Properties

Label 210.3.v.b.67.5
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.5
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.b.163.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-4.98617 - 0.371566i) q^{5} -2.44949 q^{6} +(-6.80563 + 1.63812i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-4.98617 - 0.371566i) q^{5} -2.44949 q^{6} +(-6.80563 + 1.63812i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(2.33264 - 6.67524i) q^{10} +(9.66984 - 16.7487i) q^{11} +(0.896575 - 3.34607i) q^{12} +(10.3969 - 10.3969i) q^{13} +(0.253320 - 9.89625i) q^{14} +(-1.61360 - 8.50860i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-23.1080 + 6.19178i) q^{17} +(-1.09808 - 4.09808i) q^{18} +(-2.70091 + 1.55937i) q^{19} +(8.26474 + 5.62975i) q^{20} +(-5.79151 - 10.6517i) q^{21} +(19.3397 + 19.3397i) q^{22} +(-34.2872 - 9.18722i) q^{23} +(4.24264 + 2.44949i) q^{24} +(24.7239 + 3.70539i) q^{25} +(10.3969 + 18.0080i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(13.4258 + 3.96832i) q^{28} -36.5420i q^{29} +(12.2136 + 0.910147i) q^{30} +(-1.49997 + 2.59803i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(32.3559 + 8.66974i) q^{33} -33.8325i q^{34} +(34.5427 - 5.63921i) q^{35} +6.00000 q^{36} +(-0.113231 + 0.422582i) q^{37} +(-1.14154 - 4.26029i) q^{38} +(22.0552 + 12.7336i) q^{39} +(-10.7155 + 9.22922i) q^{40} -64.3827 q^{41} +(16.6703 - 4.01256i) q^{42} +(-38.9059 + 38.9059i) q^{43} +(-33.4973 + 19.3397i) q^{44} +(13.5118 - 6.51391i) q^{45} +(25.1000 - 43.4744i) q^{46} +(-2.88858 + 10.7803i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(43.6331 - 22.2969i) q^{49} +(-14.1112 + 32.4172i) q^{50} +(-20.7181 - 35.8848i) q^{51} +(-28.4050 + 7.61109i) q^{52} +(-7.95451 - 29.6867i) q^{53} +(6.36396 - 3.67423i) q^{54} +(-54.4388 + 79.9188i) q^{55} +(-10.3350 + 16.8875i) q^{56} +(-3.81967 - 3.81967i) q^{57} +(49.9173 + 13.3753i) q^{58} +(34.4561 + 19.8933i) q^{59} +(-5.71377 + 16.3509i) q^{60} +(-21.4176 - 37.0964i) q^{61} +(-2.99995 - 2.99995i) q^{62} +(15.2244 - 14.4644i) q^{63} -8.00000i q^{64} +(-55.7041 + 47.9778i) q^{65} +(-23.6862 + 41.0257i) q^{66} +(3.98696 - 1.06830i) q^{67} +(46.2161 + 12.3836i) q^{68} -61.4821i q^{69} +(-4.94021 + 49.2503i) q^{70} -81.1650 q^{71} +(-2.19615 + 8.19615i) q^{72} +(27.1596 + 101.361i) q^{73} +(-0.535813 - 0.309352i) q^{74} +(4.88418 + 43.0249i) q^{75} +6.23750 q^{76} +(-38.3730 + 129.825i) q^{77} +(-25.4672 + 25.4672i) q^{78} +(25.8510 - 14.9251i) q^{79} +(-8.68521 - 18.0157i) q^{80} +(4.50000 - 7.79423i) q^{81} +(23.5657 - 87.9485i) q^{82} +(6.76277 - 6.76277i) q^{83} +(-0.620506 + 24.2408i) q^{84} +(117.521 - 22.2871i) q^{85} +(-38.9059 - 67.3869i) q^{86} +(61.1360 - 16.3813i) q^{87} +(-14.1576 - 52.8370i) q^{88} +(-101.345 + 58.5117i) q^{89} +(3.95249 + 20.8417i) q^{90} +(-53.7263 + 87.7891i) q^{91} +(50.1999 + 50.1999i) q^{92} +(-5.01901 - 1.34484i) q^{93} +(-13.6689 - 7.89175i) q^{94} +(14.0466 - 6.77174i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(-63.8427 - 63.8427i) q^{97} +(14.4872 + 67.7652i) q^{98} +58.0191i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −4.98617 0.371566i −0.997235 0.0743132i
\(6\) −2.44949 −0.408248
\(7\) −6.80563 + 1.63812i −0.972233 + 0.234017i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 2.33264 6.67524i 0.233264 0.667524i
\(11\) 9.66984 16.7487i 0.879077 1.52261i 0.0267208 0.999643i \(-0.491493\pi\)
0.852356 0.522962i \(-0.175173\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) 10.3969 10.3969i 0.799765 0.799765i −0.183293 0.983058i \(-0.558676\pi\)
0.983058 + 0.183293i \(0.0586759\pi\)
\(14\) 0.253320 9.89625i 0.0180943 0.706875i
\(15\) −1.61360 8.50860i −0.107573 0.567240i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −23.1080 + 6.19178i −1.35930 + 0.364222i −0.863558 0.504250i \(-0.831769\pi\)
−0.495738 + 0.868472i \(0.665102\pi\)
\(18\) −1.09808 4.09808i −0.0610042 0.227671i
\(19\) −2.70091 + 1.55937i −0.142153 + 0.0820723i −0.569390 0.822068i \(-0.692821\pi\)
0.427236 + 0.904140i \(0.359487\pi\)
\(20\) 8.26474 + 5.62975i 0.413237 + 0.281487i
\(21\) −5.79151 10.6517i −0.275786 0.507223i
\(22\) 19.3397 + 19.3397i 0.879077 + 0.879077i
\(23\) −34.2872 9.18722i −1.49075 0.399444i −0.580758 0.814076i \(-0.697244\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) 24.7239 + 3.70539i 0.988955 + 0.148215i
\(26\) 10.3969 + 18.0080i 0.399882 + 0.692617i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 13.4258 + 3.96832i 0.479493 + 0.141726i
\(29\) 36.5420i 1.26007i −0.776567 0.630034i \(-0.783041\pi\)
0.776567 0.630034i \(-0.216959\pi\)
\(30\) 12.2136 + 0.910147i 0.407119 + 0.0303382i
\(31\) −1.49997 + 2.59803i −0.0483862 + 0.0838074i −0.889204 0.457511i \(-0.848741\pi\)
0.840818 + 0.541318i \(0.182075\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) 32.3559 + 8.66974i 0.980483 + 0.262720i
\(34\) 33.8325i 0.995074i
\(35\) 34.5427 5.63921i 0.986935 0.161120i
\(36\) 6.00000 0.166667
\(37\) −0.113231 + 0.422582i −0.00306029 + 0.0114211i −0.967439 0.253104i \(-0.918549\pi\)
0.964379 + 0.264525i \(0.0852152\pi\)
\(38\) −1.14154 4.26029i −0.0300406 0.112113i
\(39\) 22.0552 + 12.7336i 0.565519 + 0.326503i
\(40\) −10.7155 + 9.22922i −0.267887 + 0.230730i
\(41\) −64.3827 −1.57031 −0.785155 0.619299i \(-0.787417\pi\)
−0.785155 + 0.619299i \(0.787417\pi\)
\(42\) 16.6703 4.01256i 0.396912 0.0955370i
\(43\) −38.9059 + 38.9059i −0.904787 + 0.904787i −0.995846 0.0910583i \(-0.970975\pi\)
0.0910583 + 0.995846i \(0.470975\pi\)
\(44\) −33.4973 + 19.3397i −0.761303 + 0.439538i
\(45\) 13.5118 6.51391i 0.300262 0.144753i
\(46\) 25.1000 43.4744i 0.545651 0.945096i
\(47\) −2.88858 + 10.7803i −0.0614592 + 0.229369i −0.989823 0.142304i \(-0.954549\pi\)
0.928364 + 0.371673i \(0.121216\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 43.6331 22.2969i 0.890472 0.455038i
\(50\) −14.1112 + 32.4172i −0.282224 + 0.648344i
