Properties

Label 210.3.v.b.67.7
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.7
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.b.163.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(0.678362 + 4.95377i) q^{5} -2.44949 q^{6} +(5.93351 + 3.71395i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(0.678362 + 4.95377i) q^{5} -2.44949 q^{6} +(5.93351 + 3.71395i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-7.01527 - 0.886545i) q^{10} +(-3.58312 + 6.20615i) q^{11} +(0.896575 - 3.34607i) q^{12} +(7.28383 - 7.28383i) q^{13} +(-7.24516 + 6.74593i) q^{14} +(-7.98372 + 3.35564i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-18.1882 + 4.87353i) q^{17} +(-1.09808 - 4.09808i) q^{18} +(-7.65544 + 4.41987i) q^{19} +(3.77881 - 9.25854i) q^{20} +(-3.55363 + 11.5919i) q^{21} +(-7.16624 - 7.16624i) q^{22} +(0.401994 + 0.107714i) q^{23} +(4.24264 + 2.44949i) q^{24} +(-24.0796 + 6.72090i) q^{25} +(7.28383 + 12.6160i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-6.56320 - 12.3663i) q^{28} +27.7751i q^{29} +(-1.66164 - 12.1342i) q^{30} +(12.5266 - 21.6967i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(-11.9894 - 3.21254i) q^{33} -26.6294i q^{34} +(-14.3730 + 31.9127i) q^{35} +6.00000 q^{36} +(13.8182 - 51.5702i) q^{37} +(-3.23557 - 12.0753i) q^{38} +(15.4513 + 8.92083i) q^{39} +(11.2643 + 8.55081i) q^{40} +46.7769 q^{41} +(-14.5341 - 9.09728i) q^{42} +(-37.3270 + 37.3270i) q^{43} +(12.4123 - 7.16624i) q^{44} +(-9.19309 - 11.8527i) q^{45} +(-0.294280 + 0.509708i) q^{46} +(8.32828 - 31.0816i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(21.4132 + 44.0735i) q^{49} +(-0.367156 - 35.3534i) q^{50} +(-16.3071 - 28.2448i) q^{51} +(-19.8998 + 5.33213i) q^{52} +(18.4455 + 68.8397i) q^{53} +(6.36396 - 3.67423i) q^{54} +(-33.1745 - 13.5399i) q^{55} +(19.2949 - 4.43914i) q^{56} +(-10.8264 - 10.8264i) q^{57} +(-37.9414 - 10.1664i) q^{58} +(35.2552 + 20.3546i) q^{59} +(17.1838 + 2.17158i) q^{60} +(3.30356 + 5.72193i) q^{61} +(25.0531 + 25.0531i) q^{62} +(-20.9866 - 0.748846i) q^{63} -8.00000i q^{64} +(41.0235 + 31.1413i) q^{65} +(8.77682 - 15.2019i) q^{66} +(128.699 - 34.4848i) q^{67} +(36.3765 + 9.74705i) q^{68} +0.720836i q^{69} +(-38.3326 - 31.3147i) q^{70} +129.870 q^{71} +(-2.19615 + 8.19615i) q^{72} +(2.10533 + 7.85719i) q^{73} +(65.3884 + 37.7520i) q^{74} +(-22.0389 - 37.2731i) q^{75} +17.6795 q^{76} +(-44.3098 + 23.5168i) q^{77} +(-17.8417 + 17.8417i) q^{78} +(59.9499 - 34.6121i) q^{79} +(-15.8036 + 12.2575i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-17.1215 + 63.8984i) q^{82} +(57.0471 - 57.0471i) q^{83} +(17.7470 - 16.5241i) q^{84} +(-36.4805 - 86.7944i) q^{85} +(-37.3270 - 64.6523i) q^{86} +(-46.4686 + 12.4512i) q^{87} +(5.24605 + 19.5785i) q^{88} +(-114.055 + 65.8494i) q^{89} +(19.5560 - 8.21960i) q^{90} +(70.2705 - 16.1670i) q^{91} +(-0.588560 - 0.588560i) q^{92} +(41.9147 + 11.2310i) q^{93} +(39.4099 + 22.7533i) q^{94} +(-27.0882 - 34.9250i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(-46.0520 - 46.0520i) q^{97} +(-68.0433 + 13.1189i) q^{98} -21.4987i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 0.678362 + 4.95377i 0.135672 + 0.990754i
\(6\) −2.44949 −0.408248
\(7\) 5.93351 + 3.71395i 0.847645 + 0.530564i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −7.01527 0.886545i −0.701527 0.0886545i
\(11\) −3.58312 + 6.20615i −0.325738 + 0.564195i −0.981662 0.190632i \(-0.938946\pi\)
0.655923 + 0.754828i \(0.272280\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) 7.28383 7.28383i 0.560295 0.560295i −0.369097 0.929391i \(-0.620333\pi\)
0.929391 + 0.369097i \(0.120333\pi\)
\(14\) −7.24516 + 6.74593i −0.517512 + 0.481852i
\(15\) −7.98372 + 3.35564i −0.532248 + 0.223709i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −18.1882 + 4.87353i −1.06990 + 0.286678i −0.750451 0.660926i \(-0.770164\pi\)
−0.319446 + 0.947604i \(0.603497\pi\)
\(18\) −1.09808 4.09808i −0.0610042 0.227671i
\(19\) −7.65544 + 4.41987i −0.402918 + 0.232625i −0.687742 0.725955i \(-0.741398\pi\)
0.284824 + 0.958580i \(0.408065\pi\)
\(20\) 3.77881 9.25854i 0.188941 0.462927i
\(21\) −3.55363 + 11.5919i −0.169221 + 0.551994i
\(22\) −7.16624 7.16624i −0.325738 0.325738i
\(23\) 0.401994 + 0.107714i 0.0174780 + 0.00468322i 0.267547 0.963545i \(-0.413787\pi\)
−0.250069 + 0.968228i \(0.580453\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) −24.0796 + 6.72090i −0.963186 + 0.268836i
\(26\) 7.28383 + 12.6160i 0.280147 + 0.485229i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −6.56320 12.3663i −0.234400 0.441652i
\(29\) 27.7751i 0.957761i 0.877880 + 0.478880i \(0.158957\pi\)
−0.877880 + 0.478880i \(0.841043\pi\)
\(30\) −1.66164 12.1342i −0.0553880 0.404474i
\(31\) 12.5266 21.6967i 0.404083 0.699892i −0.590131 0.807307i \(-0.700924\pi\)
0.994214 + 0.107415i \(0.0342574\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) −11.9894 3.21254i −0.363314 0.0973497i
\(34\) 26.6294i 0.783219i
\(35\) −14.3730 + 31.9127i −0.410656 + 0.911790i
\(36\) 6.00000 0.166667
\(37\) 13.8182 51.5702i 0.373464 1.39379i −0.482111 0.876110i \(-0.660130\pi\)
0.855575 0.517678i \(-0.173204\pi\)
\(38\) −3.23557 12.0753i −0.0851466 0.317771i
\(39\) 15.4513 + 8.92083i 0.396188 + 0.228739i
\(40\) 11.2643 + 8.55081i 0.281607 + 0.213770i
\(41\) 46.7769 1.14090 0.570450 0.821333i \(-0.306769\pi\)
0.570450 + 0.821333i \(0.306769\pi\)
\(42\) −14.5341 9.09728i −0.346050 0.216602i
\(43\) −37.3270 + 37.3270i −0.868070 + 0.868070i −0.992259 0.124189i \(-0.960367\pi\)
0.124189 + 0.992259i \(0.460367\pi\)
\(44\) 12.4123 7.16624i 0.282098 0.162869i
\(45\) −9.19309 11.8527i −0.204291 0.263394i
\(46\) −0.294280 + 0.509708i −0.00639739 + 0.0110806i
\(47\) 8.32828 31.0816i 0.177198 0.661310i −0.818969 0.573837i \(-0.805454\pi\)
0.996167 0.0874729i \(-0.0278791\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 21.4132 + 44.0735i 0.437004 + 0.899460i
