Properties

Label 210.3.v.b.67.8
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.8
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.b.163.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(1.92336 - 4.61527i) q^{5} -2.44949 q^{6} +(-6.34406 + 2.95853i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(1.92336 - 4.61527i) q^{5} -2.44949 q^{6} +(-6.34406 + 2.95853i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(5.60058 + 4.31666i) q^{10} +(-9.98405 + 17.2929i) q^{11} +(0.896575 - 3.34607i) q^{12} +(-13.3742 + 13.3742i) q^{13} +(-1.71935 - 9.74904i) q^{14} +(8.58371 + 1.14887i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-21.8551 + 5.85604i) q^{17} +(-1.09808 - 4.09808i) q^{18} +(14.8761 - 8.58869i) q^{19} +(-7.94662 + 6.07052i) q^{20} +(-7.79369 - 9.28754i) q^{21} +(-19.9681 - 19.9681i) q^{22} +(20.2664 + 5.43036i) q^{23} +(4.24264 + 2.44949i) q^{24} +(-17.6014 - 17.7536i) q^{25} +(-13.3742 - 23.1648i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(13.9468 + 1.21973i) q^{28} +23.1996i q^{29} +(-4.71124 + 11.3051i) q^{30} +(27.7400 - 48.0470i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(-33.4073 - 8.95145i) q^{33} -31.9980i q^{34} +(1.45255 + 34.9698i) q^{35} +6.00000 q^{36} +(-5.97166 + 22.2866i) q^{37} +(6.28736 + 23.4647i) q^{38} +(-28.3710 - 16.3800i) q^{39} +(-5.38383 - 13.0772i) q^{40} -21.6302 q^{41} +(15.5397 - 7.24690i) q^{42} +(14.6809 - 14.6809i) q^{43} +(34.5858 - 19.9681i) q^{44} +(1.92588 + 14.8759i) q^{45} +(-14.8360 + 25.6967i) q^{46} +(-19.6034 + 73.1609i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(31.4942 - 37.5382i) q^{49} +(30.6944 - 17.5457i) q^{50} +(-19.5947 - 33.9390i) q^{51} +(36.5391 - 9.79062i) q^{52} +(-1.07647 - 4.01743i) q^{53} +(6.36396 - 3.67423i) q^{54} +(60.6084 + 79.3394i) q^{55} +(-6.77105 + 18.6052i) q^{56} +(21.0379 + 21.0379i) q^{57} +(-31.6913 - 8.49165i) q^{58} +(26.7900 + 15.4672i) q^{59} +(-13.7186 - 10.5736i) q^{60} +(-1.75837 - 3.04558i) q^{61} +(55.4799 + 55.4799i) q^{62} +(12.0445 - 17.2026i) q^{63} -8.00000i q^{64} +(36.0023 + 87.4491i) q^{65} +(24.4558 - 42.3587i) q^{66} +(-2.85244 + 0.764309i) q^{67} +(43.7101 + 11.7121i) q^{68} +36.3407i q^{69} +(-48.3014 - 10.8156i) q^{70} -11.8938 q^{71} +(-2.19615 + 8.19615i) q^{72} +(-5.65075 - 21.0889i) q^{73} +(-28.2582 - 16.3149i) q^{74} +(21.8119 - 37.4065i) q^{75} -34.3548 q^{76} +(12.1778 - 139.245i) q^{77} +(32.7600 - 32.7600i) q^{78} +(-65.5559 + 37.8487i) q^{79} +(19.8345 - 2.56784i) q^{80} +(4.50000 - 7.79423i) q^{81} +(7.91720 - 29.5474i) q^{82} +(28.2864 - 28.2864i) q^{83} +(4.21152 + 23.8802i) q^{84} +(-15.0078 + 112.130i) q^{85} +(14.6809 + 25.4281i) q^{86} +(-38.8137 + 10.4001i) q^{87} +(14.6177 + 54.5539i) q^{88} +(124.644 - 71.9632i) q^{89} +(-21.0257 - 2.81414i) q^{90} +(45.2788 - 124.415i) q^{91} +(-29.6720 - 29.6720i) q^{92} +(92.8197 + 24.8710i) q^{93} +(-92.7643 - 53.5575i) q^{94} +(-11.0272 - 85.1761i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(56.0616 + 56.0616i) q^{97} +(39.7505 + 56.7618i) q^{98} -59.9043i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 1.92336 4.61527i 0.384671 0.923054i
\(6\) −2.44949 −0.408248
\(7\) −6.34406 + 2.95853i −0.906294 + 0.422648i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 5.60058 + 4.31666i 0.560058 + 0.431666i
\(11\) −9.98405 + 17.2929i −0.907641 + 1.57208i −0.0903080 + 0.995914i \(0.528785\pi\)
−0.817333 + 0.576166i \(0.804548\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) −13.3742 + 13.3742i −1.02879 + 1.02879i −0.0292138 + 0.999573i \(0.509300\pi\)
−0.999573 + 0.0292138i \(0.990700\pi\)
\(14\) −1.71935 9.74904i −0.122810 0.696360i
\(15\) 8.58371 + 1.14887i 0.572247 + 0.0765912i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −21.8551 + 5.85604i −1.28559 + 0.344473i −0.835984 0.548753i \(-0.815103\pi\)
−0.449607 + 0.893227i \(0.648436\pi\)
\(18\) −1.09808 4.09808i −0.0610042 0.227671i
\(19\) 14.8761 8.58869i 0.782950 0.452037i −0.0545246 0.998512i \(-0.517364\pi\)
0.837475 + 0.546476i \(0.184031\pi\)
\(20\) −7.94662 + 6.07052i −0.397331 + 0.303526i
\(21\) −7.79369 9.28754i −0.371128 0.442264i
\(22\) −19.9681 19.9681i −0.907641 0.907641i
\(23\) 20.2664 + 5.43036i 0.881147 + 0.236103i 0.670902 0.741546i \(-0.265907\pi\)
0.210245 + 0.977649i \(0.432574\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) −17.6014 17.7536i −0.704056 0.710144i
\(26\) −13.3742 23.1648i −0.514394 0.890956i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 13.9468 + 1.21973i 0.498099 + 0.0435617i
\(29\) 23.1996i 0.799987i 0.916518 + 0.399994i \(0.130988\pi\)
−0.916518 + 0.399994i \(0.869012\pi\)
\(30\) −4.71124 + 11.3051i −0.157041 + 0.376835i
\(31\) 27.7400 48.0470i 0.894837 1.54990i 0.0608318 0.998148i \(-0.480625\pi\)
0.834006 0.551756i \(-0.186042\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) −33.4073 8.95145i −1.01234 0.271256i
\(34\) 31.9980i 0.941118i
\(35\) 1.45255 + 34.9698i 0.0415014 + 0.999138i
\(36\) 6.00000 0.166667
\(37\) −5.97166 + 22.2866i −0.161396 + 0.602339i 0.837076 + 0.547087i \(0.184263\pi\)
−0.998472 + 0.0552528i \(0.982404\pi\)
\(38\) 6.28736 + 23.4647i 0.165457 + 0.617493i
\(39\) −28.3710 16.3800i −0.727462 0.420001i
\(40\) −5.38383 13.0772i −0.134596 0.326931i
\(41\) −21.6302 −0.527565 −0.263783 0.964582i \(-0.584970\pi\)
−0.263783 + 0.964582i \(0.584970\pi\)
\(42\) 15.5397 7.24690i 0.369993 0.172545i
\(43\) 14.6809 14.6809i 0.341417 0.341417i −0.515483 0.856900i \(-0.672387\pi\)
0.856900 + 0.515483i \(0.172387\pi\)
\(44\) 34.5858 19.9681i 0.786040 0.453820i
\(45\) 1.92588 + 14.8759i 0.0427973 + 0.330575i
\(46\) −14.8360 + 25.6967i −0.322522 + 0.558625i
\(47\) −19.6034 + 73.1609i −0.417094 + 1.55662i 0.363511 + 0.931590i \(0.381578\pi\)
−0.780604 + 0.625025i \(0.785089\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 31.4942 37.5382i 0.642738 0.766086i
\(50\) 30.6944 17.5457i 0.613889 0.350914i
