Properties

Label 210.3.v.b.67.4
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.4
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.b.163.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.60215 - 1.95454i) q^{5} +2.44949 q^{6} +(-2.49277 + 6.54111i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.60215 - 1.95454i) q^{5} +2.44949 q^{6} +(-2.49277 + 6.54111i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(0.985440 + 7.00206i) q^{10} +(1.59310 - 2.75932i) q^{11} +(-0.896575 + 3.34607i) q^{12} +(16.7146 - 16.7146i) q^{13} +(-8.02290 - 5.79940i) q^{14} +(-5.33309 - 6.82335i) q^{15} +(2.00000 + 3.46410i) q^{16} +(14.5470 - 3.89785i) q^{17} +(-1.09808 - 4.09808i) q^{18} +(13.5028 - 7.79585i) q^{19} +(-9.92569 - 1.21680i) q^{20} +(12.0610 + 1.23819i) q^{21} +(3.18619 + 3.18619i) q^{22} +(5.41879 + 1.45196i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(17.3596 - 17.9901i) q^{25} +(16.7146 + 28.9505i) q^{26} +(3.67423 + 3.67423i) q^{27} +(10.8587 - 8.83676i) q^{28} +47.4699i q^{29} +(11.2729 - 4.78761i) q^{30} +(0.731778 - 1.26748i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(-5.33061 - 1.42833i) q^{33} +21.2982i q^{34} +(1.31271 + 34.9754i) q^{35} +6.00000 q^{36} +(14.3009 - 53.3715i) q^{37} +(5.70696 + 21.2987i) q^{38} +(-35.4570 - 20.4711i) q^{39} +(5.29523 - 13.1134i) q^{40} -27.2740 q^{41} +(-6.10602 + 16.0224i) q^{42} +(-16.8709 + 16.8709i) q^{43} +(-5.51865 + 3.18619i) q^{44} +(-9.02494 + 11.9813i) q^{45} +(-3.96683 + 6.87075i) q^{46} +(-7.04479 + 26.2915i) q^{47} +(4.89898 - 4.89898i) q^{48} +(-36.5722 - 32.6110i) q^{49} +(18.2209 + 30.2985i) q^{50} +(-13.0425 - 22.5902i) q^{51} +(-45.6651 + 12.2359i) q^{52} +(-8.92325 - 33.3020i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(1.93848 - 15.8126i) q^{55} +(8.09667 + 18.0678i) q^{56} +(-19.0959 - 19.0959i) q^{57} +(-64.8451 - 17.3752i) q^{58} +(46.3174 + 26.7414i) q^{59} +(2.41383 + 17.1515i) q^{60} +(20.4235 + 35.3745i) q^{61} +(1.46356 + 1.46356i) q^{62} +(-3.33525 - 20.7335i) q^{63} -8.00000i q^{64} +(44.2538 - 109.592i) q^{65} +(3.90227 - 6.75894i) q^{66} +(59.1406 - 15.8467i) q^{67} +(-29.0939 - 7.79570i) q^{68} -9.71671i q^{69} +(-48.2577 - 11.0087i) q^{70} -102.469 q^{71} +(-2.19615 + 8.19615i) q^{72} +(-7.92202 - 29.5654i) q^{73} +(67.6724 + 39.0707i) q^{74} +(-37.8802 - 20.9784i) q^{75} -31.1834 q^{76} +(14.0778 + 17.2990i) q^{77} +(40.9422 - 40.9422i) q^{78} +(-101.041 + 58.3361i) q^{79} +(15.9750 + 12.0332i) q^{80} +(4.50000 - 7.79423i) q^{81} +(9.98297 - 37.2570i) q^{82} +(-74.9073 + 74.9073i) q^{83} +(-19.6520 - 14.2056i) q^{84} +(59.3289 - 46.3711i) q^{85} +(-16.8709 - 29.2212i) q^{86} +(79.4187 - 21.2802i) q^{87} +(-2.33246 - 8.70484i) q^{88} +(-91.7988 + 53.0001i) q^{89} +(-13.0633 - 16.7137i) q^{90} +(67.6662 + 150.998i) q^{91} +(-7.93366 - 7.93366i) q^{92} +(-2.44858 - 0.656094i) q^{93} +(-33.3363 - 19.2467i) q^{94} +(46.9047 - 62.2694i) q^{95} +(4.89898 + 8.48528i) q^{96} +(-66.3214 - 66.3214i) q^{97} +(57.9338 - 38.0221i) q^{98} +9.55858i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) −0.448288 1.67303i −0.149429 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 4.60215 1.95454i 0.920430 0.390907i
\(6\) 2.44949 0.408248
\(7\) −2.49277 + 6.54111i −0.356110 + 0.934444i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 0.985440 + 7.00206i 0.0985440 + 0.700206i
\(11\) 1.59310 2.75932i 0.144827 0.250848i −0.784481 0.620152i \(-0.787071\pi\)
0.929308 + 0.369305i \(0.120404\pi\)
\(12\) −0.896575 + 3.34607i −0.0747146 + 0.278839i
\(13\) 16.7146 16.7146i 1.28574 1.28574i 0.348386 0.937351i \(-0.386730\pi\)
0.937351 0.348386i \(-0.113270\pi\)
\(14\) −8.02290 5.79940i −0.573064 0.414243i
\(15\) −5.33309 6.82335i −0.355539 0.454890i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 14.5470 3.89785i 0.855704 0.229285i 0.195808 0.980642i \(-0.437267\pi\)
0.659896 + 0.751357i \(0.270600\pi\)
\(18\) −1.09808 4.09808i −0.0610042 0.227671i
\(19\) 13.5028 7.79585i 0.710674 0.410308i −0.100636 0.994923i \(-0.532088\pi\)
0.811311 + 0.584615i \(0.198755\pi\)
\(20\) −9.92569 1.21680i −0.496285 0.0608398i
\(21\) 12.0610 + 1.23819i 0.574332 + 0.0589615i
\(22\) 3.18619 + 3.18619i 0.144827 + 0.144827i
\(23\) 5.41879 + 1.45196i 0.235600 + 0.0631287i 0.374687 0.927151i \(-0.377750\pi\)
−0.139087 + 0.990280i \(0.544417\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 17.3596 17.9901i 0.694383 0.719605i
\(26\) 16.7146 + 28.9505i 0.642869 + 1.11348i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 10.8587 8.83676i 0.387811 0.315598i
\(29\) 47.4699i 1.63689i 0.574583 + 0.818446i \(0.305164\pi\)
−0.574583 + 0.818446i \(0.694836\pi\)
\(30\) 11.2729 4.78761i 0.375764 0.159587i
\(31\) 0.731778 1.26748i 0.0236057 0.0408863i −0.853981 0.520304i \(-0.825819\pi\)
0.877587 + 0.479417i \(0.159152\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) −5.33061 1.42833i −0.161533 0.0432828i
\(34\) 21.2982i 0.626419i
\(35\) 1.31271 + 34.9754i 0.0375059 + 0.999296i
\(36\) 6.00000 0.166667
\(37\) 14.3009 53.3715i 0.386510 1.44247i −0.449264 0.893399i \(-0.648314\pi\)
0.835773 0.549074i \(-0.185020\pi\)
\(38\) 5.70696 + 21.2987i 0.150183 + 0.560491i
\(39\) −35.4570 20.4711i −0.909154 0.524900i
\(40\) 5.29523 13.1134i 0.132381 0.327834i
\(41\) −27.2740 −0.665219 −0.332610 0.943065i \(-0.607929\pi\)
−0.332610 + 0.943065i \(0.607929\pi\)
\(42\) −6.10602 + 16.0224i −0.145381 + 0.381485i
\(43\) −16.8709 + 16.8709i −0.392346 + 0.392346i −0.875523 0.483177i \(-0.839483\pi\)
0.483177 + 0.875523i \(0.339483\pi\)
\(44\) −5.51865 + 3.18619i −0.125424 + 0.0724135i
\(45\) −9.02494 + 11.9813i −0.200554 + 0.266250i
\(46\) −3.96683 + 6.87075i −0.0862355 + 0.149364i
\(47\) −7.04479 + 26.2915i −0.149889 + 0.559394i 0.849600 + 0.527428i \(0.176844\pi\)
−0.999489 + 0.0319661i \(0.989823\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) −36.5722 32.6110i −0.746371 0.665530i