\(50\) −0.367156 35.3534i −0.00734313 0.707069i
\(51\) −16.3071 28.2448i −0.319748 0.553819i
\(52\) −19.8998 + 5.33213i −0.382688 + 0.102541i
\(53\) 18.4455 + 68.8397i 0.348029 + 1.29886i 0.889033 + 0.457842i \(0.151378\pi\)
−0.541004 + 0.841020i \(0.681956\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) −33.1745 13.5399i −0.603172 0.246181i
\(56\) 19.2949 4.43914i 0.344552 0.0792703i
\(57\) −10.8264 10.8264i −0.189937 0.189937i
\(58\) −37.9414 10.1664i −0.654163 0.175282i
\(59\) 35.2552 + 20.3546i 0.597546 + 0.344993i 0.768075 0.640359i \(-0.221215\pi\)
−0.170530 + 0.985353i \(0.554548\pi\)
\(60\) 17.1838 + 2.17158i 0.286397 + 0.0361931i
\(61\) 3.30356 + 5.72193i 0.0541567 + 0.0938021i 0.891833 0.452365i \(-0.149420\pi\)
−0.837676 + 0.546167i \(0.816086\pi\)
\(62\) 25.0531 + 25.0531i 0.404083 + 0.404083i
\(63\) −20.9866 0.748846i −0.333121 0.0118864i
\(64\) 8.00000i 0.125000i
\(65\) 41.0235 + 31.1413i 0.631130 + 0.479097i
\(66\) 8.77682 15.2019i 0.132982 0.230332i
\(67\) 128.699 34.4848i 1.92088 0.514699i 0.932901 0.360133i \(-0.117269\pi\)
0.987982 0.154566i \(-0.0493979\pi\)
\(68\) 36.3765 + 9.74705i 0.534948 + 0.143339i
\(69\) 0.720836i 0.0104469i
\(70\) −38.3326 31.3147i −0.547609 0.447353i
\(71\) 129.870 1.82915 0.914576 0.404414i \(-0.132525\pi\)
0.914576 + 0.404414i \(0.132525\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) 2.10533 + 7.85719i 0.0288401 + 0.107633i 0.978846 0.204601i \(-0.0655896\pi\)
−0.950005 + 0.312233i \(0.898923\pi\)
\(74\) 65.3884 + 37.7520i 0.883626 + 0.510162i
\(75\) −22.0389 37.2731i −0.293852 0.496975i
\(76\) 17.6795 0.232625
\(77\) −44.3098 + 23.5168i −0.575452 + 0.305412i
\(78\) −17.8417 + 17.8417i −0.228739 + 0.228739i
\(79\) 59.9499 34.6121i 0.758860 0.438128i −0.0700264 0.997545i \(-0.522308\pi\)
0.828886 + 0.559417i \(0.188975\pi\)
\(80\) −15.8036 + 12.2575i −0.197545 + 0.153218i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −17.1215 + 63.8984i −0.208799 + 0.779249i
\(83\) 57.0471 57.0471i 0.687314 0.687314i −0.274323 0.961638i \(-0.588454\pi\)
0.961638 + 0.274323i \(0.0884538\pi\)
\(84\) 17.7470 16.5241i 0.211273 0.196715i
\(85\) −36.4805 86.7944i −0.429183 1.02111i
\(86\) −37.3270 64.6523i −0.434035 0.751771i
\(87\) −46.4686 + 12.4512i −0.534122 + 0.143117i
\(88\) 5.24605 + 19.5785i 0.0596143 + 0.222483i
\(89\) −114.055 + 65.8494i −1.28151 + 0.739881i −0.977125 0.212667i \(-0.931785\pi\)
−0.304387 + 0.952548i \(0.598452\pi\)
\(90\) 19.5560 8.21960i 0.217289 0.0913288i
\(91\) 70.2705 16.1670i 0.772203 0.177659i
\(92\) −0.588560 0.588560i −0.00639739 0.00639739i
\(93\) 41.9147 + 11.2310i 0.450696 + 0.120764i
\(94\) 39.4099 + 22.7533i 0.419254 + 0.242056i
\(95\) −27.0882 34.9250i −0.285139 0.367632i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) −46.0520 46.0520i −0.474763 0.474763i 0.428689 0.903452i \(-0.358976\pi\)
−0.903452 + 0.428689i \(0.858976\pi\)
\(98\) −68.0433 + 13.1189i −0.694320 + 0.133867i
\(99\) 21.4987i 0.217159i
\(100\) 48.4281 + 12.4387i 0.484281 + 0.124387i
\(101\) −34.0993 + 59.0617i −0.337617 + 0.584769i −0.983984 0.178257i \(-0.942954\pi\)
0.646367 + 0.763027i \(0.276287\pi\)
\(102\) 44.5519 11.9377i 0.436784 0.117036i
\(103\) −134.155 35.9466i −1.30247 0.348996i −0.460087 0.887874i \(-0.652182\pi\)
−0.842384 + 0.538877i \(0.818849\pi\)
\(104\) 29.1353i 0.280147i
\(105\) −59.8341 9.74038i −0.569849 0.0927655i
\(106\) −100.788 −0.950833
\(107\) 11.0299 41.1642i 0.103083 0.384712i −0.895037 0.445991i \(-0.852851\pi\)
0.998121 + 0.0612792i \(0.0195180\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) 149.701 + 86.4300i 1.37341 + 0.792936i 0.991355 0.131205i \(-0.0418847\pi\)
0.382050 + 0.924141i \(0.375218\pi\)
\(110\) 30.6386 40.3612i 0.278533 0.366920i
\(111\) 92.4731 0.833091
\(112\) −0.998461 + 27.9822i −0.00891483 + 0.249841i
\(113\) −2.87483 + 2.87483i −0.0254409 + 0.0254409i −0.719713 0.694272i \(-0.755727\pi\)
0.694272 + 0.719713i \(0.255727\pi\)
\(114\) 18.7519 10.8264i 0.164491 0.0949687i
\(115\) −0.260893 + 2.06445i −0.00226863 + 0.0179518i
\(116\) 27.7751 48.1078i 0.239440 0.414723i
\(117\) −7.99820 + 29.8497i −0.0683607 + 0.255126i
\(118\) −40.7092 + 40.7092i −0.344993 + 0.344993i
\(119\) −126.020 38.6331i −1.05899 0.324648i
\(120\) −9.25616 + 22.6787i −0.0771347 + 0.188989i
\(121\) 34.8225 + 60.3143i 0.287789 + 0.498465i
\(122\) −9.02549 + 2.41837i −0.0739794 + 0.0198227i
\(123\) 20.9695 + 78.2592i 0.170484 + 0.636254i
\(124\) −43.3933 + 25.0531i −0.349946 + 0.202041i
\(125\) −49.6285 114.726i −0.397028 0.917806i
\(126\) 8.70459 28.3942i 0.0690840 0.225351i
\(127\) −17.1629 17.1629i −0.135141 0.135141i 0.636300 0.771441i \(-0.280464\pi\)
−0.771441 + 0.636300i \(0.780464\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) −79.1826 45.7161i −0.613818 0.354388i
\(130\) −57.5555 + 44.6406i −0.442734 + 0.343389i
\(131\) −63.5362 110.048i −0.485010 0.840061i 0.514842 0.857285i \(-0.327851\pi\)
−0.999852 + 0.0172239i \(0.994517\pi\)
\(132\) 17.5536 + 17.5536i 0.132982 + 0.132982i
\(133\) −61.8389 2.20653i −0.464954 0.0165905i
\(134\) 188.429i 1.40618i
\(135\) 15.7088 20.6938i 0.116362 0.153287i
\(136\) −26.6294 + 46.1236i −0.195805 + 0.339144i
\(137\) −90.9671 + 24.3746i −0.663994 + 0.177917i −0.575048 0.818120i \(-0.695017\pi\)
−0.0889460 + 0.996036i \(0.528350\pi\)
\(138\) −0.984680 0.263844i −0.00713536 0.00191191i
\(139\) 91.9640i 0.661612i −0.943699 0.330806i \(-0.892679\pi\)
0.943699 0.330806i \(-0.107321\pi\)
\(140\) 56.8074 40.9014i 0.405767 0.292153i
\(141\) 55.7340 0.395276
\(142\) −47.5356 + 177.405i −0.334758 + 1.24933i
\(143\) 19.1057 + 71.3034i 0.133606 + 0.498625i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) −137.591 + 18.8416i −0.948905 + 0.129942i
\(146\) −11.5037 −0.0787926
\(147\) −64.1372 + 55.5826i −0.436307 + 0.378113i
\(148\) −75.5040 + 75.5040i −0.510162 + 0.510162i
\(149\) −45.8944 + 26.4971i −0.308016 + 0.177833i −0.646038 0.763305i \(-0.723575\pi\)
