Properties

Label 210.3.v.b.67.6
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.6
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.b.163.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-0.258026 - 4.99334i) q^{5} -2.44949 q^{6} +(6.75207 - 1.84650i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-0.258026 - 4.99334i) q^{5} -2.44949 q^{6} +(6.75207 - 1.84650i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(6.91547 + 1.47522i) q^{10} +(7.12207 - 12.3358i) q^{11} +(0.896575 - 3.34607i) q^{12} +(-2.75603 + 2.75603i) q^{13} +(0.0509352 + 9.89936i) q^{14} +(8.23835 - 2.67014i) q^{15} +(2.00000 + 3.46410i) q^{16} +(23.9506 - 6.41754i) q^{17} +(-1.09808 - 4.09808i) q^{18} +(-0.277055 + 0.159958i) q^{19} +(-4.54642 + 8.90674i) q^{20} +(6.11612 + 10.4687i) q^{21} +(14.2441 + 14.2441i) q^{22} +(13.6188 + 3.64915i) q^{23} +(4.24264 + 2.44949i) q^{24} +(-24.8668 + 2.57682i) q^{25} +(-2.75603 - 4.77358i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-13.5414 - 3.55384i) q^{28} +24.2642i q^{29} +(0.632031 + 12.2311i) q^{30} +(-7.62013 + 13.1985i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(23.8309 + 6.38548i) q^{33} +35.0661i q^{34} +(-10.9624 - 33.2389i) q^{35} +6.00000 q^{36} +(0.611341 - 2.28156i) q^{37} +(-0.117097 - 0.437012i) q^{38} +(-5.84642 - 3.37543i) q^{39} +(-10.5027 - 9.47062i) q^{40} +29.0794 q^{41} +(-16.5391 + 4.52298i) q^{42} +(-11.7409 + 11.7409i) q^{43} +(-24.6716 + 14.2441i) q^{44} +(8.16038 + 12.5860i) q^{45} +(-9.96966 + 17.2680i) q^{46} +(21.9076 - 81.7602i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(42.1809 - 24.9354i) q^{49} +(5.58190 - 34.9119i) q^{50} +(21.4735 + 37.1932i) q^{51} +(7.52961 - 2.01755i) q^{52} +(-19.4580 - 72.6184i) q^{53} +(6.36396 - 3.67423i) q^{54} +(-63.4344 - 32.3800i) q^{55} +(9.81114 - 17.1971i) q^{56} +(-0.391815 - 0.391815i) q^{57} +(-33.1456 - 8.88133i) q^{58} +(-31.7156 - 18.3110i) q^{59} +(-16.9394 - 3.61353i) q^{60} +(54.2209 + 93.9134i) q^{61} +(-15.2403 - 15.2403i) q^{62} +(-14.7726 + 14.9254i) q^{63} -8.00000i q^{64} +(14.4729 + 13.0507i) q^{65} +(-17.4454 + 30.2164i) q^{66} +(-66.0445 + 17.6966i) q^{67} +(-47.9012 - 12.8351i) q^{68} +24.4206i q^{69} +(49.4177 - 2.80863i) q^{70} -20.3365 q^{71} +(-2.19615 + 8.19615i) q^{72} +(-15.1623 - 56.5866i) q^{73} +(2.89290 + 1.67022i) q^{74} +(-15.4586 - 40.4479i) q^{75} +0.639831 q^{76} +(25.3107 - 96.4430i) q^{77} +(6.75087 - 6.75087i) q^{78} +(-44.5901 + 25.7441i) q^{79} +(16.7814 - 10.8805i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-10.6438 + 39.7232i) q^{82} +(-82.8590 + 82.8590i) q^{83} +(-0.124765 - 24.2484i) q^{84} +(-38.2248 - 117.937i) q^{85} +(-11.7409 - 20.3359i) q^{86} +(-40.5949 + 10.8774i) q^{87} +(-10.4274 - 38.9157i) q^{88} +(-95.6273 + 55.2104i) q^{89} +(-20.1797 + 6.54047i) q^{90} +(-13.5199 + 23.6979i) q^{91} +(-19.9393 - 19.9393i) q^{92} +(-25.4975 - 6.83202i) q^{93} +(103.668 + 59.8526i) q^{94} +(0.870210 + 1.34215i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(68.2928 + 68.2928i) q^{97} +(18.6231 + 66.7471i) q^{98} +42.7324i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −0.258026 4.99334i −0.0516051 0.998668i
\(6\) −2.44949 −0.408248
\(7\) 6.75207 1.84650i 0.964581 0.263786i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 6.91547 + 1.47522i 0.691547 + 0.147522i
\(11\) 7.12207 12.3358i 0.647461 1.12144i −0.336266 0.941767i \(-0.609164\pi\)
0.983727 0.179669i \(-0.0575025\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) −2.75603 + 2.75603i −0.212002 + 0.212002i −0.805118 0.593115i \(-0.797898\pi\)
0.593115 + 0.805118i \(0.297898\pi\)
\(14\) 0.0509352 + 9.89936i 0.00363823 + 0.707097i
\(15\) 8.23835 2.67014i 0.549223 0.178009i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 23.9506 6.41754i 1.40886 0.377502i 0.527341 0.849654i \(-0.323189\pi\)
0.881517 + 0.472152i \(0.156523\pi\)
\(18\) −1.09808 4.09808i −0.0610042 0.227671i
\(19\) −0.277055 + 0.159958i −0.0145818 + 0.00841882i −0.507273 0.861785i \(-0.669346\pi\)
0.492691 + 0.870204i \(0.336013\pi\)
\(20\) −4.54642 + 8.90674i −0.227321 + 0.445337i
\(21\) 6.11612 + 10.4687i 0.291244 + 0.498508i
\(22\) 14.2441 + 14.2441i 0.647461 + 0.647461i
\(23\) 13.6188 + 3.64915i 0.592122 + 0.158659i 0.542423 0.840106i \(-0.317507\pi\)
0.0496991 + 0.998764i \(0.484174\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) −24.8668 + 2.57682i −0.994674 + 0.103073i
\(26\) −2.75603 4.77358i −0.106001 0.183599i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −13.5414 3.55384i −0.483622 0.126923i
\(29\) 24.2642i 0.836698i 0.908286 + 0.418349i \(0.137391\pi\)
−0.908286 + 0.418349i \(0.862609\pi\)
\(30\) 0.632031 + 12.2311i 0.0210677 + 0.407704i
\(31\) −7.62013 + 13.1985i −0.245811 + 0.425757i −0.962359 0.271781i \(-0.912387\pi\)
0.716549 + 0.697537i \(0.245721\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) 23.8309 + 6.38548i 0.722149 + 0.193499i
\(34\) 35.0661i 1.03136i
\(35\) −10.9624 33.2389i −0.313211 0.949683i
\(36\) 6.00000 0.166667
\(37\) 0.611341 2.28156i 0.0165227 0.0616637i −0.957172 0.289519i \(-0.906505\pi\)
0.973695 + 0.227855i \(0.0731713\pi\)
\(38\) −0.117097 0.437012i −0.00308150 0.0115003i
\(39\) −5.84642 3.37543i −0.149908 0.0865496i
\(40\) −10.5027 9.47062i −0.262568 0.236766i
\(41\) 29.0794 0.709254 0.354627 0.935008i \(-0.384608\pi\)
0.354627 + 0.935008i \(0.384608\pi\)
\(42\) −16.5391 + 4.52298i −0.393789 + 0.107690i
\(43\) −11.7409 + 11.7409i −0.273045 + 0.273045i −0.830325 0.557280i \(-0.811845\pi\)
0.557280 + 0.830325i \(0.311845\pi\)
\(44\) −24.6716 + 14.2441i −0.560718 + 0.323731i
\(45\) 8.16038 + 12.5860i 0.181342 + 0.279690i
\(46\) −9.96966 + 17.2680i −0.216732 + 0.375390i
\(47\) 21.9076 81.7602i 0.466119 1.73958i −0.187035 0.982353i \(-0.559888\pi\)
0.653154 0.757225i \(-0.273445\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 42.1809 24.9354i 0.860834 0.508885i
\(50\) 5.58190 34.9119i 0.111638 0.698238i