\(51\) −20.7181 35.8848i −0.406237 0.703623i
\(52\) −28.4050 + 7.61109i −0.546249 + 0.146367i
\(53\) −7.95451 29.6867i −0.150085 0.560125i −0.999476 0.0323615i \(-0.989697\pi\)
0.849391 0.527764i \(-0.176969\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) −54.4388 + 79.9188i −0.989796 + 1.45307i
\(56\) −10.3350 + 16.8875i −0.184554 + 0.301562i
\(57\) −3.81967 3.81967i −0.0670118 0.0670118i
\(58\) 49.9173 + 13.3753i 0.860643 + 0.230609i
\(59\) 34.4561 + 19.8933i 0.584002 + 0.337174i 0.762722 0.646726i \(-0.223862\pi\)
−0.178720 + 0.983900i \(0.557196\pi\)
\(60\) −5.71377 + 16.3509i −0.0952294 + 0.272515i
\(61\) −21.4176 37.0964i −0.351109 0.608138i 0.635335 0.772236i \(-0.280862\pi\)
−0.986444 + 0.164098i \(0.947529\pi\)
\(62\) −2.99995 2.99995i −0.0483862 0.0483862i
\(63\) 15.2244 14.4644i 0.241657 0.229594i
\(64\) 8.00000i 0.125000i
\(65\) −55.7041 + 47.9778i −0.856986 + 0.738120i
\(66\) −23.6862 + 41.0257i −0.358882 + 0.621601i
\(67\) 3.98696 1.06830i 0.0595068 0.0159448i −0.228943 0.973440i \(-0.573527\pi\)
0.288450 + 0.957495i \(0.406860\pi\)
\(68\) 46.2161 + 12.3836i 0.679648 + 0.182111i
\(69\) 61.4821i 0.891045i
\(70\) −4.94021 + 49.2503i −0.0705745 + 0.703576i
\(71\) −81.1650 −1.14317 −0.571585 0.820543i \(-0.693671\pi\)
−0.571585 + 0.820543i \(0.693671\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) 27.1596 + 101.361i 0.372049 + 1.38851i 0.857609 + 0.514303i \(0.171949\pi\)
−0.485560 + 0.874203i \(0.661384\pi\)
\(74\) −0.535813 0.309352i −0.00724071 0.00418043i
\(75\) 4.88418 + 43.0249i 0.0651224 + 0.573666i
\(76\) 6.23750 0.0820723
\(77\) −38.3730 + 129.825i −0.498351 + 1.68605i
\(78\) −25.4672 + 25.4672i −0.326503 + 0.326503i
\(79\) 25.8510 14.9251i 0.327227 0.188925i −0.327382 0.944892i \(-0.606166\pi\)
0.654609 + 0.755967i \(0.272833\pi\)
\(80\) −8.68521 18.0157i −0.108565 0.225197i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 23.5657 87.9485i 0.287387 1.07254i
\(83\) 6.76277 6.76277i 0.0814791 0.0814791i −0.665193 0.746672i \(-0.731651\pi\)
0.746672 + 0.665193i \(0.231651\pi\)
\(84\) −0.620506 + 24.2408i −0.00738697 + 0.288581i
\(85\) 117.521 22.2871i 1.38260 0.262201i
\(86\) −38.9059 67.3869i −0.452394 0.783569i
\(87\) 61.1360 16.3813i 0.702712 0.188291i
\(88\) −14.1576 52.8370i −0.160882 0.600420i
\(89\) −101.345 + 58.5117i −1.13871 + 0.657435i −0.946111 0.323842i \(-0.895025\pi\)
−0.192600 + 0.981277i \(0.561692\pi\)
\(90\) 3.95249 + 20.8417i 0.0439166 + 0.231575i
\(91\) −53.7263 + 87.7891i −0.590399 + 0.964716i
\(92\) 50.1999 + 50.1999i 0.545651 + 0.545651i
\(93\) −5.01901 1.34484i −0.0539678 0.0144606i
\(94\) −13.6689 7.89175i −0.145414 0.0839548i
\(95\) 14.0466 6.77174i 0.147859 0.0712815i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) −63.8427 63.8427i −0.658172 0.658172i 0.296775 0.954947i \(-0.404089\pi\)
−0.954947 + 0.296775i \(0.904089\pi\)
\(98\) 14.4872 + 67.7652i 0.147829 + 0.691481i
\(99\) 58.0191i 0.586051i
\(100\) −39.1176 31.1418i −0.391176 0.311418i
\(101\) 33.9899 58.8723i 0.336534 0.582894i −0.647244 0.762283i \(-0.724079\pi\)
0.983778 + 0.179389i \(0.0574119\pi\)
\(102\) 56.6029 15.1667i 0.554930 0.148693i
\(103\) 124.228 + 33.2868i 1.20610 + 0.323173i 0.805230 0.592963i \(-0.202042\pi\)
0.400868 + 0.916136i \(0.368708\pi\)
\(104\) 41.5878i 0.399882i
\(105\) 24.9197 + 55.2631i 0.237330 + 0.526315i
\(106\) 43.4643 0.410040
\(107\) −13.4144 + 50.0631i −0.125368 + 0.467880i −0.999853 0.0171737i \(-0.994533\pi\)
0.874485 + 0.485053i \(0.161200\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) −125.372 72.3837i −1.15020 0.664071i −0.201268 0.979536i \(-0.564506\pi\)
−0.948937 + 0.315465i \(0.897839\pi\)
\(110\) −89.2451 103.617i −0.811319 0.941973i
\(111\) −0.757754 −0.00682661
\(112\) −19.2859 20.2991i −0.172195 0.181242i
\(113\) 131.253 131.253i 1.16153 1.16153i 0.177388 0.984141i \(-0.443235\pi\)
0.984141 0.177388i \(-0.0567647\pi\)
\(114\) 6.61586 3.81967i 0.0580339 0.0335059i
\(115\) 167.548 + 58.5490i 1.45694 + 0.509122i
\(116\) −36.5420 + 63.2926i −0.315017 + 0.545626i
\(117\) −11.4166 + 42.6075i −0.0975781 + 0.364166i
\(118\) −39.7865 + 39.7865i −0.337174 + 0.337174i
\(119\) 147.122 79.9926i 1.23632 0.672207i
\(120\) −20.2444 13.7900i −0.168703 0.114917i
\(121\) −126.512 219.125i −1.04555 1.81095i
\(122\) 58.5140 15.6788i 0.479623 0.128515i
\(123\) −28.8620 107.714i −0.234650 0.875727i
\(124\) 5.19606 2.99995i 0.0419037 0.0241931i
\(125\) −121.901 27.6623i −0.975206 0.221298i
\(126\) 14.1862 + 26.0912i 0.112589 + 0.207073i
\(127\) 9.10167 + 9.10167i 0.0716667 + 0.0716667i 0.742032 0.670365i \(-0.233862\pi\)
−0.670365 + 0.742032i \(0.733862\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) −82.5318 47.6497i −0.639781 0.369378i
\(130\) −45.1498 93.6543i −0.347306 0.720418i
\(131\) 107.486 + 186.170i 0.820500 + 1.42115i 0.905310 + 0.424751i \(0.139638\pi\)
−0.0848102 + 0.996397i \(0.527028\pi\)
\(132\) −47.3724 47.3724i −0.358882 0.358882i
\(133\) 15.8270 15.0369i 0.119000 0.113060i
\(134\) 5.83731i 0.0435620i
\(135\) 16.9552 + 19.6856i 0.125594 + 0.145819i
\(136\) −33.8325 + 58.5996i −0.248768 + 0.430880i
\(137\) 125.306 33.5756i 0.914640 0.245077i 0.229347 0.973345i \(-0.426341\pi\)
0.685293 + 0.728267i \(0.259674\pi\)
\(138\) 83.9861 + 22.5040i 0.608595 + 0.163073i
\(139\) 68.0948i 0.489890i 0.969537 + 0.244945i \(0.0787700\pi\)
−0.969537 + 0.244945i \(0.921230\pi\)
\(140\) −65.4689 24.7753i −0.467635 0.176967i
\(141\) −19.3308 −0.137098
\(142\) 29.7085 110.873i 0.209214 0.780799i
\(143\) −73.5980 274.672i −0.514672 1.92078i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) −13.5778 + 182.205i −0.0936398 + 1.25658i
\(146\) −148.403 −1.01646
\(147\) 56.8636 + 63.0042i 0.386827 + 0.428600i
\(148\) 0.618703 0.618703i 0.00418043 0.00418043i
\(149\) 208.836 120.572i 1.40159 0.809206i 0.407031 0.913414i \(-0.366564\pi\)
0.994556 + 0.104208i \(0.0332308\pi\)
\(150\) −60.5609 9.07631i −0.403739 0.0605087i
