503 29.6092i −0.249443 0.0668380i 0.131931 0.991259i \(-0.457882\pi\)
−0.381374 + 0.924421i \(0.624549\pi\)
\(444\) −132.670 120.388i −0.298806 0.271145i
\(445\) 115.509 661.303i 0.259570 1.48607i
\(446\) 128.865 + 223.201i 0.288935 + 0.500450i
\(447\) 203.948 + 316.726i 0.456260 + 0.708559i
\(448\) −13.4797 54.3535i −0.0300886 0.121325i
\(449\) 113.813 0.253482 0.126741 0.991936i \(-0.459548\pi\)
0.126741 + 0.991936i \(0.459548\pi\)
\(450\) −318.171 + 4.11782i −0.707048 + 0.00915071i
\(451\) −757.799 437.516i −1.68026 0.970101i
\(452\) −153.731 + 41.1921i −0.340113 + 0.0911330i
\(453\) 255.538 496.767i 0.564103 1.09662i
\(454\) −535.169 −1.17879
\(455\) 85.9562 + 249.344i 0.188915 + 0.548009i
\(456\) −93.2916 20.2069i −0.204587 0.0443134i
\(457\) −666.119 178.486i −1.45759 0.390560i −0.558934 0.829212i \(-0.688789\pi\)
−0.898657 + 0.438652i \(0.855456\pi\)
\(458\) 215.642 57.7812i 0.470835 0.126160i
\(459\) 188.059 + 435.921i 0.409715 + 0.949718i
\(460\) 403.233 35.9321i 0.876593 0.0781133i
\(461\) −195.653 −0.424410 −0.212205 0.977225i \(-0.568065\pi\)
−0.212205 + 0.977225i \(0.568065\pi\)
\(462\) 223.661 415.505i 0.484116 0.899361i
\(463\) 478.759 + 478.759i 1.03404 + 1.03404i 0.999400 + 0.0346360i \(0.0110272\pi\)
0.0346360 + 0.999400i \(0.488973\pi\)
\(464\) 45.6975 + 79.1504i 0.0984860 + 0.170583i
\(465\) −575.834 + 242.895i −1.23835 + 0.522356i
\(466\) 64.9965 112.577i 0.139478 0.241582i
\(467\) −99.9487 26.7812i −0.214023 0.0573472i 0.150214 0.988653i \(-0.452004\pi\)
−0.364237 + 0.931306i \(0.618670\pi\)
\(468\) 127.003 47.6287i 0.271373 0.101771i
\(469\) −363.749 658.159i −0.775584 1.40332i
\(470\) −63.5781 173.809i −0.135273 0.369806i
\(471\) 300.867 96.4737i 0.638784 0.204827i
\(472\) 33.7728 9.04940i 0.0715526 0.0191724i
\(473\) 82.8870 + 309.338i 0.175237 + 0.653992i
\(474\) −60.6693 189.206i −0.127994 0.399169i
\(475\) −214.857 + 181.468i −0.452331 + 0.382038i
\(476\) −4.60390 + 246.127i −0.00967205 + 0.517073i
\(477\) 193.224 + 515.235i 0.405082 + 1.08016i
\(478\) −28.3000 + 105.617i −0.0592050 + 0.220956i
\(479\) 170.076 + 98.1933i 0.355064 + 0.204997i 0.666914 0.745135i \(-0.267615\pi\)
−0.311849 + 0.950132i \(0.600948\pi\)
\(480\) −31.9638 + 78.6023i −0.0665913 + 0.163755i
\(481\) 194.855 112.499i 0.405103 0.233886i
\(482\) −430.383 + 430.383i −0.892912 + 0.892912i
\(483\) 849.766 25.3235i 1.75935 0.0524297i
\(484\) 262.918i 0.543218i
\(485\) 533.638 47.5526i 1.10029 0.0980466i
\(486\) −6.64051 + 343.590i −0.0136636 + 0.706975i
\(487\) 25.0464 + 93.4744i 0.0514299 + 0.191939i 0.986861 0.161569i \(-0.0516554\pi\)