\(50\) 18.2209 + 30.2985i 0.364419 + 0.605970i
\(51\) −13.0425 22.5902i −0.255734 0.442945i
\(52\) −45.6651 + 12.2359i −0.878175 + 0.235306i
\(53\) −8.92325 33.3020i −0.168363 0.628340i −0.997587 0.0694239i \(-0.977884\pi\)
0.829224 0.558916i \(-0.188783\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) 1.93848 15.8126i 0.0352450 0.287502i
\(56\) 8.09667 + 18.0678i 0.144583 + 0.322639i
\(57\) −19.0959 19.0959i −0.335015 0.335015i
\(58\) −64.8451 17.3752i −1.11802 0.299572i
\(59\) 46.3174 + 26.7414i 0.785041 + 0.453243i 0.838214 0.545342i \(-0.183600\pi\)
−0.0531731 + 0.998585i \(0.516933\pi\)
\(60\) 2.41383 + 17.1515i 0.0402304 + 0.285858i
\(61\) 20.4235 + 35.3745i 0.334812 + 0.579911i 0.983449 0.181187i \(-0.0579940\pi\)
−0.648637 + 0.761098i \(0.724661\pi\)
\(62\) 1.46356 + 1.46356i 0.0236057 + 0.0236057i
\(63\) −3.33525 20.7335i −0.0529404 0.329102i
\(64\) 8.00000i 0.125000i
\(65\) 44.2538 109.592i 0.680828 1.68604i
\(66\) 3.90227 6.75894i 0.0591254 0.102408i
\(67\) 59.1406 15.8467i 0.882695 0.236517i 0.211126 0.977459i \(-0.432287\pi\)
0.671570 + 0.740941i \(0.265620\pi\)
\(68\) −29.0939 7.79570i −0.427852 0.114643i
\(69\) 9.71671i 0.140822i
\(70\) −48.2577 11.0087i −0.689396 0.157267i
\(71\) −102.469 −1.44323 −0.721616 0.692294i \(-0.756600\pi\)
−0.721616 + 0.692294i \(0.756600\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) −7.92202 29.5654i −0.108521 0.405005i 0.890200 0.455570i \(-0.150565\pi\)
−0.998721 + 0.0505648i \(0.983898\pi\)
\(74\) 67.6724 + 39.0707i 0.914492 + 0.527982i
\(75\) −37.8802 20.9784i −0.505069 0.279712i
\(76\) −31.1834 −0.410308
\(77\) 14.0778 + 17.2990i 0.182829 + 0.224662i
\(78\) 40.9422 40.9422i 0.524900 0.524900i
\(79\) −101.041 + 58.3361i −1.27900 + 0.738431i −0.976665 0.214770i \(-0.931100\pi\)
−0.302336 + 0.953202i \(0.597766\pi\)
\(80\) 15.9750 + 12.0332i 0.199688 + 0.150416i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 9.98297 37.2570i 0.121744 0.454353i
\(83\) −74.9073 + 74.9073i −0.902497 + 0.902497i −0.995652 0.0931546i \(-0.970305\pi\)
0.0931546 + 0.995652i \(0.470305\pi\)
\(84\) −19.6520 14.2056i −0.233953 0.169114i
\(85\) 59.3289 46.3711i 0.697987 0.545542i
\(86\) −16.8709 29.2212i −0.196173 0.339782i
\(87\) 79.4187 21.2802i 0.912858 0.244600i
\(88\) −2.33246 8.70484i −0.0265052 0.0989187i
\(89\) −91.7988 + 53.0001i −1.03145 + 0.595506i −0.917399 0.397969i \(-0.869715\pi\)
−0.114048 + 0.993475i \(0.536382\pi\)
\(90\) −13.0633 16.7137i −0.145148 0.185708i
\(91\) 67.6662 + 150.998i 0.743585 + 1.65931i
\(92\) −7.93366 7.93366i −0.0862355 0.0862355i
\(93\) −2.44858 0.656094i −0.0263288 0.00705478i
\(94\) −33.3363 19.2467i −0.354642 0.204752i
\(95\) 46.9047 62.2694i 0.493734 0.655467i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) −66.3214 66.3214i −0.683725 0.683725i 0.277112 0.960838i \(-0.410623\pi\)
−0.960838 + 0.277112i \(0.910623\pi\)
\(98\) 57.9338 38.0221i 0.591161 0.387980i
\(99\) 9.55858i 0.0965513i
\(100\) −48.0578 + 13.8002i −0.480578 + 0.138002i
\(101\) −90.1553 + 156.154i −0.892627 + 1.54608i −0.0559130 + 0.998436i \(0.517807\pi\)
−0.836714 + 0.547640i \(0.815526\pi\)
\(102\) 35.6327 9.54774i 0.349340 0.0936053i
\(103\) −76.7078 20.5538i −0.744736 0.199551i −0.133554 0.991042i \(-0.542639\pi\)
−0.611182 + 0.791490i \(0.709306\pi\)
\(104\) 66.8583i 0.642869i
\(105\) 57.9265 17.8752i 0.551681 0.170240i
\(106\) 48.7576 0.459977
\(107\) 15.6342 58.3476i 0.146114 0.545305i −0.853589 0.520947i \(-0.825579\pi\)
0.999703 0.0243583i \(-0.00775424\pi\)
\(108\) −2.68973 10.0382i −0.0249049 0.0929463i
\(109\) −12.3921 7.15460i −0.113689 0.0656385i 0.442077 0.896977i \(-0.354242\pi\)
−0.555766 + 0.831339i \(0.687575\pi\)
\(110\) 20.8909 + 8.43582i 0.189917 + 0.0766892i
\(111\) −95.7032 −0.862191
\(112\) −27.6446 + 4.44700i −0.246827 + 0.0397053i
\(113\) 66.0293 66.0293i 0.584330 0.584330i −0.351760 0.936090i \(-0.614417\pi\)
0.936090 + 0.351760i \(0.114417\pi\)
\(114\) 33.0750 19.0959i 0.290132 0.167508i
\(115\) 27.7760 3.90908i 0.241530 0.0339920i
\(116\) 47.4699 82.2202i 0.409223 0.708795i
\(117\) −18.3539 + 68.4976i −0.156871 + 0.585450i
\(118\) −53.4827 + 53.4827i −0.453243 + 0.453243i
\(119\) −10.7660 + 104.870i −0.0904710 + 0.881259i
\(120\) −24.3129 2.98053i −0.202607 0.0248378i
\(121\) 55.4241 + 95.9973i 0.458050 + 0.793366i
\(122\) −55.7980 + 14.9510i −0.457361 + 0.122550i
\(123\) 12.2266 + 45.6303i 0.0994032 + 0.370978i
\(124\) −2.53495 + 1.46356i −0.0204432 + 0.0118029i
\(125\) 44.7291 116.723i 0.357833 0.933786i
\(126\) 29.5432 + 3.03294i 0.234470 + 0.0240709i
\(127\) 150.156 + 150.156i 1.18233 + 1.18233i 0.979139 + 0.203192i \(0.0651317\pi\)
0.203192 + 0.979139i \(0.434868\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 35.7885 + 20.6625i 0.277431 + 0.160175i
\(130\) 133.508 + 100.565i 1.02698 + 0.773580i
\(131\) 118.435 + 205.135i 0.904084 + 1.56592i 0.822142 + 0.569283i \(0.192779\pi\)
0.0819423 + 0.996637i \(0.473888\pi\)
\(132\) 7.80455 + 7.80455i 0.0591254 + 0.0591254i
\(133\) 17.3341 + 107.757i 0.130331 + 0.810200i
\(134\) 86.5878i 0.646178i
\(135\) 24.0908 + 9.72796i 0.178450 + 0.0720590i
\(136\) 21.2982 36.8896i 0.156605 0.271247i
\(137\) 103.535 27.7420i 0.755727 0.202496i 0.139670 0.990198i \(-0.455396\pi\)
0.616057 + 0.787702i \(0.288729\pi\)
\(138\) 13.2733 + 3.55656i 0.0961832 + 0.0257722i
\(139\) 259.949i 1.87014i −0.354464 0.935070i \(-0.615337\pi\)
0.354464 0.935070i \(-0.384663\pi\)
\(140\) 32.7017 61.8918i 0.233584 0.442085i
\(141\) 47.1447 0.334359
\(142\) 37.5064 139.976i 0.264130 0.985745i
\(143\) −19.4930 72.7489i −0.136315 0.508734i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 92.7815 + 218.464i 0.639873 + 1.50665i
\(146\) 43.2867 0.296484
\(147\) −38.1644 + 75.8055i −0.259622 + 0.515684i
\(148\) −78.1413 + 78.1413i −0.527982 + 0.527982i
\(149\) 26.3910 15.2369i 0.177121 0.102261i −0.408818 0.912616i \(-0.634059\pi\)
0.585939 + 0.810355i \(0.300726\pi\)