\(151\) 51.4548 89.1223i 0.340760 0.590214i −0.643814 0.765182i \(-0.722649\pi\)
0.984574 + 0.174968i \(0.0559823\pi\)
\(152\) −2.28308 + 8.52058i −0.0150203 + 0.0560564i
\(153\) 50.7488 50.7488i 0.331691 0.331691i
\(154\) −163.299 99.9380i −1.06039 0.648948i
\(155\) 8.44447 12.3969i 0.0544804 0.0799800i
\(156\) −25.4672 44.1105i −0.163251 0.282760i
\(157\) −70.7594 + 18.9599i −0.450697 + 0.120764i −0.477026 0.878889i \(-0.658285\pi\)
0.0263285 + 0.999653i \(0.491618\pi\)
\(158\) 10.9259 + 40.7760i 0.0691512 + 0.258076i
\(159\) 46.1008 26.6163i 0.289942 0.167398i
\(160\) 27.7890 5.26999i 0.173681 0.0329374i
\(161\) 248.396 + 6.35833i 1.54283 + 0.0394927i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 64.8481 + 17.3760i 0.397841 + 0.106601i 0.452192 0.891921i \(-0.350642\pi\)
−0.0543506 + 0.998522i \(0.517309\pi\)
\(164\) 111.514 + 64.3827i 0.679965 + 0.392578i
\(165\) −158.111 55.2512i −0.958248 0.334856i
\(166\) 6.76277 + 11.7135i 0.0407396 + 0.0705630i
\(167\) 92.5655 + 92.5655i 0.554284 + 0.554284i 0.927674 0.373390i \(-0.121805\pi\)
−0.373390 + 0.927674i \(0.621805\pi\)
\(168\) −32.8864 9.72036i −0.195752 0.0578593i
\(169\) 47.1928i 0.279247i
\(170\) −12.5710 + 168.695i −0.0739471 + 0.992322i
\(171\) 4.67812 8.10274i 0.0273574 0.0473845i
\(172\) 106.293 28.4811i 0.617981 0.165588i
\(173\) −169.875 45.5179i −0.981936 0.263109i −0.268077 0.963398i \(-0.586388\pi\)
−0.713860 + 0.700289i \(0.753055\pi\)
\(174\) 89.5092i 0.514421i
\(175\) −174.331 + 15.2832i −0.996179 + 0.0873324i
\(176\) 77.3587 0.439538
\(177\) −17.8358 + 66.5642i −0.100767 + 0.376069i
\(178\) −42.8336 159.857i −0.240638 0.898073i
\(179\) 220.202 + 127.134i 1.23018 + 0.710243i 0.967067 0.254522i \(-0.0819183\pi\)
0.263111 + 0.964766i \(0.415252\pi\)
\(180\) −29.9170 2.22940i −0.166206 0.0123855i
\(181\) −114.712 −0.633771 −0.316885 0.948464i \(-0.602637\pi\)
−0.316885 + 0.948464i \(0.602637\pi\)
\(182\) −100.257 105.525i −0.550863 0.579805i
\(183\) 52.4623 52.4623i 0.286679 0.286679i
\(184\) −86.9488 + 50.1999i −0.472548 + 0.272826i
\(185\) 0.721605 2.06500i 0.00390057 0.0111621i
\(186\) 3.67417 6.36385i 0.0197536 0.0342142i
\(187\) −119.747 + 446.902i −0.640359 + 2.38985i
\(188\) 15.7835 15.7835i 0.0839548 0.0839548i
\(189\) 31.0243 + 18.9866i 0.164150 + 0.100458i
\(190\) 4.10894 + 21.6667i 0.0216260 + 0.114035i
\(191\) −159.306 275.926i −0.834063 1.44464i −0.894791 0.446485i \(-0.852675\pi\)
0.0607278 0.998154i \(-0.480658\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) −26.3287 98.2599i −0.136418 0.509119i −0.999988 0.00489001i \(-0.998443\pi\)
0.863570 0.504229i \(-0.168223\pi\)
\(194\) 110.579 63.8427i 0.569994 0.329086i
\(195\) −105.240 71.6869i −0.539692 0.367625i
\(196\) −97.8717 5.01384i −0.499345 0.0255808i
\(197\) −217.833 217.833i −1.10575 1.10575i −0.993703 0.112047i \(-0.964259\pi\)
−0.112047 0.993703i \(-0.535741\pi\)
\(198\) −79.2555 21.2364i −0.400280 0.107255i
\(199\) −19.8344 11.4514i −0.0996704 0.0575447i 0.449336 0.893363i \(-0.351661\pi\)
−0.549007 + 0.835818i \(0.684994\pi\)
\(200\) 56.8585 42.0370i 0.284293 0.210185i
\(201\) 3.57461 + 6.19140i 0.0177841 + 0.0308030i
\(202\) 67.9799 + 67.9799i 0.336534 + 0.336534i
\(203\) 59.8601 + 248.691i 0.294878 + 1.22508i
\(204\) 82.8724i 0.406237i
\(205\) 321.024 + 23.9224i 1.56597 + 0.116695i
\(206\) −90.9413 + 157.515i −0.441463 + 0.764636i
\(207\) 102.862 27.5617i 0.496916 0.133148i
\(208\) 56.8099 + 15.2222i 0.273125 + 0.0731836i
\(209\) 60.3156i 0.288591i
\(210\) −84.6120 + 13.8132i −0.402914 + 0.0657771i
\(211\) 184.175 0.872868 0.436434 0.899736i \(-0.356241\pi\)
0.436434 + 0.899736i \(0.356241\pi\)
\(212\) −15.9090 + 59.3733i −0.0750426 + 0.280063i
\(213\) −36.3853 135.792i −0.170823 0.637520i
\(214\) −63.4775 36.6487i −0.296624 0.171256i
\(215\) 208.447 179.535i 0.969523 0.835048i
\(216\) −14.6969 −0.0680414
\(217\) 5.95238 20.1384i 0.0274303 0.0928035i
\(218\) 144.767 144.767i 0.664071 0.664071i
\(219\) −157.405 + 90.8777i −0.718744 + 0.414967i
\(220\) 174.209 83.9846i 0.791861 0.381748i
\(221\) −175.877 + 304.628i −0.795825 + 1.37841i
\(222\) 0.277357 1.03511i 0.00124936 0.00466266i
\(223\) −150.693 + 150.693i −0.675752 + 0.675752i −0.959036 0.283284i \(-0.908576\pi\)
0.283284 + 0.959036i \(0.408576\pi\)
\(224\) 34.7883 18.9150i 0.155305 0.0844419i
\(225\) −69.7926 + 27.4589i −0.310189 + 0.122040i
\(226\) 131.253 + 227.336i 0.580764 + 1.00591i
\(227\) −92.5998 + 24.8120i −0.407928 + 0.109304i −0.456947 0.889494i \(-0.651057\pi\)
0.0490189 + 0.998798i \(0.484391\pi\)
\(228\) 2.79619 + 10.4355i 0.0122640 + 0.0457699i
\(229\) 6.22985 3.59681i 0.0272046 0.0157066i −0.486336 0.873772i \(-0.661667\pi\)
0.513541 + 0.858065i \(0.328334\pi\)
\(230\) −141.306 + 207.445i −0.614376 + 0.901933i
\(231\) −234.404 6.00019i −1.01474 0.0259749i
\(232\) −73.0840 73.0840i −0.315017 0.315017i
\(233\) −101.644 27.2353i −0.436239 0.116890i 0.0340145 0.999421i \(-0.489171\pi\)
−0.470253 + 0.882532i \(0.655837\pi\)
\(234\) −54.0241 31.1908i −0.230872 0.133294i
\(235\) 18.4086 52.6793i 0.0783344 0.224167i
\(236\) −39.7865 68.9123i −0.168587 0.292001i
\(237\) 36.5588 + 36.5588i 0.154256 + 0.154256i
\(238\) 55.4217 + 230.251i 0.232864 + 0.967443i
\(239\) 101.044i 0.422779i 0.977402 + 0.211389i \(0.0677988\pi\)
−0.977402 + 0.211389i \(0.932201\pi\)
\(240\) 26.2475 22.6069i 0.109364 0.0941953i
\(241\) 85.2132 147.594i 0.353582 0.612422i −0.633292 0.773913i \(-0.718297\pi\)
0.986874 + 0.161491i \(0.0516302\pi\)
\(242\) 345.636 92.6130i 1.42825 0.382698i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 85.6705i 0.351109i
\(245\) −225.847 + 94.9634i −0.921825 + 0.387606i
\(246\) 157.705 0.641077
\(247\) −11.8685 + 44.2940i −0.0480508 + 0.179328i
\(248\) 2.19611 + 8.19601i 0.00885530 + 0.0330484i
\(249\) 14.3460 + 8.28267i 0.0576145 + 0.0332637i
\(250\) 82.4061 156.394i 0.329625 0.625578i