−0.935431 + 0.353508i \(0.884989\pi\)
\(488\) −12.3056 + 45.9250i −0.0252163 + 0.0941087i
\(489\) −129.527 + 598.002i −0.264881 + 1.22291i
\(490\) −308.578 157.575i −0.629751 0.321581i
\(491\) 54.8531i 0.111717i 0.998439 + 0.0558585i \(0.0177896\pi\)
−0.998439 + 0.0558585i \(0.982210\pi\)
\(492\) 293.833 + 151.149i 0.597222 + 0.307213i
\(493\) −103.984 388.072i −0.210920 0.787165i
\(494\) 59.9421 103.823i 0.121340 0.210168i
\(495\) −644.547 + 309.497i −1.30211 + 0.625247i
\(496\) 166.658i 0.336004i
\(497\) −58.6007 236.292i −0.117909 0.475437i
\(498\) −381.823 + 245.866i −0.766713 + 0.493707i
\(499\) 617.735 356.650i 1.23795 0.714729i 0.269272 0.963064i \(-0.413217\pi\)
0.968674 + 0.248335i \(0.0798835\pi\)
\(500\) 126.044 + 215.900i 0.252087 + 0.431801i
\(501\) −479.853 + 528.806i −0.957790 + 1.05550i
\(502\) 6.56306 24.4937i 0.0130738 0.0487922i
\(503\) 662.424 + 662.424i 1.31695 + 1.31695i 0.916180 + 0.400767i \(0.131256\pi\)
0.400767 + 0.916180i \(0.368744\pi\)
\(504\) −76.7539 + 160.813i −0.152289 + 0.319074i
\(505\) −136.192 372.319i −0.269687 0.737266i
\(506\) 787.796 454.834i 1.55691 0.898882i
\(507\) −16.3193 336.251i −0.0321879 0.663216i
\(508\) −81.7441 + 21.9033i −0.160914 + 0.0431167i
\(509\) −330.632 + 190.890i −0.649572 + 0.375030i −0.788292 0.615301i \(-0.789034\pi\)
0.138721 + 0.990332i \(0.455701\pi\)
\(510\) 225.150 297.387i 0.441472 0.583111i
\(511\) −199.134 360.308i −0.389694 0.705104i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 188.397 + 238.247i 0.367246 + 0.464420i
\(514\) −107.027 + 185.376i −0.208223 + 0.360653i
\(515\) 204.307 143.548i 0.396713 0.278734i
\(516\) −36.9257 115.158i −0.0715613 0.223174i
\(517\) −294.060 294.060i −0.568781 0.568781i
\(518\) −81.8286 + 284.030i −0.157970 + 0.548320i
\(519\) 92.2358 425.836i 0.177718 0.820493i
\(520\) −81.7465 68.3696i −0.157205 0.131480i
\(521\) −389.610 + 674.824i −0.747812 + 1.29525i 0.201058 + 0.979579i \(0.435562\pi\)
−0.948870 + 0.315668i \(0.897771\pi\)
\(522\) 47.7127 286.876i 0.0914037 0.549572i
\(523\) −211.381 56.6393i −0.404170 0.108297i 0.0510066 0.998698i \(-0.483757\pi\)
−0.455176 + 0.890401i \(0.650424\pi\)
\(524\) 328.844i 0.627565i
\(525\) 237.457 + 468.230i 0.452300 + 0.891866i
\(526\) 626.139 1.19038
\(527\) 189.613 707.646i 0.359797 1.34278i
\(528\) 9.24279 + 190.443i 0.0175053 + 0.360688i
\(529\) 961.181 + 554.938i 1.81698 + 1.04903i
\(530\) 277.367 331.636i 0.523335 0.625728i
\(531\) −101.284 46.0359i −0.190742 0.0866966i
\(532\) 37.9099 + 152.862i 0.0712592 + 0.287334i
\(533\) −293.446 + 293.446i −0.550555 + 0.550555i
\(534\) 173.930 + 542.426i 0.325712 + 1.01578i