\(51\) −19.5947 33.9390i −0.384210 0.665471i
\(52\) 36.5391 9.79062i 0.702675 0.188281i
\(53\) −1.07647 4.01743i −0.0203107 0.0758005i 0.955027 0.296520i \(-0.0958261\pi\)
−0.975337 + 0.220719i \(0.929159\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) 60.6084 + 79.3394i 1.10197 + 1.44253i
\(56\) −6.77105 + 18.6052i −0.120912 + 0.332235i
\(57\) 21.0379 + 21.0379i 0.369086 + 0.369086i
\(58\) −31.6913 8.49165i −0.546401 0.146408i
\(59\) 26.7900 + 15.4672i 0.454069 + 0.262157i 0.709547 0.704658i \(-0.248900\pi\)
−0.255478 + 0.966815i \(0.582233\pi\)
\(60\) −13.7186 10.5736i −0.228643 0.176227i
\(61\) −1.75837 3.04558i −0.0288257 0.0499275i 0.851253 0.524756i \(-0.175843\pi\)
−0.880078 + 0.474828i \(0.842510\pi\)
\(62\) 55.4799 + 55.4799i 0.894837 + 0.894837i
\(63\) 12.0445 17.2026i 0.191183 0.273057i
\(64\) 8.00000i 0.125000i
\(65\) 36.0023 + 87.4491i 0.553881 + 1.34537i
\(66\) 24.4558 42.3587i 0.370543 0.641799i
\(67\) −2.85244 + 0.764309i −0.0425737 + 0.0114076i −0.280043 0.959987i \(-0.590349\pi\)
0.237469 + 0.971395i \(0.423682\pi\)
\(68\) 43.7101 + 11.7121i 0.642796 + 0.172237i
\(69\) 36.3407i 0.526676i
\(70\) −48.3014 10.8156i −0.690020 0.154509i
\(71\) −11.8938 −0.167518 −0.0837592 0.996486i \(-0.526693\pi\)
−0.0837592 + 0.996486i \(0.526693\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) −5.65075 21.0889i −0.0774075 0.288889i 0.916361 0.400353i \(-0.131113\pi\)
−0.993768 + 0.111464i \(0.964446\pi\)
\(74\) −28.2582 16.3149i −0.381868 0.220472i
\(75\) 21.8119 37.4065i 0.290825 0.498753i
\(76\) −34.3548 −0.452037
\(77\) 12.1778 139.245i 0.158153 1.80838i
\(78\) 32.7600 32.7600i 0.420001 0.420001i
\(79\) −65.5559 + 37.8487i −0.829821 + 0.479097i −0.853791 0.520615i \(-0.825703\pi\)
0.0239704 + 0.999713i \(0.492369\pi\)
\(80\) 19.8345 2.56784i 0.247931 0.0320980i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 7.91720 29.5474i 0.0965512 0.360334i
\(83\) 28.2864 28.2864i 0.340800 0.340800i −0.515868 0.856668i \(-0.672531\pi\)
0.856668 + 0.515868i \(0.172531\pi\)
\(84\) 4.21152 + 23.8802i 0.0501372 + 0.284288i
\(85\) −15.0078 + 112.130i −0.176563 + 1.31918i
\(86\) 14.6809 + 25.4281i 0.170709 + 0.295676i
\(87\) −38.8137 + 10.4001i −0.446135 + 0.119541i
\(88\) 14.6177 + 54.5539i 0.166110 + 0.619930i
\(89\) 124.644 71.9632i 1.40049 0.808575i 0.406050 0.913851i \(-0.366906\pi\)
0.994443 + 0.105276i \(0.0335727\pi\)
\(90\) −21.0257 2.81414i −0.233619 0.0312682i
\(91\) 45.2788 124.415i 0.497569 1.36720i
\(92\) −29.6720 29.6720i −0.322522 0.322522i
\(93\) 92.8197 + 24.8710i 0.998061 + 0.267430i
\(94\) −92.7643 53.5575i −0.986855 0.569761i
\(95\) −11.0272 85.1761i −0.116076 0.896590i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) 56.0616 + 56.0616i 0.577954 + 0.577954i 0.934339 0.356385i \(-0.115991\pi\)
−0.356385 + 0.934339i \(0.615991\pi\)
\(98\) 39.7505 + 56.7618i 0.405617 + 0.579202i
\(99\) 59.9043i 0.605094i
\(100\) 12.7329 + 48.3516i 0.127329 + 0.483516i
\(101\) −56.4634 + 97.7974i −0.559043 + 0.968291i 0.438533 + 0.898715i \(0.355498\pi\)
−0.997577 + 0.0695765i \(0.977835\pi\)
\(102\) 53.5337 14.3443i 0.524840 0.140631i
\(103\) 190.082 + 50.9322i 1.84545 + 0.494488i 0.999263 0.0383934i \(-0.0122240\pi\)
0.846190 + 0.532881i \(0.178891\pi\)
\(104\) 53.4969i 0.514394i
\(105\) −57.8545 + 18.1067i −0.550996 + 0.172445i
\(106\) 5.88192 0.0554898
\(107\) −42.1506 + 157.308i −0.393931 + 1.47017i 0.429662 + 0.902990i \(0.358633\pi\)
−0.823593 + 0.567181i \(0.808034\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) −50.7768 29.3160i −0.465843 0.268954i 0.248655 0.968592i \(-0.420011\pi\)
−0.714498 + 0.699638i \(0.753345\pi\)
\(110\) −130.564 + 53.7524i −1.18694 + 0.488658i
\(111\) −39.9632 −0.360028
\(112\) −22.9368 16.0594i −0.204793 0.143387i
\(113\) −69.9728 + 69.9728i −0.619229 + 0.619229i −0.945334 0.326105i \(-0.894264\pi\)
0.326105 + 0.945334i \(0.394264\pi\)
\(114\) −36.4387 + 21.0379i −0.319638 + 0.184543i
\(115\) 64.0420 83.0903i 0.556887 0.722524i
\(116\) 23.1996 40.1829i 0.199997 0.346405i
\(117\) 14.6859 54.8086i 0.125521 0.468450i
\(118\) −30.9345 + 30.9345i −0.262157 + 0.262157i
\(119\) 121.324 101.810i 1.01953 0.855546i
\(120\) 19.4652 14.8697i 0.162210 0.123914i
\(121\) −138.862 240.517i −1.14762 1.98774i
\(122\) 4.80395 1.28721i 0.0393766 0.0105509i
\(123\) −9.69654 36.1880i −0.0788337 0.294211i
\(124\) −96.0940 + 55.4799i −0.774952 + 0.447419i
\(125\) −115.791 + 47.0887i −0.926331 + 0.376710i
\(126\) 19.0906 + 22.7497i 0.151512 + 0.180553i
\(127\) −43.1314 43.1314i −0.339617 0.339617i 0.516606 0.856223i \(-0.327195\pi\)
−0.856223 + 0.516606i \(0.827195\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 31.1430 + 17.9804i 0.241418 + 0.139383i
\(130\) −132.635 + 17.1714i −1.02027 + 0.132088i
\(131\) −29.3082 50.7632i −0.223727 0.387506i 0.732210 0.681079i \(-0.238489\pi\)
−0.955937 + 0.293573i \(0.905156\pi\)
\(132\) 48.9116 + 48.9116i 0.370543 + 0.370543i
\(133\) −68.9646 + 98.4985i −0.518531 + 0.740590i
\(134\) 4.17626i 0.0311661i
\(135\) −24.0244 + 9.89072i −0.177959 + 0.0732646i
\(136\) −31.9980 + 55.4222i −0.235280 + 0.407516i
\(137\) −77.6400 + 20.8036i −0.566716 + 0.151851i −0.530790 0.847503i \(-0.678105\pi\)
−0.0359258 + 0.999354i \(0.511438\pi\)
\(138\) −49.6423 13.3016i −0.359727 0.0963885i
\(139\) 15.1273i 0.108830i −0.998518 0.0544149i \(-0.982671\pi\)
0.998518 0.0544149i \(-0.0173294\pi\)
\(140\) 32.4540 62.0221i 0.231814 0.443015i
\(141\) −131.189 −0.930416
\(142\) 4.35343 16.2472i 0.0306580 0.114417i
\(143\) −97.7500 364.808i −0.683566 2.55110i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 107.073 + 44.6211i 0.738431 + 0.307732i
\(146\) 30.8763 0.211481
\(147\) 76.9211 + 35.8628i 0.523273 + 0.243965i
\(148\) 32.6298 32.6298i 0.220472 0.220472i
\(149\) −28.5019 + 16.4556i −0.191288 + 0.110440i −0.592585 0.805508i \(-0.701893\pi\)
0.401297 + 0.915948i \(0.368559\pi\)