\(150\) 42.5221 44.0666i 0.283481 0.293778i
\(151\) 46.5201 80.5751i 0.308080 0.533610i −0.669862 0.742485i \(-0.733647\pi\)
0.977942 + 0.208875i \(0.0669803\pi\)
\(152\) 11.4139 42.5973i 0.0750916 0.280246i
\(153\) −31.9474 + 31.9474i −0.208806 + 0.208806i
\(154\) −28.7837 + 12.8988i −0.186907 + 0.0837583i
\(155\) 0.890425 7.26341i 0.00574468 0.0468607i
\(156\) 40.9422 + 70.9140i 0.262450 + 0.454577i
\(157\) 43.2837 11.5978i 0.275692 0.0738715i −0.118324 0.992975i \(-0.537752\pi\)
0.394016 + 0.919104i \(0.371085\pi\)
\(158\) −42.7050 159.377i −0.270285 1.00872i
\(159\) −51.7152 + 29.8578i −0.325253 + 0.187785i
\(160\) −22.2850 + 17.4178i −0.139281 + 0.108861i
\(161\) −23.0052 + 31.8255i −0.142890 + 0.197674i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −132.967 35.6285i −0.815750 0.218580i −0.173263 0.984876i \(-0.555431\pi\)
−0.642488 + 0.766296i \(0.722098\pi\)
\(164\) 47.2399 + 27.2740i 0.288048 + 0.166305i
\(165\) −27.3240 + 3.84546i −0.165600 + 0.0233058i
\(166\) −74.9073 129.743i −0.451249 0.781585i
\(167\) −44.3224 44.3224i −0.265404 0.265404i 0.561841 0.827245i \(-0.310093\pi\)
−0.827245 + 0.561841i \(0.810093\pi\)
\(168\) 26.5983 21.6455i 0.158323 0.128843i
\(169\) 389.755i 2.30624i
\(170\) 41.6282 + 98.0177i 0.244872 + 0.576575i
\(171\) −23.3876 + 40.5084i −0.136769 + 0.236891i
\(172\) 46.0921 12.3503i 0.267977 0.0718043i
\(173\) 107.039 + 28.6810i 0.618723 + 0.165786i 0.554547 0.832152i \(-0.312891\pi\)
0.0641758 + 0.997939i \(0.479558\pi\)
\(174\) 116.277i 0.668258i
\(175\) 74.4019 + 158.396i 0.425154 + 0.905121i
\(176\) 12.7448 0.0724135
\(177\) 23.9756 89.4783i 0.135456 0.505527i
\(178\) −38.7987 144.799i −0.217970 0.813477i
\(179\) −250.216 144.462i −1.39785 0.807050i −0.403685 0.914898i \(-0.632271\pi\)
−0.994167 + 0.107848i \(0.965604\pi\)
\(180\) 27.6129 11.7272i 0.153405 0.0651512i
\(181\) 119.317 0.659212 0.329606 0.944119i \(-0.393084\pi\)
0.329606 + 0.944119i \(0.393084\pi\)
\(182\) −231.034 + 37.1648i −1.26942 + 0.204202i
\(183\) 50.0272 50.0272i 0.273372 0.273372i
\(184\) 13.7415 7.93366i 0.0746821 0.0431177i
\(185\) −38.5018 273.575i −0.208118 1.47879i
\(186\) 1.79248 3.10467i 0.00963700 0.0166918i
\(187\) 12.4193 46.3495i 0.0664134 0.247858i
\(188\) 38.4935 38.4935i 0.204752 0.204752i
\(189\) −33.1926 + 14.8745i −0.175622 + 0.0787012i
\(190\) 67.8933 + 86.8652i 0.357333 + 0.457185i
\(191\) 63.4019 + 109.815i 0.331947 + 0.574950i 0.982894 0.184174i \(-0.0589610\pi\)
−0.650946 + 0.759124i \(0.725628\pi\)
\(192\) −13.3843 + 3.58630i −0.0697097 + 0.0186787i
\(193\) 74.2715 + 277.185i 0.384827 + 1.43619i 0.838440 + 0.544994i \(0.183468\pi\)
−0.453613 + 0.891199i \(0.649865\pi\)
\(194\) 114.872 66.3214i 0.592123 0.341863i
\(195\) −203.190 24.9092i −1.04200 0.127739i
\(196\) 30.7339 + 93.0561i 0.156805 + 0.474776i
\(197\) 3.41904 + 3.41904i 0.0173555 + 0.0173555i 0.715731 0.698376i \(-0.246094\pi\)
−0.698376 + 0.715731i \(0.746094\pi\)
\(198\) −13.0573 3.49868i −0.0659458 0.0176701i
\(199\) 190.157 + 109.787i 0.955563 + 0.551694i 0.894805 0.446458i \(-0.147315\pi\)
0.0607582 + 0.998153i \(0.480648\pi\)
\(200\) −1.26109 70.6994i −0.00630545 0.353497i
\(201\) −53.0240 91.8402i −0.263801 0.456917i
\(202\) −180.311 180.311i −0.892627 0.892627i
\(203\) −310.506 118.332i −1.52958 0.582914i
\(204\) 52.1698i 0.255734i
\(205\) −125.519 + 53.3080i −0.612288 + 0.260039i
\(206\) 56.1540 97.2616i 0.272592 0.472144i
\(207\) −16.2564 + 4.35588i −0.0785332 + 0.0210429i
\(208\) 91.3302 + 24.4719i 0.439087 + 0.117653i
\(209\) 49.6782i 0.237695i
\(210\) 3.21546 + 85.6718i 0.0153117 + 0.407961i
\(211\) −210.755 −0.998840 −0.499420 0.866360i \(-0.666453\pi\)
−0.499420 + 0.866360i \(0.666453\pi\)
\(212\) −17.8465 + 66.6041i −0.0841816 + 0.314170i
\(213\) 45.9358 + 171.435i 0.215661 + 0.804858i
\(214\) 73.9818 + 42.7134i 0.345709 + 0.199595i
\(215\) −44.6676 + 110.617i −0.207756 + 0.514498i
\(216\) 14.6969 0.0680414
\(217\) 6.46654 + 7.94617i 0.0297997 + 0.0366183i
\(218\) 14.3092 14.3092i 0.0656385 0.0656385i
\(219\) −45.9125 + 26.5076i −0.209646 + 0.121039i
\(220\) −19.1701 + 25.4497i −0.0871369 + 0.115681i
\(221\) 177.996 308.298i 0.805410 1.39501i
\(222\) 35.0298 130.733i 0.157792 0.588887i
\(223\) −306.751 + 306.751i −1.37557 + 1.37557i −0.523607 + 0.851960i \(0.675414\pi\)
−0.851960 + 0.523607i \(0.824586\pi\)
\(224\) 4.04392 39.3909i 0.0180532 0.175852i
\(225\) −18.1163 + 72.7791i −0.0805170 + 0.323463i
\(226\) 66.0293 + 114.366i 0.292165 + 0.506044i
\(227\) −17.9726 + 4.81575i −0.0791745 + 0.0212147i −0.298189 0.954507i \(-0.596383\pi\)
0.219014 + 0.975722i \(0.429716\pi\)
\(228\) 13.9791 + 52.1708i 0.0613120 + 0.228820i
\(229\) 53.2936 30.7691i 0.232723 0.134363i −0.379104 0.925354i \(-0.623768\pi\)
0.611828 + 0.790991i \(0.290435\pi\)
\(230\) −4.82683 + 39.3736i −0.0209862 + 0.171189i
\(231\) 22.6309 31.3076i 0.0979691 0.135531i
\(232\) 94.9398 + 94.9398i 0.409223 + 0.409223i
\(233\) 241.844 + 64.8020i 1.03796 + 0.278120i 0.737267 0.675602i \(-0.236116\pi\)
0.300691 + 0.953722i \(0.402783\pi\)
\(234\) −86.8515 50.1438i −0.371160 0.214290i
\(235\) 18.9665 + 134.767i 0.0807085 + 0.573476i
\(236\) −53.4827 92.6348i −0.226622 0.392520i
\(237\) 142.894 + 142.894i 0.602927 + 0.602927i
\(238\) −139.314 53.0917i −0.585353 0.223074i
\(239\) 19.0275i 0.0796128i 0.999207 + 0.0398064i \(0.0126741\pi\)
−0.999207 + 0.0398064i \(0.987326\pi\)
\(240\) 12.9706 32.1211i 0.0540442 0.133838i
\(241\) 148.159 256.620i 0.614769 1.06481i −0.375656 0.926759i \(-0.622583\pi\)
0.990425 0.138052i \(-0.0440841\pi\)
\(242\) −151.421 + 40.5732i −0.625708 + 0.167658i
\(243\) −15.0573 4.03459i −0.0619642 0.0166032i
\(244\) 81.6940i 0.334812i
\(245\) −232.050 78.5991i −0.947143 0.320813i
\(246\) −66.8073 −0.271575
\(247\) 95.3894 355.998i 0.386192 1.44129i
\(248\) −1.07140 3.99851i −0.00432015 0.0161230i
\(249\) 158.902 + 91.7423i 0.638162 + 0.368443i