\(535\) 530.712 + 755.346i 0.991986 + 1.41186i
\(536\) 263.141 + 151.925i 0.490935 + 0.283441i
\(537\) −146.443 + 284.686i −0.272706 + 0.530141i
\(538\) 61.7553 61.7553i 0.114787 0.114787i
\(539\) −778.014 29.1163i −1.44344 0.0540191i
\(540\) 237.443 128.534i 0.439709 0.238026i
\(541\) 280.957 + 486.632i 0.519329 + 0.899504i 0.999748 + 0.0224649i \(0.00715140\pi\)
−0.480419 + 0.877039i \(0.659515\pi\)
\(542\) −42.3418 158.022i −0.0781215 0.291553i
\(543\) 2.46602 + 50.8111i 0.00454147 + 0.0935749i
\(544\) −49.7338 86.1414i −0.0914224 0.158348i
\(545\) 383.171 140.161i 0.703066 0.257177i
\(546\) −162.890 153.463i −0.298333 0.281067i
\(547\) −706.567 + 706.567i −1.29171 + 1.29171i −0.357987 + 0.933727i \(0.616537\pi\)
−0.933727 + 0.357987i \(0.883463\pi\)
\(548\) 69.1692 + 18.5338i 0.126221 + 0.0338208i
\(549\) 123.078 87.9759i 0.224186 0.160247i
\(550\) 461.201 + 320.729i 0.838547 + 0.583145i
\(551\) −128.518 222.600i −0.233245 0.403993i
\(552\) −288.813 + 185.974i −0.523211 + 0.336910i
\(553\) −236.105 + 227.435i −0.426954 + 0.411274i
\(554\) −529.028 −0.954925
\(555\) 353.551 274.942i 0.637029 0.495391i
\(556\) −50.5181 29.1666i −0.0908599 0.0524580i
\(557\) 516.348 138.355i 0.927016 0.248393i 0.236434 0.971648i \(-0.424021\pi\)
0.690582 + 0.723254i \(0.257355\pi\)
\(558\) 336.905 409.530i 0.603773 0.733925i
\(559\) 151.883 0.271705
\(560\) 139.655 9.81605i 0.249385 0.0175287i
\(561\) 177.429 819.157i 0.316273 1.46017i
\(562\) 322.689 + 86.4641i 0.574179 + 0.153851i
\(563\) 169.172 45.3296i 0.300484 0.0805144i −0.105427 0.994427i \(-0.533621\pi\)
0.405911 + 0.913913i \(0.366954\pi\)
\(564\) 116.296 + 105.530i 0.206198 + 0.187109i
\(565\) −35.3157 396.315i −0.0625057 0.701443i
\(566\) −33.5434 −0.0592640
\(567\) 513.698 240.007i 0.905993 0.423292i
\(568\) 69.5573 + 69.5573i 0.122460 + 0.122460i
\(569\) −3.43082 5.94235i −0.00602955 0.0104435i 0.862995 0.505213i \(-0.168586\pi\)
−0.869024 + 0.494769i \(0.835253\pi\)
\(570\) 89.8940 221.058i 0.157709 0.387822i
\(571\) −282.742 + 489.723i −0.495169 + 0.857658i −0.999984 0.00556934i \(-0.998227\pi\)
0.504815 + 0.863227i \(0.331561\pi\)
\(572\) −231.304 61.9778i −0.404378 0.108353i
\(573\) −87.8903 + 56.5949i −0.153386 + 0.0987694i
\(574\) 10.1961 545.086i 0.0177632 0.949628i
\(575\) −84.9634 + 1008.50i −0.147762 + 1.75392i
\(576\) −6.97233 71.6616i −0.0121047 0.124413i
\(577\) 646.672 173.275i 1.12075 0.300304i 0.349562 0.936913i \(-0.386330\pi\)
0.771186 + 0.636610i \(0.219664\pi\)
\(578\) 7.38681 + 27.5680i 0.0127799 + 0.0476954i
\(579\) −553.399 + 177.449i −0.955784 + 0.306474i