\(51\) 21.4735 + 37.1932i 0.421049 + 0.729279i
\(52\) 7.52961 2.01755i 0.144800 0.0387991i
\(53\) −19.4580 72.6184i −0.367133 1.37016i −0.864507 0.502622i \(-0.832369\pi\)
0.497374 0.867536i \(-0.334298\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) −63.4344 32.3800i −1.15335 0.588727i
\(56\) 9.81114 17.1971i 0.175199 0.307092i
\(57\) −0.391815 0.391815i −0.00687394 0.00687394i
\(58\) −33.1456 8.88133i −0.571475 0.153126i
\(59\) −31.7156 18.3110i −0.537553 0.310356i 0.206534 0.978439i \(-0.433782\pi\)
−0.744087 + 0.668083i \(0.767115\pi\)
\(60\) −16.9394 3.61353i −0.282323 0.0602256i
\(61\) 54.2209 + 93.9134i 0.888867 + 1.53956i 0.841216 + 0.540699i \(0.181840\pi\)
0.0476513 + 0.998864i \(0.484826\pi\)
\(62\) −15.2403 15.2403i −0.245811 0.245811i
\(63\) −14.7726 + 14.9254i −0.234486 + 0.236912i
\(64\) 8.00000i 0.125000i
\(65\) 14.4729 + 13.0507i 0.222660 + 0.200779i
\(66\) −17.4454 + 30.2164i −0.264325 + 0.457824i
\(67\) −66.0445 + 17.6966i −0.985739 + 0.264128i −0.715460 0.698654i \(-0.753783\pi\)
−0.270279 + 0.962782i \(0.587116\pi\)
\(68\) −47.9012 12.8351i −0.704429 0.188751i
\(69\) 24.4206i 0.353921i
\(70\) 49.4177 2.80863i 0.705968 0.0401232i
\(71\) −20.3365 −0.286429 −0.143215 0.989692i \(-0.545744\pi\)
−0.143215 + 0.989692i \(0.545744\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) −15.1623 56.5866i −0.207703 0.775159i −0.988609 0.150510i \(-0.951909\pi\)
0.780905 0.624649i \(-0.214758\pi\)
\(74\) 2.89290 + 1.67022i 0.0390932 + 0.0225705i
\(75\) −15.4586 40.4479i −0.206115 0.539305i
\(76\) 0.639831 0.00841882
\(77\) 25.3107 96.4430i 0.328710 1.25251i
\(78\) 6.75087 6.75087i 0.0865496 0.0865496i
\(79\) −44.5901 + 25.7441i −0.564431 + 0.325874i −0.754922 0.655815i \(-0.772325\pi\)
0.190491 + 0.981689i \(0.438992\pi\)
\(80\) 16.7814 10.8805i 0.209767 0.136006i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −10.6438 + 39.7232i −0.129802 + 0.484429i
\(83\) −82.8590 + 82.8590i −0.998301 + 0.998301i −0.999999 0.00169722i \(-0.999460\pi\)
0.00169722 + 0.999999i \(0.499460\pi\)
\(84\) −0.124765 24.2484i −0.00148530 0.288671i
\(85\) −38.2248 117.937i −0.449704 1.38750i
\(86\) −11.7409 20.3359i −0.136522 0.236464i
\(87\) −40.5949 + 10.8774i −0.466608 + 0.125027i
\(88\) −10.4274 38.9157i −0.118494 0.442224i
\(89\) −95.6273 + 55.2104i −1.07446 + 0.620342i −0.929398 0.369080i \(-0.879673\pi\)
−0.145066 + 0.989422i \(0.546340\pi\)
\(90\) −20.1797 + 6.54047i −0.224219 + 0.0726719i
\(91\) −13.5199 + 23.6979i −0.148570 + 0.260417i
\(92\) −19.9393 19.9393i −0.216732 0.216732i
\(93\) −25.4975 6.83202i −0.274166 0.0734626i
\(94\) 103.668 + 59.8526i 1.10285 + 0.636730i
\(95\) 0.870210 + 1.34215i 0.00916010 + 0.0141279i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) 68.2928 + 68.2928i 0.704050 + 0.704050i 0.965277 0.261228i \(-0.0841273\pi\)
−0.261228 + 0.965277i \(0.584127\pi\)
\(98\) 18.6231 + 66.7471i 0.190031 + 0.681093i
\(99\) 42.7324i 0.431641i
\(100\) 45.6475 + 20.4037i 0.456475 + 0.204037i
\(101\) 49.9666 86.5447i 0.494719 0.856878i −0.505263 0.862966i \(-0.668604\pi\)
0.999981 + 0.00608738i \(0.00193769\pi\)
\(102\) −58.6667 + 15.7197i −0.575164 + 0.154115i
\(103\) 108.172 + 28.9847i 1.05022 + 0.281405i 0.742341 0.670022i \(-0.233715\pi\)
0.307875 + 0.951427i \(0.400382\pi\)
\(104\) 11.0241i 0.106001i
\(105\) 50.6955 33.2411i 0.482814 0.316581i
\(106\) 106.321 1.00303
\(107\) −28.8233 + 107.570i −0.269377 + 1.00533i 0.690140 + 0.723676i \(0.257549\pi\)
−0.959517 + 0.281652i \(0.909118\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) −65.8933 38.0435i −0.604526 0.349023i 0.166294 0.986076i \(-0.446820\pi\)
−0.770820 + 0.637053i \(0.780153\pi\)
\(110\) 67.4505 74.8012i 0.613186 0.680011i
\(111\) 4.09118 0.0368574
\(112\) 19.9006 + 19.6969i 0.177684 + 0.175865i
\(113\) −76.5867 + 76.5867i −0.677759 + 0.677759i −0.959493 0.281734i \(-0.909090\pi\)
0.281734 + 0.959493i \(0.409090\pi\)
\(114\) 0.678643 0.391815i 0.00595301 0.00343697i
\(115\) 14.7074 68.9449i 0.127891 0.599521i
\(116\) 24.2642 42.0269i 0.209174 0.362301i
\(117\) 3.02633 11.2944i 0.0258661 0.0965335i
\(118\) 36.6220 36.6220i 0.310356 0.310356i
\(119\) 149.866 87.5564i 1.25938 0.735768i
\(120\) 11.1364 21.8170i 0.0928035 0.181808i
\(121\) −40.9478 70.9237i −0.338412 0.586146i
\(122\) −148.134 + 39.6925i −1.21422 + 0.325348i
\(123\) 13.0359 + 48.6508i 0.105983 + 0.395535i
\(124\) 26.3969 15.2403i 0.212878 0.122905i
\(125\) 19.2832 + 123.504i 0.154266 + 0.988029i
\(126\) −14.9814 25.6429i −0.118900 0.203515i
\(127\) −85.3727 85.3727i −0.672226 0.672226i 0.286003 0.958229i \(-0.407673\pi\)
−0.958229 + 0.286003i \(0.907673\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) −24.9063 14.3796i −0.193072 0.111470i
\(130\) −23.1250 + 14.9935i −0.177885 + 0.115335i
\(131\) 109.573 + 189.787i 0.836438 + 1.44875i 0.892854 + 0.450347i \(0.148700\pi\)
−0.0564154 + 0.998407i \(0.517967\pi\)
\(132\) −34.8909 34.8909i −0.264325 0.264325i
\(133\) −1.57533 + 1.59163i −0.0118446 + 0.0119671i
\(134\) 96.6959i 0.721611i
\(135\) −17.3986 + 19.2947i −0.128879 + 0.142924i
\(136\) 35.0661 60.7362i 0.257839 0.446590i
\(137\) 199.663 53.4994i 1.45739 0.390507i 0.558803 0.829300i \(-0.311261\pi\)
0.898588 + 0.438794i \(0.144594\pi\)
\(138\) −33.3591 8.93855i −0.241733 0.0647721i
\(139\) 217.562i 1.56519i 0.622529 + 0.782597i \(0.286105\pi\)
−0.622529 + 0.782597i \(0.713895\pi\)
\(140\) −14.2515 + 68.5339i −0.101796 + 0.489528i
\(141\) 146.608 1.03978
\(142\) 7.44367 27.7802i 0.0524202 0.195635i
\(143\) 14.3692 + 53.6265i 0.100484 + 0.375010i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 121.160 6.26079i 0.835583 0.0431779i
\(146\) 82.8485 0.567456
\(147\) 60.6269 + 59.3918i 0.412428 + 0.404026i
\(148\) −3.34043 + 3.34043i −0.0225705 + 0.0225705i
\(149\) −202.765 + 117.066i −1.36084 + 0.785680i −0.989735 0.142913i \(-0.954353\pi\)
−0.371102 + 0.928592i \(0.621020\pi\)