\(250\) 143.075 + 103.825i 0.572300 + 0.415299i
\(251\) −431.580 −1.71944 −0.859721 0.510763i \(-0.829363\pi\)
−0.859721 + 0.510763i \(0.829363\pi\)
\(252\) −14.9566 + 39.2466i −0.0593517 + 0.155741i
\(253\) 12.6391 12.6391i 0.0499569 0.0499569i
\(254\) −260.078 + 150.156i −1.02393 + 0.591166i
\(255\) −104.177 78.4716i −0.408536 0.307732i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −80.0190 + 298.635i −0.311358 + 1.16200i 0.615975 + 0.787766i \(0.288762\pi\)
−0.927333 + 0.374238i \(0.877904\pi\)
\(258\) −41.3251 + 41.3251i −0.160175 + 0.160175i
\(259\) 313.460 + 226.587i 1.21027 + 0.874851i
\(260\) −186.242 + 145.566i −0.716316 + 0.559868i
\(261\) −71.2048 123.330i −0.272815 0.472530i
\(262\) −323.571 + 86.7005i −1.23500 + 0.330918i
\(263\) −66.3382 247.577i −0.252236 0.941359i −0.969607 0.244667i \(-0.921321\pi\)
0.717371 0.696692i \(-0.245345\pi\)
\(264\) −13.5179 + 7.80455i −0.0512041 + 0.0295627i
\(265\) −106.156 135.820i −0.400589 0.512529i
\(266\) −153.543 15.7629i −0.577229 0.0592590i
\(267\) 129.823 + 129.823i 0.486229 + 0.486229i
\(268\) −118.281 31.6933i −0.441348 0.118259i
\(269\) 165.231 + 95.3963i 0.614242 + 0.354633i 0.774624 0.632422i \(-0.217939\pi\)
−0.160382 + 0.987055i \(0.551272\pi\)
\(270\) −22.1065 + 29.3480i −0.0818759 + 0.108696i
\(271\) −86.4705 149.771i −0.319080 0.552662i 0.661217 0.750195i \(-0.270040\pi\)
−0.980296 + 0.197533i \(0.936707\pi\)
\(272\) 42.5965 + 42.5965i 0.156605 + 0.156605i
\(273\) 222.290 180.898i 0.814249 0.662631i
\(274\) 151.585i 0.553230i
\(275\) −21.9851 76.5607i −0.0799458 0.278403i
\(276\) −9.71671 + 16.8298i −0.0352055 + 0.0609777i
\(277\) −442.182 + 118.482i −1.59633 + 0.427734i −0.943930 0.330145i \(-0.892903\pi\)
−0.652395 + 0.757879i \(0.726236\pi\)
\(278\) 355.097 + 95.1481i 1.27733 + 0.342259i
\(279\) 4.39067i 0.0157372i
\(280\) 72.5762 + 67.3253i 0.259201 + 0.240448i
\(281\) −268.170 −0.954340 −0.477170 0.878811i \(-0.658337\pi\)
−0.477170 + 0.878811i \(0.658337\pi\)
\(282\) −17.2561 + 64.4008i −0.0611920 + 0.228372i
\(283\) 36.2210 + 135.179i 0.127989 + 0.477663i 0.999929 0.0119513i \(-0.00380432\pi\)
−0.871939 + 0.489614i \(0.837138\pi\)
\(284\) 177.482 + 102.469i 0.624938 + 0.360808i
\(285\) −125.206 50.5585i −0.439318 0.177398i
\(286\) 106.512 0.372419
\(287\) 67.9878 178.402i 0.236891 0.621610i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) −53.8601 + 31.0962i −0.186367 + 0.107599i
\(290\) −332.387 + 46.7787i −1.14616 + 0.161306i
\(291\) −81.2267 + 140.689i −0.279130 + 0.483467i
\(292\) −15.8440 + 59.1307i −0.0542604 + 0.202503i
\(293\) 98.0721 98.0721i 0.334717 0.334717i −0.519657 0.854375i \(-0.673940\pi\)
0.854375 + 0.519657i \(0.173940\pi\)
\(294\) −89.5831 79.8803i −0.304705 0.271702i
\(295\) 265.427 + 32.5388i 0.899751 + 0.110301i
\(296\) −78.1413 135.345i −0.263991 0.457246i
\(297\) 15.9918 4.28499i 0.0538445 0.0144276i
\(298\) 11.1542 + 41.6279i 0.0374301 + 0.139691i
\(299\) 114.842 66.3039i 0.384086 0.221752i
\(300\) 44.6320 + 74.2158i 0.148773 + 0.247386i
\(301\) −68.2990 152.410i −0.226907 0.506344i
\(302\) 93.0401 + 93.0401i 0.308080 + 0.308080i
\(303\) 301.666 + 80.8311i 0.995596 + 0.266769i
\(304\) 54.0112 + 31.1834i 0.177669 + 0.102577i
\(305\) 163.133 + 122.881i 0.534862 + 0.402887i
\(306\) −31.9474 55.3345i −0.104403 0.180832i
\(307\) 256.782 + 256.782i 0.836422 + 0.836422i 0.988386 0.151964i \(-0.0485598\pi\)
−0.151964 + 0.988386i \(0.548560\pi\)
\(308\) −7.08449 44.0405i −0.0230016 0.142989i
\(309\) 137.549i 0.445141i
\(310\) 9.59608 + 3.87493i 0.0309551 + 0.0124998i
\(311\) 103.111 178.593i 0.331545 0.574253i −0.651270 0.758846i \(-0.725763\pi\)
0.982815 + 0.184593i \(0.0590968\pi\)
\(312\) −111.856 + 29.9718i −0.358513 + 0.0960634i
\(313\) −486.861 130.454i −1.55547 0.416786i −0.624242 0.781231i \(-0.714592\pi\)
−0.931225 + 0.364445i \(0.881259\pi\)
\(314\) 63.3717i 0.201821i
\(315\) −55.8736 88.8996i −0.177376 0.282221i
\(316\) 233.344 0.738431
\(317\) 51.2938 191.431i 0.161810 0.603884i −0.836615 0.547791i \(-0.815469\pi\)
0.998426 0.0560930i \(-0.0178643\pi\)
\(318\) −21.8574 81.5730i −0.0687340 0.256519i
\(319\) 130.985 + 75.6241i 0.410611 + 0.237066i
\(320\) −15.6363 36.8172i −0.0488634 0.115054i
\(321\) −104.626 −0.325938
\(322\) −35.0539 43.0747i −0.108863 0.133772i
\(323\) 166.038 166.038i 0.514049 0.514049i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −10.5393 590.856i −0.0324286 1.81802i
\(326\) 97.3388 168.596i 0.298585 0.517165i
\(327\) −6.41464 + 23.9398i −0.0196166 + 0.0732103i
\(328\) −54.5480 + 54.5480i −0.166305 + 0.166305i
\(329\) −154.415 111.620i −0.469345 0.339269i
\(330\) 4.74827 38.7328i 0.0143887 0.117372i
\(331\) 40.5455 + 70.2269i 0.122494 + 0.212166i 0.920751 0.390152i \(-0.127577\pi\)
−0.798257 + 0.602317i \(0.794244\pi\)
\(332\) 204.650 54.8359i 0.616417 0.165168i
\(333\) 42.9026 + 160.115i 0.128837 + 0.480825i
\(334\) 76.7687 44.3224i 0.229846 0.132702i
\(335\) 241.201 188.521i 0.720003 0.562750i
\(336\) 19.8327 + 44.2568i 0.0590259 + 0.131717i
\(337\) −440.171 440.171i −1.30614 1.30614i −0.924175 0.381969i \(-0.875246\pi\)
−0.381969 0.924175i \(-0.624754\pi\)
\(338\) 532.415 + 142.660i 1.57519 + 0.422071i
\(339\) −140.069 80.8690i −0.413184 0.238552i
\(340\) −149.132 + 20.9882i −0.438623 + 0.0617299i
\(341\) −2.33159 4.03843i −0.00683750 0.0118429i
\(342\) −46.7751 46.7751i −0.136769 0.136769i
\(343\) 304.478 157.931i 0.887691 0.460439i
\(344\) 67.4835i 0.196173i
\(345\) −18.9917 44.7178i −0.0550483 0.129617i
\(346\) −78.3581 + 135.720i −0.226468 + 0.392255i
\(347\) −65.0860 + 17.4397i −0.187568 + 0.0502586i −0.351380 0.936233i \(-0.614288\pi\)
0.163812 + 0.986492i \(0.447621\pi\)
\(348\) −158.837 42.5603i −0.456429 0.122300i
\(349\) 28.9513i 0.0829550i −0.999139 0.0414775i \(-0.986794\pi\)
0.999139 0.0414775i \(-0.0132065\pi\)
\(350\) −243.606 + 43.6578i −0.696018 + 0.124737i
\(351\) 122.827 0.349933