\(580\) −214.582 + 78.4927i −0.369969 + 0.135332i
\(581\) 641.780 + 386.713i 1.10461 + 0.665599i
\(582\) −382.215 + 246.118i −0.656727 + 0.422884i
\(583\) 251.437 938.375i 0.431281 1.60956i
\(584\) 144.056 + 83.1709i 0.246671 + 0.142416i
\(585\) 62.6646 + 333.259i 0.107119 + 0.569674i
\(586\) 154.266 89.0653i 0.263252 0.151989i
\(587\) 120.200 120.200i 0.204770 0.204770i −0.597270 0.802040i \(-0.703748\pi\)
0.802040 + 0.597270i \(0.203748\pi\)
\(588\) 293.982 3.25997i 0.499969 0.00554416i
\(589\) 468.703i 0.795761i
\(590\) 7.75842 + 87.0655i 0.0131499 + 0.147569i
\(591\) 152.128 + 138.045i 0.257408 + 0.233579i
\(592\) −30.9116 115.364i −0.0522155 0.194871i
\(593\) 155.006 578.491i 0.261393 0.975534i −0.703028 0.711163i \(-0.748169\pi\)
0.964421 0.264371i \(-0.0851643\pi\)
\(594\) 362.276 486.663i 0.609893 0.819298i
\(595\) −604.159 117.212i −1.01539 0.196994i
\(596\) 251.140i 0.421375i
\(597\) 84.5721 164.408i 0.141662 0.275391i
\(598\) −111.660 416.722i −0.186723 0.696860i
\(599\) 312.822 541.824i 0.522241 0.904548i −0.477424 0.878673i \(-0.658430\pi\)
0.999665 0.0258747i \(-0.00823710\pi\)
\(600\) −179.825 112.529i −0.299709 0.187549i
\(601\) 564.677i 0.939563i 0.882783 + 0.469782i \(0.155667\pi\)
−0.882783 + 0.469782i \(0.844333\pi\)
\(602\) −143.703 + 138.426i −0.238709 + 0.229943i
\(603\) −339.498 905.276i −0.563015 1.50129i
\(604\) 322.530 186.213i 0.533990 0.308299i
\(605\) 647.491 + 113.096i 1.07023 + 0.186936i
\(606\) 249.119 + 226.057i 0.411088 + 0.373032i
\(607\) 116.002 432.927i 0.191108 0.713224i −0.802132 0.597146i \(-0.796301\pi\)
0.993240 0.116078i \(-0.0370322\pi\)
\(608\) −44.9979 44.9979i −0.0740097 0.0740097i
\(609\) −459.569 + 137.938i −0.754629 + 0.226499i
\(610\) −107.807 50.0602i −0.176733 0.0820658i
\(611\) −170.805 + 98.6145i −0.279550 + 0.161398i
\(612\) −51.9270 + 312.215i −0.0848480 + 0.510155i
\(613\) −589.092 + 157.847i −0.960998 + 0.257499i −0.705023 0.709185i \(-0.749063\pi\)
−0.255975 + 0.966683i \(0.582397\pi\)
\(614\) −137.944 + 79.6418i −0.224664 + 0.129710i
\(615\) −498.632 + 658.610i −0.810783 + 1.07091i
\(616\) 275.333 152.170i 0.446969 0.247029i
\(617\) −717.965 717.965i −1.16364 1.16364i −0.983673 0.179965i \(-0.942402\pi\)
−0.179965 0.983673i \(-0.557598\pi\)
\(618\) −96.9172 + 188.407i −0.156824 + 0.304866i
\(619\) −282.875 + 489.955i −0.456988 + 0.791526i −0.998800 0.0489736i \(-0.984405\pi\)
0.541812 + 0.840499i \(0.317738\pi\)
\(620\) −410.431 71.6893i −0.661985 0.115628i
\(621\) 1085.66 + 126.850i 1.74824 + 0.204267i
\(622\) 106.829 + 106.829i 0.171751 + 0.171751i
\(623\) 676.880 652.023i 1.08649 1.04659i