\(150\) 60.9111 6.31189i 0.406074 0.0420793i
\(151\) −113.664 + 196.871i −0.752739 + 1.30378i 0.193751 + 0.981051i \(0.437935\pi\)
−0.946490 + 0.322732i \(0.895399\pi\)
\(152\) −0.234194 + 0.874025i −0.00154075 + 0.00575016i
\(153\) −52.5991 + 52.5991i −0.343785 + 0.343785i
\(154\) 122.479 + 69.8757i 0.795320 + 0.453738i
\(155\) 67.8705 + 34.6443i 0.437874 + 0.223512i
\(156\) 6.75087 + 11.6928i 0.0432748 + 0.0749541i
\(157\) 104.273 27.9400i 0.664162 0.177962i 0.0890386 0.996028i \(-0.471621\pi\)
0.575124 + 0.818066i \(0.304954\pi\)
\(158\) −18.8460 70.3341i −0.119278 0.445153i
\(159\) 112.770 65.1078i 0.709246 0.409483i
\(160\) 8.72063 + 26.9063i 0.0545039 + 0.168165i
\(161\) 98.6933 0.507807i 0.613002 0.00315408i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −291.300 78.0535i −1.78711 0.478856i −0.795264 0.606263i \(-0.792668\pi\)
−0.991850 + 0.127407i \(0.959334\pi\)
\(164\) −50.3670 29.0794i −0.307116 0.177313i
\(165\) 25.7358 120.643i 0.155975 0.731172i
\(166\) −82.8590 143.516i −0.499151 0.864554i
\(167\) 55.7819 + 55.7819i 0.334023 + 0.334023i 0.854112 0.520089i \(-0.174101\pi\)
−0.520089 + 0.854112i \(0.674101\pi\)
\(168\) 33.1696 + 8.70509i 0.197438 + 0.0518160i
\(169\) 153.809i 0.910110i
\(170\) 175.097 9.04795i 1.02998 0.0532232i
\(171\) 0.479873 0.831164i 0.00280627 0.00486061i
\(172\) 32.0768 8.59496i 0.186493 0.0499707i
\(173\) 202.465 + 54.2505i 1.17032 + 0.313587i 0.791081 0.611712i \(-0.209519\pi\)
0.379240 + 0.925298i \(0.376185\pi\)
\(174\) 59.4350i 0.341581i
\(175\) −163.145 + 63.3155i −0.932255 + 0.361803i
\(176\) 56.9766 0.323731
\(177\) 16.4172 61.2699i 0.0927526 0.346158i
\(178\) −40.4168 150.838i −0.227061 0.847403i
\(179\) −130.023 75.0691i −0.726388 0.419380i 0.0907112 0.995877i \(-0.471086\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(180\) −1.54815 29.9600i −0.00860085 0.166445i
\(181\) 147.164 0.813063 0.406532 0.913637i \(-0.366738\pi\)
0.406532 + 0.913637i \(0.366738\pi\)
\(182\) −27.4233 27.1426i −0.150678 0.149135i
\(183\) −132.814 + 132.814i −0.725757 + 0.725757i
\(184\) 34.5359 19.9393i 0.187695 0.108366i
\(185\) −11.5503 2.46393i −0.0624342 0.0133186i
\(186\) 18.6654 32.3295i 0.100352 0.173814i
\(187\) 91.4124 341.156i 0.488836 1.82436i
\(188\) −119.705 + 119.705i −0.636730 + 0.636730i
\(189\) −31.5932 18.0242i −0.167160 0.0953662i
\(190\) −2.15194 + 0.697466i −0.0113260 + 0.00367087i
\(191\) −112.126 194.209i −0.587049 1.01680i −0.994617 0.103624i \(-0.966956\pi\)
0.407567 0.913175i \(-0.366377\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) −4.23272 15.7967i −0.0219312 0.0818483i 0.954093 0.299511i \(-0.0968235\pi\)
−0.976024 + 0.217663i \(0.930157\pi\)
\(194\) −118.287 + 68.2928i −0.609725 + 0.352025i
\(195\) −15.3462 + 30.0641i −0.0786982 + 0.154175i
\(196\) −97.9948 + 1.00845i −0.499974 + 0.00514517i
\(197\) −199.522 199.522i −1.01280 1.01280i −0.999917 0.0128826i \(-0.995899\pi\)
−0.0128826 0.999917i \(-0.504101\pi\)
\(198\) −58.3736 15.6412i −0.294816 0.0789957i
\(199\) −37.1474 21.4471i −0.186670 0.107774i 0.403753 0.914868i \(-0.367706\pi\)
−0.590423 + 0.807094i \(0.701039\pi\)
\(200\) −44.5801 + 54.8873i −0.222900 + 0.274437i
\(201\) −59.2139 102.561i −0.294596 0.510256i
\(202\) 99.9332 + 99.9332i 0.494719 + 0.494719i
\(203\) 44.8039 + 163.834i 0.220709 + 0.807063i
\(204\) 85.8940i 0.421049i
\(205\) −7.50323 145.203i −0.0366011 0.708309i
\(206\) −79.1876 + 137.157i −0.384406 + 0.665811i
\(207\) −40.8564 + 10.9474i −0.197374 + 0.0528862i
\(208\) −15.0592 4.03511i −0.0724001 0.0193996i
\(209\) 4.55692i 0.0218034i
\(210\) 26.8523 + 81.4184i 0.127868 + 0.387707i
\(211\) 107.346 0.508747 0.254373 0.967106i \(-0.418131\pi\)
0.254373 + 0.967106i \(0.418131\pi\)
\(212\) −38.9161 + 145.237i −0.183566 + 0.685079i
\(213\) −9.11660 34.0236i −0.0428009 0.159735i
\(214\) −136.393 78.7467i −0.637352 0.367975i
\(215\) 61.6559 + 55.5970i 0.286772 + 0.258591i
\(216\) −14.6969 −0.0680414
\(217\) −27.0807 + 103.187i −0.124796 + 0.475518i
\(218\) 76.0871 76.0871i 0.349023 0.349023i
\(219\) 87.8741 50.7342i 0.401252 0.231663i
\(220\) 77.4917 + 119.518i 0.352235 + 0.543265i
\(221\) −48.3216 + 83.6955i −0.218650 + 0.378712i
\(222\) −1.49747 + 5.58865i −0.00674538 + 0.0251741i
\(223\) 152.586 152.586i 0.684241 0.684241i −0.276712 0.960953i \(-0.589245\pi\)
0.960953 + 0.276712i \(0.0892448\pi\)
\(224\) −34.1905 + 19.9752i −0.152636 + 0.0891749i
\(225\) 60.7407 43.9950i 0.269959 0.195533i
\(226\) −76.5867 132.652i −0.338879 0.586956i
\(227\) −311.447 + 83.4520i −1.37201 + 0.367630i −0.868214 0.496190i \(-0.834732\pi\)
−0.503800 + 0.863820i \(0.668065\pi\)
\(228\) 0.286828 + 1.07046i 0.00125802 + 0.00469499i
\(229\) 80.3357 46.3818i 0.350811 0.202541i −0.314232 0.949346i \(-0.601747\pi\)
0.665042 + 0.746806i \(0.268413\pi\)
\(230\) 88.7971 + 45.3263i 0.386075 + 0.197071i
\(231\) 172.699 0.888587i 0.747614 0.00384670i
\(232\) 48.5285 + 48.5285i 0.209174 + 0.209174i
\(233\) 367.086 + 98.3603i 1.57547 + 0.422147i 0.937521 0.347928i \(-0.113115\pi\)
0.637953 + 0.770075i \(0.279781\pi\)
\(234\) 14.3208 + 8.26809i 0.0611998 + 0.0353337i
\(235\) −413.909 88.2957i −1.76131 0.375726i
\(236\) 36.6220 + 63.4312i 0.155178 + 0.268776i
\(237\) −63.0599 63.0599i −0.266075 0.266075i
\(238\) 64.7495 + 236.769i 0.272057 + 0.994826i
\(239\) 196.297i 0.821327i −0.911787 0.410664i \(-0.865297\pi\)
0.911787 0.410664i \(-0.134703\pi\)
\(240\) 25.7263 + 23.1982i 0.107193 + 0.0966592i
\(241\) −188.179 + 325.936i −0.780826 + 1.35243i 0.150635 + 0.988589i \(0.451868\pi\)
−0.931461 + 0.363841i \(0.881465\pi\)
\(242\) 111.872 29.9759i 0.462279 0.123867i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 216.884i 0.888867i
\(245\) −135.395 204.189i −0.552631 0.833426i
\(246\) −71.2297 −0.289552
\(247\) 0.322723 1.20442i 0.00130657 0.00487619i
\(248\) 11.1566 + 41.6372i 0.0449865 + 0.167892i
\(249\) −175.771 101.481i −0.705906 0.407555i