\(251\) −135.214 −0.538703 −0.269351 0.963042i \(-0.586809\pi\)
−0.269351 + 0.963042i \(0.586809\pi\)
\(252\) −40.8338 + 9.82871i −0.162039 + 0.0390028i
\(253\) −485.425 + 485.425i −1.91868 + 1.91868i
\(254\) −15.7646 + 9.10167i −0.0620652 + 0.0358334i
\(255\) 89.9705 + 186.626i 0.352825 + 0.731867i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 55.2375 206.149i 0.214932 0.802137i −0.771259 0.636522i \(-0.780372\pi\)
0.986191 0.165615i \(-0.0529609\pi\)
\(258\) 95.2995 95.2995i 0.369378 0.369378i
\(259\) 0.0783651 3.06142i 0.000302568 0.0118202i
\(260\) 144.460 27.3959i 0.555616 0.105369i
\(261\) 54.8130 + 94.9389i 0.210011 + 0.363751i
\(262\) −293.656 + 78.6849i −1.12082 + 0.300324i
\(263\) 60.3049 + 225.061i 0.229296 + 0.855745i 0.980638 + 0.195831i \(0.0627404\pi\)
−0.751342 + 0.659914i \(0.770593\pi\)
\(264\) 82.0513 47.3724i 0.310801 0.179441i
\(265\) 28.6320 + 150.978i 0.108045 + 0.569730i
\(266\) 14.7478 + 27.1240i 0.0554427 + 0.101970i
\(267\) −143.324 143.324i −0.536793 0.536793i
\(268\) −7.97391 2.13660i −0.0297534 0.00797240i
\(269\) 146.659 + 84.6734i 0.545199 + 0.314771i 0.747184 0.664618i \(-0.231406\pi\)
−0.201984 + 0.979389i \(0.564739\pi\)
\(270\) −33.0970 + 15.9557i −0.122582 + 0.0590953i
\(271\) 48.7012 + 84.3530i 0.179709 + 0.311266i 0.941781 0.336227i \(-0.109151\pi\)
−0.762072 + 0.647493i \(0.775818\pi\)
\(272\) −67.6650 67.6650i −0.248768 0.248768i
\(273\) −170.959 50.5310i −0.626223 0.185095i
\(274\) 183.460i 0.669563i
\(275\) 301.136 378.261i 1.09504 1.37550i
\(276\) −61.4821 + 106.490i −0.222761 + 0.385834i
\(277\) −74.6644 + 20.0063i −0.269547 + 0.0722248i −0.391061 0.920365i \(-0.627892\pi\)
0.121514 + 0.992590i \(0.461225\pi\)
\(278\) −93.0192 24.9244i −0.334601 0.0896562i
\(279\) 8.99984i 0.0322575i
\(280\) 57.8070 80.3638i 0.206454 0.287014i
\(281\) 426.425 1.51753 0.758763 0.651367i \(-0.225804\pi\)
0.758763 + 0.651367i \(0.225804\pi\)
\(282\) 7.07555 26.4063i 0.0250906 0.0936394i
\(283\) −18.3503 68.4841i −0.0648419 0.241993i 0.925897 0.377777i \(-0.123311\pi\)
−0.990739 + 0.135784i \(0.956645\pi\)
\(284\) 140.582 + 81.1650i 0.495007 + 0.285792i
\(285\) 17.6263 + 20.4648i 0.0618466 + 0.0718063i
\(286\) 402.147 1.40611
\(287\) 438.165 105.467i 1.52671 0.367479i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 245.362 141.660i 0.849002 0.490172i
\(290\) −243.927 85.2392i −0.841126 0.293928i
\(291\) 78.1910 135.431i 0.268698 0.465398i
\(292\) 54.3192 202.722i 0.186025 0.694253i
\(293\) −27.6890 + 27.6890i −0.0945016 + 0.0945016i −0.752777 0.658275i \(-0.771286\pi\)
0.658275 + 0.752777i \(0.271286\pi\)
\(294\) −106.879 + 54.6159i −0.363534 + 0.185768i
\(295\) −164.413 111.994i −0.557331 0.379641i
\(296\) 0.618703 + 1.07163i 0.00209021 + 0.00362036i
\(297\) −97.0678 + 26.0092i −0.326828 + 0.0875732i
\(298\) 88.2646 + 329.408i 0.296190 + 1.10540i
\(299\) −452.001 + 260.963i −1.51171 + 0.872785i
\(300\) 34.5653 79.4055i 0.115218 0.264685i
\(301\) 201.046 328.511i 0.667928 1.09140i
\(302\) 102.910 + 102.910i 0.340760 + 0.340760i
\(303\) 113.733 + 30.4745i 0.375355 + 0.100576i
\(304\) −10.8037 6.23750i −0.0355384 0.0205181i
\(305\) 93.0083 + 192.927i 0.304945 + 0.632548i
\(306\) 50.7488 + 87.8994i 0.165846 + 0.287253i
\(307\) −292.629 292.629i −0.953190 0.953190i 0.0457623 0.998952i \(-0.485428\pi\)
−0.998952 + 0.0457623i \(0.985428\pi\)
\(308\) 196.290 186.491i 0.637304 0.605491i
\(309\) 222.760i 0.720905i
\(310\) 13.8436 + 16.0729i 0.0446567 + 0.0518482i
\(311\) 82.6523 143.158i 0.265763 0.460315i −0.702000 0.712177i \(-0.747709\pi\)
0.967763 + 0.251862i \(0.0810428\pi\)
\(312\) 69.5777 18.6433i 0.223005 0.0597541i
\(313\) 112.074 + 30.0301i 0.358064 + 0.0959429i 0.433366 0.901218i \(-0.357326\pi\)
−0.0753026 + 0.997161i \(0.523992\pi\)
\(314\) 103.599i 0.329933i
\(315\) −81.2858 + 66.4652i −0.258050 + 0.211001i
\(316\) −59.7002 −0.188925
\(317\) −152.181 + 567.946i −0.480065 + 1.79163i 0.121257 + 0.992621i \(0.461307\pi\)
−0.601322 + 0.799007i \(0.705359\pi\)
\(318\) 19.4845 + 72.7171i 0.0612720 + 0.228670i
\(319\) −612.029 353.355i −1.91859 1.10770i
\(320\) −2.97253 + 39.8894i −0.00928915 + 0.124654i
\(321\) −89.7707 −0.279660
\(322\) −99.6047 + 336.987i −0.309331 + 1.04654i
\(323\) 52.7575 52.7575i 0.163336 0.163336i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) 295.577 218.528i 0.909469 0.672394i
\(326\) −47.4721 + 82.2241i −0.145620 + 0.252221i
\(327\) 64.8975 242.201i 0.198463 0.740675i
\(328\) −128.765 + 128.765i −0.392578 + 0.392578i
\(329\) 1.99914 78.0988i 0.00607642 0.237382i
\(330\) 133.347 195.760i 0.404082 0.593213i
\(331\) −78.4975 135.962i −0.237152 0.410760i 0.722744 0.691116i \(-0.242881\pi\)
−0.959896 + 0.280356i \(0.909547\pi\)
\(332\) −18.4762 + 4.95069i −0.0556513 + 0.0149117i
\(333\) −0.339692 1.26775i −0.00102010 0.00380705i
\(334\) −160.328 + 92.5655i −0.480024 + 0.277142i
\(335\) −20.2766 + 3.84532i −0.0605272 + 0.0114786i
\(336\) 25.3155 41.3657i 0.0753438 0.123112i
\(337\) −208.968 208.968i −0.620082 0.620082i 0.325470 0.945552i \(-0.394477\pi\)
−0.945552 + 0.325470i \(0.894477\pi\)
\(338\) 64.4666 + 17.2738i 0.190729 + 0.0511058i
\(339\) 278.429 + 160.751i 0.821325 + 0.474192i
\(340\) −225.840 78.9189i −0.664235 0.232114i
\(341\) 29.0090 + 50.2451i 0.0850704 + 0.147346i
\(342\) 9.35624 + 9.35624i 0.0273574 + 0.0273574i
\(343\) −260.426 + 223.220i −0.759259 + 0.650788i
\(344\) 155.623i 0.452394i
\(345\) −22.8447 + 306.560i −0.0662164 + 0.888581i
\(346\) 124.357 215.393i 0.359414 0.622523i
\(347\) −259.517 + 69.5374i −0.747888 + 0.200396i −0.612581 0.790408i \(-0.709869\pi\)
−0.135307 + 0.990804i \(0.543202\pi\)
\(348\) −122.272 32.7627i −0.351356 0.0941456i
\(349\) 260.737i 0.747097i −0.927611 0.373549i \(-0.878141\pi\)
0.927611 0.373549i \(-0.121859\pi\)
\(350\) 42.9325 243.735i 0.122664 0.696386i
\(351\) −76.4016 −0.217668
\(352\) −28.3153 + 105.674i −0.0804411 + 0.300210i