\(352\) −4.66491 + 17.4097i −0.0132526 + 0.0494593i
\(353\) 166.352 + 620.833i 0.471251 + 1.75873i 0.635284 + 0.772279i \(0.280883\pi\)
−0.164032 + 0.986455i \(0.552450\pi\)
\(354\) 113.454 + 65.5027i 0.320492 + 0.185036i
\(355\) −471.580 + 200.280i −1.32839 + 0.564169i
\(356\) 212.000 0.595506
\(357\) 180.277 28.9999i 0.504977 0.0812322i
\(358\) 288.924 288.924i 0.807050 0.807050i
\(359\) −61.7189 + 35.6334i −0.171919 + 0.0992575i −0.583490 0.812120i \(-0.698313\pi\)
0.411571 + 0.911378i \(0.364980\pi\)
\(360\) 5.91264 + 42.0124i 0.0164240 + 0.116701i
\(361\) −58.9494 + 102.103i −0.163295 + 0.282835i
\(362\) −43.6732 + 162.991i −0.120644 + 0.450250i
\(363\) 135.761 135.761i 0.373997 0.373997i
\(364\) 33.7962 329.202i 0.0928467 0.904400i
\(365\) −94.2449 120.580i −0.258205 0.330357i
\(366\) 50.0272 + 86.6496i 0.136686 + 0.236747i
\(367\) 226.363 60.6537i 0.616792 0.165269i 0.0631229 0.998006i \(-0.479894\pi\)
0.553669 + 0.832737i \(0.313227\pi\)
\(368\) 5.80784 + 21.6752i 0.0157822 + 0.0588999i
\(369\) 70.8599 40.9110i 0.192032 0.110870i
\(370\) 387.804 + 47.5411i 1.04812 + 0.128489i
\(371\) 240.076 + 24.6465i 0.647105 + 0.0664325i
\(372\) 3.58497 + 3.58497i 0.00963700 + 0.00963700i
\(373\) 94.5060 + 25.3228i 0.253367 + 0.0678895i 0.383267 0.923638i \(-0.374799\pi\)
−0.129900 + 0.991527i \(0.541466\pi\)
\(374\) 58.7688 + 33.9302i 0.157136 + 0.0907224i
\(375\) −215.333 22.5076i −0.574222 0.0600204i
\(376\) 38.4935 + 66.6726i 0.102376 + 0.177321i
\(377\) 793.439 + 793.439i 2.10461 + 2.10461i
\(378\) −8.16965 50.7864i −0.0216128 0.134356i
\(379\) 415.479i 1.09625i −0.836396 0.548126i \(-0.815342\pi\)
0.836396 0.548126i \(-0.184658\pi\)
\(380\) −143.511 + 60.9491i −0.377660 + 0.160392i
\(381\) 183.903 318.529i 0.482685 0.836034i
\(382\) −173.217 + 46.4134i −0.453449 + 0.121501i
\(383\) 254.473 + 68.1859i 0.664421 + 0.178031i 0.575240 0.817984i \(-0.304909\pi\)
0.0891805 + 0.996015i \(0.471575\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 98.5997 + 52.0970i 0.256103 + 0.135317i
\(386\) −405.827 −1.05137
\(387\) 18.5255 69.1382i 0.0478695 0.178652i
\(388\) 48.5506 + 181.193i 0.125130 + 0.466993i
\(389\) −100.478 58.0113i −0.258299 0.149129i 0.365259 0.930906i \(-0.380980\pi\)
−0.623559 + 0.781777i \(0.714314\pi\)
\(390\) 108.399 268.445i 0.277947 0.688321i
\(391\) 84.4865 0.216078
\(392\) −138.366 + 7.92236i −0.352975 + 0.0202101i
\(393\) 290.105 290.105i 0.738182 0.738182i
\(394\) −5.92194 + 3.41904i −0.0150303 + 0.00867776i
\(395\) −350.986 + 465.960i −0.888573 + 1.17964i
\(396\) 9.55858 16.5559i 0.0241378 0.0418079i
\(397\) −138.287 + 516.094i −0.348330 + 1.29998i 0.540344 + 0.841444i \(0.318294\pi\)
−0.888674 + 0.458540i \(0.848373\pi\)
\(398\) −219.574 + 219.574i −0.551694 + 0.551694i
\(399\) 172.510 77.3064i 0.432355 0.193750i
\(400\) 97.0388 + 24.1551i 0.242597 + 0.0603878i
\(401\) 222.706 + 385.738i 0.555376 + 0.961939i 0.997874 + 0.0651700i \(0.0207590\pi\)
−0.442498 + 0.896769i \(0.645908\pi\)
\(402\) 144.864 38.8163i 0.360359 0.0965578i
\(403\) −8.95398 33.4167i −0.0222183 0.0829199i
\(404\) 312.307 180.311i 0.773038 0.446314i
\(405\) 5.47559 44.6656i 0.0135200 0.110285i
\(406\) 275.297 380.846i 0.678071 0.938045i
\(407\) −124.487 124.487i −0.305864 0.305864i
\(408\) −71.2653 19.0955i −0.174670 0.0468027i
\(409\) −244.715 141.286i −0.598326 0.345444i 0.170057 0.985434i \(-0.445605\pi\)
−0.768383 + 0.639991i \(0.778938\pi\)
\(410\) −26.8769 190.974i −0.0655534 0.465791i
\(411\) −92.8266 160.780i −0.225855 0.391193i
\(412\) 112.308 + 112.308i 0.272592 + 0.272592i
\(413\) −290.377 + 236.307i −0.703092 + 0.572172i
\(414\) 23.8010i 0.0574903i
\(415\) −198.326 + 491.143i −0.477893 + 1.18348i
\(416\) −66.8583 + 115.802i −0.160717 + 0.278370i
\(417\) −434.904 + 116.532i −1.04293 + 0.279453i
\(418\) 67.8616 + 18.1835i 0.162348 + 0.0435011i
\(419\) 128.452i 0.306567i 0.988182 + 0.153283i \(0.0489848\pi\)
−0.988182 + 0.153283i \(0.951015\pi\)
\(420\) −118.207 26.9657i −0.281445 0.0642040i
\(421\) −432.680 −1.02774 −0.513872 0.857867i \(-0.671789\pi\)
−0.513872 + 0.857867i \(0.671789\pi\)
\(422\) 77.1418 287.897i 0.182800 0.682220i
\(423\) −21.1344 78.8746i −0.0499631 0.186465i
\(424\) −84.4506 48.7576i −0.199176 0.114994i
\(425\) 182.407 329.367i 0.429192 0.774981i
\(426\) −250.998 −0.589197
\(427\) −282.300 + 45.4116i −0.661124 + 0.106350i
\(428\) −85.4268 + 85.4268i −0.199595 + 0.199595i
\(429\) −112.973 + 65.2249i −0.263340 + 0.152039i
\(430\) −134.756 101.506i −0.313387 0.236060i
\(431\) 204.635 354.438i 0.474791 0.822362i −0.524792 0.851230i \(-0.675857\pi\)
0.999583 + 0.0288683i \(0.00919033\pi\)
\(432\) −5.37945 + 20.0764i −0.0124524 + 0.0464731i
\(433\) 74.6999 74.6999i 0.172517 0.172517i −0.615567 0.788084i \(-0.711073\pi\)
0.788084 + 0.615567i \(0.211073\pi\)
\(434\) −13.2216 + 5.92496i −0.0304645 + 0.0136520i
\(435\) 323.904 253.161i 0.744606 0.581979i
\(436\) 14.3092 + 24.7843i 0.0328193 + 0.0568446i
\(437\) 84.4882 22.6385i 0.193337 0.0518044i
\(438\) −19.4049 72.4201i −0.0443034 0.165343i
\(439\) 348.826 201.395i 0.794592 0.458758i −0.0469848 0.998896i \(-0.514961\pi\)
0.841577 + 0.540138i \(0.181628\pi\)
\(440\) −27.7482 35.5021i −0.0630642 0.0806867i
\(441\) 143.934 + 29.8676i 0.326380 + 0.0677269i
\(442\) 355.991 + 355.991i 0.805410 + 0.805410i
\(443\) 99.0413 + 26.5380i 0.223569 + 0.0599053i 0.368865 0.929483i \(-0.379747\pi\)
−0.145295 + 0.989388i \(0.546413\pi\)
\(444\) 165.763 + 95.7032i 0.373340 + 0.215548i
\(445\) −318.881 + 423.338i −0.716588 + 0.951322i
\(446\) −306.751 531.309i −0.687784 1.19128i
\(447\) −37.3226 37.3226i −0.0834957 0.0834957i
\(448\) 52.3289 + 19.9422i 0.116805 + 0.0445138i
\(449\) 435.242i 0.969359i 0.874692 + 0.484680i \(0.161064\pi\)
−0.874692 + 0.484680i \(0.838936\pi\)
\(450\) −92.7871 51.3864i −0.206193 0.114192i
\(451\) −43.4501 + 75.2578i −0.0963417 + 0.166869i
\(452\) −180.395 + 48.3368i −0.399105 + 0.106940i