0.338022 + 0.941138i \(0.390242\pi\)
\(150\) 58.9829 16.4628i 0.393219 0.109752i
\(151\) −12.0722 + 20.9097i −0.0799483 + 0.138475i −0.903227 0.429162i \(-0.858809\pi\)
0.823279 + 0.567637i \(0.192142\pi\)
\(152\) −6.47114 + 24.1506i −0.0425733 + 0.158886i
\(153\) 39.9442 39.9442i 0.261073 0.261073i
\(154\) −15.9060 69.1361i −0.103285 0.448935i
\(155\) 115.978 + 47.3355i 0.748244 + 0.305391i
\(156\) −17.8417 30.9027i −0.114370 0.198094i
\(157\) −169.047 + 45.2960i −1.07673 + 0.288510i −0.753257 0.657727i \(-0.771518\pi\)
−0.323476 + 0.946236i \(0.604852\pi\)
\(158\) 25.3378 + 94.5620i 0.160366 + 0.598494i
\(159\) −106.902 + 61.7200i −0.672340 + 0.388176i
\(160\) −10.9595 26.0747i −0.0684966 0.162967i
\(161\) 1.98519 + 2.13211i 0.0123304 + 0.0132429i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 240.830 + 64.5303i 1.47749 + 0.395891i 0.905491 0.424366i \(-0.139503\pi\)
0.571995 + 0.820257i \(0.306170\pi\)
\(164\) −81.0199 46.7769i −0.494024 0.285225i
\(165\) 7.78105 61.5718i 0.0471579 0.373162i
\(166\) 57.0471 + 98.8085i 0.343657 + 0.595232i
\(167\) −186.515 186.515i −1.11686 1.11686i −0.992200 0.124657i \(-0.960217\pi\)
−0.124657 0.992200i \(-0.539783\pi\)
\(168\) 16.0765 + 30.2910i 0.0956934 + 0.180304i
\(169\) 62.8917i 0.372140i
\(170\) 131.916 18.0644i 0.775977 0.106261i
\(171\) 13.2596 22.9663i 0.0775416 0.134306i
\(172\) 101.979 27.3253i 0.592903 0.158868i
\(173\) 135.491 + 36.3047i 0.783185 + 0.209854i 0.628189 0.778061i \(-0.283797\pi\)
0.154997 + 0.987915i \(0.450463\pi\)
\(174\) 68.0347i 0.391004i
\(175\) −167.838 49.5520i −0.959074 0.283154i
\(176\) −28.6650 −0.162869
\(177\) −18.2494 + 68.1078i −0.103104 + 0.384790i
\(178\) −48.2051 179.904i −0.270815 1.01070i
\(179\) −191.781 110.725i −1.07140 0.618573i −0.142836 0.989746i \(-0.545622\pi\)
−0.928564 + 0.371173i \(0.878956\pi\)
\(180\) 4.07017 + 29.7226i 0.0226121 + 0.165126i
\(181\) 149.607 0.826556 0.413278 0.910605i \(-0.364384\pi\)
0.413278 + 0.910605i \(0.364384\pi\)
\(182\) −3.63631 + 101.909i −0.0199797 + 0.559938i
\(183\) −8.09203 + 8.09203i −0.0442187 + 0.0442187i
\(184\) 1.01942 0.588560i 0.00554030 0.00319870i
\(185\) 264.840 + 33.4688i 1.43157 + 0.180913i
\(186\) −30.6837 + 53.1457i −0.164966 + 0.285730i
\(187\) 34.9249 130.341i 0.186764 0.697013i
\(188\) −45.5066 + 45.5066i −0.242056 + 0.242056i
\(189\) −8.15521 35.4470i −0.0431493 0.187550i
\(190\) 57.6234 24.2197i 0.303281 0.127472i
\(191\) −142.890 247.493i −0.748116 1.29578i −0.948725 0.316104i \(-0.897625\pi\)
0.200608 0.979672i \(-0.435708\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) −61.1833 228.339i −0.317012 1.18310i −0.922102 0.386947i \(-0.873529\pi\)
0.605090 0.796157i \(-0.293137\pi\)
\(194\) 79.7644 46.0520i 0.411157 0.237382i
\(195\) −33.7101 + 82.5939i −0.172873 + 0.423558i
\(196\) 6.98478 97.7508i 0.0356366 0.498728i
\(197\) −72.1108 72.1108i −0.366045 0.366045i 0.499988 0.866032i \(-0.333338\pi\)
−0.866032 + 0.499988i \(0.833338\pi\)
\(198\) 29.3678 + 7.86908i 0.148322 + 0.0397428i
\(199\) 248.372 + 143.398i 1.24810 + 0.720592i 0.970731 0.240171i \(-0.0772035\pi\)
0.277371 + 0.960763i \(0.410537\pi\)
\(200\) −34.7175 + 61.6011i −0.173587 + 0.308005i
\(201\) 115.389 + 199.859i 0.574072 + 0.994322i
\(202\) −68.1986 68.1986i −0.337617 0.337617i
\(203\) −103.155 + 164.804i −0.508153 + 0.811841i
\(204\) 65.2286i 0.319748i
\(205\) 31.7317 + 231.722i 0.154789 + 1.13035i
\(206\) 98.2080 170.101i 0.476738 0.825734i
\(207\) −1.20598 + 0.323142i −0.00582600 + 0.00156107i
\(208\) 39.7996 + 10.6643i 0.191344 + 0.0512705i
\(209\) 63.3478i 0.303099i
\(210\) 35.2064 78.1697i 0.167650 0.372237i
\(211\) 293.048 1.38885 0.694427 0.719563i \(-0.255658\pi\)
0.694427 + 0.719563i \(0.255658\pi\)
\(212\) 36.8911 137.679i 0.174015 0.649431i
\(213\) 58.2190 + 217.276i 0.273329 + 1.02008i
\(214\) 52.1941 + 30.1343i 0.243897 + 0.140814i
\(215\) −210.231 159.588i −0.977817 0.742271i
\(216\) −14.6969 −0.0680414
\(217\) 154.907 82.2144i 0.713856 0.378868i
\(218\) −172.860 + 172.860i −0.792936 + 0.792936i
\(219\) −12.2015 + 7.04456i −0.0557148 + 0.0321670i
\(220\) 43.9199 + 56.6263i 0.199636 + 0.257392i
\(221\) −96.9822 + 167.978i −0.438833 + 0.760082i
\(222\) −33.8475 + 126.321i −0.152466 + 0.569012i
\(223\) 166.941 166.941i 0.748615 0.748615i −0.225604 0.974219i \(-0.572436\pi\)
0.974219 + 0.225604i \(0.0724356\pi\)
\(224\) −37.8589 11.6061i −0.169013 0.0518130i
\(225\) 52.4794 53.5809i 0.233242 0.238137i
\(226\) −2.87483 4.97934i −0.0127205 0.0220325i
\(227\) 294.427 78.8916i 1.29704 0.347540i 0.456708 0.889617i \(-0.349028\pi\)
0.840329 + 0.542076i \(0.182362\pi\)
\(228\) 7.92550 + 29.5784i 0.0347610 + 0.129730i
\(229\) −194.928 + 112.542i −0.851213 + 0.491448i −0.861060 0.508503i \(-0.830199\pi\)
0.00984691 + 0.999952i \(0.496866\pi\)
\(230\) −2.72460 1.11203i −0.0118461 0.00483491i
\(231\) −59.2078 63.5895i −0.256311 0.275279i
\(232\) 55.5501 + 55.5501i 0.239440 + 0.239440i
\(233\) 97.8963 + 26.2312i 0.420156 + 0.112580i 0.462702 0.886514i \(-0.346880\pi\)
−0.0425458 + 0.999095i \(0.513547\pi\)
\(234\) −37.8479 21.8515i −0.161743 0.0933824i
\(235\) 159.621 + 20.1718i 0.679236 + 0.0858375i
\(236\) −40.7092 70.5104i −0.172497 0.298773i
\(237\) 84.7820 + 84.7820i 0.357730 + 0.357730i
\(238\) 98.9003 158.006i 0.415548 0.663892i
\(239\) 191.422i 0.800927i 0.916313 + 0.400464i \(0.131151\pi\)
−0.916313 + 0.400464i \(0.868849\pi\)
\(240\) −27.5917 20.9451i −0.114965 0.0872714i
\(241\) −134.250 + 232.528i −0.557054 + 0.964846i 0.440687 + 0.897661i \(0.354735\pi\)
−0.997741 + 0.0671848i \(0.978598\pi\)
\(242\) −95.1368 + 25.4918i −0.393127 + 0.105338i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 13.2142i 0.0541567i
\(245\) −203.804 + 135.974i −0.831854 + 0.554995i
\(246\) −114.579 −0.465770
\(247\) −23.5673 + 87.9545i −0.0954144 + 0.356091i
\(248\) −18.3402 68.4465i −0.0739523 0.275994i