\(353\) −64.5587 240.936i −0.182886 0.682539i −0.995073 0.0991424i \(-0.968390\pi\)
0.812188 0.583396i \(-0.198277\pi\)
\(354\) −84.4000 48.7284i −0.238418 0.137651i
\(355\) 404.703 + 30.1582i 1.14001 + 0.0849526i
\(356\) 234.047 0.657435
\(357\) 199.783 + 210.280i 0.559617 + 0.589019i
\(358\) −254.267 + 254.267i −0.710243 + 0.710243i
\(359\) −508.866 + 293.794i −1.41746 + 0.818368i −0.996075 0.0885160i \(-0.971788\pi\)
−0.421380 + 0.906884i \(0.638454\pi\)
\(360\) 13.9958 40.0514i 0.0388773 0.111254i
\(361\) −175.637 + 304.212i −0.486528 + 0.842692i
\(362\) 41.9877 156.700i 0.115988 0.432873i
\(363\) 309.889 309.889i 0.853689 0.853689i
\(364\) 180.846 98.3290i 0.496829 0.270135i
\(365\) −97.7601 515.495i −0.267836 1.41231i
\(366\) 52.4623 + 90.8673i 0.143339 + 0.248271i
\(367\) 66.5746 17.8386i 0.181402 0.0486066i −0.166974 0.985961i \(-0.553400\pi\)
0.348377 + 0.937355i \(0.386733\pi\)
\(368\) −36.7489 137.149i −0.0998611 0.372687i
\(369\) 167.271 96.5741i 0.453310 0.261718i
\(370\) 2.55671 + 1.74157i 0.00691003 + 0.00470695i
\(371\) 102.766 + 189.006i 0.276997 + 0.509450i
\(372\) 7.34834 + 7.34834i 0.0197536 + 0.0197536i
\(373\) −302.747 81.1209i −0.811655 0.217482i −0.170960 0.985278i \(-0.554687\pi\)
−0.640695 + 0.767796i \(0.721354\pi\)
\(374\) −566.649 327.155i −1.51510 0.874746i
\(375\) −8.36676 216.345i −0.0223113 0.576919i
\(376\) 15.7835 + 27.3378i 0.0419774 + 0.0727070i
\(377\) −379.925 379.925i −1.00776 1.00776i
\(378\) −37.2919 + 35.4304i −0.0986559 + 0.0937312i
\(379\) 400.395i 1.05645i −0.849104 0.528226i \(-0.822858\pi\)
0.849104 0.528226i \(-0.177142\pi\)
\(380\) −31.1012 2.31764i −0.0818454 0.00609906i
\(381\) −11.1472 + 19.3076i −0.0292578 + 0.0506760i
\(382\) 435.232 116.620i 1.13935 0.305288i
\(383\) −579.836 155.366i −1.51393 0.405657i −0.596192 0.802842i \(-0.703320\pi\)
−0.917739 + 0.397185i \(0.869987\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 239.573 633.074i 0.622269 1.64435i
\(386\) 143.863 0.372701
\(387\) 42.7216 159.439i 0.110392 0.411987i
\(388\) 46.7361 + 174.421i 0.120454 + 0.449540i
\(389\) −113.750 65.6735i −0.292416 0.168826i 0.346615 0.938008i \(-0.387331\pi\)
−0.639031 + 0.769181i \(0.720664\pi\)
\(390\) 136.447 117.521i 0.349863 0.301336i
\(391\) 849.194 2.17185
\(392\) 42.6726 131.860i 0.108859 0.336377i
\(393\) −263.285 + 263.285i −0.669936 + 0.669936i
\(394\) 377.297 217.833i 0.957608 0.552875i
\(395\) −134.443 + 64.8136i −0.340362 + 0.164085i
\(396\) 58.0191 100.492i 0.146513 0.253768i
\(397\) 176.291 657.925i 0.444057 1.65724i −0.274358 0.961628i \(-0.588465\pi\)
0.718415 0.695615i \(-0.244868\pi\)
\(398\) 22.9028 22.9028i 0.0575447 0.0575447i
\(399\) 32.2523 + 19.7382i 0.0808329 + 0.0494691i
\(400\) 36.6119 + 93.0568i 0.0915298 + 0.232642i
\(401\) −17.6363 30.5469i −0.0439807 0.0761769i 0.843197 0.537605i \(-0.180671\pi\)
−0.887178 + 0.461428i \(0.847337\pi\)
\(402\) −9.76601 + 2.61679i −0.0242935 + 0.00650944i
\(403\) 11.4164 + 42.6067i 0.0283286 + 0.105724i
\(404\) −117.745 + 67.9799i −0.291447 + 0.168267i
\(405\) −25.3339 + 37.1913i −0.0625527 + 0.0918305i
\(406\) −361.629 9.25683i −0.890711 0.0228001i
\(407\) 5.98276 + 5.98276i 0.0146997 + 0.0146997i
\(408\) −113.206 30.3334i −0.277465 0.0743466i
\(409\) 114.297 + 65.9892i 0.279454 + 0.161343i 0.633176 0.774008i \(-0.281751\pi\)
−0.353722 + 0.935350i \(0.615084\pi\)
\(410\) −150.181 + 429.770i −0.366296 + 1.04822i
\(411\) 112.346 + 194.589i 0.273348 + 0.473453i
\(412\) −181.883 181.883i −0.441463 0.441463i
\(413\) −267.083 78.9429i −0.646691 0.191145i
\(414\) 150.600i 0.363767i
\(415\) −36.2332 + 31.2075i −0.0873088 + 0.0751989i
\(416\) −41.5878 + 72.0321i −0.0999706 + 0.173154i
\(417\) −113.925 + 30.5261i −0.273201 + 0.0732040i
\(418\) −82.3926 22.0770i −0.197112 0.0528159i
\(419\) 578.241i 1.38005i 0.723786 + 0.690024i \(0.242400\pi\)
−0.723786 + 0.690024i \(0.757600\pi\)
\(420\) 12.1010 120.638i 0.0288119 0.287234i
\(421\) 494.086 1.17360 0.586801 0.809732i \(-0.300387\pi\)
0.586801 + 0.809732i \(0.300387\pi\)
\(422\) −67.4128 + 251.588i −0.159746 + 0.596180i
\(423\) −8.66575 32.3410i −0.0204864 0.0764563i
\(424\) −75.2823 43.4643i −0.177553 0.102510i
\(425\) −594.263 + 67.4606i −1.39827 + 0.158731i
\(426\) 198.813 0.466697
\(427\) 206.529 + 217.380i 0.483674 + 0.509086i
\(428\) 73.2975 73.2975i 0.171256 0.171256i
\(429\) 426.541 246.264i 0.994269 0.574042i
\(430\) 168.953 + 350.459i 0.392913 + 0.815021i
\(431\) −34.7168 + 60.1313i −0.0805494 + 0.139516i −0.903486 0.428617i \(-0.859001\pi\)
0.822937 + 0.568133i \(0.192334\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) 473.011 473.011i 1.09240 1.09240i 0.0971324 0.995271i \(-0.469033\pi\)
0.995271 0.0971324i \(-0.0309670\pi\)
\(434\) 25.3308 + 15.5023i 0.0583659 + 0.0357195i
\(435\) −310.921 + 58.9641i −0.714762 + 0.135550i
\(436\) 144.767 + 250.745i 0.332036 + 0.575102i
\(437\) 106.933 28.6526i 0.244698 0.0655667i
\(438\) −66.5271 248.283i −0.151888 0.566855i
\(439\) −304.676 + 175.905i −0.694024 + 0.400695i −0.805118 0.593115i \(-0.797898\pi\)
0.111094 + 0.993810i \(0.464565\pi\)
\(440\) 50.9600 + 268.715i 0.115818 + 0.610716i
\(441\) −79.9169 + 123.379i −0.181218 + 0.279770i
\(442\) −351.755 351.755i −0.795825 0.795825i
\(443\) 226.660 + 60.7333i 0.511647 + 0.137095i 0.505400 0.862885i \(-0.331345\pi\)
0.00624700 + 0.999980i \(0.498012\pi\)
\(444\) 1.31247 + 0.757754i 0.00295601 + 0.00170665i
\(445\) 527.066 254.093i 1.18442 0.570996i
\(446\) −150.693 261.007i −0.337876 0.585218i
\(447\) 295.339 + 295.339i 0.660714 + 0.660714i
\(448\) 13.1050 + 54.4450i 0.0292521 + 0.121529i
\(449\) 40.1949i 0.0895210i 0.998998 + 0.0447605i \(0.0142525\pi\)
−0.998998 + 0.0447605i \(0.985748\pi\)
\(450\) −11.9637 105.389i −0.0265861 0.234198i
\(451\) −622.571 + 1078.32i −1.38042 + 2.39096i
\(452\) −358.589 + 96.0837i −0.793339 + 0.212575i
\(453\) 172.171 + 46.1331i 0.380068 + 0.101839i