\(250\) −175.767 18.8641i −0.703069 0.0754566i
\(251\) −193.073 −0.769215 −0.384607 0.923080i \(-0.625663\pi\)
−0.384607 + 0.923080i \(0.625663\pi\)
\(252\) 40.5124 11.0790i 0.160764 0.0439643i
\(253\) 142.009 142.009i 0.561301 0.561301i
\(254\) 147.870 85.3727i 0.582164 0.336113i
\(255\) 180.178 116.821i 0.706579 0.458123i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −55.8673 + 208.500i −0.217383 + 0.811283i 0.767932 + 0.640532i \(0.221286\pi\)
−0.985314 + 0.170751i \(0.945381\pi\)
\(258\) 28.7593 28.7593i 0.111470 0.111470i
\(259\) −0.0850728 16.5341i −0.000328466 0.0638381i
\(260\) −12.0172 37.0773i −0.0462198 0.142605i
\(261\) −36.3964 63.0403i −0.139450 0.241534i
\(262\) −299.360 + 80.2133i −1.14260 + 0.306158i
\(263\) 116.022 + 433.000i 0.441148 + 1.64639i 0.725910 + 0.687790i \(0.241419\pi\)
−0.284761 + 0.958599i \(0.591914\pi\)
\(264\) 60.4328 34.8909i 0.228912 0.132162i
\(265\) −357.587 + 115.898i −1.34939 + 0.437351i
\(266\) −1.59759 2.73452i −0.00600598 0.0102801i
\(267\) −135.237 135.237i −0.506507 0.506507i
\(268\) 132.089 + 35.3931i 0.492869 + 0.132064i
\(269\) −93.0558 53.7258i −0.345932 0.199724i 0.316960 0.948439i \(-0.397338\pi\)
−0.662892 + 0.748715i \(0.730671\pi\)
\(270\) −19.9888 30.8294i −0.0740324 0.114183i
\(271\) −98.0395 169.809i −0.361769 0.626603i 0.626483 0.779435i \(-0.284494\pi\)
−0.988252 + 0.152833i \(0.951160\pi\)
\(272\) 70.1322 + 70.1322i 0.257839 + 0.257839i
\(273\) −45.7082 11.9957i −0.167429 0.0439405i
\(274\) 292.326i 1.06688i
\(275\) −145.316 + 325.104i −0.528423 + 1.18220i
\(276\) 24.4206 42.2977i 0.0884803 0.153252i
\(277\) 359.876 96.4285i 1.29919 0.348117i 0.458048 0.888928i \(-0.348549\pi\)
0.841145 + 0.540810i \(0.181882\pi\)
\(278\) −297.195 79.6332i −1.06905 0.286450i
\(279\) 45.7208i 0.163874i
\(280\) −88.4026 44.5530i −0.315724 0.159118i
\(281\) −256.628 −0.913268 −0.456634 0.889655i \(-0.650945\pi\)
−0.456634 + 0.889655i \(0.650945\pi\)
\(282\) −53.6624 + 200.271i −0.190292 + 0.710180i
\(283\) −107.562 401.426i −0.380076 1.41846i −0.845784 0.533526i \(-0.820867\pi\)
0.465707 0.884939i \(-0.345800\pi\)
\(284\) 35.2238 + 20.3365i 0.124028 + 0.0716074i
\(285\) −1.85536 + 2.05756i −0.00651005 + 0.00721951i
\(286\) −78.5146 −0.274526
\(287\) 196.346 53.6951i 0.684133 0.187091i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 282.164 162.908i 0.976347 0.563694i
\(290\) −35.7951 + 167.799i −0.123431 + 0.578616i
\(291\) −83.6413 + 144.871i −0.287427 + 0.497838i
\(292\) −30.3247 + 113.173i −0.103852 + 0.387579i
\(293\) 236.224 236.224i 0.806226 0.806226i −0.177834 0.984060i \(-0.556909\pi\)
0.984060 + 0.177834i \(0.0569091\pi\)
\(294\) −103.322 + 61.0789i −0.351434 + 0.207752i
\(295\) −83.2497 + 163.092i −0.282202 + 0.552853i
\(296\) −3.34043 5.78580i −0.0112852 0.0195466i
\(297\) −71.4928 + 19.1564i −0.240716 + 0.0644998i
\(298\) −85.6984 319.831i −0.287579 1.07326i
\(299\) −47.5910 + 27.4767i −0.159167 + 0.0918952i
\(300\) −13.6728 + 85.5164i −0.0455760 + 0.285055i
\(301\) −57.5960 + 100.955i −0.191349 + 0.335399i
\(302\) −227.327 227.327i −0.752739 0.752739i
\(303\) 167.192 + 44.7988i 0.551787 + 0.147851i
\(304\) −1.10822 0.639831i −0.00364546 0.00210471i
\(305\) 454.951 294.975i 1.49164 0.967132i
\(306\) −52.5991 91.1044i −0.171893 0.297727i
\(307\) −106.527 106.527i −0.346995 0.346995i 0.511994 0.858989i \(-0.328907\pi\)
−0.858989 + 0.511994i \(0.828907\pi\)
\(308\) −140.282 + 141.733i −0.455462 + 0.460174i
\(309\) 193.969i 0.627732i
\(310\) −72.1674 + 80.0322i −0.232798 + 0.258168i
\(311\) −102.511 + 177.554i −0.329617 + 0.570914i −0.982436 0.186601i \(-0.940253\pi\)
0.652819 + 0.757514i \(0.273586\pi\)
\(312\) −18.4437 + 4.94198i −0.0591145 + 0.0158397i
\(313\) 233.347 + 62.5250i 0.745516 + 0.199760i 0.611528 0.791223i \(-0.290555\pi\)
0.133988 + 0.990983i \(0.457222\pi\)
\(314\) 152.667i 0.486201i
\(315\) 78.3395 + 69.9137i 0.248697 + 0.221948i
\(316\) 102.976 0.325874
\(317\) −60.3297 + 225.154i −0.190315 + 0.710263i 0.803116 + 0.595823i \(0.203174\pi\)
−0.993430 + 0.114440i \(0.963493\pi\)
\(318\) 47.6623 + 177.878i 0.149881 + 0.559365i
\(319\) 299.319 + 172.812i 0.938303 + 0.541729i
\(320\) −39.9467 + 2.06420i −0.124833 + 0.00645064i
\(321\) −192.889 −0.600901
\(322\) −35.4306 + 135.003i −0.110033 + 0.419265i
\(323\) −5.60909 + 5.60909i −0.0173656 + 0.0173656i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) 61.4320 75.6356i 0.189021 0.232725i
\(326\) 213.246 369.353i 0.654129 1.13299i
\(327\) 34.1089 127.296i 0.104309 0.389285i
\(328\) 58.1588 58.1588i 0.177313 0.177313i
\(329\) −3.04861 592.503i −0.00926628 1.80092i
\(330\) 155.382 + 79.3144i 0.470855 + 0.240347i
\(331\) −182.812 316.640i −0.552303 0.956617i −0.998108 0.0614865i \(-0.980416\pi\)
0.445805 0.895130i \(-0.352917\pi\)
\(332\) 226.375 60.6570i 0.681852 0.182702i
\(333\) 1.83402 + 6.84467i 0.00550758 + 0.0205546i
\(334\) −96.6171 + 55.7819i −0.289273 + 0.167012i
\(335\) 105.406 + 325.216i 0.314645 + 0.970795i
\(336\) −24.0323 + 42.1242i −0.0715247 + 0.125370i
\(337\) 392.860 + 392.860i 1.16576 + 1.16576i 0.983194 + 0.182562i \(0.0584389\pi\)
0.182562 + 0.983194i \(0.441561\pi\)
\(338\) −210.106 56.2979i −0.621617 0.166562i
\(339\) −162.465 93.7992i −0.479248 0.276694i
\(340\) −51.7302 + 242.498i −0.152148 + 0.713231i
\(341\) 108.542 + 188.001i 0.318306 + 0.551322i
\(342\) 0.959746 + 0.959746i 0.00280627 + 0.00280627i
\(343\) 238.765 246.252i 0.696108 0.717937i
\(344\) 46.9637i 0.136522i
\(345\) 121.940 6.30113i 0.353450 0.0182642i
\(346\) −148.215 + 256.716i −0.428367 + 0.741954i
\(347\) 274.406 73.5268i 0.790795 0.211893i 0.159256 0.987237i \(-0.449090\pi\)
0.631539 + 0.775344i \(0.282424\pi\)
\(348\) 81.1897 + 21.7547i 0.233304 + 0.0625136i
\(349\) 345.311i 0.989429i 0.869055 + 0.494715i \(0.164727\pi\)
−0.869055 + 0.494715i \(0.835273\pi\)
\(350\) −26.7755 246.035i −0.0765013 0.702956i
\(351\) 20.2526 0.0576997