\(624\) 88.3772 + 19.1425i 0.141630 + 0.0306770i
\(625\) −585.920 + 217.538i −0.937472 + 0.348061i
\(626\) −95.3183 + 165.096i −0.152266 + 0.263732i
\(627\) −25.9941 535.597i −0.0414579 0.854221i
\(628\) 203.460 + 54.5170i 0.323981 + 0.0868105i
\(629\) 525.015i 0.834682i
\(630\) −363.020 258.198i −0.576223 0.409838i
\(631\) 1216.92 1.92856 0.964281 0.264880i \(-0.0853323\pi\)
0.964281 + 0.264880i \(0.0853323\pi\)
\(632\) 34.2840 127.950i 0.0542469 0.202452i
\(633\) −937.203 + 45.4853i −1.48057 + 0.0718567i
\(634\) 402.882 + 232.604i 0.635461 + 0.366884i
\(635\) −18.7786 210.734i −0.0295725 0.331865i
\(636\) −77.6587 + 358.536i −0.122105 + 0.563736i
\(637\) −108.838 + 352.837i −0.170861 + 0.553904i
\(638\) −363.043 + 363.043i −0.569033 + 0.569033i
\(639\) −30.3110 311.537i −0.0474351 0.487538i
\(640\) −46.2860 + 32.5209i −0.0723218 + 0.0508139i
\(641\) 14.4603 + 8.34866i 0.0225590 + 0.0130244i 0.511237 0.859440i \(-0.329187\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(642\) −696.562 358.314i −1.08499 0.558121i
\(643\) 838.779 838.779i 1.30448 1.30448i 0.379137 0.925341i \(-0.376221\pi\)
0.925341 0.379137i \(-0.123779\pi\)
\(644\) 485.445 + 292.511i 0.753797 + 0.454210i
\(645\) 299.485 41.4012i 0.464318 0.0641878i
\(646\) 139.870 + 242.261i 0.216517 + 0.375018i
\(647\) 52.3263 + 195.284i 0.0808752 + 0.301830i 0.994501 0.104725i \(-0.0333964\pi\)
−0.913626 + 0.406556i \(0.866730\pi\)
\(648\) −127.734 + 190.190i −0.197120 + 0.293503i
\(649\) 98.2073 + 170.100i 0.151321 + 0.262096i
\(650\) 203.539 171.909i 0.313137 0.264475i
\(651\) −851.510 201.180i −1.30800 0.309032i
\(652\) −288.438 + 288.438i −0.442390 + 0.442390i
\(653\) −770.473 206.448i −1.17990 0.316152i −0.385011 0.922912i \(-0.625802\pi\)
−0.794886 + 0.606759i \(0.792469\pi\)
\(654\) −232.646 + 256.380i −0.355728 + 0.392019i
\(655\) 809.849 + 141.455i 1.23641 + 0.215962i
\(656\) 110.143 + 190.774i 0.167901 + 0.290814i
\(657\) −185.858 495.592i −0.282888 0.754326i
\(658\) 71.7291 248.974i 0.109011 0.378380i
\(659\) 897.874 1.36248 0.681240 0.732061i \(-0.261441\pi\)
0.681240 + 0.732061i \(0.261441\pi\)
\(660\) −472.983 59.1585i −0.716641 0.0896340i
\(661\) −373.944 215.897i −0.565725 0.326621i 0.189715 0.981839i \(-0.439244\pi\)
−0.755440 + 0.655218i \(0.772577\pi\)
\(662\) −752.661 + 201.675i −1.13695 + 0.304645i
\(663\) −353.479 181.831i −0.533152 0.274255i
\(664\) −302.757 −0.455959
\(665\) −392.763 + 27.6063i −0.590620 + 0.0415133i
\(666\) −157.253 + 345.973i −0.236115 + 0.519480i
\(667\) −893.469 239.404i −1.33953 0.358927i
\(668\) −459.825 + 123.210i −0.688361 + 0.184446i
\(669\) 367.400 404.881i 0.549177 0.605203i