\(249\) 121.015 + 69.8681i 0.486005 + 0.280595i
\(250\) 174.884 25.8012i 0.699535 0.103205i
\(251\) −314.645 −1.25357 −0.626784 0.779193i \(-0.715629\pi\)
−0.626784 + 0.779193i \(0.715629\pi\)
\(252\) 35.6011 + 22.2837i 0.141274 + 0.0884273i
\(253\) −2.10888 + 2.10888i −0.00833550 + 0.00833550i
\(254\) 29.7271 17.1629i 0.117036 0.0675706i
\(255\) 128.856 99.9420i 0.505318 0.391929i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 96.6597 360.739i 0.376108 1.40365i −0.475612 0.879655i \(-0.657773\pi\)
0.851720 0.523998i \(-0.175560\pi\)
\(258\) 91.4321 91.4321i 0.354388 0.354388i
\(259\) 273.519 254.672i 1.05606 0.983291i
\(260\) −39.9134 94.9618i −0.153513 0.365238i
\(261\) −41.6626 72.1617i −0.159627 0.276482i
\(262\) 173.584 46.5118i 0.662535 0.177526i
\(263\) 6.68028 + 24.9311i 0.0254003 + 0.0947952i 0.977462 0.211110i \(-0.0677077\pi\)
−0.952062 + 0.305905i \(0.901041\pi\)
\(264\) −30.4038 + 17.5536i −0.115166 + 0.0664911i
\(265\) −328.503 + 138.073i −1.23963 + 0.521031i
\(266\) 25.6488 83.6658i 0.0964240 0.314533i
\(267\) −161.297 161.297i −0.604110 0.604110i
\(268\) −257.398 68.9697i −0.960442 0.257350i
\(269\) 189.173 + 109.219i 0.703246 + 0.406020i 0.808555 0.588420i \(-0.200250\pi\)
−0.105309 + 0.994440i \(0.533583\pi\)
\(270\) 22.5184 + 29.0331i 0.0834014 + 0.107530i
\(271\) 14.9730 + 25.9340i 0.0552510 + 0.0956975i 0.892328 0.451387i \(-0.149071\pi\)
−0.837077 + 0.547085i \(0.815737\pi\)
\(272\) −53.2589 53.2589i −0.195805 0.195805i
\(273\) 58.5492 + 110.317i 0.214466 + 0.404093i
\(274\) 133.185i 0.486077i
\(275\) 44.5694 173.524i 0.162071 0.630995i
\(276\) 0.720836 1.24852i 0.00261172 0.00452364i
\(277\) 514.112 137.756i 1.85600 0.497314i 0.856188 0.516665i \(-0.172827\pi\)
0.999813 + 0.0193511i \(0.00616002\pi\)
\(278\) 125.625 + 33.6612i 0.451889 + 0.121083i
\(279\) 75.1594i 0.269389i
\(280\) 35.0794 + 92.5712i 0.125284 + 0.330612i
\(281\) 69.2961 0.246605 0.123303 0.992369i \(-0.460651\pi\)
0.123303 + 0.992369i \(0.460651\pi\)
\(282\) −20.4000 + 76.1340i −0.0723406 + 0.269979i
\(283\) −90.7385 338.641i −0.320631 1.19661i −0.918632 0.395115i \(-0.870705\pi\)
0.598001 0.801495i \(-0.295962\pi\)
\(284\) −224.941 129.870i −0.792046 0.457288i
\(285\) 46.2874 60.9759i 0.162412 0.213950i
\(286\) −104.395 −0.365019
\(287\) 277.551 + 173.727i 0.967078 + 0.605320i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 56.7798 32.7818i 0.196470 0.113432i
\(290\) 24.6239 194.850i 0.0849098 0.671895i
\(291\) 56.4020 97.6911i 0.193821 0.335708i
\(292\) 4.21066 15.7144i 0.0144201 0.0538164i
\(293\) 371.421 371.421i 1.26765 1.26765i 0.320351 0.947299i \(-0.396199\pi\)
0.947299 0.320351i \(-0.103801\pi\)
\(294\) −52.4514 107.958i −0.178406 0.367203i
\(295\) −76.9162 + 188.454i −0.260733 + 0.638827i
\(296\) −75.5040 130.777i −0.255081 0.441813i
\(297\) 35.9681 9.63762i 0.121105 0.0324499i
\(298\) −19.3972 72.3915i −0.0650914 0.242924i
\(299\) 3.71263 2.14349i 0.0124168 0.00716885i
\(300\) 0.899346 + 86.5979i 0.00299782 + 0.288660i
\(301\) −360.111 + 82.8498i −1.19638 + 0.275249i
\(302\) −24.1444 24.1444i −0.0799483 0.0799483i
\(303\) −114.098 30.5726i −0.376563 0.100900i
\(304\) −30.6218 17.6795i −0.100730 0.0581562i
\(305\) −26.1041 + 20.2466i −0.0855872 + 0.0663823i
\(306\) 39.9442 + 69.1853i 0.130536 + 0.226096i
\(307\) −76.4698 76.4698i −0.249087 0.249087i 0.571509 0.820596i \(-0.306358\pi\)
−0.820596 + 0.571509i \(0.806358\pi\)
\(308\) 100.264 + 3.57761i 0.325531 + 0.0116156i
\(309\) 240.559i 0.778509i
\(310\) −107.112 + 141.103i −0.345524 + 0.455170i
\(311\) −104.711 + 181.364i −0.336690 + 0.583164i −0.983808 0.179226i \(-0.942641\pi\)
0.647118 + 0.762390i \(0.275974\pi\)
\(312\) 48.7443 13.0610i 0.156232 0.0418622i
\(313\) −284.971 76.3577i −0.910450 0.243954i −0.226952 0.973906i \(-0.572876\pi\)
−0.683499 + 0.729952i \(0.739543\pi\)
\(314\) 247.502i 0.788223i
\(315\) −10.5269 104.471i −0.0334189 0.331654i
\(316\) −138.448 −0.438128
\(317\) −161.418 + 602.418i −0.509204 + 1.90037i −0.0809415 + 0.996719i \(0.525793\pi\)
−0.428262 + 0.903655i \(0.640874\pi\)
\(318\) −45.1822 168.622i −0.142082 0.530258i
\(319\) −172.376 99.5215i −0.540364 0.311979i
\(320\) 39.6301 5.42690i 0.123844 0.0169591i
\(321\) 73.8135 0.229949
\(322\) −3.63914 + 1.93142i −0.0113017 + 0.00599820i
\(323\) 117.699 117.699i 0.364392 0.364392i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −126.438 + 224.346i −0.389041 + 0.690295i
\(326\) −176.300 + 305.361i −0.540797 + 0.936689i
\(327\) −77.4911 + 289.201i −0.236976 + 0.884405i
\(328\) 93.5538 93.5538i 0.285225 0.285225i
\(329\) 164.851 153.492i 0.501068 0.466542i
\(330\) 81.2606 + 33.1659i 0.246244 + 0.100503i
\(331\) 79.4501 + 137.612i 0.240031 + 0.415745i 0.960723 0.277510i \(-0.0895092\pi\)
−0.720692 + 0.693255i \(0.756176\pi\)
\(332\) −155.856 + 41.7614i −0.469445 + 0.125787i
\(333\) 41.4546 + 154.711i 0.124488 + 0.464596i
\(334\) 323.054 186.515i 0.967226 0.558428i
\(335\) 258.135 + 614.153i 0.770551 + 1.83329i
\(336\) −47.2627 + 10.8736i −0.140663 + 0.0323620i
\(337\) −39.4387 39.4387i −0.117029 0.117029i 0.646167 0.763196i \(-0.276371\pi\)
−0.763196 + 0.646167i \(0.776371\pi\)
\(338\) −85.9116 23.0199i −0.254176 0.0681064i
\(339\) −6.09843 3.52093i −0.0179895 0.0103862i
\(340\) −23.6082 + 186.813i −0.0694359 + 0.549449i
\(341\) 89.7685 + 155.484i 0.263251 + 0.455963i
\(342\) 26.5192 + 26.5192i 0.0775416 + 0.0775416i
\(343\) −36.6312 + 341.038i −0.106797 + 0.994281i
\(344\) 149.308i 0.434035i
\(345\) −3.57085 + 0.488988i −0.0103503 + 0.00141736i
\(346\) −99.1863 + 171.796i −0.286666 + 0.496520i
\(347\) −282.917 + 75.8074i −0.815323 + 0.218465i −0.642301 0.766453i \(-0.722020\pi\)
−0.173023 + 0.984918i \(0.555353\pi\)
\(348\) 92.9372 + 24.9024i 0.267061 + 0.0715587i
\(349\) 475.392i 1.36216i 0.732211 + 0.681078i \(0.238489\pi\)
−0.732211 + 0.681078i \(0.761511\pi\)
\(350\) 129.122 211.134i 0.368921 0.603239i
\(351\) −53.5250 −0.152493