\(352\) −20.8549 + 77.8315i −0.0592468 + 0.221112i
\(353\) −152.948 570.810i −0.433281 1.61703i −0.745148 0.666900i \(-0.767621\pi\)
0.311867 0.950126i \(-0.399046\pi\)
\(354\) 77.6871 + 44.8527i 0.219455 + 0.126702i
\(355\) 5.24733 + 101.547i 0.0147812 + 0.286048i
\(356\) 220.842 0.620342
\(357\) 213.668 + 211.480i 0.598509 + 0.592382i
\(358\) 150.138 150.138i 0.419380 0.419380i
\(359\) 358.501 206.981i 0.998611 0.576549i 0.0907742 0.995871i \(-0.471066\pi\)
0.907837 + 0.419323i \(0.137733\pi\)
\(360\) 41.4928 + 8.85131i 0.115258 + 0.0245870i
\(361\) −180.449 + 312.547i −0.499858 + 0.865780i
\(362\) −53.8659 + 201.030i −0.148801 + 0.555332i
\(363\) 100.301 100.301i 0.276312 0.276312i
\(364\) 47.1151 27.5261i 0.129437 0.0756211i
\(365\) −278.644 + 90.3115i −0.763408 + 0.247429i
\(366\) −132.814 230.040i −0.362879 0.628524i
\(367\) 411.646 110.300i 1.12165 0.300545i 0.350099 0.936713i \(-0.386148\pi\)
0.771551 + 0.636167i \(0.219481\pi\)
\(368\) 14.5966 + 54.4752i 0.0396647 + 0.148030i
\(369\) −75.5505 + 43.6191i −0.204744 + 0.118209i
\(370\) 7.59351 14.8762i 0.0205230 0.0402059i
\(371\) −265.472 454.395i −0.715557 1.22478i
\(372\) 37.3309 + 37.3309i 0.100352 + 0.100352i
\(373\) 155.797 + 41.7458i 0.417687 + 0.111919i 0.461541 0.887119i \(-0.347297\pi\)
−0.0438534 + 0.999038i \(0.513963\pi\)
\(374\) 432.568 + 249.743i 1.15660 + 0.667763i
\(375\) −197.981 + 87.6266i −0.527950 + 0.233671i
\(376\) −119.705 207.336i −0.318365 0.551424i
\(377\) −66.8730 66.8730i −0.177382 0.177382i
\(378\) 36.1854 36.5597i 0.0957287 0.0967189i
\(379\) 230.272i 0.607577i −0.952740 0.303788i \(-0.901748\pi\)
0.952740 0.303788i \(-0.0982516\pi\)
\(380\) −0.165093 3.19489i −0.000434454 0.00840761i
\(381\) 104.560 181.103i 0.274435 0.475335i
\(382\) 306.335 82.0822i 0.801924 0.214875i
\(383\) −140.358 37.6089i −0.366471 0.0981956i 0.0708839 0.997485i \(-0.477418\pi\)
−0.437355 + 0.899289i \(0.644085\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −488.103 101.500i −1.26780 0.263637i
\(386\) 23.1280 0.0599171
\(387\) 12.8924 48.1152i 0.0333138 0.124329i
\(388\) −49.9938 186.579i −0.128850 0.480875i
\(389\) 414.884 + 239.533i 1.06654 + 0.615767i 0.927234 0.374483i \(-0.122180\pi\)
0.139306 + 0.990249i \(0.455513\pi\)
\(390\) −35.4513 31.9675i −0.0909007 0.0819679i
\(391\) 349.597 0.894110
\(392\) 34.4910 134.233i 0.0879873 0.342430i
\(393\) −268.399 + 268.399i −0.682949 + 0.682949i
\(394\) 345.581 199.522i 0.877110 0.506400i
\(395\) 140.054 + 216.011i 0.354568 + 0.546862i
\(396\) 42.7324 74.0147i 0.107910 0.186906i
\(397\) −2.28439 + 8.52545i −0.00575412 + 0.0214747i −0.968743 0.248066i \(-0.920205\pi\)
0.962989 + 0.269540i \(0.0868718\pi\)
\(398\) 42.8941 42.8941i 0.107774 0.107774i
\(399\) −3.36904 1.92207i −0.00844372 0.00481723i
\(400\) −58.6600 80.9876i −0.146650 0.202469i
\(401\) −396.991 687.608i −0.990002 1.71473i −0.617155 0.786841i \(-0.711715\pi\)
−0.372847 0.927893i \(-0.621618\pi\)
\(402\) 161.775 43.3476i 0.402426 0.107830i
\(403\) −15.3740 57.3766i −0.0381489 0.142374i
\(404\) −173.089 + 99.9332i −0.428439 + 0.247359i
\(405\) −40.0803 20.4589i −0.0989638 0.0505158i
\(406\) −240.201 + 1.23590i −0.591627 + 0.00304410i
\(407\) −23.7908 23.7908i −0.0584540 0.0584540i
\(408\) 117.333 + 31.4394i 0.287582 + 0.0770573i
\(409\) 521.846 + 301.288i 1.27591 + 0.736645i 0.976093 0.217352i \(-0.0697421\pi\)
0.299814 + 0.953998i \(0.403075\pi\)
\(410\) 201.098 + 42.8985i 0.490482 + 0.104630i
\(411\) 179.013 + 310.059i 0.435554 + 0.754401i
\(412\) −158.375 158.375i −0.384406 0.384406i
\(413\) −247.957 65.0744i −0.600381 0.157565i
\(414\) 59.8179i 0.144488i
\(415\) 435.123 + 392.363i 1.04849 + 0.945454i
\(416\) 11.0241 19.0943i 0.0265003 0.0458998i
\(417\) −363.988 + 97.5303i −0.872873 + 0.233886i
\(418\) −6.22487 1.66795i −0.0148920 0.00399031i
\(419\) 341.414i 0.814831i −0.913243 0.407415i \(-0.866430\pi\)
0.913243 0.407415i \(-0.133570\pi\)
\(420\) −121.048 + 6.87970i −0.288210 + 0.0163802i
\(421\) 94.3393 0.224084 0.112042 0.993703i \(-0.464261\pi\)
0.112042 + 0.993703i \(0.464261\pi\)
\(422\) −39.2912 + 146.637i −0.0931071 + 0.347481i
\(423\) 65.7227 + 245.281i 0.155373 + 0.579859i
\(424\) −184.153 106.321i −0.434323 0.250756i
\(425\) −579.039 + 221.300i −1.36244 + 0.520706i
\(426\) 49.8140 0.116934
\(427\) 539.514 + 533.991i 1.26350 + 1.25056i
\(428\) 157.493 157.493i 0.367975 0.367975i
\(429\) −83.2773 + 48.0802i −0.194120 + 0.112075i
\(430\) −98.5145 + 63.8736i −0.229103 + 0.148543i
\(431\) 149.099 258.247i 0.345937 0.599181i −0.639586 0.768719i \(-0.720894\pi\)
0.985524 + 0.169538i \(0.0542276\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) 466.639 466.639i 1.07769 1.07769i 0.0809720 0.996716i \(-0.474198\pi\)
0.996716 0.0809720i \(-0.0258024\pi\)
\(434\) −131.044 74.7622i −0.301946 0.172263i
\(435\) 64.7889 + 199.897i 0.148940 + 0.459534i
\(436\) 76.0871 + 131.787i 0.174512 + 0.302263i
\(437\) −4.35686 + 1.16742i −0.00996994 + 0.00267144i
\(438\) 37.1400 + 138.608i 0.0847945 + 0.316457i
\(439\) −66.2436 + 38.2457i −0.150897 + 0.0871201i −0.573547 0.819173i \(-0.694433\pi\)
0.422651 + 0.906293i \(0.361100\pi\)
\(440\) −191.629 + 62.1090i −0.435520 + 0.141157i
\(441\) −72.1861 + 128.055i −0.163687 + 0.290375i
\(442\) −96.6432 96.6432i −0.218650 0.218650i
\(443\) −204.019 54.6666i −0.460538 0.123401i 0.0210878 0.999778i \(-0.493287\pi\)
−0.481626 + 0.876377i \(0.659954\pi\)
\(444\) −7.08612 4.09118i −0.0159597 0.00921436i
\(445\) 300.359 + 463.254i 0.674963 + 1.04102i
\(446\) 152.586 + 264.286i 0.342120 + 0.592570i
\(447\) −286.753 286.753i −0.641505 0.641505i
\(448\) −14.7720 54.0166i −0.0329732 0.120573i
\(449\) 400.930i 0.892940i 0.894799 + 0.446470i \(0.147319\pi\)
−0.894799 + 0.446470i \(0.852681\pi\)
\(450\) 37.8657 + 99.0767i 0.0841460 + 0.220170i
\(451\) 207.106 358.718i 0.459214 0.795383i
\(452\) 209.239 56.0654i 0.462918 0.124038i
\(453\) −380.326 101.908i −0.839572 0.224963i