\(150\) 43.1145 + 43.4873i 0.287430 + 0.289915i
\(151\) −142.183 + 246.269i −0.941611 + 1.63092i −0.179211 + 0.983811i \(0.557355\pi\)
−0.762399 + 0.647107i \(0.775979\pi\)
\(152\) 12.5747 46.9295i 0.0827284 0.308747i
\(153\) 47.9970 47.9970i 0.313706 0.313706i
\(154\) 185.755 + 67.6025i 1.20620 + 0.438977i
\(155\) −168.396 220.439i −1.08643 1.42219i
\(156\) 32.7600 + 56.7421i 0.210000 + 0.363731i
\(157\) −170.733 + 45.7477i −1.08747 + 0.291387i −0.757652 0.652658i \(-0.773654\pi\)
−0.329817 + 0.944045i \(0.606987\pi\)
\(158\) −27.7072 103.405i −0.175362 0.654459i
\(159\) 6.23872 3.60193i 0.0392372 0.0226536i
\(160\) −3.75219 + 28.0343i −0.0234512 + 0.175214i
\(161\) −144.637 + 25.5083i −0.898366 + 0.158436i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −72.5798 19.4477i −0.445275 0.119311i 0.0292129 0.999573i \(-0.490700\pi\)
−0.474487 + 0.880262i \(0.657367\pi\)
\(164\) 37.4646 + 21.6302i 0.228443 + 0.131891i
\(165\) −105.567 + 136.967i −0.639803 + 0.830101i
\(166\) 28.2864 + 48.9935i 0.170400 + 0.295141i
\(167\) 115.501 + 115.501i 0.691625 + 0.691625i 0.962589 0.270964i \(-0.0873426\pi\)
−0.270964 + 0.962589i \(0.587343\pi\)
\(168\) −34.1625 2.98771i −0.203348 0.0177840i
\(169\) 188.740i 1.11681i
\(170\) −147.679 61.5436i −0.868703 0.362021i
\(171\) −25.7661 + 44.6282i −0.150679 + 0.260983i
\(172\) −40.1091 + 10.7472i −0.233192 + 0.0624837i
\(173\) 193.397 + 51.8207i 1.11790 + 0.299541i 0.770035 0.638002i \(-0.220239\pi\)
0.347869 + 0.937543i \(0.386905\pi\)
\(174\) 56.8272i 0.326593i
\(175\) 164.189 + 60.5555i 0.938223 + 0.346032i
\(176\) −79.8724 −0.453820
\(177\) −13.8675 + 51.7544i −0.0783477 + 0.292398i
\(178\) 52.6807 + 196.607i 0.295959 + 1.10453i
\(179\) 103.999 + 60.0438i 0.580999 + 0.335440i 0.761530 0.648129i \(-0.224448\pi\)
−0.180531 + 0.983569i \(0.557782\pi\)
\(180\) 11.5401 27.6916i 0.0641118 0.153842i
\(181\) 217.830 1.20348 0.601741 0.798691i \(-0.294474\pi\)
0.601741 + 0.798691i \(0.294474\pi\)
\(182\) 153.381 + 107.391i 0.842752 + 0.590061i
\(183\) 4.30710 4.30710i 0.0235361 0.0235361i
\(184\) 51.3935 29.6720i 0.279312 0.161261i
\(185\) 91.3728 + 70.4258i 0.493907 + 0.380680i
\(186\) −67.9487 + 117.691i −0.365316 + 0.632746i
\(187\) 116.934 436.404i 0.625316 2.33371i
\(188\) 107.115 107.115i 0.569761 0.569761i
\(189\) 34.1799 + 12.4392i 0.180846 + 0.0658159i
\(190\) 120.389 + 16.1132i 0.633626 + 0.0848063i
\(191\) −56.1666 97.2834i −0.294066 0.509337i 0.680701 0.732561i \(-0.261675\pi\)
−0.974767 + 0.223224i \(0.928342\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) 1.49926 + 5.59533i 0.00776820 + 0.0289913i 0.969701 0.244294i \(-0.0785563\pi\)
−0.961933 + 0.273286i \(0.911890\pi\)
\(194\) −97.1015 + 56.0616i −0.500523 + 0.288977i
\(195\) −130.166 + 99.4353i −0.667517 + 0.509925i
\(196\) −92.0877 + 33.5240i −0.469835 + 0.171041i
\(197\) −40.3068 40.3068i −0.204603 0.204603i 0.597366 0.801969i \(-0.296214\pi\)
−0.801969 + 0.597366i \(0.796214\pi\)
\(198\) 81.8308 + 21.9265i 0.413287 + 0.110740i
\(199\) 85.5804 + 49.4099i 0.430052 + 0.248291i 0.699369 0.714761i \(-0.253464\pi\)
−0.269317 + 0.963052i \(0.586798\pi\)
\(200\) −70.7100 0.304394i −0.353550 0.00152197i
\(201\) −2.55743 4.42960i −0.0127235 0.0220378i
\(202\) −112.927 112.927i −0.559043 0.559043i
\(203\) −68.6369 147.180i −0.338113 0.725024i
\(204\) 78.3788i 0.384210i
\(205\) −41.6025 + 99.8291i −0.202939 + 0.486971i
\(206\) −139.149 + 241.014i −0.675483 + 1.16997i
\(207\) −60.7991 + 16.2911i −0.293716 + 0.0787009i
\(208\) −73.0782 19.5812i −0.351337 0.0941405i
\(209\) 343.000i 1.64115i
\(210\) −3.55801 85.6583i −0.0169429 0.407897i
\(211\) 344.348 1.63198 0.815991 0.578064i \(-0.196192\pi\)
0.815991 + 0.578064i \(0.196192\pi\)
\(212\) −2.15293 + 8.03485i −0.0101553 + 0.0379003i
\(213\) −5.33185 19.8987i −0.0250321 0.0934212i
\(214\) −199.459 115.158i −0.932051 0.538120i
\(215\) −39.5198 95.9932i −0.183813 0.446480i
\(216\) −14.6969 −0.0680414
\(217\) −33.8352 + 386.883i −0.155922 + 1.78287i
\(218\) 58.6321 58.6321i 0.268954 0.268954i
\(219\) 32.7492 18.9078i 0.149540 0.0863369i
\(220\) −25.6374 198.028i −0.116534 0.900129i
\(221\) 213.974 370.615i 0.968210 1.67699i
\(222\) 14.6275 54.5907i 0.0658898 0.245904i
\(223\) 34.8821 34.8821i 0.156422 0.156422i −0.624557 0.780979i \(-0.714721\pi\)
0.780979 + 0.624557i \(0.214721\pi\)
\(224\) 30.3330 25.4541i 0.135415 0.113634i
\(225\) 72.3602 + 19.7231i 0.321601 + 0.0876582i
\(226\) −69.9728 121.197i −0.309614 0.536268i
\(227\) −166.766 + 44.6847i −0.734651 + 0.196849i −0.606699 0.794931i \(-0.707507\pi\)
−0.127951 + 0.991780i \(0.540840\pi\)
\(228\) −15.4008 57.4767i −0.0675475 0.252091i
\(229\) 18.1914 10.5028i 0.0794382 0.0458637i −0.459755 0.888046i \(-0.652063\pi\)
0.539193 + 0.842182i \(0.318729\pi\)
\(230\) 90.0624 + 117.896i 0.391576 + 0.512592i
\(231\) 238.421 42.0480i 1.03213 0.182026i
\(232\) 46.3993 + 46.3993i 0.199997 + 0.199997i
\(233\) −193.661 51.8914i −0.831164 0.222710i −0.181943 0.983309i \(-0.558239\pi\)
−0.649221 + 0.760599i \(0.724905\pi\)
\(234\) 69.4945 + 40.1227i 0.296985 + 0.171465i
\(235\) 299.953 + 231.189i 1.27640 + 0.983785i
\(236\) −30.9345 53.5801i −0.131078 0.227034i
\(237\) −92.7100 92.7100i −0.391181 0.391181i
\(238\) 94.6672 + 202.997i 0.397761 + 0.852930i
\(239\) 282.776i 1.18316i 0.806245 + 0.591581i \(0.201496\pi\)
−0.806245 + 0.591581i \(0.798504\pi\)
\(240\) 13.1876 + 32.0326i 0.0549484 + 0.133469i
\(241\) 45.5745 78.9374i 0.189106 0.327541i −0.755846 0.654749i \(-0.772774\pi\)
0.944952 + 0.327208i \(0.106108\pi\)
\(242\) 379.379 101.654i 1.56768 0.420059i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 7.03346i 0.0288257i
\(245\) −112.675 217.553i −0.459896 0.887973i
\(246\) 52.9829 0.215378
\(247\) −84.0886 + 313.823i −0.340440 + 1.27054i
\(248\) −40.6141 151.574i −0.163767 0.611185i
\(249\) 60.0045 + 34.6436i 0.240982 + 0.139131i