\(453\) −155.659 41.7087i −0.343618 0.0920723i
\(454\) 26.3137i 0.0579598i
\(455\) 606.540 + 562.658i 1.33306 + 1.23661i
\(456\) −76.3834 −0.167508
\(457\) 32.0021 119.433i 0.0700264 0.261342i −0.922033 0.387111i \(-0.873473\pi\)
0.992060 + 0.125769i \(0.0401397\pi\)
\(458\) 22.5245 + 84.0627i 0.0491802 + 0.183543i
\(459\) 67.7706 + 39.1274i 0.147648 + 0.0852448i
\(460\) −52.0185 21.0053i −0.113084 0.0456637i
\(461\) 721.106 1.56422 0.782110 0.623140i \(-0.214143\pi\)
0.782110 + 0.623140i \(0.214143\pi\)
\(462\) 34.4834 + 42.3737i 0.0746395 + 0.0917179i
\(463\) −190.901 + 190.901i −0.412313 + 0.412313i −0.882544 0.470231i \(-0.844171\pi\)
0.470231 + 0.882544i \(0.344171\pi\)
\(464\) −164.440 + 94.9398i −0.354398 + 0.204612i
\(465\) −12.5511 + 1.76638i −0.0269916 + 0.00379868i
\(466\) −177.042 + 306.646i −0.379919 + 0.658039i
\(467\) −44.6556 + 166.657i −0.0956222 + 0.356867i −0.997113 0.0759313i \(-0.975807\pi\)
0.901491 + 0.432798i \(0.142474\pi\)
\(468\) 100.288 100.288i 0.214290 0.214290i
\(469\) −43.7693 + 426.347i −0.0933246 + 0.909055i
\(470\) −191.037 23.4194i −0.406462 0.0498284i
\(471\) −38.8071 67.2159i −0.0823930 0.142709i
\(472\) 146.118 39.1521i 0.309571 0.0829493i
\(473\) 19.6753 + 73.4292i 0.0415968 + 0.155241i
\(474\) −247.499 + 142.894i −0.522150 + 0.301463i
\(475\) 94.1548 378.250i 0.198221 0.796316i
\(476\) 123.517 170.874i 0.259490 0.358978i
\(477\) 73.1364 + 73.1364i 0.153326 + 0.153326i
\(478\) −25.9920 6.96454i −0.0543766 0.0145702i
\(479\) 330.041 + 190.549i 0.689021 + 0.397806i 0.803245 0.595649i \(-0.203105\pi\)
−0.114224 + 0.993455i \(0.536438\pi\)
\(480\) 39.1306 + 29.4753i 0.0815221 + 0.0614069i
\(481\) −653.050 1131.12i −1.35769 2.35159i
\(482\) 296.319 + 296.319i 0.614769 + 0.614769i
\(483\) 63.5581 + 24.2216i 0.131590 + 0.0501481i
\(484\) 221.696i 0.458050i
\(485\) −434.848 175.593i −0.896594 0.362048i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) 233.660 62.6089i 0.479794 0.128560i −0.0108128 0.999942i \(-0.503442\pi\)
0.490607 + 0.871381i \(0.336775\pi\)
\(488\) 111.596 + 29.9021i 0.228681 + 0.0612748i
\(489\) 238.430i 0.487588i
\(490\) 192.305 288.217i 0.392458 0.588198i
\(491\) −899.374 −1.83172 −0.915860 0.401498i \(-0.868490\pi\)
−0.915860 + 0.401498i \(0.868490\pi\)
\(492\) 24.4532 91.2605i 0.0497016 0.185489i
\(493\) 185.030 + 690.543i 0.375315 + 1.40070i
\(494\) 451.388 + 260.609i 0.913740 + 0.527548i
\(495\) 18.6826 + 43.9900i 0.0377426 + 0.0888687i
\(496\) 5.85422 0.0118029
\(497\) 255.433 670.264i 0.513950 1.34862i
\(498\) −183.485 + 183.485i −0.368443 + 0.368443i
\(499\) 128.915 74.4290i 0.258346 0.149156i −0.365234 0.930916i \(-0.619011\pi\)
0.623580 + 0.781760i \(0.285678\pi\)
\(500\) −194.196 + 157.441i −0.388393 + 0.314883i
\(501\) −54.2837 + 94.0221i −0.108351 + 0.187669i
\(502\) 157.969 589.549i 0.314680 1.17440i
\(503\) 306.658 306.658i 0.609658 0.609658i −0.333199 0.942857i \(-0.608128\pi\)
0.942857 + 0.333199i \(0.108128\pi\)
\(504\) −48.1374 34.7964i −0.0955107 0.0690405i
\(505\) −109.701 + 894.854i −0.217229 + 1.77199i
\(506\) 12.6391 + 21.8915i 0.0249784 + 0.0432639i
\(507\) −652.072 + 174.722i −1.28614 + 0.344620i
\(508\) −109.922 410.234i −0.216382 0.807547i
\(509\) 1.24200 0.717067i 0.00244007 0.00140878i −0.498779 0.866729i \(-0.666218\pi\)
0.501220 + 0.865320i \(0.332885\pi\)
\(510\) 145.325 113.585i 0.284952 0.222717i
\(511\) 213.138 + 21.8810i 0.417100 + 0.0428199i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 78.2563 + 20.9687i 0.152546 + 0.0408747i
\(514\) −378.654 218.616i −0.736681 0.425323i
\(515\) −393.194 + 55.3364i −0.763483 + 0.107449i
\(516\) −41.3251 71.5771i −0.0800873 0.138715i
\(517\) 61.3238 + 61.3238i 0.118615 + 0.118615i
\(518\) −424.257 + 345.258i −0.819030 + 0.666521i
\(519\) 191.937i 0.369821i
\(520\) −130.677 307.692i −0.251302 0.591716i
\(521\) −457.957 + 793.205i −0.878996 + 1.52247i −0.0265527 + 0.999647i \(0.508453\pi\)
−0.852444 + 0.522819i \(0.824880\pi\)
\(522\) 194.535 52.1255i 0.372673 0.0998574i
\(523\) 39.3228 + 10.5365i 0.0751870 + 0.0201463i 0.296216 0.955121i \(-0.404275\pi\)
−0.221029 + 0.975267i \(0.570942\pi\)
\(524\) 473.740i 0.904084i
\(525\) 231.649 195.484i 0.441235 0.372350i
\(526\) 362.478 0.689123
\(527\) 5.70472 21.2903i 0.0108249 0.0403991i
\(528\) −5.71333 21.3224i −0.0108207 0.0403834i
\(529\) −430.872 248.764i −0.814503 0.470254i
\(530\) 224.390 95.2984i 0.423377 0.179808i
\(531\) −160.448 −0.302162
\(532\) 77.7331 203.974i 0.146115 0.383410i
\(533\) −455.873 + 455.873i −0.855297 + 0.855297i
\(534\) −224.860 + 129.823i −0.421087 + 0.243114i
\(535\) −42.0915 299.082i −0.0786757 0.559032i
\(536\) 86.5878 149.974i 0.161544 0.279803i
\(537\) −129.521 + 483.379i −0.241194 + 0.900148i
\(538\) −190.793 + 190.793i −0.354633 + 0.354633i
\(539\) −148.247 + 48.9620i −0.275041 + 0.0908386i
\(540\) −31.9985 40.9401i −0.0592565 0.0758150i
\(541\) 301.769 + 522.680i 0.557799 + 0.966137i 0.997680 + 0.0680803i \(0.0216874\pi\)
−0.439881 + 0.898056i \(0.644979\pi\)
\(542\) 236.242 63.3008i 0.435871 0.116791i
\(543\) −53.4885 199.622i −0.0985055 0.367628i
\(544\) −73.7793 + 42.5965i −0.135624 + 0.0783024i
\(545\) −71.0144 8.70569i −0.130302 0.0159737i
\(546\) 165.748 + 369.867i 0.303567 + 0.677412i
\(547\) −518.562 518.562i −0.948010 0.948010i 0.0507035 0.998714i \(-0.483854\pi\)
−0.998714 + 0.0507035i \(0.983854\pi\)
\(548\) −207.069 55.4840i −0.377863 0.101248i
\(549\) −106.124 61.2705i −0.193304 0.111604i
\(550\) 112.631 2.00904i 0.204784 0.00365279i
\(551\) 370.068 + 640.977i 0.671630 + 1.16330i
\(552\) −19.4334 19.4334i −0.0352055 0.0352055i
\(553\) −129.710 806.339i −0.234557 1.45812i
\(554\) 647.400i 1.16859i
\(555\) −440.441 + 187.055i −0.793587 + 0.337037i
\(556\) −259.949 + 450.245i −0.467535 + 0.809794i
\(557\) −835.705 + 223.927i −1.50037 + 0.402023i −0.913223 0.407459i \(-0.866415\pi\)
−0.587145 + 0.809482i \(0.699748\pi\)