\(352\) 10.4921 39.1571i 0.0298071 0.111242i
\(353\) −149.006 556.098i −0.422114 1.57535i −0.770147 0.637867i \(-0.779817\pi\)
0.348033 0.937482i \(-0.386850\pi\)
\(354\) −86.3573 49.8584i −0.243947 0.140843i
\(355\) 88.0988 + 643.345i 0.248166 + 1.81224i
\(356\) 263.398 0.739881
\(357\) 8.14102 228.155i 0.0228040 0.639089i
\(358\) 221.449 221.449i 0.618573 0.618573i
\(359\) 38.5401 22.2511i 0.107354 0.0619808i −0.445362 0.895351i \(-0.646925\pi\)
0.552716 + 0.833370i \(0.313592\pi\)
\(360\) −42.0916 5.31927i −0.116921 0.0147758i
\(361\) −141.429 + 244.963i −0.391771 + 0.678568i
\(362\) −54.7598 + 204.366i −0.151270 + 0.564548i
\(363\) −85.2973 + 85.2973i −0.234979 + 0.234979i
\(364\) −137.879 42.2685i −0.378788 0.116122i
\(365\) −37.4945 + 15.7593i −0.102725 + 0.0431762i
\(366\) −8.09203 14.0158i −0.0221094 0.0382945i
\(367\) −359.065 + 96.2112i −0.978379 + 0.262156i −0.712362 0.701812i \(-0.752375\pi\)
−0.266017 + 0.963968i \(0.585708\pi\)
\(368\) 0.430856 + 1.60798i 0.00117080 + 0.00436950i
\(369\) −121.530 + 70.1653i −0.329349 + 0.190150i
\(370\) −142.658 + 349.528i −0.385561 + 0.944671i
\(371\) −146.220 + 476.967i −0.394124 + 1.28563i
\(372\) −61.3674 61.3674i −0.164966 0.164966i
\(373\) −613.473 164.380i −1.64470 0.440696i −0.686577 0.727057i \(-0.740888\pi\)
−0.958122 + 0.286361i \(0.907554\pi\)
\(374\) 165.266 + 95.4165i 0.441889 + 0.255124i
\(375\) 169.692 134.460i 0.452512 0.358561i
\(376\) −45.5066 78.8197i −0.121028 0.209627i
\(377\) 202.309 + 202.309i 0.536628 + 0.536628i
\(378\) 51.4066 + 1.83429i 0.135996 + 0.00485262i
\(379\) 203.740i 0.537573i −0.963200 0.268787i \(-0.913377\pi\)
0.963200 0.268787i \(-0.0866226\pi\)
\(380\) 11.9931 + 87.5801i 0.0315608 + 0.230474i
\(381\) 21.0202 36.4081i 0.0551711 0.0955592i
\(382\) 390.383 104.603i 1.02195 0.273830i
\(383\) −134.722 36.0986i −0.351754 0.0942522i 0.0786154 0.996905i \(-0.474950\pi\)
−0.430370 + 0.902653i \(0.641617\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −146.555 203.548i −0.380661 0.528695i
\(386\) 334.312 0.866093
\(387\) 40.9879 152.969i 0.105912 0.395269i
\(388\) 33.7124 + 125.816i 0.0868877 + 0.324269i
\(389\) −477.792 275.853i −1.22826 0.709134i −0.261592 0.965179i \(-0.584247\pi\)
−0.966665 + 0.256044i \(0.917581\pi\)
\(390\) −100.487 76.2804i −0.257658 0.195591i
\(391\) −7.83651 −0.0200422
\(392\) 130.973 + 45.3207i 0.334116 + 0.115614i
\(393\) 155.631 155.631i 0.396009 0.396009i
\(394\) 124.900 72.1108i 0.317004 0.183022i
\(395\) 212.128 + 273.498i 0.537033 + 0.692401i
\(396\) −21.4987 + 37.2369i −0.0542897 + 0.0940326i
\(397\) 116.583 435.093i 0.293660 1.09595i −0.648617 0.761115i \(-0.724652\pi\)
0.942276 0.334837i \(-0.108681\pi\)
\(398\) −286.796 + 286.796i −0.720592 + 0.720592i
\(399\) −24.0300 104.448i −0.0602256 0.261773i
\(400\) −71.4412 69.9726i −0.178603 0.174931i
\(401\) −228.287 395.405i −0.569295 0.986048i −0.996636 0.0819577i \(-0.973883\pi\)
0.427340 0.904091i \(-0.359451\pi\)
\(402\) −315.247 + 84.4703i −0.784197 + 0.210125i
\(403\) −66.7933 249.276i −0.165740 0.618551i
\(404\) 118.123 68.1986i 0.292385 0.168808i
\(405\) 41.6634 + 17.0046i 0.102873 + 0.0419868i
\(406\) −187.369 201.235i −0.461499 0.495652i
\(407\) 270.540 + 270.540i 0.664717 + 0.664717i
\(408\) −89.1039 23.8753i −0.218392 0.0585179i
\(409\) −502.237 289.967i −1.22796 0.708965i −0.261361 0.965241i \(-0.584171\pi\)
−0.966604 + 0.256276i \(0.917504\pi\)
\(410\) −328.153 41.4698i −0.800372 0.101146i
\(411\) −81.5589 141.264i −0.198440 0.343708i
\(412\) 196.416 + 196.416i 0.476738 + 0.476738i
\(413\) 133.591 + 251.710i 0.323466 + 0.609468i
\(414\) 1.76568i 0.00426493i
\(415\) 321.297 + 243.900i 0.774209 + 0.587710i
\(416\) −29.1353 + 50.4638i −0.0700368 + 0.121307i
\(417\) 153.859 41.2263i 0.368966 0.0988641i
\(418\) 86.5347 + 23.1869i 0.207021 + 0.0554710i
\(419\) 466.412i 1.11315i −0.830796 0.556577i \(-0.812114\pi\)
0.830796 0.556577i \(-0.187886\pi\)
\(420\) 93.8954 + 76.7050i 0.223560 + 0.182631i
\(421\) −8.56578 −0.0203463 −0.0101731 0.999948i \(-0.503238\pi\)
−0.0101731 + 0.999948i \(0.503238\pi\)
\(422\) −107.263 + 400.311i −0.254178 + 0.948605i
\(423\) 24.9849 + 93.2447i 0.0590658 + 0.220437i
\(424\) 174.570 + 100.788i 0.411723 + 0.237708i
\(425\) 405.212 239.594i 0.953440 0.563751i
\(426\) −318.115 −0.746748
\(427\) −1.64924 + 46.2204i −0.00386238 + 0.108244i
\(428\) −60.2685 + 60.2685i −0.140814 + 0.140814i
\(429\) −110.728 + 63.9289i −0.258107 + 0.149018i
\(430\) 294.951 228.767i 0.685933 0.532016i
\(431\) −70.0856 + 121.392i −0.162612 + 0.281652i −0.935805 0.352519i \(-0.885325\pi\)
0.773193 + 0.634171i \(0.218658\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) 20.7110 20.7110i 0.0478314 0.0478314i −0.682787 0.730618i \(-0.739232\pi\)
0.730618 + 0.682787i \(0.239232\pi\)
\(434\) 55.6071 + 241.699i 0.128127 + 0.556911i
\(435\) −93.2030 221.748i −0.214260 0.509766i
\(436\) −172.860 299.402i −0.396468 0.686703i
\(437\) −3.55352 + 0.952164i −0.00813164 + 0.00217887i
\(438\) −5.15698 19.2461i −0.0117739 0.0439409i
\(439\) −262.272 + 151.423i −0.597430 + 0.344926i −0.768030 0.640414i \(-0.778763\pi\)
0.170600 + 0.985340i \(0.445429\pi\)
\(440\) −93.4288 + 39.2691i −0.212338 + 0.0892479i
\(441\) −121.743 82.3866i −0.276062 0.186818i
\(442\) −193.964 193.964i −0.438833 0.438833i
\(443\) 557.570 + 149.400i 1.25862 + 0.337247i 0.825661 0.564166i \(-0.190802\pi\)
0.432961 + 0.901413i \(0.357469\pi\)
\(444\) −160.168 92.4731i −0.360739 0.208273i
\(445\) −403.573 520.330i −0.906906 1.16928i
\(446\) 166.941 + 289.151i 0.374307 + 0.648320i
\(447\) −64.9044 64.9044i −0.145200 0.145200i
\(448\) 29.7116 47.4681i 0.0663205 0.105956i
\(449\) 31.4156i 0.0699679i −0.999388 0.0349840i \(-0.988862\pi\)
0.999388 0.0349840i \(-0.0111380\pi\)
\(450\) 53.9840 + 91.3002i 0.119965 + 0.202889i
\(451\) −167.607 + 290.304i −0.371635 + 0.643690i
\(452\) 7.85417 2.10452i 0.0173765 0.00465601i