\(454\) 455.990i 1.00438i
\(455\) 121.820 + 61.3948i 0.267737 + 0.134934i
\(456\) −1.56726 −0.00343697
\(457\) −189.476 + 707.134i −0.414608 + 1.54734i 0.371011 + 0.928629i \(0.379011\pi\)
−0.785619 + 0.618711i \(0.787655\pi\)
\(458\) 33.9538 + 126.717i 0.0741350 + 0.276676i
\(459\) −111.580 64.4205i −0.243093 0.140350i
\(460\) −94.4189 + 104.709i −0.205258 + 0.227627i
\(461\) −457.122 −0.991589 −0.495794 0.868440i \(-0.665123\pi\)
−0.495794 + 0.868440i \(0.665123\pi\)
\(462\) −61.9983 + 236.236i −0.134195 + 0.511334i
\(463\) −409.466 + 409.466i −0.884376 + 0.884376i −0.993976 0.109600i \(-0.965043\pi\)
0.109600 + 0.993976i \(0.465043\pi\)
\(464\) −84.0538 + 48.5285i −0.181150 + 0.104587i
\(465\) −27.5356 + 129.080i −0.0592163 + 0.277592i
\(466\) −268.725 + 465.446i −0.576664 + 0.998811i
\(467\) −37.5596 + 140.174i −0.0804275 + 0.300159i −0.994409 0.105596i \(-0.966325\pi\)
0.913982 + 0.405756i \(0.132992\pi\)
\(468\) −16.5362 + 16.5362i −0.0353337 + 0.0353337i
\(469\) −413.260 + 241.440i −0.881152 + 0.514796i
\(470\) 272.115 533.092i 0.578969 1.13424i
\(471\) 93.4891 + 161.928i 0.198491 + 0.343796i
\(472\) −100.053 + 26.8092i −0.211977 + 0.0567992i
\(473\) 61.2139 + 228.453i 0.129416 + 0.482988i
\(474\) 109.223 63.0599i 0.230428 0.133038i
\(475\) 6.47730 4.69156i 0.0136364 0.00987697i
\(476\) −347.132 + 1.78610i −0.729269 + 0.00375231i
\(477\) 159.481 + 159.481i 0.334342 + 0.334342i
\(478\) 268.147 + 71.8498i 0.560977 + 0.150313i
\(479\) −128.423 74.1449i −0.268106 0.154791i 0.359921 0.932983i \(-0.382804\pi\)
−0.628027 + 0.778192i \(0.716137\pi\)
\(480\) −41.1058 + 26.6517i −0.0856371 + 0.0555243i
\(481\) 4.60316 + 7.97291i 0.00956999 + 0.0165757i
\(482\) −376.358 376.358i −0.780826 0.780826i
\(483\) 45.0926 + 164.889i 0.0933593 + 0.341386i
\(484\) 163.791i 0.338412i
\(485\) 323.388 358.630i 0.666779 0.739444i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) −322.819 + 86.4990i −0.662872 + 0.177616i −0.574542 0.818475i \(-0.694820\pi\)
−0.0883300 + 0.996091i \(0.528153\pi\)
\(488\) 296.269 + 79.3849i 0.607108 + 0.162674i
\(489\) 522.344i 1.06819i
\(490\) 328.486 110.214i 0.670379 0.224926i
\(491\) 241.966 0.492801 0.246401 0.969168i \(-0.420752\pi\)
0.246401 + 0.969168i \(0.420752\pi\)
\(492\) 26.0719 97.3016i 0.0529916 0.197767i
\(493\) 155.717 + 581.143i 0.315855 + 1.17879i
\(494\) 1.52714 + 0.881696i 0.00309138 + 0.00178481i
\(495\) 213.377 11.0261i 0.431066 0.0222749i
\(496\) −60.9610 −0.122905
\(497\) −137.313 + 37.5513i −0.276284 + 0.0755559i
\(498\) 202.962 202.962i 0.407555 0.407555i
\(499\) −578.512 + 334.004i −1.15934 + 0.669346i −0.951146 0.308741i \(-0.900092\pi\)
−0.208196 + 0.978087i \(0.566759\pi\)
\(500\) 90.1042 233.198i 0.180208 0.466396i
\(501\) −68.3186 + 118.331i −0.136364 + 0.236190i
\(502\) 70.6696 263.742i 0.140776 0.525383i
\(503\) 457.165 457.165i 0.908876 0.908876i −0.0873055 0.996182i \(-0.527826\pi\)
0.996182 + 0.0873055i \(0.0278256\pi\)
\(504\) 0.305611 + 59.3962i 0.000606372 + 0.117850i
\(505\) −445.040 227.169i −0.881267 0.449840i
\(506\) 142.009 + 245.967i 0.280651 + 0.486101i
\(507\) −257.327 + 68.9505i −0.507548 + 0.135997i
\(508\) 62.4971 + 233.242i 0.123026 + 0.459139i
\(509\) −438.332 + 253.071i −0.861164 + 0.497193i −0.864402 0.502802i \(-0.832303\pi\)
0.00323811 + 0.999995i \(0.498969\pi\)
\(510\) 93.6313 + 288.887i 0.183591 + 0.566444i
\(511\) −206.864 354.079i −0.404822 0.692915i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 1.60569 + 0.430242i 0.00312999 + 0.000838679i
\(514\) −264.367 152.632i −0.514333 0.296950i
\(515\) 116.819 547.620i 0.226833 1.06334i
\(516\) 28.7593 + 49.8125i 0.0557351 + 0.0965359i
\(517\) −852.549 852.549i −1.64903 1.64903i
\(518\) 22.6171 + 5.93568i 0.0436624 + 0.0114588i
\(519\) 363.051i 0.699521i
\(520\) 55.0472 2.84450i 0.105860 0.00547020i
\(521\) 63.4901 109.968i 0.121862 0.211071i −0.798640 0.601809i \(-0.794447\pi\)
0.920502 + 0.390738i \(0.127780\pi\)
\(522\) 99.4367 26.6440i 0.190492 0.0510421i
\(523\) −372.899 99.9181i −0.713001 0.191048i −0.115954 0.993255i \(-0.536993\pi\)
−0.597046 + 0.802207i \(0.703659\pi\)
\(524\) 438.294i 0.836438i
\(525\) −179.065 244.563i −0.341075 0.465834i
\(526\) −633.956 −1.20524
\(527\) −97.8050 + 365.013i −0.185588 + 0.692625i
\(528\) 25.5419 + 95.3237i 0.0483748 + 0.180537i
\(529\) −285.972 165.106i −0.540590 0.312110i
\(530\) −27.4335 530.895i −0.0517612 1.00169i
\(531\) 109.866 0.206904
\(532\) 4.32018 1.18145i 0.00812064 0.00222076i
\(533\) −80.1437 + 80.1437i −0.150363 + 0.150363i
\(534\) 234.238 135.237i 0.438648 0.253254i
\(535\) 544.571 + 116.169i 1.01789 + 0.217138i
\(536\) −96.6959 + 167.482i −0.180403 + 0.312467i
\(537\) 67.3051 251.186i 0.125335 0.467758i
\(538\) 107.452 107.452i 0.199724 0.199724i
\(539\) −7.18227 697.926i −0.0133252 1.29485i
\(540\) 49.4301 16.0208i 0.0915372 0.0296682i
\(541\) −85.0505 147.312i −0.157210 0.272295i 0.776652 0.629930i \(-0.216917\pi\)
−0.933861 + 0.357635i \(0.883583\pi\)
\(542\) 267.849 71.7699i 0.494186 0.132417i
\(543\) 65.9720 + 246.211i 0.121495 + 0.453427i
\(544\) −121.472 + 70.1322i −0.223295 + 0.128919i
\(545\) −172.962 + 338.844i −0.317362 + 0.621732i
\(546\) 33.1169 58.0478i 0.0606536 0.106315i
\(547\) 6.88719 + 6.88719i 0.0125908 + 0.0125908i 0.713374 0.700783i \(-0.247166\pi\)
−0.700783 + 0.713374i \(0.747166\pi\)
\(548\) −399.325 106.999i −0.728695 0.195253i
\(549\) −281.740 162.663i −0.513188 0.296289i
\(550\) −390.912 317.502i −0.710748 0.577277i
\(551\) −3.88125 6.72252i −0.00704401 0.0122006i
\(552\) 48.8411 + 48.8411i 0.0884803 + 0.0884803i
\(553\) −253.539 + 256.161i −0.458479 + 0.463221i
\(554\) 526.895i 0.951075i
\(555\) −1.05563 20.4286i −0.00190203 0.0368083i
\(556\) 217.562 376.828i 0.391298 0.677749i
\(557\) −221.839 + 59.4417i −0.398276 + 0.106718i −0.452397 0.891817i \(-0.649431\pi\)
0.0541213 + 0.998534i \(0.482764\pi\)