\(250\) −21.9418 175.410i −0.0877672 0.701639i
\(251\) 278.796 1.11074 0.555371 0.831603i \(-0.312576\pi\)
0.555371 + 0.831603i \(0.312576\pi\)
\(252\) −38.0643 + 17.7512i −0.151049 + 0.0704413i
\(253\) −296.247 + 296.247i −1.17094 + 1.17094i
\(254\) 74.7058 43.1314i 0.294117 0.169809i
\(255\) −194.325 + 25.1580i −0.762060 + 0.0986589i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −25.0895 + 93.6352i −0.0976244 + 0.364339i −0.997404 0.0720049i \(-0.977060\pi\)
0.899780 + 0.436344i \(0.143727\pi\)
\(258\) −35.9608 + 35.9608i −0.139383 + 0.139383i
\(259\) −28.0509 159.055i −0.108305 0.614110i
\(260\) 25.0913 187.468i 0.0965050 0.721033i
\(261\) −34.7994 60.2744i −0.133331 0.230936i
\(262\) 80.0714 21.4551i 0.305616 0.0818896i
\(263\) −54.0055 201.551i −0.205344 0.766354i −0.989344 0.145594i \(-0.953491\pi\)
0.784000 0.620760i \(-0.213176\pi\)
\(264\) −84.7175 + 48.9116i −0.320899 + 0.185271i
\(265\) −20.6119 2.75876i −0.0777809 0.0104104i
\(266\) −109.309 130.260i −0.410935 0.489701i
\(267\) 176.273 + 176.273i 0.660199 + 0.660199i
\(268\) 5.70488 + 1.52862i 0.0212869 + 0.00570380i
\(269\) −177.916 102.720i −0.661397 0.381858i 0.131412 0.991328i \(-0.458049\pi\)
−0.792809 + 0.609470i \(0.791382\pi\)
\(270\) −4.71742 36.4382i −0.0174719 0.134956i
\(271\) −55.2715 95.7331i −0.203954 0.353259i 0.745845 0.666120i \(-0.232046\pi\)
−0.949799 + 0.312861i \(0.898713\pi\)
\(272\) −63.9960 63.9960i −0.235280 0.235280i
\(273\) 228.448 + 19.9792i 0.836807 + 0.0731837i
\(274\) 113.673i 0.414865i
\(275\) 482.744 127.126i 1.75543 0.462277i
\(276\) 36.3407 62.9439i 0.131669 0.228058i
\(277\) −68.0599 + 18.2366i −0.245704 + 0.0658361i −0.379569 0.925163i \(-0.623928\pi\)
0.133865 + 0.991000i \(0.457261\pi\)
\(278\) 20.6643 + 5.53699i 0.0743321 + 0.0199172i
\(279\) 166.440i 0.596558i
\(280\) 72.8448 + 67.0346i 0.260160 + 0.239409i
\(281\) 172.628 0.614336 0.307168 0.951655i \(-0.400619\pi\)
0.307168 + 0.951655i \(0.400619\pi\)
\(282\) 48.0184 179.207i 0.170278 0.635486i
\(283\) 7.29175 + 27.2132i 0.0257659 + 0.0961597i 0.977611 0.210418i \(-0.0674826\pi\)
−0.951846 + 0.306578i \(0.900816\pi\)
\(284\) 20.6007 + 11.8938i 0.0725376 + 0.0418796i
\(285\) 137.559 56.6322i 0.482663 0.198710i
\(286\) 534.116 1.86754
\(287\) 137.223 63.9936i 0.478129 0.222974i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 193.069 111.468i 0.668058 0.385703i
\(290\) −100.145 + 129.931i −0.345327 + 0.448039i
\(291\) −68.6611 + 118.925i −0.235949 + 0.408675i
\(292\) −11.3015 + 42.1778i −0.0387038 + 0.144444i
\(293\) −78.8568 + 78.8568i −0.269136 + 0.269136i −0.828752 0.559616i \(-0.810949\pi\)
0.559616 + 0.828752i \(0.310949\pi\)
\(294\) −77.1446 + 91.9495i −0.262397 + 0.312753i
\(295\) 122.912 93.8943i 0.416652 0.318286i
\(296\) 32.6298 + 56.5164i 0.110236 + 0.190934i
\(297\) 100.222 26.8544i 0.337447 0.0904187i
\(298\) −12.0463 44.9575i −0.0404239 0.150864i
\(299\) −343.674 + 198.420i −1.14941 + 0.663613i
\(300\) −75.1857 + 42.9780i −0.250619 + 0.143260i
\(301\) −49.7027 + 136.571i −0.165125 + 0.453724i
\(302\) −284.366 284.366i −0.941611 0.941611i
\(303\) −188.930 50.6237i −0.623532 0.167075i
\(304\) 59.5042 + 34.3548i 0.195738 + 0.113009i
\(305\) −17.4381 + 2.25760i −0.0571742 + 0.00740197i
\(306\) 47.9970 + 83.1333i 0.156853 + 0.271677i
\(307\) 21.8398 + 21.8398i 0.0711395 + 0.0711395i 0.741781 0.670642i \(-0.233981\pi\)
−0.670642 + 0.741781i \(0.733981\pi\)
\(308\) −160.338 + 229.002i −0.520577 + 0.743513i
\(309\) 340.845i 1.10306i
\(310\) 362.762 149.347i 1.17020 0.481765i
\(311\) −85.0972 + 147.393i −0.273624 + 0.473931i −0.969787 0.243953i \(-0.921556\pi\)
0.696163 + 0.717884i \(0.254889\pi\)
\(312\) −89.5021 + 23.9820i −0.286866 + 0.0768654i
\(313\) −378.982 101.548i −1.21080 0.324434i −0.403727 0.914880i \(-0.632285\pi\)
−0.807077 + 0.590446i \(0.798952\pi\)
\(314\) 249.970i 0.796083i
\(315\) −56.2286 88.6755i −0.178504 0.281510i
\(316\) 151.395 0.479097
\(317\) 36.9318 137.832i 0.116504 0.434800i −0.882891 0.469578i \(-0.844406\pi\)
0.999395 + 0.0347786i \(0.0110726\pi\)
\(318\) 2.63679 + 9.84065i 0.00829180 + 0.0309454i
\(319\) −401.188 231.626i −1.25764 0.726101i
\(320\) −36.9221 15.3868i −0.115382 0.0480839i
\(321\) −282.078 −0.878746
\(322\) 18.0959 206.914i 0.0561984 0.642592i
\(323\) −274.821 + 274.821i −0.850840 + 0.850840i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) 472.846 + 2.03552i 1.45491 + 0.00626313i
\(326\) 53.1321 92.0274i 0.162982 0.282293i
\(327\) 26.2840 98.0933i 0.0803793 0.299980i
\(328\) −43.2604 + 43.2604i −0.131891 + 0.131891i
\(329\) −92.0839 522.135i −0.279890 1.58704i
\(330\) −148.460 194.341i −0.449878 0.588912i
\(331\) −11.5185 19.9506i −0.0347990 0.0602736i 0.848101 0.529834i \(-0.177746\pi\)
−0.882900 + 0.469560i \(0.844412\pi\)
\(332\) −77.2798 + 20.7071i −0.232771 + 0.0623707i
\(333\) −17.9150 66.8597i −0.0537988 0.200780i
\(334\) −200.054 + 115.501i −0.598965 + 0.345812i
\(335\) −1.95877 + 14.6348i −0.00584706 + 0.0436860i
\(336\) 16.5856 45.5732i 0.0493619 0.135635i
\(337\) −438.660 438.660i −1.30166 1.30166i −0.927271 0.374391i \(-0.877852\pi\)
−0.374391 0.927271i \(-0.622148\pi\)
\(338\) 257.824 + 69.0837i 0.762792 + 0.204390i
\(339\) −148.435 85.6989i −0.437861 0.252799i
\(340\) 138.124 179.207i 0.406249 0.527080i
\(341\) 553.914 + 959.408i 1.62438 + 2.81351i
\(342\) −51.5322 51.5322i −0.150679 0.150679i
\(343\) −88.7426 + 331.321i −0.258725 + 0.965951i
\(344\) 58.7238i 0.170709i
\(345\) 167.722 + 69.8960i 0.486151 + 0.202597i
\(346\) −141.577 + 245.218i −0.409181 + 0.708723i
\(347\) 441.664 118.344i 1.27281 0.341048i 0.441702 0.897162i \(-0.354375\pi\)
0.831106 + 0.556114i \(0.187708\pi\)
\(348\) 77.6275 + 20.8002i 0.223067 + 0.0597707i
\(349\) 70.3408i 0.201549i −0.994909 0.100775i \(-0.967868\pi\)
0.994909 0.100775i \(-0.0321321\pi\)
\(350\) −142.818 + 202.121i −0.408051 + 0.577490i
\(351\) 98.2801 0.280000