\(454\) 135.575i 0.298624i
\(455\) 300.508 417.769i 0.660457 0.918174i
\(456\) −15.2787 −0.0335059
\(457\) −61.6028 + 229.905i −0.134798 + 0.503074i 0.865200 + 0.501426i \(0.167191\pi\)
−0.999999 + 0.00164767i \(0.999476\pi\)
\(458\) 2.63305 + 9.82666i 0.00574901 + 0.0214556i
\(459\) 107.654 + 62.1543i 0.234541 + 0.135412i
\(460\) −231.653 268.958i −0.503593 0.584692i
\(461\) 782.863 1.69818 0.849092 0.528245i \(-0.177150\pi\)
0.849092 + 0.528245i \(0.177150\pi\)
\(462\) 93.9944 318.006i 0.203451 0.688325i
\(463\) 504.302 504.302i 1.08921 1.08921i 0.0935957 0.995610i \(-0.470164\pi\)
0.995610 0.0935957i \(-0.0298361\pi\)
\(464\) 126.585 73.0840i 0.272813 0.157509i
\(465\) 24.5260 + 8.57050i 0.0527440 + 0.0184312i
\(466\) 74.4083 128.879i 0.159674 0.276564i
\(467\) 55.8712 208.514i 0.119639 0.446497i −0.879953 0.475060i \(-0.842426\pi\)
0.999592 + 0.0285628i \(0.00909306\pi\)
\(468\) 62.3817 62.3817i 0.133294 0.133294i
\(469\) −25.3837 + 13.8016i −0.0541231 + 0.0294277i
\(470\) 65.2233 + 44.4286i 0.138773 + 0.0945289i
\(471\) −63.4412 109.883i −0.134695 0.233298i
\(472\) 108.699 29.1258i 0.230294 0.0617071i
\(473\) 275.407 + 1027.83i 0.582257 + 2.17301i
\(474\) −63.3216 + 36.5588i −0.133590 + 0.0771282i
\(475\) −72.5552 + 28.5458i −0.152748 + 0.0600965i
\(476\) −334.815 8.57046i −0.703393 0.0180052i
\(477\) 65.1964 + 65.1964i 0.136680 + 0.136680i
\(478\) −138.029 36.9847i −0.288763 0.0773739i
\(479\) 144.556 + 83.4594i 0.301787 + 0.174237i 0.643245 0.765660i \(-0.277587\pi\)
−0.341458 + 0.939897i \(0.610921\pi\)
\(480\) 21.2743 + 44.1294i 0.0443215 + 0.0919362i
\(481\) 3.21631 + 5.57081i 0.00668672 + 0.0115817i
\(482\) 170.426 + 170.426i 0.353582 + 0.353582i
\(483\) 100.715 + 418.424i 0.208520 + 0.866303i
\(484\) 506.047i 1.04555i
\(485\) 294.609 + 342.052i 0.607441 + 0.705263i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) −678.744 + 181.869i −1.39372 + 0.373447i −0.876087 0.482153i \(-0.839855\pi\)
−0.517637 + 0.855600i \(0.673188\pi\)
\(488\) −117.028 31.3576i −0.239812 0.0642573i
\(489\) 116.283i 0.237797i
\(490\) −47.0567 343.272i −0.0960340 0.700555i
\(491\) 71.9764 0.146591 0.0732957 0.997310i \(-0.476648\pi\)
0.0732957 + 0.997310i \(0.476648\pi\)
\(492\) −57.7240 + 215.429i −0.117325 + 0.437864i
\(493\) 226.260 + 844.414i 0.458945 + 1.71281i
\(494\) −56.1625 32.4254i −0.113689 0.0656385i
\(495\) 21.5579 289.293i 0.0435513 0.584431i
\(496\) −11.9998 −0.0241931
\(497\) 552.379 132.958i 1.11143 0.267521i
\(498\) −16.5653 + 16.5653i −0.0332637 + 0.0332637i
\(499\) 33.5121 19.3482i 0.0671586 0.0387740i −0.466045 0.884761i \(-0.654321\pi\)
0.533203 + 0.845987i \(0.320988\pi\)
\(500\) 183.476 + 169.813i 0.366952 + 0.339626i
\(501\) −113.369 + 196.361i −0.226286 + 0.391938i
\(502\) 49.4919 184.706i 0.0985894 0.367941i
\(503\) 152.122 152.122i 0.302429 0.302429i −0.539535 0.841963i \(-0.681400\pi\)
0.841963 + 0.539535i \(0.181400\pi\)
\(504\) 1.51992 59.3775i 0.00301572 0.117813i
\(505\) −191.355 + 280.918i −0.378920 + 0.556273i
\(506\) −485.425 840.781i −0.959338 1.66162i
\(507\) 78.9551 21.1560i 0.155730 0.0417277i
\(508\) −6.66289 24.8662i −0.0131159 0.0489493i
\(509\) −500.986 + 289.245i −0.984256 + 0.568260i −0.903552 0.428478i \(-0.859050\pi\)
−0.0807035 + 0.996738i \(0.525717\pi\)
\(510\) −287.867 + 54.5921i −0.564446 + 0.107043i
\(511\) −350.879 645.334i −0.686652 1.26288i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 15.6533 + 4.19429i 0.0305133 + 0.00817600i
\(514\) 261.387 + 150.912i 0.508534 + 0.293602i
\(515\) −607.055 212.133i −1.17875 0.411909i
\(516\) 95.2995 + 165.064i 0.184689 + 0.319891i
\(517\) 152.624 + 152.624i 0.295211 + 0.295211i
\(518\) 4.15330 + 1.22761i 0.00801795 + 0.00236990i
\(519\) 304.612i 0.586920i
\(520\) −15.4526 + 207.364i −0.0297165 + 0.398777i
\(521\) −158.312 + 274.205i −0.303862 + 0.526305i −0.977007 0.213205i \(-0.931610\pi\)
0.673145 + 0.739511i \(0.264943\pi\)
\(522\) −149.752 + 40.1259i −0.286881 + 0.0768695i
\(523\) 633.850 + 169.840i 1.21195 + 0.324741i 0.807527 0.589831i \(-0.200806\pi\)
0.404423 + 0.914572i \(0.367472\pi\)
\(524\) 429.942i 0.820500i
\(525\) −103.720 284.811i −0.197562 0.542497i
\(526\) −329.512 −0.626449
\(527\) 18.5750 69.3229i 0.0352467 0.131542i
\(528\) 34.6790 + 129.424i 0.0656799 + 0.245121i
\(529\) 633.078 + 365.508i 1.19674 + 0.690941i
\(530\) −216.720 16.1499i −0.408907 0.0304714i
\(531\) −119.360 −0.224783
\(532\) −42.4501 + 10.2178i −0.0797934 + 0.0192063i
\(533\) −669.384 + 669.384i −1.25588 + 1.25588i
\(534\) 248.244 143.324i 0.464877 0.268397i
\(535\) 85.4882 244.639i 0.159791 0.457269i
\(536\) 5.83731 10.1105i 0.0108905 0.0188629i
\(537\) −113.985 + 425.397i −0.212262 + 0.792173i
\(538\) −169.347 + 169.347i −0.314771 + 0.314771i
\(539\) 48.4831 946.404i 0.0899501 1.75585i
\(540\) −9.68159 51.0516i −0.0179289 0.0945400i
\(541\) −279.416 483.962i −0.516480 0.894570i −0.999817 0.0191352i \(-0.993909\pi\)
0.483337 0.875434i \(-0.339425\pi\)
\(542\) −133.054 + 35.6518i −0.245488 + 0.0657782i
\(543\) −51.4242 191.918i −0.0947039 0.353440i
\(544\) 117.199 67.6650i 0.215440 0.124384i
\(545\) 598.233 + 407.502i 1.09768 + 0.747710i
\(546\) 131.602 215.039i 0.241029 0.393844i
\(547\) 374.501 + 374.501i 0.684646 + 0.684646i 0.961043 0.276398i \(-0.0891407\pi\)
−0.276398 + 0.961043i \(0.589141\pi\)
\(548\) −250.611 67.1511i −0.457320 0.122539i
\(549\) 111.289 + 64.2529i 0.202713 + 0.117036i
\(550\) 406.491 + 549.813i 0.739075 + 0.999660i
\(551\) 56.9826 + 98.6968i 0.103417 + 0.179123i
\(552\) −122.964 122.964i −0.222761 0.222761i
\(553\) −151.483 + 143.921i −0.273929 + 0.260255i
\(554\) 109.316i 0.197322i
\(555\) 3.77829 + 0.281556i 0.00680773 + 0.000507307i
\(556\) 68.0948 117.944i 0.122473 0.212129i
\(557\) 234.101 62.7273i 0.420290 0.112616i −0.0424747 0.999098i \(-0.513524\pi\)
0.462765 + 0.886481i \(0.346858\pi\)
\(558\) 12.2940 + 3.29417i 0.0220323 + 0.00590353i