\(558\) −5.99776 1.60710i −0.0107487 0.00288010i
\(559\) 563.980i 1.00891i
\(560\) −118.533 + 74.4981i −0.211666 + 0.133032i
\(561\) −83.1116 −0.148149
\(562\) 98.1569 366.326i 0.174656 0.651826i
\(563\) −137.803 514.289i −0.244766 0.913480i −0.973501 0.228684i \(-0.926558\pi\)
0.728734 0.684796i \(-0.240109\pi\)
\(564\) −81.6570 47.1447i −0.144782 0.0835898i
\(565\) 174.820 432.933i 0.309416 0.766253i
\(566\) −197.915 −0.349673
\(567\) 39.7654 + 48.8642i 0.0701330 + 0.0861803i
\(568\) −204.939 + 204.939i −0.360808 + 0.360808i
\(569\) −758.601 + 437.979i −1.33322 + 0.769734i −0.985792 0.167973i \(-0.946278\pi\)
−0.347427 + 0.937707i \(0.612945\pi\)
\(570\) 114.893 152.528i 0.201566 0.267593i
\(571\) 92.9859 161.056i 0.162847 0.282060i −0.773041 0.634356i \(-0.781266\pi\)
0.935889 + 0.352296i \(0.114599\pi\)
\(572\) −38.9860 + 145.498i −0.0681574 + 0.254367i
\(573\) 155.302 155.302i 0.271034 0.271034i
\(574\) 218.816 + 158.173i 0.381213 + 0.275562i
\(575\) 120.189 72.2793i 0.209024 0.125703i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −38.0669 + 10.2000i −0.0659739 + 0.0176776i −0.291655 0.956524i \(-0.594206\pi\)
0.225681 + 0.974201i \(0.427539\pi\)
\(578\) −22.7640 84.9563i −0.0393840 0.146983i
\(579\) 430.445 248.517i 0.743428 0.429218i
\(580\) 57.7612 471.171i 0.0995883 0.812365i
\(581\) −303.250 676.703i −0.521944 1.16472i
\(582\) −162.453 162.453i −0.279130 0.279130i
\(583\) −106.107 28.4312i −0.182001 0.0487671i
\(584\) −74.9748 43.2867i −0.128381 0.0741211i
\(585\) 49.4137 + 351.110i 0.0844678 + 0.600188i
\(586\) 98.0721 + 169.866i 0.167359 + 0.289874i
\(587\) −269.361 269.361i −0.458878 0.458878i 0.439409 0.898287i \(-0.355188\pi\)
−0.898287 + 0.439409i \(0.855188\pi\)
\(588\) 141.908 93.1346i 0.241340 0.158392i
\(589\) 22.8193i 0.0387425i
\(590\) −141.602 + 350.669i −0.240003 + 0.594355i
\(591\) 4.18745 7.25287i 0.00708536 0.0122722i
\(592\) 213.486 57.2034i 0.360618 0.0966274i
\(593\) −583.511 156.351i −0.983998 0.263661i −0.269270 0.963065i \(-0.586783\pi\)
−0.714727 + 0.699403i \(0.753449\pi\)
\(594\) 23.4136i 0.0394169i
\(595\) 155.425 + 503.669i 0.261218 + 0.846503i
\(596\) −60.9475 −0.102261
\(597\) 98.4325 367.355i 0.164879 0.615335i
\(598\) 48.5378 + 181.146i 0.0811670 + 0.302919i
\(599\) −373.767 215.794i −0.623985 0.360258i 0.154434 0.988003i \(-0.450645\pi\)
−0.778419 + 0.627745i \(0.783978\pi\)
\(600\) −117.717 + 33.8035i −0.196195 + 0.0563392i
\(601\) 473.060 0.787121 0.393560 0.919299i \(-0.371243\pi\)
0.393560 + 0.919299i \(0.371243\pi\)
\(602\) 233.194 37.5124i 0.387366 0.0623129i
\(603\) −129.882 + 129.882i −0.215393 + 0.215393i
\(604\) −161.150 + 93.0401i −0.266805 + 0.154040i
\(605\) 442.700 + 333.466i 0.731736 + 0.551183i
\(606\) −220.835 + 382.497i −0.364414 + 0.631183i
\(607\) 296.215 1105.49i 0.487999 1.82124i −0.0781609 0.996941i \(-0.524905\pi\)
0.566160 0.824296i \(-0.308429\pi\)
\(608\) −62.3668 + 62.3668i −0.102577 + 0.102577i
\(609\) −58.7768 + 572.533i −0.0965137 + 0.940119i
\(610\) −227.569 + 177.866i −0.373063 + 0.291584i
\(611\) 321.701 + 557.203i 0.526516 + 0.911952i
\(612\) 87.2818 23.3871i 0.142617 0.0382142i
\(613\) −36.9829 138.022i −0.0603310 0.225158i 0.929177 0.369634i \(-0.120517\pi\)
−0.989508 + 0.144476i \(0.953850\pi\)
\(614\) −444.759 + 256.782i −0.724363 + 0.418211i
\(615\) 145.455 + 186.100i 0.236512 + 0.302602i
\(616\) 62.7536 + 6.44235i 0.101873 + 0.0104584i
\(617\) 341.819 + 341.819i 0.554002 + 0.554002i 0.927593 0.373591i \(-0.121874\pi\)
−0.373591 + 0.927593i \(0.621874\pi\)
\(618\) −187.895 50.3463i −0.304037 0.0814665i
\(619\) 260.991 + 150.683i 0.421633 + 0.243430i 0.695776 0.718259i \(-0.255061\pi\)
−0.274143 + 0.961689i \(0.588394\pi\)
\(620\) −8.80567 + 11.6902i −0.0142027 + 0.0188551i
\(621\) 14.5751 + 25.2448i 0.0234703 + 0.0406518i
\(622\) 206.221 + 206.221i 0.331545 + 0.331545i
\(623\) −117.846 732.583i −0.189158 1.17590i
\(624\) 163.769i 0.262450i
\(625\) −22.2896 624.602i −0.0356633 0.999364i
\(626\) 356.407 617.315i 0.569340 0.986127i
\(627\) −83.1132 + 22.2701i −0.132557 + 0.0355185i
\(628\) −86.5674 23.1957i −0.137846 0.0369358i
\(629\) 832.137i 1.32295i
\(630\) 141.890 43.7852i 0.225223 0.0695003i
\(631\) 866.914 1.37387 0.686937 0.726717i \(-0.258955\pi\)
0.686937 + 0.726717i \(0.258955\pi\)
\(632\) −85.4099 + 318.754i −0.135142 + 0.504358i
\(633\) 94.4790 + 352.600i 0.149256 + 0.557031i
\(634\) 242.725 + 140.137i 0.382847 + 0.221037i
\(635\) 984.526 + 397.556i 1.55044 + 0.626072i
\(636\) 119.431 0.187785
\(637\) −1156.37 + 66.2094i −1.81533 + 0.103939i
\(638\) −151.248 + 151.248i −0.237066 + 0.237066i
\(639\) 266.223 153.704i 0.416625 0.240539i
\(640\) 56.0165 7.88352i 0.0875258 0.0123180i
\(641\) 263.616 456.597i 0.411258 0.712319i −0.583770 0.811919i \(-0.698423\pi\)
0.995028 + 0.0996000i \(0.0317563\pi\)
\(642\) 38.2958 142.922i 0.0596508 0.222620i
\(643\) −831.612 + 831.612i −1.29333 + 1.29333i −0.360617 + 0.932714i \(0.617434\pi\)
−0.932714 + 0.360617i \(0.882566\pi\)
\(644\) 71.6717 32.1181i 0.111292 0.0498729i
\(645\) 205.090 + 25.1421i 0.317969 + 0.0389800i
\(646\) 166.038 + 287.586i 0.257025 + 0.445180i
\(647\) 80.8644 21.6675i 0.124984 0.0334893i −0.195785 0.980647i \(-0.562725\pi\)
0.320769 + 0.947158i \(0.396059\pi\)
\(648\) −6.58846 24.5885i −0.0101674 0.0379452i
\(649\) 147.576 85.2032i 0.227390 0.131284i
\(650\) 810.982 + 201.871i 1.24766 + 0.310571i
\(651\) 10.3953 14.3809i 0.0159682 0.0220905i
\(652\) 194.678 + 194.678i 0.298585 + 0.298585i
\(653\) 328.360 + 87.9837i 0.502848 + 0.134738i 0.501321 0.865261i \(-0.332847\pi\)
0.00152651 + 0.999999i \(0.499514\pi\)
\(654\) −30.3544 17.5251i −0.0464134 0.0267968i
\(655\) 946.000 + 712.579i 1.44428 + 1.08791i
\(656\) −54.5480 94.4799i −0.0831524 0.144024i
\(657\) 64.9301 + 64.9301i 0.0988281 + 0.0988281i
\(658\) 208.995 170.079i 0.317621 0.258478i
\(659\) 286.236i 0.434349i −0.976133 0.217174i \(-0.930316\pi\)