\(352\) 29.2353 109.108i 0.0830549 0.309965i
\(353\) 43.1761 + 161.135i 0.122312 + 0.456474i 0.999730 0.0232531i \(-0.00740234\pi\)
−0.877418 + 0.479727i \(0.840736\pi\)
\(354\) −65.6219 37.8868i −0.185373 0.107025i
\(355\) −22.8760 + 54.8931i −0.0644395 + 0.154628i
\(356\) −287.853 −0.808575
\(357\) 224.720 + 157.340i 0.629467 + 0.440727i
\(358\) −120.088 + 120.088i −0.335440 + 0.335440i
\(359\) −446.981 + 258.064i −1.24507 + 0.718842i −0.970122 0.242616i \(-0.921994\pi\)
−0.274949 + 0.961459i \(0.588661\pi\)
\(360\) 33.6035 + 25.8999i 0.0933430 + 0.0719443i
\(361\) −32.9687 + 57.1034i −0.0913260 + 0.158181i
\(362\) −79.7314 + 297.562i −0.220253 + 0.821994i
\(363\) 340.142 340.142i 0.937031 0.937031i
\(364\) −202.840 + 170.214i −0.557253 + 0.467622i
\(365\) −108.199 14.4817i −0.296436 0.0396759i
\(366\) 4.30710 + 7.46012i 0.0117680 + 0.0203828i
\(367\) −486.174 + 130.270i −1.32472 + 0.354959i −0.850746 0.525577i \(-0.823849\pi\)
−0.473979 + 0.880536i \(0.657183\pi\)
\(368\) 21.7214 + 81.0655i 0.0590256 + 0.220287i
\(369\) 56.1969 32.4453i 0.152295 0.0879276i
\(370\) −129.648 + 99.0399i −0.350401 + 0.267676i
\(371\) 18.7149 + 22.3020i 0.0504444 + 0.0601133i
\(372\) −135.897 135.897i −0.365316 0.365316i
\(373\) −371.645 99.5820i −0.996368 0.266976i −0.276445 0.961030i \(-0.589156\pi\)
−0.719923 + 0.694054i \(0.755823\pi\)
\(374\) 553.338 + 319.470i 1.47951 + 0.854197i
\(375\) −130.689 172.614i −0.348504 0.460303i
\(376\) 107.115 + 185.529i 0.284880 + 0.493427i
\(377\) −310.277 310.277i −0.823016 0.823016i
\(378\) −29.5030 + 42.1376i −0.0780502 + 0.111475i
\(379\) 352.609i 0.930366i 0.885214 + 0.465183i \(0.154012\pi\)
−0.885214 + 0.465183i \(0.845988\pi\)
\(380\) −66.0764 + 158.557i −0.173885 + 0.417254i
\(381\) 52.8250 91.4955i 0.138648 0.240146i
\(382\) 153.450 41.1168i 0.401701 0.107636i
\(383\) −58.4854 15.6711i −0.152703 0.0409167i 0.181658 0.983362i \(-0.441854\pi\)
−0.334361 + 0.942445i \(0.608520\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −619.232 324.022i −1.60839 0.841615i
\(386\) −8.19212 −0.0212231
\(387\) −16.1208 + 60.1636i −0.0416558 + 0.155462i
\(388\) −41.0399 153.163i −0.105773 0.394750i
\(389\) 623.238 + 359.827i 1.60215 + 0.925004i 0.991056 + 0.133450i \(0.0426055\pi\)
0.611099 + 0.791554i \(0.290728\pi\)
\(390\) −88.1872 214.206i −0.226121 0.549245i
\(391\) −474.723 −1.21413
\(392\) −12.0882 138.065i −0.0308371 0.352206i
\(393\) 71.7901 71.7901i 0.182672 0.182672i
\(394\) 69.8135 40.3068i 0.177192 0.102302i
\(395\) 48.5947 + 375.354i 0.123024 + 0.950264i
\(396\) −59.9043 + 103.757i −0.151273 + 0.262013i
\(397\) −25.1399 + 93.8233i −0.0633246 + 0.236331i −0.990333 0.138710i \(-0.955705\pi\)
0.927008 + 0.375040i \(0.122371\pi\)
\(398\) −98.8197 + 98.8197i −0.248291 + 0.248291i
\(399\) −195.707 71.2244i −0.490494 0.178507i
\(400\) 26.2975 96.4803i 0.0657437 0.241201i
\(401\) −74.7359 129.446i −0.186374 0.322809i 0.757665 0.652644i \(-0.226340\pi\)
−0.944039 + 0.329835i \(0.893007\pi\)
\(402\) 6.98702 1.87217i 0.0173807 0.00465713i
\(403\) 271.591 + 1013.59i 0.673924 + 2.51512i
\(404\) 195.595 112.927i 0.484146 0.279522i
\(405\) −27.3174 35.7598i −0.0674503 0.0882958i
\(406\) 226.174 39.8882i 0.557079 0.0982468i
\(407\) −325.777 325.777i −0.800436 0.800436i
\(408\) −107.067 28.6886i −0.262420 0.0703153i
\(409\) −316.278 182.603i −0.773295 0.446462i 0.0607535 0.998153i \(-0.480650\pi\)
−0.834049 + 0.551690i \(0.813983\pi\)
\(410\) −121.141 93.3701i −0.295467 0.227732i
\(411\) −69.6102 120.568i −0.169368 0.293354i
\(412\) −278.299 278.299i −0.675483 0.675483i
\(413\) −215.718 18.8658i −0.522320 0.0456799i
\(414\) 89.0161i 0.215015i
\(415\) −76.1445 184.954i −0.183481 0.445672i
\(416\) 53.4969 92.6594i 0.128598 0.222739i
\(417\) 25.3085 6.78140i 0.0606919 0.0162624i
\(418\) −468.546 125.547i −1.12092 0.300351i
\(419\) 373.960i 0.892507i −0.894907 0.446254i \(-0.852758\pi\)
0.894907 0.446254i \(-0.147242\pi\)
\(420\) 118.314 + 26.4928i 0.281699 + 0.0630780i
\(421\) 414.109 0.983631 0.491816 0.870699i \(-0.336333\pi\)
0.491816 + 0.870699i \(0.336333\pi\)
\(422\) −126.040 + 470.389i −0.298674 + 1.11467i
\(423\) −58.8102 219.483i −0.139031 0.518872i
\(424\) −10.1878 5.88192i −0.0240278 0.0138725i
\(425\) 488.646 + 284.931i 1.14975 + 0.670427i
\(426\) 29.1338 0.0683891
\(427\) 20.1656 + 14.1191i 0.0472263 + 0.0330659i
\(428\) 230.315 230.315i 0.538120 0.538120i
\(429\) 566.515 327.078i 1.32055 0.762419i
\(430\) 145.594 18.8491i 0.338592 0.0438352i
\(431\) −258.753 + 448.173i −0.600355 + 1.03985i 0.392412 + 0.919789i \(0.371641\pi\)
−0.992767 + 0.120056i \(0.961693\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) −28.4380 + 28.4380i −0.0656767 + 0.0656767i −0.739182 0.673506i \(-0.764788\pi\)
0.673506 + 0.739182i \(0.264788\pi\)
\(434\) −516.107 187.829i −1.18919 0.432785i
\(435\) −26.6533 + 199.139i −0.0612720 + 0.457791i
\(436\) 58.6321 + 101.554i 0.134477 + 0.232921i
\(437\) 348.123 93.2794i 0.796621 0.213454i
\(438\) 13.8415 + 51.6570i 0.0316015 + 0.117938i
\(439\) 241.933 139.680i 0.551100 0.318178i −0.198466 0.980108i \(-0.563596\pi\)
0.749565 + 0.661930i \(0.230262\pi\)
\(440\) 279.896 + 37.4620i 0.636126 + 0.0851410i
\(441\) −25.5169 + 144.768i −0.0578614 + 0.328273i
\(442\) 427.949 + 427.949i 0.968210 + 0.968210i
\(443\) 567.996 + 152.194i 1.28216 + 0.343553i 0.834677 0.550740i \(-0.185654\pi\)
0.447482 + 0.894293i \(0.352321\pi\)
\(444\) 69.2182 + 39.9632i 0.155897 + 0.0900071i
\(445\) −92.3949 713.676i −0.207629 1.60377i
\(446\) 34.8821 + 60.4175i 0.0782109 + 0.135465i
\(447\) −40.3078 40.3078i −0.0901739 0.0901739i
\(448\) 23.6683 + 50.7525i 0.0528310 + 0.113287i
\(449\) 515.916i 1.14903i 0.818493 + 0.574517i \(0.194810\pi\)
−0.818493 + 0.574517i \(0.805190\pi\)
\(450\) −53.4279 + 91.6267i −0.118729 + 0.203615i
\(451\) 215.957 374.048i 0.478840 0.829375i
\(452\) 191.169 51.2237i 0.422941 0.113327i
\(453\) −475.754 127.478i −1.05023 0.281408i