\(559\) 809.004i 1.44723i
\(560\) 88.6202 + 108.381i 0.158250 + 0.193538i
\(561\) −801.363 −1.42845
\(562\) −156.082 + 582.507i −0.277727 + 1.03649i
\(563\) −252.060 940.702i −0.447709 1.67087i −0.708682 0.705528i \(-0.750710\pi\)
0.260973 0.965346i \(-0.415957\pi\)
\(564\) 33.4819 + 19.3308i 0.0593650 + 0.0342744i
\(565\) −703.218 + 605.680i −1.24463 + 1.07200i
\(566\) 100.268 0.177151
\(567\) −17.8574 + 60.4162i −0.0314946 + 0.106554i
\(568\) −162.330 + 162.330i −0.285792 + 0.285792i
\(569\) −258.001 + 148.957i −0.453429 + 0.261788i −0.709277 0.704929i \(-0.750979\pi\)
0.255848 + 0.966717i \(0.417645\pi\)
\(570\) −34.4071 + 16.5873i −0.0603634 + 0.0291006i
\(571\) −185.885 + 321.962i −0.325543 + 0.563857i −0.981622 0.190835i \(-0.938880\pi\)
0.656079 + 0.754692i \(0.272214\pi\)
\(572\) −147.196 + 549.343i −0.257336 + 0.960390i
\(573\) 390.219 390.219i 0.681010 0.681010i
\(574\) −16.3095 + 637.148i −0.0284137 + 1.11001i
\(575\) −813.670 354.191i −1.41508 0.615984i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −256.254 + 68.6631i −0.444115 + 0.119000i −0.473944 0.880555i \(-0.657170\pi\)
0.0298294 + 0.999555i \(0.490504\pi\)
\(578\) 103.702 + 387.021i 0.179415 + 0.669587i
\(579\) 152.589 88.0975i 0.263539 0.152155i
\(580\) 205.722 302.010i 0.354693 0.520707i
\(581\) −34.9467 + 57.1031i −0.0601492 + 0.0982842i
\(582\) 156.382 + 156.382i 0.268698 + 0.268698i
\(583\) −574.130 153.838i −0.984786 0.263873i
\(584\) 257.041 + 148.403i 0.440139 + 0.254114i
\(585\) 72.7568 208.206i 0.124371 0.355908i
\(586\) −27.6890 47.9587i −0.0472508 0.0818408i
\(587\) −348.454 348.454i −0.593618 0.593618i 0.344989 0.938607i \(-0.387883\pi\)
−0.938607 + 0.344989i \(0.887883\pi\)
\(588\) −35.4863 165.990i −0.0603509 0.282296i
\(589\) 9.35608i 0.0158847i
\(590\) 213.166 183.599i 0.361298 0.311185i
\(591\) 266.790 462.093i 0.451421 0.781883i
\(592\) −1.69033 + 0.452922i −0.00285529 + 0.000765071i
\(593\) −388.078 103.985i −0.654432 0.175354i −0.0837000 0.996491i \(-0.526674\pi\)
−0.570732 + 0.821136i \(0.693340\pi\)
\(594\) 142.117i 0.239254i
\(595\) −763.297 + 344.192i −1.28285 + 0.578474i
\(596\) −482.287 −0.809206
\(597\) 10.2670 38.3171i 0.0171977 0.0641828i
\(598\) −191.038 712.964i −0.319462 1.19225i
\(599\) 471.995 + 272.507i 0.787972 + 0.454936i 0.839248 0.543749i \(-0.182996\pi\)
−0.0512762 + 0.998685i \(0.516329\pi\)
\(600\) 95.8182 + 76.2815i 0.159697 + 0.127136i
\(601\) 628.276 1.04539 0.522693 0.852521i \(-0.324928\pi\)
0.522693 + 0.852521i \(0.324928\pi\)
\(602\) 375.167 + 394.878i 0.623200 + 0.655943i
\(603\) −8.75596 + 8.75596i −0.0145207 + 0.0145207i
\(604\) −178.245 + 102.910i −0.295107 + 0.170380i
\(605\) 549.390 + 1139.60i 0.908083 + 1.88364i
\(606\) −83.2580 + 144.207i −0.137389 + 0.237966i
\(607\) 147.431 550.219i 0.242884 0.906457i −0.731551 0.681787i \(-0.761203\pi\)
0.974435 0.224670i \(-0.0721303\pi\)
\(608\) 12.4750 12.4750i 0.0205181 0.0205181i
\(609\) −389.234 + 211.633i −0.639136 + 0.347509i
\(610\) −297.587 + 56.4354i −0.487847 + 0.0925170i
\(611\) 82.0501 + 142.115i 0.134288 + 0.232594i
\(612\) −138.648 + 37.1507i −0.226549 + 0.0607037i
\(613\) −36.5375 136.360i −0.0596044 0.222447i 0.929699 0.368321i \(-0.120067\pi\)
−0.989303 + 0.145874i \(0.953401\pi\)
\(614\) 506.849 292.629i 0.825487 0.476595i
\(615\) 103.888 + 547.807i 0.168923 + 0.890743i
\(616\) 182.905 + 336.397i 0.296923 + 0.546099i
\(617\) 21.2335 + 21.2335i 0.0344141 + 0.0344141i 0.724104 0.689690i \(-0.242253\pi\)
−0.689690 + 0.724104i \(0.742253\pi\)
\(618\) −304.296 81.5357i −0.492388 0.131935i
\(619\) −768.980 443.971i −1.24229 0.717239i −0.272733 0.962090i \(-0.587928\pi\)
−0.969561 + 0.244851i \(0.921261\pi\)
\(620\) −27.0231 + 13.0276i −0.0435857 + 0.0210122i
\(621\) 92.2231 + 159.735i 0.148507 + 0.257222i
\(622\) 165.305 + 165.305i 0.265763 + 0.265763i
\(623\) 593.869 564.225i 0.953241 0.905657i
\(624\) 101.869i 0.163251i
\(625\) 597.540 + 183.223i 0.956064 + 0.293157i
\(626\) −82.0438 + 142.104i −0.131060 + 0.227003i
\(627\) −100.910 + 27.0387i −0.160941 + 0.0431240i
\(628\) 141.519 + 37.9199i 0.225349 + 0.0603820i
\(629\) 10.4661i 0.0166393i
\(630\) −61.0404 135.366i −0.0968896 0.214867i
\(631\) −205.514 −0.325695 −0.162847 0.986651i \(-0.552068\pi\)
−0.162847 + 0.986651i \(0.552068\pi\)
\(632\) 21.8518 81.5520i 0.0345756 0.129038i
\(633\) 82.5634 + 308.131i 0.130432 + 0.486779i
\(634\) −720.127 415.765i −1.13585 0.655781i
\(635\) −42.0007 48.7644i −0.0661428 0.0767943i
\(636\) −106.465 −0.167398
\(637\) 221.832 685.470i 0.348245 1.07609i
\(638\) 706.711 706.711i 1.10770 1.10770i
\(639\) 210.873 121.747i 0.330004 0.190528i
\(640\) −53.4019 18.6611i −0.0834405 0.0291579i
\(641\) −351.377 + 608.603i −0.548170 + 0.949458i 0.450230 + 0.892913i \(0.351342\pi\)
−0.998400 + 0.0565458i \(0.981991\pi\)
\(642\) 32.8584 122.629i 0.0511813 0.191011i
\(643\) 839.690 839.690i 1.30589 1.30589i 0.381542 0.924351i \(-0.375393\pi\)
0.924351 0.381542i \(-0.124607\pi\)
\(644\) −423.875 259.408i −0.658192 0.402808i
\(645\) 393.813 + 268.256i 0.610563 + 0.415901i
\(646\) 52.7575 + 91.3787i 0.0816680 + 0.141453i
\(647\) 617.660 165.502i 0.954653 0.255798i 0.252317 0.967645i \(-0.418807\pi\)
0.702336 + 0.711846i \(0.252141\pi\)
\(648\) −6.58846 24.5885i −0.0101674 0.0379452i
\(649\) 666.371 384.729i 1.02677 0.592804i
\(650\) 190.326 + 483.753i 0.292809 + 0.744235i
\(651\) 36.3605 + 0.930742i 0.0558533 + 0.00142971i
\(652\) −94.9443 94.9443i −0.145620 0.145620i
\(653\) 425.395 + 113.984i 0.651447 + 0.174555i 0.569383 0.822072i \(-0.307182\pi\)
0.0820642 + 0.996627i \(0.473849\pi\)
\(654\) 307.098 + 177.303i 0.469569 + 0.271106i
\(655\) −466.767 968.216i −0.712621 1.47819i
\(656\) −128.765 223.028i −0.196289 0.339982i
\(657\) −222.604 222.604i −0.338819 0.338819i
\(658\) 105.953 + 31.3170i 0.161023 + 0.0475942i
\(659\) 455.444i 0.691114i 0.938398 + 0.345557i \(0.112310\pi\)