\(558\) 62.4558 + 16.7350i 0.111928 + 0.0299910i
\(559\) 64.7167i 0.115772i
\(560\) 93.2182 104.453i 0.166461 0.186523i
\(561\) 611.743 1.09045
\(562\) 93.9325 350.561i 0.167140 0.623774i
\(563\) −95.1221 355.000i −0.168956 0.630551i −0.997502 0.0706314i \(-0.977499\pi\)
0.828547 0.559920i \(-0.189168\pi\)
\(564\) −253.933 146.608i −0.450236 0.259944i
\(565\) 402.185 + 362.662i 0.711831 + 0.641880i
\(566\) 587.728 1.03839
\(567\) 15.9923 60.9364i 0.0282051 0.107472i
\(568\) −40.6730 + 40.6730i −0.0716074 + 0.0716074i
\(569\) 528.553 305.160i 0.928916 0.536310i 0.0424473 0.999099i \(-0.486485\pi\)
0.886468 + 0.462789i \(0.153151\pi\)
\(570\) −2.13157 3.28759i −0.00373960 0.00576771i
\(571\) −52.9782 + 91.7610i −0.0927815 + 0.160702i −0.908681 0.417492i \(-0.862909\pi\)
0.815899 + 0.578194i \(0.196242\pi\)
\(572\) 28.7383 107.253i 0.0502418 0.187505i
\(573\) 274.653 274.653i 0.479324 0.479324i
\(574\) 1.48117 + 287.868i 0.00258043 + 0.501512i
\(575\) −348.060 55.6496i −0.605322 0.0967819i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 79.5502 21.3154i 0.137869 0.0369418i −0.189225 0.981934i \(-0.560597\pi\)
0.327093 + 0.944992i \(0.393931\pi\)
\(578\) 119.257 + 445.072i 0.206326 + 0.770021i
\(579\) 24.5309 14.1629i 0.0423678 0.0244610i
\(580\) −216.115 110.316i −0.372613 0.190199i
\(581\) −406.471 + 712.469i −0.699605 + 1.22628i
\(582\) −167.283 167.283i −0.287427 0.287427i
\(583\) −1034.39 277.163i −1.77425 0.475408i
\(584\) −143.498 82.8485i −0.245716 0.141864i
\(585\) −57.1777 12.1972i −0.0977397 0.0208500i
\(586\) 236.224 + 409.153i 0.403113 + 0.698212i
\(587\) 81.9493 + 81.9493i 0.139607 + 0.139607i 0.773456 0.633849i \(-0.218526\pi\)
−0.633849 + 0.773456i \(0.718526\pi\)
\(588\) −45.6170 163.496i −0.0775800 0.278055i
\(589\) 4.87559i 0.00827775i
\(590\) −192.316 173.417i −0.325959 0.293927i
\(591\) 244.363 423.249i 0.413474 0.716157i
\(592\) 9.12623 2.44537i 0.0154159 0.00413068i
\(593\) 390.869 + 104.733i 0.659139 + 0.176616i 0.572857 0.819655i \(-0.305835\pi\)
0.0862815 + 0.996271i \(0.472502\pi\)
\(594\) 104.673i 0.176217i
\(595\) −475.868 725.740i −0.799778 1.21973i
\(596\) 468.265 0.785680
\(597\) 19.2289 71.7633i 0.0322092 0.120206i
\(598\) −20.1143 75.0677i −0.0336360 0.125531i
\(599\) 688.462 + 397.484i 1.14935 + 0.663579i 0.948729 0.316090i \(-0.102370\pi\)
0.200623 + 0.979669i \(0.435703\pi\)
\(600\) −111.813 49.9786i −0.186355 0.0832976i
\(601\) −225.975 −0.375999 −0.187999 0.982169i \(-0.560200\pi\)
−0.187999 + 0.982169i \(0.560200\pi\)
\(602\) −116.826 115.630i −0.194063 0.192076i
\(603\) 145.044 145.044i 0.240537 0.240537i
\(604\) 393.742 227.327i 0.651891 0.376370i
\(605\) −343.580 + 222.766i −0.567902 + 0.368209i
\(606\) −122.393 + 211.990i −0.201968 + 0.349819i
\(607\) 206.256 769.756i 0.339795 1.26813i −0.558781 0.829315i \(-0.688731\pi\)
0.898576 0.438817i \(-0.144602\pi\)
\(608\) 1.27966 1.27966i 0.00210471 0.00210471i
\(609\) −254.014 + 148.403i −0.417101 + 0.243683i
\(610\) 236.420 + 729.443i 0.387574 + 1.19581i
\(611\) 164.956 + 285.711i 0.269976 + 0.467613i
\(612\) 143.704 38.5052i 0.234810 0.0629171i
\(613\) 75.9279 + 283.367i 0.123863 + 0.462262i 0.999797 0.0201690i \(-0.00642042\pi\)
−0.875934 + 0.482431i \(0.839754\pi\)
\(614\) 184.511 106.527i 0.300506 0.173497i
\(615\) 239.566 77.6460i 0.389539 0.126254i
\(616\) −142.265 243.507i −0.230949 0.395304i
\(617\) −20.6583 20.6583i −0.0334818 0.0334818i 0.690168 0.723649i \(-0.257537\pi\)
−0.723649 + 0.690168i \(0.757537\pi\)
\(618\) −264.967 70.9977i −0.428749 0.114883i
\(619\) 61.3713 + 35.4327i 0.0991458 + 0.0572419i 0.548753 0.835984i \(-0.315103\pi\)
−0.449607 + 0.893226i \(0.648436\pi\)
\(620\) −82.9109 127.876i −0.133727 0.206252i
\(621\) −36.6309 63.4465i −0.0589869 0.102168i
\(622\) −205.022 205.022i −0.329617 0.329617i
\(623\) −543.736 + 549.360i −0.872771 + 0.881798i
\(624\) 27.0035i 0.0432748i
\(625\) 611.720 128.155i 0.978752 0.205047i
\(626\) −170.822 + 295.872i −0.272878 + 0.472638i
\(627\) −7.62387 + 2.04281i −0.0121593 + 0.00325807i
\(628\) −208.547 55.8800i −0.332081 0.0889809i
\(629\) 58.5679i 0.0931128i
\(630\) −124.178 + 81.4236i −0.197108 + 0.129244i
\(631\) 711.319 1.12729 0.563644 0.826017i \(-0.309399\pi\)
0.563644 + 0.826017i \(0.309399\pi\)
\(632\) −37.6919 + 140.668i −0.0596392 + 0.222576i
\(633\) 48.1217 + 179.593i 0.0760216 + 0.283717i
\(634\) −285.483 164.824i −0.450289 0.259974i
\(635\) −404.266 + 448.323i −0.636640 + 0.706020i
\(636\) −260.431 −0.409483
\(637\) −47.5291 + 184.974i −0.0746140 + 0.290384i
\(638\) −345.623 + 345.623i −0.541729 + 0.541729i
\(639\) 52.8357 30.5047i 0.0826851 0.0477382i
\(640\) 11.8018 55.3238i 0.0184402 0.0864434i
\(641\) −75.2839 + 130.395i −0.117448 + 0.203425i −0.918755 0.394827i \(-0.870805\pi\)
0.801308 + 0.598252i \(0.204138\pi\)
\(642\) 70.6024 263.492i 0.109973 0.410423i
\(643\) −569.798 + 569.798i −0.886155 + 0.886155i −0.994151 0.107996i \(-0.965557\pi\)
0.107996 + 0.994151i \(0.465557\pi\)
\(644\) −171.450 97.8137i −0.266226 0.151885i
\(645\) −65.3760 + 128.076i −0.101358 + 0.198567i
\(646\) −5.60909 9.71523i −0.00868280 0.0150390i
\(647\) −371.507 + 99.5449i −0.574199 + 0.153856i −0.534222 0.845345i \(-0.679395\pi\)
−0.0399772 + 0.999201i \(0.512729\pi\)
\(648\) −6.58846 24.5885i −0.0101674 0.0379452i
\(649\) −451.762 + 260.825i −0.696089 + 0.401887i
\(650\) 80.8344 + 111.602i 0.124361 + 0.171696i
\(651\) −184.776 + 0.950728i −0.283834 + 0.00146041i
\(652\) 426.492 + 426.492i 0.654129 + 0.654129i
\(653\) −88.6589 23.7561i −0.135772 0.0363799i 0.190293 0.981727i \(-0.439056\pi\)
−0.326065 + 0.945347i \(0.605723\pi\)
\(654\) 161.405 + 93.1873i 0.246797 + 0.142488i
\(655\) 919.397 596.107i 1.40366 0.910087i
\(656\) 58.1588 + 100.734i 0.0886567 + 0.153558i
\(657\) 124.273 + 124.273i 0.189152 + 0.189152i
\(658\) 810.490 + 212.707i 1.23175 + 0.323262i
\(659\) 478.694i 0.726395i −0.931712 0.363197i \(-0.881685\pi\)