\(454\) 244.162i 0.537802i
\(455\) −487.122 448.268i −1.07060 0.985205i
\(456\) 84.1517 0.184543
\(457\) 75.2958 281.008i 0.164761 0.614896i −0.833310 0.552807i \(-0.813557\pi\)
0.998071 0.0620898i \(-0.0197765\pi\)
\(458\) 7.68857 + 28.6941i 0.0167873 + 0.0626510i
\(459\) 101.817 + 58.7841i 0.221824 + 0.128070i
\(460\) −194.014 + 79.8745i −0.421770 + 0.173640i
\(461\) 431.271 0.935511 0.467756 0.883858i \(-0.345063\pi\)
0.467756 + 0.883858i \(0.345063\pi\)
\(462\) −29.8294 + 341.080i −0.0645659 + 0.738268i
\(463\) 81.4930 81.4930i 0.176011 0.176011i −0.613603 0.789614i \(-0.710281\pi\)
0.789614 + 0.613603i \(0.210281\pi\)
\(464\) −80.3659 + 46.3993i −0.173202 + 0.0999984i
\(465\) 293.312 380.552i 0.630777 0.818392i
\(466\) 141.770 245.553i 0.304227 0.526937i
\(467\) 57.0779 213.017i 0.122222 0.456140i −0.877503 0.479571i \(-0.840792\pi\)
0.999725 + 0.0234309i \(0.00745896\pi\)
\(468\) −80.2454 + 80.2454i −0.171465 + 0.171465i
\(469\) 15.8348 13.2879i 0.0337629 0.0283323i
\(470\) −425.601 + 325.122i −0.905534 + 0.691749i
\(471\) −153.075 265.133i −0.324999 0.562916i
\(472\) 84.5146 22.6456i 0.179056 0.0479780i
\(473\) 107.301 + 400.451i 0.226851 + 0.846619i
\(474\) 160.578 92.7100i 0.338773 0.195591i
\(475\) −414.320 112.930i −0.872252 0.237748i
\(476\) −311.950 + 55.0157i −0.655357 + 0.115579i
\(477\) 8.82288 + 8.82288i 0.0184966 + 0.0184966i
\(478\) −386.279 103.503i −0.808115 0.216534i
\(479\) −322.538 186.218i −0.673357 0.388763i 0.123990 0.992283i \(-0.460431\pi\)
−0.797348 + 0.603520i \(0.793764\pi\)
\(480\) −48.5843 + 6.28989i −0.101217 + 0.0131039i
\(481\) −218.199 377.932i −0.453636 0.785721i
\(482\) 91.1491 + 91.1491i 0.189106 + 0.189106i
\(483\) −107.515 230.547i −0.222599 0.477324i
\(484\) 555.450i 1.14762i
\(485\) 366.566 150.913i 0.755805 0.311161i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) 354.693 95.0398i 0.728323 0.195154i 0.124441 0.992227i \(-0.460286\pi\)
0.603882 + 0.797073i \(0.293620\pi\)
\(488\) −9.60789 2.57443i −0.0196883 0.00527546i
\(489\) 130.146i 0.266148i
\(490\) 338.425 74.2863i 0.690663 0.151605i
\(491\) 8.71393 0.0177473 0.00887366 0.999961i \(-0.497175\pi\)
0.00887366 + 0.999961i \(0.497175\pi\)
\(492\) −19.3931 + 72.3760i −0.0394168 + 0.147106i
\(493\) −135.858 507.029i −0.275574 1.02846i
\(494\) −397.912 229.734i −0.805489 0.465049i
\(495\) −276.474 115.217i −0.558534 0.232762i
\(496\) 221.920 0.447419
\(497\) 75.4550 35.1882i 0.151821 0.0708013i
\(498\) −69.2872 + 69.2872i −0.139131 + 0.139131i
\(499\) 233.352 134.726i 0.467640 0.269992i −0.247611 0.968860i \(-0.579646\pi\)
0.715251 + 0.698867i \(0.246312\pi\)
\(500\) 247.645 + 34.2313i 0.495291 + 0.0684627i
\(501\) −141.460 + 245.015i −0.282355 + 0.489053i
\(502\) −102.047 + 380.843i −0.203280 + 0.758651i
\(503\) 308.184 308.184i 0.612693 0.612693i −0.330954 0.943647i \(-0.607371\pi\)
0.943647 + 0.330954i \(0.107371\pi\)
\(504\) −10.3161 58.4943i −0.0204684 0.116060i
\(505\) 342.762 + 448.693i 0.678737 + 0.888501i
\(506\) −296.247 513.115i −0.585468 1.01406i
\(507\) 315.768 84.6099i 0.622817 0.166883i
\(508\) 31.5744 + 117.837i 0.0621543 + 0.231963i
\(509\) −568.117 + 328.003i −1.11614 + 0.644406i −0.940414 0.340032i \(-0.889562\pi\)
−0.175730 + 0.984438i \(0.556229\pi\)
\(510\) 36.7615 274.662i 0.0720814 0.538552i
\(511\) 98.2409 + 117.071i 0.192252 + 0.229102i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −86.2150 23.1012i −0.168060 0.0450317i
\(514\) −118.725 68.5457i −0.230982 0.133357i
\(515\) 600.660 779.317i 1.16633 1.51324i
\(516\) −35.9608 62.2860i −0.0696915 0.120709i
\(517\) −1069.44 1069.44i −2.06855 2.06855i
\(518\) 227.540 + 19.8997i 0.439266 + 0.0384164i
\(519\) 346.791i 0.668190i
\(520\) 246.903 + 102.894i 0.474813 + 0.197872i
\(521\) 91.8665 159.117i 0.176327 0.305408i −0.764293 0.644870i \(-0.776912\pi\)
0.940620 + 0.339462i \(0.110245\pi\)
\(522\) 95.0738 25.4750i 0.182134 0.0488026i
\(523\) 795.892 + 213.259i 1.52178 + 0.407760i 0.920328 0.391147i \(-0.127922\pi\)
0.601454 + 0.798908i \(0.294588\pi\)
\(524\) 117.233i 0.223727i
\(525\) −27.7075 + 301.840i −0.0527761 + 0.574933i
\(526\) 295.091 0.561010
\(527\) −324.893 + 1212.52i −0.616495 + 2.30079i
\(528\) −35.8058 133.629i −0.0678140 0.253085i
\(529\) −76.8901 44.3925i −0.145350 0.0839179i
\(530\) 11.3130 27.1466i 0.0213453 0.0512201i
\(531\) −92.8034 −0.174771
\(532\) 217.949 101.640i 0.409678 0.191052i
\(533\) 289.287 289.287i 0.542752 0.542752i
\(534\) −305.314 + 176.273i −0.571749 + 0.330099i
\(535\) 644.949 + 497.096i 1.20551 + 0.929152i
\(536\) −4.17626 + 7.23350i −0.00779154 + 0.0134953i
\(537\) −53.8338 + 200.910i −0.100249 + 0.374135i
\(538\) 205.439 205.439i 0.381858 0.381858i
\(539\) 334.705 + 919.408i 0.620974 + 1.70577i
\(540\) 51.5023 + 6.89321i 0.0953746 + 0.0127652i
\(541\) 190.462 + 329.891i 0.352056 + 0.609779i 0.986610 0.163100i \(-0.0521493\pi\)
−0.634553 + 0.772879i \(0.718816\pi\)
\(542\) 151.005 40.4616i 0.278606 0.0746524i
\(543\) 97.6506 + 364.437i 0.179835 + 0.671155i
\(544\) 110.844 63.9960i 0.203758 0.117640i
\(545\) −232.963 + 177.964i −0.427456 + 0.326539i
\(546\) −110.910 + 304.753i −0.203132 + 0.558156i
\(547\) 231.815 + 231.815i 0.423794 + 0.423794i 0.886508 0.462714i \(-0.153124\pi\)
−0.462714 + 0.886508i \(0.653124\pi\)
\(548\) 155.280 + 41.6072i 0.283358 + 0.0759255i
\(549\) 9.13674 + 5.27510i 0.0166425 + 0.00960856i
\(550\) −3.03908 + 705.972i −0.00552560 + 1.28359i
\(551\) 199.254 + 345.119i 0.361623 + 0.626350i
\(552\) 72.6814 + 72.6814i 0.131669 + 0.131669i
\(553\) 303.914 434.064i 0.549572 0.784925i
\(554\) 99.6466i 0.179867i
\(555\) −76.8634 + 184.441i −0.138493 + 0.332326i
\(556\) −15.1273 + 26.2013i −0.0272075 + 0.0471247i
\(557\) 952.690 255.272i 1.71039 0.458299i 0.734873 0.678204i \(-0.237242\pi\)
0.975521 + 0.219906i \(0.0705750\pi\)
\(558\) −227.361 60.9212i −0.407457 0.109178i