\(453\) −40.3943 10.8236i −0.0891707 0.0238932i
\(454\) 431.072i 0.949497i
\(455\) 127.756 + 337.137i 0.280783 + 0.740960i
\(456\) −43.3057 −0.0949687
\(457\) −73.5073 + 274.333i −0.160848 + 0.600291i 0.837686 + 0.546152i \(0.183908\pi\)
−0.998533 + 0.0541389i \(0.982759\pi\)
\(458\) −82.3862 307.469i −0.179882 0.671331i
\(459\) 84.7344 + 48.9214i 0.184606 + 0.106583i
\(460\) 2.51633 3.31485i 0.00547029 0.00720619i
\(461\) −8.38183 −0.0181818 −0.00909092 0.999959i \(-0.502894\pi\)
−0.00909092 + 0.999959i \(0.502894\pi\)
\(462\) 108.536 57.6040i 0.234927 0.124684i
\(463\) −59.5826 + 59.5826i −0.128688 + 0.128688i −0.768517 0.639829i \(-0.779005\pi\)
0.639829 + 0.768517i \(0.279005\pi\)
\(464\) −96.2157 + 55.5501i −0.207361 + 0.119720i
\(465\) −27.2025 + 215.255i −0.0585000 + 0.462913i
\(466\) −71.6651 + 124.128i −0.153788 + 0.266368i
\(467\) 126.941 473.750i 0.271822 1.01445i −0.686119 0.727489i \(-0.740687\pi\)
0.957941 0.286964i \(-0.0926461\pi\)
\(468\) 43.7030 43.7030i 0.0933824 0.0933824i
\(469\) 891.713 + 273.366i 1.90131 + 0.582869i
\(470\) −85.9804 + 210.662i −0.182937 + 0.448218i
\(471\) −151.563 262.516i −0.321791 0.557358i
\(472\) 111.220 29.8012i 0.235635 0.0631381i
\(473\) −97.9098 365.404i −0.206997 0.772525i
\(474\) −146.847 + 84.7820i −0.309803 + 0.178865i
\(475\) 154.635 157.880i 0.325547 0.332380i
\(476\) 179.640 + 192.935i 0.377396 + 0.405325i
\(477\) −151.182 151.182i −0.316944 0.316944i
\(478\) −261.487 70.0652i −0.547044 0.146580i
\(479\) −395.262 228.205i −0.825183 0.476419i 0.0270178 0.999635i \(-0.491399\pi\)
−0.852200 + 0.523216i \(0.824732\pi\)
\(480\) 38.7108 30.0245i 0.0806476 0.0625511i
\(481\) −274.979 476.278i −0.571682 0.990182i
\(482\) −268.500 268.500i −0.557054 0.557054i
\(483\) −2.67715 + 4.27709i −0.00554275 + 0.00885526i
\(484\) 139.290i 0.287789i
\(485\) 196.891 259.371i 0.405961 0.534786i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) 0.712445 0.190899i 0.00146293 0.000391990i −0.258088 0.966122i \(-0.583092\pi\)
0.259550 + 0.965730i \(0.416426\pi\)
\(488\) 18.0510 + 4.83674i 0.0369897 + 0.00991136i
\(489\) 431.845i 0.883119i
\(490\) −111.146 328.171i −0.226829 0.669738i
\(491\) 335.358 0.683010 0.341505 0.939880i \(-0.389063\pi\)
0.341505 + 0.939880i \(0.389063\pi\)
\(492\) 41.9390 156.518i 0.0852419 0.318127i
\(493\) −135.363 505.180i −0.274569 1.02471i
\(494\) −111.522 64.3872i −0.225753 0.130338i
\(495\) 106.500 14.5839i 0.215151 0.0294625i
\(496\) 100.213 0.202041
\(497\) 770.584 + 482.329i 1.55047 + 0.970482i
\(498\) −139.736 + 139.736i −0.280595 + 0.280595i
\(499\) 530.603 306.344i 1.06333 0.613915i 0.136980 0.990574i \(-0.456260\pi\)
0.926352 + 0.376658i \(0.122927\pi\)
\(500\) −28.7667 + 248.339i −0.0575334 + 0.496679i
\(501\) 228.433 395.658i 0.455955 0.789737i
\(502\) 115.168 429.814i 0.229419 0.856202i
\(503\) −377.103 + 377.103i −0.749707 + 0.749707i −0.974424 0.224717i \(-0.927854\pi\)
0.224717 + 0.974424i \(0.427854\pi\)
\(504\) −43.4710 + 40.4756i −0.0862519 + 0.0803087i
\(505\) −315.710 128.855i −0.625168 0.255158i
\(506\) −2.10888 3.65269i −0.00416775 0.00721876i
\(507\) −105.220 + 28.1936i −0.207534 + 0.0556086i
\(508\) 12.5641 + 46.8900i 0.0247325 + 0.0923031i
\(509\) 683.042 394.355i 1.34193 0.774764i 0.354840 0.934927i \(-0.384535\pi\)
0.987091 + 0.160163i \(0.0512021\pi\)
\(510\) 89.3587 + 212.602i 0.175213 + 0.416866i
\(511\) −16.6892 + 54.4398i −0.0326599 + 0.106536i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 44.3675 + 11.8882i 0.0864864 + 0.0231740i
\(514\) 457.398 + 264.079i 0.889880 + 0.513773i
\(515\) 87.0658 688.955i 0.169060 1.33778i
\(516\) 91.4321 + 158.365i 0.177194 + 0.306909i
\(517\) 163.056 + 163.056i 0.315388 + 0.315388i
\(518\) 247.774 + 466.851i 0.478328 + 0.901257i
\(519\) 242.956i 0.468123i
\(520\) 144.330 19.7643i 0.277557 0.0380083i
\(521\) −5.25649 + 9.10450i −0.0100892 + 0.0174750i −0.871026 0.491237i \(-0.836545\pi\)
0.860937 + 0.508712i \(0.169878\pi\)
\(522\) 113.824 30.4991i 0.218054 0.0584275i
\(523\) 672.226 + 180.122i 1.28533 + 0.344402i 0.835884 0.548906i \(-0.184956\pi\)
0.449444 + 0.893309i \(0.351622\pi\)
\(524\) 254.145i 0.485010i
\(525\) 7.66236 303.012i 0.0145950 0.577166i
\(526\) −36.5017 −0.0693949
\(527\) −122.097 + 455.673i −0.231683 + 0.864654i
\(528\) −12.8502 47.9574i −0.0243374 0.0908285i
\(529\) −457.977 264.413i −0.865742 0.499836i
\(530\) −68.3710 499.282i −0.129002 0.942041i
\(531\) −122.128 −0.229995
\(532\) 104.902 + 65.6607i 0.197183 + 0.123422i
\(533\) 340.715 340.715i 0.639240 0.639240i
\(534\) 279.375 161.297i 0.523175 0.302055i
\(535\) 211.400 + 26.7154i 0.395140 + 0.0499353i
\(536\) 188.429 326.368i 0.351546 0.608896i
\(537\) 99.2729 370.492i 0.184866 0.689928i
\(538\) −218.439 + 218.439i −0.406020 + 0.406020i
\(539\) −350.253 25.0273i −0.649820 0.0464329i
\(540\) −47.9023 + 20.1338i −0.0887079 + 0.0372848i
\(541\) −370.192 641.191i −0.684273 1.18520i −0.973665 0.227985i \(-0.926786\pi\)
0.289392 0.957211i \(-0.406547\pi\)
\(542\) −40.9070 + 10.9610i −0.0754742 + 0.0202233i
\(543\) 67.0668 + 250.297i 0.123512 + 0.460951i
\(544\) 92.2471 53.2589i 0.169572 0.0979024i
\(545\) −326.603 + 800.216i −0.599271 + 1.46829i
\(546\) −172.127 + 39.6008i −0.315251 + 0.0725289i
\(547\) −452.053 452.053i −0.826421 0.826421i 0.160598 0.987020i \(-0.448658\pi\)
−0.987020 + 0.160598i \(0.948658\pi\)
\(548\) 181.934 + 48.7491i 0.331997 + 0.0889583i
\(549\) −17.1658 9.91067i −0.0312674 0.0180522i
\(550\) 220.724 + 124.397i 0.401317 + 0.226176i
\(551\) −122.762 212.630i −0.222799 0.385899i
\(552\) 1.44167 + 1.44167i 0.00261172 + 0.00261172i
\(553\) 484.261 + 17.2794i 0.875698 + 0.0312467i
\(554\) 752.712i 1.35869i
\(555\) 62.7303 + 458.090i 0.113028 + 0.825388i
\(556\) −91.9640 + 159.286i −0.165403 + 0.286486i
\(557\) −433.341 + 116.113i −0.777991 + 0.208462i −0.625899 0.779904i \(-0.715268\pi\)
−0.152092 + 0.988366i \(0.548601\pi\)