0.931712 0.363197i \(-0.118315\pi\)
\(660\) −165.219 + 183.225i −0.250332 + 0.277613i
\(661\) 28.9020 50.0598i 0.0437247 0.0757334i −0.843335 0.537389i \(-0.819411\pi\)
0.887060 + 0.461655i \(0.152744\pi\)
\(662\) 499.452 133.828i 0.754460 0.202157i
\(663\) −161.687 43.3240i −0.243872 0.0653453i
\(664\) 331.436i 0.499151i
\(665\) 8.35400 + 7.45548i 0.0125624 + 0.0112112i
\(666\) −10.0213 −0.0150470
\(667\) −88.5438 + 330.450i −0.132749 + 0.495427i
\(668\) −40.8352 152.399i −0.0611305 0.228142i
\(669\) 323.683 + 186.879i 0.483831 + 0.279340i
\(670\) −482.835 + 24.9500i −0.720649 + 0.0372388i
\(671\) 1544.66 2.30203
\(672\) −48.7463 48.2473i −0.0725392 0.0717965i
\(673\) 351.482 351.482i 0.522261 0.522261i −0.395993 0.918254i \(-0.629599\pi\)
0.918254 + 0.395993i \(0.129599\pi\)
\(674\) −680.453 + 392.860i −1.00957 + 0.582878i
\(675\) 100.834 + 81.8988i 0.149384 + 0.121332i
\(676\) 153.809 266.404i 0.227528 0.394089i
\(677\) −177.083 + 660.882i −0.261570 + 0.976192i 0.702747 + 0.711440i \(0.251957\pi\)
−0.964317 + 0.264752i \(0.914710\pi\)
\(678\) 187.598 187.598i 0.276694 0.276694i
\(679\) 587.220 + 335.015i 0.864831 + 0.493395i
\(680\) −312.325 159.425i −0.459301 0.234449i
\(681\) −279.236 483.651i −0.410038 0.710207i
\(682\) −296.543 + 79.4584i −0.434814 + 0.116508i
\(683\) 110.918 + 413.953i 0.162399 + 0.606080i 0.998358 + 0.0572882i \(0.0182454\pi\)
−0.835959 + 0.548792i \(0.815088\pi\)
\(684\) −1.66233 + 0.959746i −0.00243030 + 0.00140314i
\(685\) −318.659 983.178i −0.465195 1.43530i
\(686\) 248.993 + 416.294i 0.362963 + 0.606842i
\(687\) 113.612 + 113.612i 0.165374 + 0.165374i
\(688\) −64.1536 17.1899i −0.0932466 0.0249853i
\(689\) 253.765 + 146.511i 0.368310 + 0.212644i
\(690\) −36.0257 + 168.880i −0.0522112 + 0.244753i
\(691\) 118.514 + 205.272i 0.171510 + 0.297065i 0.938948 0.344059i \(-0.111802\pi\)
−0.767438 + 0.641124i \(0.778469\pi\)
\(692\) −296.430 296.430i −0.428367 0.428367i
\(693\) 78.9054 + 288.532i 0.113861 + 0.416353i
\(694\) 401.758i 0.578902i
\(695\) 1086.36 56.1365i 1.56311 0.0807720i
\(696\) −59.4350 + 102.944i −0.0853951 + 0.147909i
\(697\) 696.469 186.618i 0.999238 0.267745i
\(698\) −471.703 126.393i −0.675793 0.181078i
\(699\) 658.240i 0.941688i
\(700\) 345.890 + 53.4790i 0.494129 + 0.0763986i
\(701\) 179.002 0.255352 0.127676 0.991816i \(-0.459248\pi\)
0.127676 + 0.991816i \(0.459248\pi\)
\(702\) −7.41297 + 27.6656i −0.0105598 + 0.0394096i
\(703\) 0.195577 + 0.729905i 0.000278204 + 0.00103827i
\(704\) −98.6863 56.9766i −0.140179 0.0809326i
\(705\) −37.8287 732.065i −0.0536577 1.03839i
\(706\) 835.724 1.18374
\(707\) 177.573 676.619i 0.251165 0.957029i
\(708\) −89.7053 + 89.7053i −0.126702 + 0.126702i
\(709\) 614.815 354.963i 0.867158 0.500654i 0.000754991 1.00000i \(-0.499760\pi\)
0.866403 + 0.499346i \(0.166426\pi\)
\(710\) −140.636 30.0008i −0.198079 0.0422546i
\(711\) 77.2322 133.770i 0.108625 0.188144i
\(712\) −80.8337 + 301.675i −0.113530 + 0.423701i
\(713\) −151.940 + 151.940i −0.213100 + 0.213100i
\(714\) −367.095 + 214.468i −0.514139 + 0.300376i
\(715\) 264.067 85.5871i 0.369325 0.119702i
\(716\) 150.138 + 260.047i 0.209690 + 0.363194i
\(717\) 328.412 87.9976i 0.458036 0.122730i
\(718\) 151.521 + 565.482i 0.211031 + 0.787580i
\(719\) 281.298 162.407i 0.391235 0.225880i −0.291460 0.956583i \(-0.594141\pi\)
0.682695 + 0.730703i \(0.260808\pi\)
\(720\) −27.2785 + 53.4404i −0.0378869 + 0.0742228i
\(721\) 783.907 4.03344i 1.08725 0.00559423i
\(722\) −360.898 360.898i −0.499858 0.499858i
\(723\) −629.660 168.717i −0.870898 0.233357i
\(724\) −254.896 147.164i −0.352067 0.203266i
\(725\) −62.5245 603.375i −0.0862407 0.832242i
\(726\) 100.301 + 173.727i 0.138156 + 0.239293i
\(727\) 32.6420 + 32.6420i 0.0448996 + 0.0448996i 0.729200 0.684301i \(-0.239892\pi\)
−0.684301 + 0.729200i \(0.739892\pi\)
\(728\) 20.3560 + 74.4356i 0.0279616 + 0.102247i
\(729\) 27.0000i 0.0370370i
\(730\) −21.3770 413.691i −0.0292836 0.566700i
\(731\) −205.854 + 356.550i −0.281606 + 0.487757i
\(732\) 362.853 97.2263i 0.495701 0.132823i
\(733\) 263.815 + 70.6890i 0.359911 + 0.0964379i 0.434243 0.900796i \(-0.357016\pi\)
−0.0743321 + 0.997234i \(0.523682\pi\)
\(734\) 602.691i 0.821105i
\(735\) 280.920 318.055i 0.382204 0.432728i
\(736\) −79.7573 −0.108366
\(737\) −252.072 + 940.747i −0.342025 + 1.27645i
\(738\) −31.9314 119.170i −0.0432675 0.161476i
\(739\) −852.048 491.930i −1.15297 0.665670i −0.203364 0.979103i \(-0.565187\pi\)
−0.949610 + 0.313434i \(0.898521\pi\)
\(740\) 17.5418 + 15.8180i 0.0237052 + 0.0213757i
\(741\) 2.15971 0.00291458
\(742\) 717.885 196.321i 0.967499 0.264584i
\(743\) 121.603 121.603i 0.163664 0.163664i −0.620524 0.784188i \(-0.713080\pi\)
0.784188 + 0.620524i \(0.213080\pi\)
\(744\) −64.6590 + 37.3309i −0.0869072 + 0.0501759i
\(745\) 636.870 + 982.267i 0.854859 + 1.31848i
\(746\) −114.052 + 197.543i −0.152884 + 0.264803i
\(747\) 90.9855 339.563i 0.121801 0.454568i
\(748\) −499.486 + 499.486i −0.667763 + 0.667763i
\(749\) 4.01098 + 779.542i 0.00535512 + 1.04078i
\(750\) −47.2340 302.521i −0.0629787 0.403361i
\(751\) 340.967 + 590.571i 0.454017 + 0.786380i 0.998631 0.0523066i \(-0.0166573\pi\)
−0.544614 + 0.838687i \(0.683324\pi\)
\(752\) 327.041 87.6303i 0.434895 0.116530i
\(753\) −86.5522 323.017i −0.114943 0.428974i
\(754\) 115.827 66.8730i 0.153617 0.0886909i
\(755\) 1012.37 + 516.763i 1.34089 + 0.684455i
\(756\) 36.6967 + 62.8120i 0.0485407 + 0.0830847i
\(757\) −734.889 734.889i −0.970792 0.970792i 0.0287938 0.999585i \(-0.490833\pi\)
−0.999585 + 0.0287938i \(0.990833\pi\)
\(758\) 314.557 + 84.2852i 0.414983 + 0.111194i
\(759\) 301.247 + 173.925i 0.396900 + 0.229150i
\(760\) 4.42473 + 0.943890i 0.00582201 + 0.00124196i
\(761\) −62.7638 108.710i −0.0824755 0.142852i 0.821837 0.569722i \(-0.192949\pi\)
−0.904313 + 0.426871i \(0.859616\pi\)
\(762\) 209.119 + 209.119i 0.274435 + 0.274435i
\(763\) −515.164 135.201i −0.675182 0.177196i
\(764\)