−0.938398 + 0.345557i \(0.887690\pi\)
\(660\) 218.605 + 253.809i 0.331220 + 0.384559i
\(661\) 179.361 310.663i 0.271348 0.469989i −0.697859 0.716235i \(-0.745864\pi\)
0.969207 + 0.246246i \(0.0791972\pi\)
\(662\) 214.459 57.4641i 0.323956 0.0868038i
\(663\) −588.497 157.687i −0.887627 0.237839i
\(664\) 27.0511i 0.0407396i
\(665\) −84.5033 + 69.0960i −0.127073 + 0.103904i
\(666\) 1.85611 0.00278695
\(667\) −335.719 + 1252.92i −0.503327 + 1.87844i
\(668\) −67.7626 252.894i −0.101441 0.378583i
\(669\) −319.667 184.560i −0.477828 0.275874i
\(670\) 2.16895 29.1058i 0.00323723 0.0434415i
\(671\) −828.420 −1.23461
\(672\) 47.2405 + 49.7226i 0.0702984 + 0.0739919i
\(673\) 412.089 412.089i 0.612316 0.612316i −0.331233 0.943549i \(-0.607464\pi\)
0.943549 + 0.331233i \(0.107464\pi\)
\(674\) 361.943 208.968i 0.537007 0.310041i
\(675\) −77.2269 104.456i −0.114410 0.154749i
\(676\) −47.1928 + 81.7403i −0.0698118 + 0.120918i
\(677\) 166.056 619.729i 0.245282 0.915404i −0.727960 0.685620i \(-0.759531\pi\)
0.973242 0.229784i \(-0.0738021\pi\)
\(678\) −321.502 + 321.502i −0.474192 + 0.474192i
\(679\) 539.071 + 329.908i 0.793919 + 0.485873i
\(680\) 190.468 279.617i 0.280101 0.411201i
\(681\) −83.0227 143.799i −0.121913 0.211159i
\(682\) −79.2541 + 21.2361i −0.116208 + 0.0311379i
\(683\) 177.266 + 661.567i 0.259541 + 0.968620i 0.965508 + 0.260375i \(0.0838461\pi\)
−0.705967 + 0.708245i \(0.749487\pi\)
\(684\) −16.2055 + 9.35624i −0.0236922 + 0.0136787i
\(685\) −637.272 + 120.854i −0.930324 + 0.176430i
\(686\) −209.602 437.453i −0.305543 0.637686i
\(687\) 8.81034 + 8.81034i 0.0128244 + 0.0128244i
\(688\) −212.586 56.9621i −0.308991 0.0827938i
\(689\) −391.353 225.948i −0.568001 0.327936i
\(690\) −410.408 143.415i −0.594794 0.207848i
\(691\) −205.847 356.537i −0.297897 0.515972i 0.677758 0.735285i \(-0.262952\pi\)
−0.975655 + 0.219313i \(0.929618\pi\)
\(692\) 248.714 + 248.714i 0.359414 + 0.359414i
\(693\) −95.0421 394.856i −0.137146 0.569778i
\(694\) 379.960i 0.547492i
\(695\) 25.3017 339.532i 0.0364053 0.488536i
\(696\) 89.5092 155.035i 0.128605 0.222751i
\(697\) 1487.76 398.644i 2.13452 0.571942i
\(698\) 356.173 + 95.4364i 0.510277 + 0.136728i
\(699\) 182.262i 0.260747i
\(700\) 317.234 + 147.860i 0.453191 + 0.211229i
\(701\) 612.759 0.874122 0.437061 0.899432i \(-0.356019\pi\)
0.437061 + 0.899432i \(0.356019\pi\)
\(702\) 27.9649 104.367i 0.0398361 0.148670i
\(703\) −0.353138 1.31793i −0.000502329 0.00187472i
\(704\) −133.989 77.3587i −0.190326 0.109885i
\(705\) 96.3866 + 7.18266i 0.136719 + 0.0101882i
\(706\) 352.755 0.499653
\(707\) −134.883 + 456.343i −0.190782 + 0.645463i
\(708\) 97.4567 97.4567i 0.137651 0.137651i
\(709\) 494.328 285.400i 0.697218 0.402539i −0.109092 0.994032i \(-0.534794\pi\)
0.806311 + 0.591492i \(0.201461\pi\)
\(710\) −189.328 + 541.796i −0.266660 + 0.763093i
\(711\) −44.7752 + 77.5529i −0.0629749 + 0.109076i
\(712\) −85.6671 + 319.714i −0.120319 + 0.449037i
\(713\) 75.2985 75.2985i 0.105608 0.105608i
\(714\) −360.373 + 195.941i −0.504725 + 0.274427i
\(715\) 264.914 + 1396.91i 0.370509 + 1.95372i
\(716\) −254.267 440.404i −0.355122 0.615089i
\(717\) −169.050 + 45.2969i −0.235774 + 0.0631755i
\(718\) −215.072 802.661i −0.299544 1.11791i
\(719\) 650.053 375.309i 0.904108 0.521987i 0.0255771 0.999673i \(-0.491858\pi\)
0.878531 + 0.477686i \(0.158524\pi\)
\(720\) 49.5885 + 33.7785i 0.0688728 + 0.0469146i
\(721\) −899.978 23.0373i −1.24824 0.0319518i
\(722\) −351.273 351.273i −0.486528 0.486528i
\(723\) 285.129 + 76.4001i 0.394369 + 0.105671i
\(724\) 198.688 + 114.712i 0.274431 + 0.158443i
\(725\) 135.402 903.460i 0.186762 1.24615i
\(726\) 309.889 + 536.744i 0.426845 + 0.739316i
\(727\) −578.879 578.879i −0.796257 0.796257i 0.186246 0.982503i \(-0.440368\pi\)
−0.982503 + 0.186246i \(0.940368\pi\)
\(728\) 68.1257 + 283.031i 0.0935793 + 0.388779i
\(729\) 27.0000i 0.0370370i
\(730\) 739.962 + 55.1414i 1.01365 + 0.0755362i
\(731\) 658.141 1139.93i 0.900330 1.55942i
\(732\) −143.330 + 38.4050i −0.195805 + 0.0524659i
\(733\) −815.530 218.521i −1.11259 0.298118i −0.344710 0.938709i \(-0.612023\pi\)
−0.767882 + 0.640591i \(0.778689\pi\)
\(734\) 97.4720i 0.132796i
\(735\) −260.121 335.279i −0.353907 0.456162i
\(736\) 200.800 0.272826
\(737\) 20.6606 77.1065i 0.0280334 0.104622i
\(738\) 70.6972 + 263.845i 0.0957956 + 0.357514i
\(739\) −465.097 268.524i −0.629360 0.363361i 0.151144 0.988512i \(-0.451704\pi\)
−0.780504 + 0.625151i \(0.785038\pi\)
\(740\) −3.31485 + 2.85507i −0.00447953 + 0.00385821i
\(741\) −79.4258 −0.107187
\(742\) −295.802 + 71.1997i −0.398655 + 0.0959564i
\(743\) 705.189 705.189i 0.949110 0.949110i −0.0496559 0.998766i \(-0.515812\pi\)
0.998766 + 0.0496559i \(0.0158125\pi\)
\(744\) −12.7277 + 7.34834i −0.0171071 + 0.00987680i
\(745\) −1086.10 + 523.595i −1.45785 + 0.702812i
\(746\) 221.626 383.868i 0.297086 0.514569i
\(747\) −7.42604 + 27.7143i −0.00994115 + 0.0371009i
\(748\) 654.310 654.310i 0.874746 0.874746i
\(749\) 9.28387 362.685i 0.0123950 0.484226i
\(750\) 298.595 + 67.7584i 0.398126 + 0.0903446i
\(751\) −298.749 517.448i −0.397802 0.689012i 0.595653 0.803242i \(-0.296893\pi\)
−0.993454 + 0.114230i \(0.963560\pi\)
\(752\) −43.1213 + 11.5543i −0.0573422 + 0.0153648i
\(753\) −60.6149 226.218i −0.0804979 0.300422i
\(754\) 658.049 379.925i 0.872745 0.503879i
\(755\) −289.677 + 425.260i −0.383678 + 0.563259i
\(756\) −34.7490 63.9101i −0.0459643 0.0845372i
\(757\) 578.181 + 578.181i 0.763779 + 0.763779i 0.977003 0.213224i \(-0.0683965\pi\)
−0.213224 + 0.977003i \(0.568397\pi\)
\(758\) 546.950 + 146.555i 0.721570 + 0.193344i
\(759\) −1029.74 594.522i −1.35671 0.783297i
\(760\) 14.5498 41.6368i 0.0191445 0.0547852i
\(761\) −686.531 1189.11i −0.902144 1.56256i −0.824706 0.565561i \(-0.808660\pi\)
−0.0774372 0.996997i \(-0.524674\pi\)
\(762\) −22.2945 22.2945i −0.0292578 0.0292578i
\(763\) 971.810 + 287.242i 1.27367 + 0.376464i
\(764\) 637.224i