\(559\) 392.693i 0.702491i
\(560\) −118.234 + 74.9715i −0.211132 + 0.133878i
\(561\) 782.538 1.39490
\(562\) −63.1864 + 235.815i −0.112431 + 0.419599i
\(563\) 6.56455 + 24.4993i 0.0116600 + 0.0435155i 0.971511 0.236996i \(-0.0761627\pi\)
−0.959851 + 0.280511i \(0.909496\pi\)
\(564\) 227.225 + 131.189i 0.402882 + 0.232604i
\(565\) 188.361 + 457.526i 0.333382 + 0.809781i
\(566\) −39.8429 −0.0703938
\(567\) −5.48877 + 62.7604i −0.00968037 + 0.110689i
\(568\) −23.7876 + 23.7876i −0.0418796 + 0.0418796i
\(569\) 731.187 422.151i 1.28504 0.741917i 0.307273 0.951621i \(-0.400583\pi\)
0.977765 + 0.209704i \(0.0672501\pi\)
\(570\) 27.0110 + 208.638i 0.0473877 + 0.366032i
\(571\) −442.183 + 765.884i −0.774402 + 1.34130i 0.160728 + 0.986999i \(0.448616\pi\)
−0.935130 + 0.354304i \(0.884718\pi\)
\(572\) −195.500 + 729.616i −0.341783 + 1.27555i
\(573\) 137.579 137.579i 0.240104 0.240104i
\(574\) 37.1898 + 210.874i 0.0647905 + 0.367376i
\(575\) −260.308 455.383i −0.452710 0.791971i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 755.053 202.316i 1.30858 0.350634i 0.463894 0.885891i \(-0.346452\pi\)
0.844689 + 0.535257i \(0.179785\pi\)
\(578\) 81.6004 + 304.537i 0.141177 + 0.526881i
\(579\) −8.68906 + 5.01663i −0.0150070 + 0.00866430i
\(580\) −140.834 184.359i −0.242817 0.317860i
\(581\) −95.7642 + 263.137i −0.164827 + 0.452903i
\(582\) −137.322 137.322i −0.235949 0.235949i
\(583\) 80.2204 + 21.4950i 0.137599 + 0.0368696i
\(584\) −53.4793 30.8763i −0.0915741 0.0528703i
\(585\) −224.710 173.196i −0.384120 0.296061i
\(586\) −78.8568 136.584i −0.134568 0.233078i
\(587\) −198.669 198.669i −0.338449 0.338449i 0.517334 0.855783i \(-0.326924\pi\)
−0.855783 + 0.517334i \(0.826924\pi\)
\(588\) −97.3685 139.037i −0.165593 0.236458i
\(589\) 953.000i 1.61800i
\(590\) 83.2729 + 202.269i 0.141141 + 0.342829i
\(591\) 49.3656 85.5037i 0.0835289 0.144676i
\(592\) −89.1462 + 23.8867i −0.150585 + 0.0403491i
\(593\) −605.873 162.343i −1.02171 0.273766i −0.291194 0.956664i \(-0.594053\pi\)
−0.730514 + 0.682898i \(0.760719\pi\)
\(594\) 146.735i 0.247029i
\(595\) −236.530 755.762i −0.397530 1.27019i
\(596\) 65.8223 0.110440
\(597\) −44.2997 + 165.329i −0.0742038 + 0.276932i
\(598\) −145.254 542.094i −0.242899 0.906512i
\(599\) −335.297 193.584i −0.559762 0.323179i 0.193288 0.981142i \(-0.438085\pi\)
−0.753050 + 0.657963i \(0.771418\pi\)
\(600\) −31.1892 118.437i −0.0519820 0.197394i
\(601\) 267.104 0.444433 0.222217 0.974997i \(-0.428671\pi\)
0.222217 + 0.974997i \(0.428671\pi\)
\(602\) −168.367 117.884i −0.279679 0.195820i
\(603\) 6.26439 6.26439i 0.0103887 0.0103887i
\(604\) 492.537 284.366i 0.815459 0.470805i
\(605\) −1377.13 + 178.288i −2.27625 + 0.294691i
\(606\) 138.306 239.554i 0.228228 0.395303i
\(607\) 89.8215 335.219i 0.147976 0.552255i −0.851629 0.524146i \(-0.824385\pi\)
0.999605 0.0281090i \(-0.00894856\pi\)
\(608\) −68.7096 + 68.7096i −0.113009 + 0.113009i
\(609\) 215.468 180.811i 0.353805 0.296898i
\(610\) 3.29886 24.6473i 0.00540797 0.0404054i
\(611\) −716.291 1240.65i −1.17233 2.03053i
\(612\) −131.130 + 35.1363i −0.214265 + 0.0574122i
\(613\) −107.138 399.843i −0.174776 0.652272i −0.996590 0.0825161i \(-0.973704\pi\)
0.821814 0.569756i \(-0.192962\pi\)
\(614\) −37.8277 + 21.8398i −0.0616086 + 0.0355698i
\(615\) −185.667 24.8502i −0.301898 0.0404069i
\(616\) −254.135 302.846i −0.412556 0.491633i
\(617\) 637.339 + 637.339i 1.03297 + 1.03297i 0.999438 + 0.0335273i \(0.0106741\pi\)
0.0335273 + 0.999438i \(0.489326\pi\)
\(618\) −465.603 124.758i −0.753403 0.201874i
\(619\) 956.137 + 552.026i 1.54465 + 0.891803i 0.998536 + 0.0540914i \(0.0172262\pi\)
0.546113 + 0.837712i \(0.316107\pi\)
\(620\) 71.2317 + 550.207i 0.114890 + 0.887431i
\(621\) −54.5110 94.4158i −0.0877794 0.152038i
\(622\) −170.194 170.194i −0.273624 0.273624i
\(623\) −577.842 + 825.302i −0.927516 + 1.32472i
\(624\) 131.040i 0.210000i
\(625\) −5.38092 + 624.977i −0.00860948 + 0.999963i
\(626\) 277.434 480.529i 0.443185 0.767619i
\(627\) −573.850 + 153.763i −0.915231 + 0.245235i
\(628\) 341.465 + 91.4954i 0.543735 + 0.145693i
\(629\) 522.044i 0.829959i
\(630\) 141.714 44.3522i 0.224943 0.0704003i
\(631\) −1130.27 −1.79124 −0.895618 0.444824i \(-0.853266\pi\)
−0.895618 + 0.444824i \(0.853266\pi\)
\(632\) −55.4143 + 206.809i −0.0876809 + 0.327230i
\(633\) 154.367 + 576.106i 0.243866 + 0.910120i
\(634\) 174.763 + 100.900i 0.275652 + 0.159148i
\(635\) −282.020 + 116.106i −0.444126 + 0.182844i
\(636\) −14.4077 −0.0226536
\(637\) 80.8349 + 923.255i 0.126899 + 1.44938i
\(638\) 463.252 463.252i 0.726101 0.726101i
\(639\) 30.9010 17.8407i 0.0483584 0.0279197i
\(640\) 34.5333 44.8046i 0.0539582 0.0700072i
\(641\) 251.753 436.050i 0.392751 0.680265i −0.600060 0.799955i \(-0.704857\pi\)
0.992811 + 0.119690i \(0.0381901\pi\)
\(642\) 103.248 385.325i 0.160822 0.600195i
\(643\) 363.947 363.947i 0.566015 0.566015i −0.364995 0.931010i \(-0.618929\pi\)
0.931010 + 0.364995i \(0.118929\pi\)
\(644\) 276.027 + 100.455i 0.428613 + 0.155987i
\(645\) 142.883 109.151i 0.221525 0.169226i
\(646\) −274.821 476.004i −0.425420 0.736849i
\(647\) 13.5224 3.62332i 0.0209002 0.00560018i −0.248354 0.968669i \(-0.579890\pi\)
0.269254 + 0.963069i \(0.413223\pi\)
\(648\) −6.58846 24.5885i −0.0101674 0.0379452i
\(649\) −534.946 + 308.851i −0.824262 + 0.475888i
\(650\) −175.854 + 645.175i −0.270545 + 0.992576i
\(651\) −662.435 + 116.827i −1.01757 + 0.179458i
\(652\) 106.264 + 106.264i 0.162982 + 0.162982i
\(653\) −826.082 221.348i −1.26506 0.338971i −0.436921 0.899500i \(-0.643931\pi\)
−0.828135 + 0.560529i \(0.810598\pi\)
\(654\) 124.377 + 71.8093i 0.190179 + 0.109800i
\(655\) −290.656 + 37.6293i −0.443750 + 0.0574494i
\(656\) −43.2604 74.9291i −0.0659457 0.114221i
\(657\) 46.3144 + 46.3144i 0.0704938 + 0.0704938i
\(658\) 746.954 + 65.3255i 1.13519 + 0.0992789i
\(659\) 254.644i 0.386410i −0.981158 0.193205i \(-0.938112\pi\)