\(670\) −487.339 + 582.690i −0.727372 + 0.869686i
\(671\) −267.089 −0.398046
\(672\) −101.064 + 62.4351i −0.150392 + 0.0929094i
\(673\) 286.300 + 286.300i 0.425408 + 0.425408i 0.887061 0.461653i \(-0.152743\pi\)
−0.461653 + 0.887061i \(0.652743\pi\)
\(674\) −174.856 302.860i −0.259430 0.449347i
\(675\) 214.405 + 640.043i 0.317636 + 0.948213i
\(676\) 112.215 194.363i 0.165999 0.287519i
\(677\) −98.9049 26.5015i −0.146093 0.0391455i 0.185031 0.982733i \(-0.440761\pi\)
−0.331124 + 0.943587i \(0.607428\pi\)
\(678\) 182.784 + 283.858i 0.269592 + 0.418670i
\(679\) 642.439 + 387.110i 0.946154 + 0.570117i
\(680\) 233.535 85.4256i 0.343434 0.125626i
\(681\) 346.641 + 1081.05i 0.509017 + 1.58744i
\(682\) −904.315 + 242.310i −1.32597 + 0.355294i
\(683\) −196.511 733.390i −0.287718 1.07378i −0.946831 0.321733i \(-0.895735\pi\)
0.659113 0.752044i \(-0.270932\pi\)
\(684\) 19.6088 + 201.539i 0.0286678 + 0.294647i
\(685\) −75.3972 + 162.371i −0.110069 + 0.237039i
\(686\) −218.597 433.028i −0.318655 0.631236i
\(687\) −256.395 398.174i −0.373210 0.579584i
\(688\) 20.8666 77.8751i 0.0303293 0.113191i
\(689\) −399.009 230.368i −0.579113 0.334351i
\(690\) −333.766 791.261i −0.483719 1.14676i
\(691\) −651.620 + 376.213i −0.943010 + 0.544447i −0.890903 0.454194i \(-0.849927\pi\)
−0.0521077 + 0.998641i \(0.516594\pi\)
\(692\) 205.396 205.396i 0.296815 0.296815i
\(693\) −984.196 182.668i −1.42020 0.263590i
\(694\) 177.219i 0.255359i
\(695\) 93.5599 111.865i 0.134619 0.160957i
\(696\) 130.286 143.577i 0.187192 0.206289i
\(697\) −250.629 935.360i −0.359582 1.34198i
\(698\) −30.0933 + 112.310i −0.0431135 + 0.160902i
\(699\) −269.507 58.3751i −0.385561 0.0835123i
\(700\) −35.8999 + 348.154i −0.0512855 + 0.497363i
\(701\) 306.359i 0.437032i −0.975833 0.218516i \(-0.929878\pi\)
0.975833 0.218516i \(-0.0701216\pi\)
\(702\) −178.473 225.697i −0.254235 0.321506i
\(703\) 86.9348 + 324.445i 0.123663 + 0.461515i
\(704\) −63.5558 + 110.082i −0.0902781 + 0.156366i
\(705\) −309.915 + 241.008i −0.439596 + 0.341856i
\(706\) 593.567i 0.840746i
\(707\) 153.652 533.333i 0.217330 0.754360i
\(708\) −40.1553 62.3600i −0.0567165 0.0880792i
\(709\) −188.596 + 108.886i −0.266003 + 0.153577i −0.627070 0.778963i \(-0.715746\pi\)
0.361067 + 0.932540i \(0.382413\pi\)
\(710\) −201.220 + 141.379i −0.283409 + 0.199125i
\(711\) −342.902 + 245.106i −0.482281 + 0.344734i
\(712\) −98.2873 + 366.813i −0.138044 + 0.515187i
\(713\) −1192.68 1192.68i −1.67276 1.67276i
\(714\) 500.161 150.122i 0.700506 0.210254i
\(715\) 252.131 542.977i 0.352631 0.759408i
\(716\) −184.835 + 106.714i −0.258149 + 0.149043i