\(558\) −102.670 27.5103i −0.183996 0.0493015i
\(559\) 543.767i 0.972750i
\(560\) −139.295 + 14.0359i −0.248740 + 0.0250641i
\(561\) 233.722 0.416616
\(562\) −25.3641 + 94.6602i −0.0451319 + 0.168435i
\(563\) 126.933 + 473.720i 0.225458 + 0.841422i 0.982220 + 0.187731i \(0.0601134\pi\)
−0.756762 + 0.653690i \(0.773220\pi\)
\(564\) −96.5341 55.7340i −0.171160 0.0988191i
\(565\) −16.1914 12.2910i −0.0286573 0.0217541i
\(566\) 495.805 0.875980
\(567\) 55.6482 29.5344i 0.0981449 0.0520889i
\(568\) 259.740 259.740i 0.457288 0.457288i
\(569\) 489.271 282.480i 0.859878 0.496451i −0.00409346 0.999992i \(-0.501303\pi\)
0.863971 + 0.503541i \(0.167970\pi\)
\(570\) 66.3522 + 85.5485i 0.116407 + 0.150085i
\(571\) −54.3972 + 94.2188i −0.0952666 + 0.165007i −0.909720 0.415223i \(-0.863704\pi\)
0.814453 + 0.580229i \(0.197037\pi\)
\(572\) 38.2114 142.607i 0.0668031 0.249313i
\(573\) 350.008 350.008i 0.610834 0.610834i
\(574\) −338.906 + 315.554i −0.590429 + 0.549745i
\(575\) −10.4038 + 0.108047i −0.0180936 + 0.000187907i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 353.163 94.6298i 0.612068 0.164003i 0.0605486 0.998165i \(-0.480715\pi\)
0.551519 + 0.834162i \(0.314048\pi\)
\(578\) 23.9980 + 89.5616i 0.0415190 + 0.154951i
\(579\) 354.591 204.723i 0.612420 0.353581i
\(580\) 257.157 + 104.957i 0.443373 + 0.180960i
\(581\) 550.360 126.620i 0.947263 0.217934i
\(582\) 112.804 + 112.804i 0.193821 + 0.193821i
\(583\) −493.322 132.185i −0.846178 0.226733i
\(584\) 19.9250 + 11.5037i 0.0341182 + 0.0196982i
\(585\) −153.294 19.3723i −0.262041 0.0331151i
\(586\) 371.421 + 643.321i 0.633825 + 1.09782i
\(587\) −488.112 488.112i −0.831537 0.831537i 0.156190 0.987727i \(-0.450079\pi\)
−0.987727 + 0.156190i \(0.950079\pi\)
\(588\) 166.671 32.1347i 0.283455 0.0546509i
\(589\) 221.463i 0.375999i
\(590\) −229.280 174.048i −0.388609 0.294997i
\(591\) 88.3173 152.970i 0.149437 0.258833i
\(592\) 206.281 55.2727i 0.348447 0.0933661i
\(593\) 204.070 + 54.6805i 0.344132 + 0.0922099i 0.426745 0.904372i \(-0.359660\pi\)
−0.0826135 + 0.996582i \(0.526327\pi\)
\(594\) 52.6609i 0.0886547i
\(595\) 105.892 650.482i 0.177969 1.09325i
\(596\) 105.988 0.177833
\(597\) −128.567 + 479.818i −0.215355 + 0.803716i
\(598\) 1.56914 + 5.85611i 0.00262398 + 0.00979283i
\(599\) −245.514 141.748i −0.409874 0.236641i 0.280862 0.959748i \(-0.409380\pi\)
−0.690735 + 0.723108i \(0.742713\pi\)
\(600\) −118.624 30.4685i −0.197707 0.0507808i
\(601\) 685.441 1.14050 0.570251 0.821471i \(-0.306846\pi\)
0.570251 + 0.821471i \(0.306846\pi\)
\(602\) 18.6348 522.246i 0.0309548 0.867518i
\(603\) −282.643 + 282.643i −0.468728 + 0.468728i
\(604\) 41.8193 24.1444i 0.0692373 0.0399741i
\(605\) −275.161 + 213.417i −0.454811 + 0.352756i
\(606\) 83.5259 144.671i 0.137831 0.238731i
\(607\) −267.402 + 997.957i −0.440530 + 1.64408i 0.286945 + 0.957947i \(0.407360\pi\)
−0.727475 + 0.686134i \(0.759306\pi\)
\(608\) 35.3590 35.3590i 0.0581562 0.0581562i
\(609\) −321.965 98.7024i −0.528679 0.162073i
\(610\) −18.1026 43.0696i −0.0296764 0.0706060i
\(611\) −165.731 287.055i −0.271246 0.469811i
\(612\) −109.129 + 29.2412i −0.178316 + 0.0477797i
\(613\) 161.961 + 604.447i 0.264211 + 0.986048i 0.962732 + 0.270458i \(0.0871751\pi\)
−0.698521 + 0.715589i \(0.746158\pi\)
\(614\) 132.450 76.4698i 0.215716 0.124544i
\(615\) −373.453 + 156.966i −0.607241 + 0.255230i
\(616\) −41.5861 + 135.653i −0.0675099 + 0.220216i
\(617\) 230.449 + 230.449i 0.373498 + 0.373498i 0.868750 0.495251i \(-0.164924\pi\)
−0.495251 + 0.868750i \(0.664924\pi\)
\(618\) 328.610 + 88.0508i 0.531732 + 0.142477i
\(619\) −459.874 265.509i −0.742931 0.428931i 0.0802030 0.996779i \(-0.474443\pi\)
−0.823134 + 0.567847i \(0.807776\pi\)
\(620\) −153.544 197.965i −0.247651 0.319299i
\(621\) −1.08125 1.87279i −0.00174115 0.00301576i
\(622\) −209.421 209.421i −0.336690 0.336690i
\(623\) −921.305 32.8740i −1.47882 0.0527673i
\(624\) 71.3667i 0.114370i
\(625\) 534.659 323.674i 0.855454 0.517878i
\(626\) 208.613 361.329i 0.333248 0.577202i
\(627\) 105.983 28.3980i 0.169032 0.0452919i
\(628\) 338.094 + 90.5920i 0.538366 + 0.144255i
\(629\) 1005.31i 1.59827i
\(630\) 146.563 + 23.8590i 0.232640 + 0.0378714i
\(631\) 545.090 0.863852 0.431926 0.901909i \(-0.357834\pi\)
0.431926 + 0.901909i \(0.357834\pi\)
\(632\) 50.6756 189.124i 0.0801830 0.299247i
\(633\) 131.370 + 490.279i 0.207535 + 0.774533i
\(634\) −763.836 441.001i −1.20479 0.695585i
\(635\) 73.3785 96.6638i 0.115557 0.152226i
\(636\) 246.880 0.388176
\(637\) 476.994 + 165.054i 0.748813 + 0.259111i
\(638\) 199.043 199.043i 0.311979 0.311979i
\(639\) −337.412 + 194.805i −0.528031 + 0.304859i
\(640\) −7.09236 + 56.1222i −0.0110818 + 0.0876909i
\(641\) −377.578 + 653.985i −0.589046 + 1.02026i 0.405312 + 0.914179i \(0.367163\pi\)
−0.994358 + 0.106079i \(0.966170\pi\)
\(642\) −27.0176 + 100.831i −0.0420835 + 0.157058i
\(643\) −222.457 + 222.457i −0.345967 + 0.345967i −0.858605 0.512638i \(-0.828668\pi\)
0.512638 + 0.858605i \(0.328668\pi\)
\(644\) −1.30635 5.67811i −0.00202849 0.00881694i
\(645\) 172.752 423.264i 0.267833 0.656223i
\(646\) 117.699 + 203.860i 0.182196 + 0.315573i
\(647\) −387.467 + 103.822i −0.598867 + 0.160466i −0.545503 0.838109i \(-0.683661\pi\)
−0.0533647 + 0.998575i \(0.516995\pi\)
\(648\) −6.58846 24.5885i −0.0101674 0.0379452i
\(649\) −252.647 + 145.866i −0.389287 + 0.224755i
\(650\) −260.183 254.834i −0.400281 0.392052i
\(651\) 206.990 + 222.308i 0.317957 + 0.341488i
\(652\) −352.600 352.600i −0.540797 0.540797i
\(653\) −870.447 233.236i −1.33300 0.357175i −0.479165 0.877725i \(-0.659061\pi\)
−0.853832 + 0.520549i \(0.825727\pi\)
\(654\) −366.692 211.709i −0.560691 0.323715i
\(655\) 502.052 389.396i 0.766491 0.594498i
\(656\) 93.5538 + 162.040i 0.142612 + 0.247012i
\(657\) −17.2556 17.2556i −0.0262642 0.0262642i
\(658\) 149.334 + 281.373i 0.226952 + 0.427619i
\(659\) 996.771i 1.51255i −0.654253 0.756275i \(-0.727017\pi\)