0.976133 0.217174i \(-0.0696840\pi\)
\(660\) 51.1720 + 20.6634i 0.0775333 + 0.0313082i
\(661\) −287.474 + 497.920i −0.434908 + 0.753283i −0.997288 0.0735962i \(-0.976552\pi\)
0.562380 + 0.826879i \(0.309886\pi\)
\(662\) −110.772 + 29.6814i −0.167330 + 0.0448359i
\(663\) −595.585 159.587i −0.898318 0.240704i
\(664\) 299.629i 0.451249i
\(665\) 290.388 + 462.032i 0.436674 + 0.694785i
\(666\) −234.424 −0.351988
\(667\) −68.9244 + 257.229i −0.103335 + 0.385651i
\(668\) 32.4463 + 121.091i 0.0485723 + 0.181274i
\(669\) 650.718 + 375.692i 0.972673 + 0.561573i
\(670\) 169.239 + 398.490i 0.252595 + 0.594761i
\(671\) 130.146 0.193959
\(672\) −67.7152 + 10.8929i −0.100767 + 0.0162096i
\(673\) 95.3384 95.3384i 0.141662 0.141662i −0.632719 0.774381i \(-0.718061\pi\)
0.774381 + 0.632719i \(0.218061\pi\)
\(674\) 762.398 440.171i 1.13115 0.653072i
\(675\) 129.883 2.31677i 0.192419 0.00343225i
\(676\) −389.755 + 675.075i −0.576560 + 0.998632i
\(677\) 67.6328 252.409i 0.0999008 0.372835i −0.897816 0.440371i \(-0.854847\pi\)
0.997717 + 0.0675358i \(0.0215137\pi\)
\(678\) 161.738 161.738i 0.238552 0.238552i
\(679\) 599.139 268.491i 0.882385 0.395421i
\(680\) 25.9156 211.400i 0.0381112 0.310882i
\(681\) 16.1138 + 27.9099i 0.0236620 + 0.0409837i
\(682\) 6.37001 1.70684i 0.00934019 0.00250270i
\(683\) −197.660 737.678i −0.289400 1.08005i −0.945564 0.325437i \(-0.894489\pi\)
0.656164 0.754618i \(-0.272178\pi\)
\(684\) 81.0169 46.7751i 0.118446 0.0683847i
\(685\) 422.259 330.035i 0.616437 0.481803i
\(686\) 104.291 + 473.731i 0.152027 + 0.690571i
\(687\) −75.3686 75.3686i −0.109707 0.109707i
\(688\) −92.1842 24.7007i −0.133989 0.0359022i
\(689\) −705.778 407.481i −1.02435 0.591410i
\(690\) 68.0370 9.57524i 0.0986044 0.0138772i
\(691\) 103.948 + 180.043i 0.150431 + 0.260555i 0.931386 0.364033i \(-0.118600\pi\)
−0.780955 + 0.624588i \(0.785267\pi\)
\(692\) −156.716 156.716i −0.226468 0.226468i
\(693\) −62.5237 23.8274i −0.0902218 0.0343829i
\(694\) 95.2925i 0.137309i
\(695\) −508.080 1196.33i −0.731050 1.72133i
\(696\) 116.277 201.398i 0.167065 0.289364i
\(697\) −396.754 + 106.310i −0.569231 + 0.152525i
\(698\) 39.5482 + 10.5969i 0.0566593 + 0.0151818i
\(699\) 433.663i 0.620405i
\(700\) 29.5284 348.752i 0.0421834 0.498217i
\(701\) 1201.88 1.71453 0.857263 0.514879i \(-0.172163\pi\)
0.857263 + 0.514879i \(0.172163\pi\)
\(702\) −44.9577 + 167.784i −0.0640423 + 0.239009i
\(703\) −222.975 832.153i −0.317176 1.18372i
\(704\) −22.0746 12.7448i −0.0313560 0.0181034i
\(705\) 216.967 92.1459i 0.307754 0.130703i
\(706\) −908.963 −1.28748
\(707\) −796.681 978.971i −1.12685 1.38468i
\(708\) −131.005 + 131.005i −0.185036 + 0.185036i
\(709\) −284.619 + 164.325i −0.401437 + 0.231770i −0.687104 0.726559i \(-0.741118\pi\)
0.285667 + 0.958329i \(0.407785\pi\)
\(710\) −100.978 717.498i −0.142222 1.01056i
\(711\) 175.008 303.123i 0.246144 0.426333i
\(712\) −77.5975 + 289.598i −0.108985 + 0.406738i
\(713\) 5.80568 5.80568i 0.00814261 0.00814261i
\(714\) −26.3713 + 256.877i −0.0369346 + 0.359772i
\(715\) −231.900 296.702i −0.324336 0.414967i
\(716\) 288.924 + 500.431i 0.403525 + 0.698926i
\(717\) 31.8336 8.52978i 0.0443983 0.0118965i
\(718\) −26.0855 97.3523i −0.0363308 0.135588i
\(719\) −18.0139 + 10.4003i −0.0250540 + 0.0144650i −0.512475 0.858702i \(-0.671271\pi\)
0.487421 + 0.873167i \(0.337938\pi\)
\(720\) −59.5542 7.30078i −0.0827141 0.0101400i
\(721\) 325.660 450.518i 0.451678 0.624851i
\(722\) −117.899 117.899i −0.163295 0.163295i
\(723\) −495.751 132.836i −0.685686 0.183729i
\(724\) −206.664 119.317i −0.285447 0.164803i
\(725\) 853.989 + 824.057i 1.17792 + 1.13663i
\(726\) 135.761 + 235.144i 0.186998 + 0.323890i
\(727\) 869.829 + 869.829i 1.19646 + 1.19646i 0.975218 + 0.221245i \(0.0710121\pi\)
0.221245 + 0.975218i \(0.428988\pi\)
\(728\) 437.328 + 166.663i 0.600725 + 0.228932i
\(729\) 27.0000i 0.0370370i
\(730\) 199.212 84.6054i 0.272893 0.115898i
\(731\) −179.660 + 311.180i −0.245773 + 0.425691i
\(732\) −136.677 + 36.6224i −0.186717 + 0.0500306i
\(733\) 895.402 + 239.922i 1.22156 + 0.327315i 0.811287 0.584648i \(-0.198767\pi\)
0.410271 + 0.911964i \(0.365434\pi\)
\(734\) 331.418i 0.451523i
\(735\) −27.4737 + 423.462i −0.0373792 + 0.576139i
\(736\) −31.7346 −0.0431177
\(737\) 50.4906 188.433i 0.0685082 0.255676i
\(738\) 29.9489 + 111.771i 0.0405812 + 0.151451i
\(739\) 2.96458 + 1.71160i 0.00401160 + 0.00231610i 0.502004 0.864865i \(-0.332596\pi\)
−0.497993 + 0.867181i \(0.665929\pi\)
\(740\) −206.888 + 512.348i −0.279579 + 0.692362i
\(741\) −638.359 −0.861483
\(742\) −121.542 + 318.928i −0.163803 + 0.429823i
\(743\) −72.5388 + 72.5388i −0.0976296 + 0.0976296i −0.754235 0.656605i \(-0.771992\pi\)
0.656605 + 0.754235i \(0.271992\pi\)
\(744\) −6.20934 + 3.58497i −0.00834589 + 0.00481850i
\(745\) 91.6746 121.705i 0.123053 0.163362i
\(746\) −69.1832 + 119.829i −0.0927388 + 0.160628i
\(747\) 82.2539 306.976i 0.110112 0.410945i
\(748\) −67.8603 + 67.8603i −0.0907224 + 0.0907224i
\(749\) 342.685 + 247.712i 0.457524 + 0.330724i
\(750\) 109.563 285.912i 0.146085 0.381216i
\(751\) 625.085 + 1082.68i 0.832336 + 1.44165i 0.896181 + 0.443689i \(0.146330\pi\)
−0.0638447 + 0.997960i \(0.520336\pi\)
\(752\) −105.166 + 28.1792i −0.139849 + 0.0374723i
\(753\) 193.472 + 722.048i 0.256935 + 0.958895i
\(754\) −1374.28 + 793.439i −1.82265 + 1.05231i
\(755\) 56.6055 461.744i 0.0749741 0.611581i
\(756\) 72.3658 + 7.42915i 0.0957219 + 0.00982692i
\(757\) 477.258 + 477.258i 0.630460 + 0.630460i 0.948183 0.317723i \(-0.102918\pi\)
−0.317723 + 0.948183i \(0.602918\pi\)
\(758\) 567.555 + 152.076i 0.748754 + 0.200628i
\(759\) −26.8116 15.4797i −0.0353248 0.0203948i
\(760\) −30.7294 218.348i −0.0404334 0.287300i
\(761\) 291.071 + 504.150i 0.382485 + 0.662483i 0.991417 0.130739i \(-0.0417351\pi\)
−0.608932 + 0.793222i \(0.708402\pi\)
\(762\) 367.806 + 367.806i 0.482685 + 0.482685i
\(763\) 77.6898 63.2234i 0.101821 0.0828617i
\(764\) 253.608i