\(717\) 231.678 11.2441i 0.323122 0.0156821i
\(718\) −606.812 + 162.595i −0.845142 + 0.226455i
\(719\) −204.988 + 118.350i −0.285101 + 0.164603i −0.635731 0.771911i \(-0.719301\pi\)
0.350629 + 0.936514i \(0.385968\pi\)
\(720\) 179.481 + 13.6550i 0.249280 + 0.0189653i
\(721\) 349.511 + 6.53775i 0.484759 + 0.00906762i
\(722\) −234.449 234.449i −0.324722 0.324722i
\(723\) 1148.15 + 590.612i 1.58803 + 0.816891i
\(724\) −16.9570 + 29.3704i −0.0234212 + 0.0405668i
\(725\) −101.001 562.219i −0.139311 0.775474i
\(726\) −531.097 + 170.298i −0.731539 + 0.234570i
\(727\) 173.946 + 173.946i 0.239266 + 0.239266i 0.816546 0.577280i \(-0.195886\pi\)
−0.577280 + 0.816546i \(0.695886\pi\)
\(728\) −35.9129 144.809i −0.0493309 0.198914i
\(729\) 698.357 209.137i 0.957966 0.286882i
\(730\) −266.793 + 318.993i −0.365470 + 0.436976i
\(731\) −177.203 + 306.925i −0.242412 + 0.419870i
\(732\) 100.740 4.88921i 0.137623 0.00667925i
\(733\) 872.111 + 233.681i 1.18978 + 0.318801i 0.798800 0.601597i \(-0.205469\pi\)
0.390983 + 0.920398i \(0.372135\pi\)
\(734\) 789.128i 1.07511i
\(735\) −118.430 + 725.396i −0.161130 + 0.986933i
\(736\) −229.007 −0.311150
\(737\) −441.778 + 1648.74i −0.599428 + 2.23710i
\(738\) 115.001 691.450i 0.155827 0.936924i
\(739\) 340.163 + 196.393i 0.460302 + 0.265756i 0.712171 0.702006i \(-0.247712\pi\)
−0.251869 + 0.967761i \(0.581045\pi\)
\(740\) 297.405 26.5018i 0.401898 0.0358132i
\(741\) −248.549 53.8356i −0.335424 0.0726527i
\(742\) 587.475 145.694i 0.791745 0.196353i
\(743\) 219.726 219.726i 0.295729 0.295729i −0.543610 0.839338i \(-0.682943\pi\)
0.839338 + 0.543610i \(0.182943\pi\)
\(744\) 336.651 107.948i 0.452488 0.145091i
\(745\) −618.485 108.030i −0.830181 0.145007i
\(746\) 376.694 + 217.484i 0.504951 + 0.291534i
\(747\) 743.968 + 612.035i 0.995941 + 0.819324i
\(748\) 395.109 395.109i 0.528220 0.528220i
\(749\) −24.1708 + 1292.18i −0.0322707 + 1.72521i
\(750\) 354.481 394.453i 0.472641 0.525938i
\(751\) 189.018 + 327.389i 0.251688 + 0.435937i 0.963991 0.265936i \(-0.0856808\pi\)
−0.712302 + 0.701873i \(0.752347\pi\)
\(752\) 27.0964 + 101.125i 0.0360325 + 0.134475i
\(753\) −53.7286 + 2.60761i −0.0713528 + 0.00346297i
\(754\) 121.748 + 210.874i 0.161470 + 0.279674i
\(755\) 319.850 + 874.401i 0.423642 + 1.15815i
\(756\) 374.560 + 50.8817i 0.495449 + 0.0673039i
\(757\) −396.630 + 396.630i −0.523950 + 0.523950i −0.918762 0.394812i \(-0.870810\pi\)
0.394812 + 0.918762i \(0.370810\pi\)
\(758\) −10.0992 2.70608i −0.0133235 0.00357003i
\(759\) −1429.04 1296.75i −1.88280 1.70850i
\(760\) 130.173 91.4607i 0.171281 0.120343i
\(761\) −668.395 1157.69i