0.654253 0.756275i \(-0.272983\pi\)
\(660\) −75.0489 + 98.8644i −0.113711 + 0.149795i
\(661\) 582.202 1008.40i 0.880789 1.52557i 0.0303238 0.999540i \(-0.490346\pi\)
0.850465 0.526031i \(-0.176321\pi\)
\(662\) −217.062 + 58.1615i −0.327888 + 0.0878573i
\(663\) −324.509 86.9518i −0.489455 0.131149i
\(664\) 228.188i 0.343657i
\(665\) −31.0185 307.832i −0.0466443 0.462906i
\(666\) −226.512 −0.340108
\(667\) −2.99176 + 11.1654i −0.00448540 + 0.0167397i
\(668\) 136.539 + 509.569i 0.204399 + 0.762827i
\(669\) 354.136 + 204.460i 0.529351 + 0.305621i
\(670\) −933.432 + 127.823i −1.39318 + 0.190780i
\(671\) −47.3482 −0.0705636
\(672\) 2.44572 68.5421i 0.00363946 0.101997i
\(673\) −419.133 + 419.133i −0.622783 + 0.622783i −0.946242 0.323459i \(-0.895154\pi\)
0.323459 + 0.946242i \(0.395154\pi\)
\(674\) 68.3098 39.4387i 0.101350 0.0585144i
\(675\) 113.168 + 63.7801i 0.167657 + 0.0944891i
\(676\) 62.8917 108.932i 0.0930350 0.161141i
\(677\) 188.771 704.503i 0.278834 1.04062i −0.674393 0.738372i \(-0.735595\pi\)
0.953228 0.302252i \(-0.0977385\pi\)
\(678\) 7.04185 7.04185i 0.0103862 0.0103862i
\(679\) −102.216 444.285i −0.150538 0.654323i
\(680\) −246.550 100.628i −0.362573 0.147982i
\(681\) 263.976 + 457.221i 0.387631 + 0.671396i
\(682\) −245.252 + 65.7151i −0.359607 + 0.0963564i
\(683\) 276.981 + 1033.71i 0.405535 + 1.51348i 0.803066 + 0.595890i \(0.203200\pi\)
−0.397531 + 0.917589i \(0.630133\pi\)
\(684\) −45.9327 + 26.5192i −0.0671530 + 0.0387708i
\(685\) −182.455 434.095i −0.266357 0.633716i
\(686\) −452.459 174.868i −0.659561 0.254909i
\(687\) −275.670 275.670i −0.401266 0.401266i
\(688\) −203.959 54.6505i −0.296451 0.0794339i
\(689\) 635.771 + 367.062i 0.922744 + 0.532747i
\(690\) 0.639054 5.05686i 0.000926165 0.00732878i
\(691\) 490.628 + 849.792i 0.710026 + 1.22980i 0.964847 + 0.262812i \(0.0846500\pi\)
−0.254821 + 0.966988i \(0.582017\pi\)
\(692\) −198.373 198.373i −0.286666 0.286666i
\(693\) 79.8452 127.563i 0.115217 0.184074i
\(694\) 414.220i 0.596858i
\(695\) 455.568 62.3849i 0.655494 0.0897625i
\(696\) −68.0347 + 117.840i −0.0977511 + 0.169310i
\(697\) −850.790 + 227.968i −1.22064 + 0.327071i
\(698\) −649.398 174.006i −0.930370 0.249292i
\(699\) 175.543i 0.251134i
\(700\) 241.152 + 253.665i 0.344503 + 0.362378i
\(701\) −940.348 −1.34144 −0.670719 0.741711i \(-0.734014\pi\)
−0.670719 + 0.741711i \(0.734014\pi\)
\(702\) 19.5915 73.1165i 0.0279081 0.104155i
\(703\) 122.149 + 455.867i 0.173754 + 0.648460i
\(704\) 49.6492 + 28.6650i 0.0705244 + 0.0407173i
\(705\) 37.8078 + 276.093i 0.0536281 + 0.391621i
\(706\) 814.184 1.15324
\(707\) −421.681 + 223.801i −0.596437 + 0.316550i
\(708\) 99.7168 99.7168i 0.140843 0.140843i
\(709\) −364.698 + 210.559i −0.514384 + 0.296980i −0.734634 0.678464i \(-0.762646\pi\)
0.220250 + 0.975443i \(0.429313\pi\)
\(710\) −911.072 115.135i −1.28320 0.162163i
\(711\) −103.836 + 179.850i −0.146043 + 0.252953i
\(712\) −96.4102 + 359.808i −0.135408 + 0.505348i
\(713\) 7.37264 7.37264i 0.0103403 0.0103403i
\(714\) 308.685 + 94.6313i 0.432332 + 0.132537i
\(715\) −340.260 + 143.015i −0.475888 + 0.200020i
\(716\) 221.449 + 383.561i 0.309286 + 0.535700i
\(717\) −320.255 + 85.8120i −0.446659 + 0.119682i
\(718\) 16.2889 + 60.7912i 0.0226865 + 0.0846674i
\(719\) −331.576 + 191.436i −0.461163 + 0.266253i −0.712533 0.701638i \(-0.752452\pi\)
0.251370 + 0.967891i \(0.419119\pi\)
\(720\) 22.6729 55.5512i 0.0314901 0.0771545i
\(721\) −662.504 711.533i −0.918869 0.986869i
\(722\) −282.859 282.859i −0.391771 0.391771i
\(723\) −449.209 120.365i −0.621313 0.166480i
\(724\) −259.126 149.607i −0.357909 0.206639i
\(725\) −186.673 668.814i −0.257481 0.922502i
\(726\) −85.2973 147.739i −0.117489 0.203498i
\(727\) −666.033 666.033i −0.916139 0.916139i 0.0806067 0.996746i \(-0.474314\pi\)
−0.996746 + 0.0806067i \(0.974314\pi\)
\(728\) 108.207 172.875i 0.148636 0.237465i
\(729\) 27.0000i 0.0370370i
\(730\) −7.80369 56.9868i −0.0106900 0.0780641i
\(731\) 496.999 860.827i 0.679889 1.17760i
\(732\) 22.1078 5.92378i 0.0302020 0.00809259i
\(733\) −30.7894 8.24999i −0.0420046 0.0112551i 0.237756 0.971325i \(-0.423588\pi\)
−0.279760 + 0.960070i \(0.590255\pi\)
\(734\) 525.708i 0.716223i
\(735\) −318.852 280.016i −0.433812 0.380974i
\(736\) −2.35424 −0.00319870
\(737\) −247.127 + 922.290i −0.335314 + 1.25141i
\(738\) −51.3646 191.695i −0.0695997 0.259750i
\(739\) 770.669 + 444.946i 1.04285 + 0.602092i 0.920640 0.390412i \(-0.127667\pi\)
0.122214 + 0.992504i \(0.461001\pi\)
\(740\) −425.248 322.810i −0.574660 0.436230i
\(741\) −157.716 −0.212842
\(742\) −598.029 374.322i −0.805969 0.504478i
\(743\) −380.855 + 380.855i −0.512591 + 0.512591i −0.915319 0.402729i \(-0.868062\pi\)
0.402729 + 0.915319i \(0.368062\pi\)
\(744\) 106.291 61.3674i 0.142865 0.0824831i
\(745\) −162.394 209.375i −0.217978 0.281041i
\(746\) 449.093 777.852i 0.602002 1.04270i
\(747\) −62.6421 + 233.783i −0.0838582 + 0.312963i
\(748\) −190.833 + 190.833i −0.255124 + 0.255124i
\(749\) 218.328 203.284i 0.291492 0.271407i
\(750\) 121.565 + 281.020i 0.162086 + 0.374693i
\(751\) −62.9757 109.077i −0.0838558 0.145242i 0.821047 0.570860i \(-0.193390\pi\)
−0.904903 + 0.425618i \(0.860057\pi\)
\(752\) 124.326 33.3131i 0.165328 0.0442994i
\(753\) −141.052 526.412i −0.187320 0.699086i
\(754\) −350.409 + 202.309i −0.464734 + 0.268314i
\(755\) −111.771 45.6185i −0.148041 0.0604219i
\(756\) −21.3218 + 69.5513i −0.0282034 + 0.0919991i
\(757\) 896.465 + 896.465i 1.18423 + 1.18423i 0.978637 + 0.205597i \(0.0659135\pi\)
0.205597 + 0.978637i \(0.434087\pi\)
\(758\) 278.314 + 74.5741i 0.367169 + 0.0983827i
\(759\) −4.47362 2.58284i −0.00589409 0.00340296i
\(760\) −124.026 15.6737i −0.163193 0.0206232i
\(761\) 292.491 + 506.610i 0.384351 + 0.665716i 0.991679 0.128736i \(-0.0410918\pi\)
−0.607328 + 0.794451i \(0.707759\pi\)
\(762\) 42.0404 + 42.0404i 0.0551711 + 0.0551711i
\(763\) 567.258 + 1068.82i 0.743457 + 1.40081i