0.981158 0.193205i \(-0.0618882\pi\)
\(660\) 319.815 131.666i 0.484568 0.199494i
\(661\) 2.28118 3.95112i 0.00345111 0.00597749i −0.864295 0.502986i \(-0.832235\pi\)
0.867746 + 0.497008i \(0.165568\pi\)
\(662\) 31.4690 8.43210i 0.0475363 0.0127373i
\(663\) 715.972 + 191.844i 1.07990 + 0.289358i
\(664\) 113.146i 0.170400i
\(665\) 321.954 + 507.738i 0.484141 + 0.763515i
\(666\) 97.8893 0.146981
\(667\) −125.982 + 470.172i −0.188879 + 0.704906i
\(668\) −84.5529 315.556i −0.126576 0.472389i
\(669\) 73.9961 + 42.7216i 0.110607 + 0.0638590i
\(670\) −19.2746 8.03244i −0.0287680 0.0119887i
\(671\) 70.2224 0.104653
\(672\) 56.1834 + 39.3373i 0.0836063 + 0.0585377i
\(673\) 183.435 183.435i 0.272563 0.272563i −0.557568 0.830131i \(-0.688265\pi\)
0.830131 + 0.557568i \(0.188265\pi\)
\(674\) 759.782 438.660i 1.12727 0.650831i
\(675\) −0.559207 + 129.903i −0.000828455 + 0.192448i
\(676\) −188.740 + 326.907i −0.279201 + 0.483591i
\(677\) 276.933 1033.53i 0.409059 1.52663i −0.387386 0.921917i \(-0.626622\pi\)
0.796445 0.604711i \(-0.206711\pi\)
\(678\) 171.398 171.398i 0.252799 0.252799i
\(679\) −521.518 189.798i −0.768068 0.279526i
\(680\) 194.245 + 254.276i 0.285654 + 0.373935i
\(681\) −149.518 258.973i −0.219557 0.380283i
\(682\) −1513.32 + 405.493i −2.21895 + 0.594565i
\(683\) −84.2049 314.257i −0.123287 0.460113i 0.876486 0.481427i \(-0.159882\pi\)
−0.999773 + 0.0213146i \(0.993215\pi\)
\(684\) 89.2563 51.5322i 0.130492 0.0753394i
\(685\) −53.3153 + 398.342i −0.0778325 + 0.581522i
\(686\) −420.111 242.497i −0.612407 0.353494i
\(687\) 25.7265 + 25.7265i 0.0374475 + 0.0374475i
\(688\) 80.2182 + 21.4944i 0.116596 + 0.0312418i
\(689\) 68.1269 + 39.3331i 0.0988780 + 0.0570872i
\(690\) −156.870 + 203.529i −0.227348 + 0.294969i
\(691\) −391.517 678.127i −0.566595 0.981371i −0.996899 0.0786873i \(-0.974927\pi\)
0.430304 0.902684i \(-0.358406\pi\)
\(692\) −283.153 283.153i −0.409181 0.409181i
\(693\) 177.229 + 380.036i 0.255742 + 0.548393i
\(694\) 646.642i 0.931760i
\(695\) −69.8167 29.0953i −0.100456 0.0418637i
\(696\) −56.8272 + 98.4277i −0.0816483 + 0.141419i
\(697\) 472.729 126.667i 0.678233 0.181732i
\(698\) 96.0873 + 25.7465i 0.137661 + 0.0368861i
\(699\) 347.264i 0.496801i
\(700\) −223.828 269.074i −0.319755 0.384392i
\(701\) −451.488 −0.644063 −0.322031 0.946729i \(-0.604366\pi\)
−0.322031 + 0.946729i \(0.604366\pi\)
\(702\) −35.9730 + 134.253i −0.0512436 + 0.191244i
\(703\) 102.578 + 382.825i 0.145914 + 0.544559i
\(704\) 138.343 + 79.8724i 0.196510 + 0.113455i
\(705\) −252.322 + 605.471i −0.357904 + 0.858824i
\(706\) −235.918 −0.334162
\(707\) 68.8699 787.481i 0.0974114 1.11384i
\(708\) 75.7737 75.7737i 0.107025 0.107025i
\(709\) −389.602 + 224.937i −0.549509 + 0.317259i −0.748924 0.662656i \(-0.769429\pi\)
0.199415 + 0.979915i \(0.436096\pi\)
\(710\) −66.6122 51.3415i −0.0938200 0.0723120i
\(711\) 113.546 196.668i 0.159699 0.276607i
\(712\) 105.361 393.214i 0.147979 0.552267i
\(713\) 823.101 823.101i 1.15442 1.15442i
\(714\) −297.183 + 249.383i −0.416223 + 0.349275i
\(715\) −1871.69 250.513i −2.61775 0.350368i
\(716\) −120.088 207.998i −0.167720 0.290500i
\(717\) −473.093 + 126.765i −0.659823 + 0.176799i
\(718\) −188.916 705.045i −0.263115 0.981957i
\(719\) −825.620 + 476.672i −1.14829 + 0.662965i −0.948470 0.316868i \(-0.897369\pi\)
−0.199820 + 0.979833i \(0.564036\pi\)
\(720\) −47.6797 + 36.4231i −0.0662218 + 0.0505877i
\(721\) −1356.57 + 239.246i −1.88152 + 0.331825i
\(722\) −65.9374 65.9374i −0.0913260 0.0913260i
\(723\) 152.495 + 40.8610i 0.210920 + 0.0565159i
\(724\) −377.293 217.830i −0.521123 0.300871i
\(725\) 411.877 408.346i 0.568106 0.563236i
\(726\) 340.142 + 589.143i 0.468515 + 0.811492i
\(727\) 438.595 + 438.595i 0.603295 + 0.603295i 0.941185 0.337890i \(-0.109713\pi\)
−0.337890 + 0.941185i \(0.609713\pi\)
\(728\) −158.272 339.388i −0.217407 0.466192i
\(729\) 27.0000i 0.0370370i
\(730\) 59.3860 142.502i 0.0813508 0.195209i
\(731\) −234.881 + 406.825i −0.321314 + 0.556532i
\(732\) −11.7672 + 3.15302i −0.0160754 + 0.00430740i
\(733\) 734.941 + 196.927i 1.00265 + 0.268659i 0.722554 0.691314i \(-0.242968\pi\)
0.280093 + 0.959973i \(0.409635\pi\)
\(734\) 711.808i 0.969766i
\(735\) 313.463 286.035i 0.426481 0.389163i
\(736\) −118.688 −0.161261
\(737\) 15.2618 56.9578i 0.0207080 0.0772833i
\(738\) 23.7516 + 88.6421i 0.0321837 + 0.120111i
\(739\) 557.758 + 322.022i 0.754747 + 0.435754i 0.827407 0.561603i \(-0.189815\pi\)
−0.0726593 + 0.997357i \(0.523149\pi\)
\(740\) −87.8365 213.354i −0.118698 0.288316i
\(741\) −562.732 −0.759422
\(742\) −37.3153 + 17.4019i −0.0502901 + 0.0234527i
\(743\) −166.104 + 166.104i −0.223558 + 0.223558i −0.809995 0.586437i \(-0.800530\pi\)
0.586437 + 0.809995i \(0.300530\pi\)
\(744\) 235.381 135.897i 0.316373 0.182658i
\(745\) 21.1276 + 163.194i 0.0283592 + 0.219052i
\(746\) 272.063 471.227i 0.364696 0.631672i
\(747\) −31.0606 + 115.920i −0.0415805 + 0.155180i
\(748\) −638.939 + 638.939i −0.854197 + 0.854197i
\(749\) −197.996 1122.68i −0.264347 1.49890i
\(750\) 283.630 115.343i 0.378173 0.153791i
\(751\) 560.910 + 971.525i 0.746884 + 1.29364i 0.949309 + 0.314344i \(0.101785\pi\)
−0.202425 + 0.979298i \(0.564882\pi\)
\(752\) −292.644 + 78.4136i −0.389154 + 0.104273i
\(753\) 124.981 + 466.435i 0.165977 + 0.619436i
\(754\) 537.416 310.277i 0.712753 0.411508i
\(755\) 863.127 + 1129.88i 1.14321 + 1.49652i
\(756\) −46.7621 55.7253i −0.0618547 0.0737106i
\(757\) 646.859 + 646.859i 0.854504 + 0.854504i 0.990684 0.136180i \(-0.0434827\pi\)
−0.136180 + 0.990684i \(0.543483\pi\)
\(758\) −481.673 129.064i −0.635452 0.170269i
\(759\) −628.435 362.827i −0.827977 0.478033i
\(760\) −192.407 148.298i −0.253167 0.195129i
\(761\) 273.840 + 474.305i 0.359842 + 0.623265i 0.987934 0.154874i \(-0.0494971\pi\)
−0.628092 + 0.778139i \(0.716164\pi\)
\(762\) 105.650 + 105.650i 0.138648 + 0.138648i
\(763\) 408.864 + 35.7575i 0.535863 + 0.0468644i
\(764\)