Properties

Label 210.3.v.b.67.3
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.3
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.b.163.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(1.65824 + 4.71702i) q^{5} +2.44949 q^{6} +(-6.62205 - 2.26902i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(1.65824 + 4.71702i) q^{5} +2.44949 q^{6} +(-6.62205 - 2.26902i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-7.05052 + 0.538651i) q^{10} +(-1.33229 + 2.30759i) q^{11} +(-0.896575 + 3.34607i) q^{12} +(-9.16064 + 9.16064i) q^{13} +(5.52338 - 8.21537i) q^{14} +(7.14835 - 4.88887i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-2.70344 + 0.724383i) q^{17} +(-1.09808 - 4.09808i) q^{18} +(-16.5863 + 9.57608i) q^{19} +(1.84486 - 9.82835i) q^{20} +(-0.827557 + 12.0961i) q^{21} +(-2.66457 - 2.66457i) q^{22} +(-34.9499 - 9.36480i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(-19.5005 + 15.6439i) q^{25} +(-9.16064 - 15.8667i) q^{26} +(3.67423 + 3.67423i) q^{27} +(9.20071 + 10.5521i) q^{28} +12.4700i q^{29} +(4.06184 + 11.5543i) q^{30} +(5.33782 - 9.24538i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(4.45791 + 1.19449i) q^{33} -3.95810i q^{34} +(-0.277956 - 34.9989i) q^{35} +6.00000 q^{36} +(-5.88355 + 21.9577i) q^{37} +(-7.01018 - 26.1623i) q^{38} +(19.4326 + 11.2194i) q^{39} +(12.7505 + 6.11755i) q^{40} -1.17994 q^{41} +(-16.2206 - 5.55794i) q^{42} +(2.70577 - 2.70577i) q^{43} +(4.61517 - 2.66457i) q^{44} +(-11.3838 - 9.76781i) q^{45} +(25.5851 - 44.3147i) q^{46} +(19.2185 - 71.7245i) q^{47} +(4.89898 - 4.89898i) q^{48} +(38.7031 + 30.0511i) q^{49} +(-14.2323 - 32.3642i) q^{50} +(2.42383 + 4.19820i) q^{51} +(25.0273 - 6.70605i) q^{52} +(-2.09960 - 7.83581i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(-13.0942 - 2.45788i) q^{55} +(-17.7821 + 8.70607i) q^{56} +(23.4565 + 23.4565i) q^{57} +(-17.0343 - 4.56433i) q^{58} +(93.6121 + 54.0470i) q^{59} +(-17.2702 + 1.31942i) q^{60} +(35.0235 + 60.6625i) q^{61} +(10.6756 + 10.6756i) q^{62} +(20.6081 - 4.03799i) q^{63} -8.00000i q^{64} +(-58.4014 - 28.0203i) q^{65} +(-3.26342 + 5.65241i) q^{66} +(-16.8687 + 4.51996i) q^{67} +(5.40687 + 1.44877i) q^{68} +62.6705i q^{69} +(47.9111 + 12.4308i) q^{70} +66.2750 q^{71} +(-2.19615 + 8.19615i) q^{72} +(9.37151 + 34.9749i) q^{73} +(-27.8413 - 16.0742i) q^{74} +(34.9146 + 25.6120i) q^{75} +38.3043 q^{76} +(14.0584 - 12.2580i) q^{77} +(-22.4389 + 22.4389i) q^{78} +(-83.6148 + 48.2750i) q^{79} +(-13.0237 + 15.1783i) q^{80} +(4.50000 - 7.79423i) q^{81} +(0.431888 - 1.61183i) q^{82} +(-83.4979 + 83.4979i) q^{83} +(13.5295 - 20.1235i) q^{84} +(-7.89987 - 11.5509i) q^{85} +(2.70577 + 4.68654i) q^{86} +(20.8627 - 5.59014i) q^{87} +(1.95060 + 7.27974i) q^{88} +(125.762 - 72.6089i) q^{89} +(17.5098 - 11.9752i) q^{90} +(81.4478 - 39.8765i) q^{91} +(51.1702 + 51.1702i) q^{92} +(-17.8607 - 4.78576i) q^{93} +(90.9430 + 52.5060i) q^{94} +(-72.6745 - 62.3582i) q^{95} +(4.89898 + 8.48528i) q^{96} +(-43.6910 - 43.6910i) q^{97} +(-55.2169 + 41.8700i) q^{98} -7.99371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) −0.448288 1.67303i −0.149429 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 1.65824 + 4.71702i 0.331648 + 0.943403i
\(6\) 2.44949 0.408248
\(7\) −6.62205 2.26902i −0.946007 0.324145i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −7.05052 + 0.538651i −0.705052 + 0.0538651i
\(11\) −1.33229 + 2.30759i −0.121117 + 0.209781i −0.920208 0.391429i \(-0.871981\pi\)
0.799092 + 0.601209i \(0.205314\pi\)
\(12\) −0.896575 + 3.34607i −0.0747146 + 0.278839i
\(13\) −9.16064 + 9.16064i −0.704664 + 0.704664i −0.965408 0.260744i \(-0.916032\pi\)
0.260744 + 0.965408i \(0.416032\pi\)
\(14\) 5.52338 8.21537i 0.394527 0.586812i
\(15\) 7.14835 4.88887i 0.476557 0.325925i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −2.70344 + 0.724383i −0.159026 + 0.0426108i −0.337453 0.941342i \(-0.609566\pi\)
0.178428 + 0.983953i \(0.442899\pi\)
\(18\) −1.09808 4.09808i −0.0610042 0.227671i
\(19\) −16.5863 + 9.57608i −0.872961 + 0.504004i −0.868331 0.495985i \(-0.834807\pi\)
−0.00462986 + 0.999989i \(0.501474\pi\)
\(20\) 1.84486 9.82835i 0.0922430 0.491418i
\(21\) −0.827557 + 12.0961i −0.0394075 + 0.576004i
\(22\) −2.66457 2.66457i −0.121117 0.121117i
\(23\) −34.9499 9.36480i −1.51956 0.407165i −0.599964 0.800027i \(-0.704818\pi\)
−0.919597 + 0.392862i \(0.871485\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) −19.5005 + 15.6439i −0.780019 + 0.625756i
\(26\) −9.16064 15.8667i −0.352332 0.610257i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 9.20071 + 10.5521i 0.328597 + 0.376861i
\(29\) 12.4700i 0.429999i 0.976614 + 0.215000i \(0.0689750\pi\)
−0.976614 + 0.215000i \(0.931025\pi\)
\(30\) 4.06184 + 11.5543i 0.135395 + 0.385143i
\(31\) 5.33782 9.24538i 0.172188 0.298238i −0.766997 0.641651i \(-0.778250\pi\)
0.939184 + 0.343413i \(0.111583\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) 4.45791 + 1.19449i 0.135088 + 0.0361968i
\(34\) 3.95810i 0.116415i
\(35\) −0.277956 34.9989i −0.00794159 0.999968i
\(36\) 6.00000 0.166667
\(37\) −5.88355 + 21.9577i −0.159015 + 0.593452i 0.839713 + 0.543030i \(0.182723\pi\)
−0.998728 + 0.0504215i \(0.983944\pi\)
\(38\) −7.01018 26.1623i −0.184478 0.688483i
\(39\) 19.4326 + 11.2194i 0.498273 + 0.287678i
\(40\) 12.7505 + 6.11755i 0.318763 + 0.152939i
\(41\) −1.17994 −0.0287791 −0.0143895 0.999896i \(-0.504580\pi\)
−0.0143895 + 0.999896i \(0.504580\pi\)
\(42\) −16.2206 5.55794i −0.386206 0.132332i
\(43\) 2.70577 2.70577i 0.0629250 0.0629250i −0.674944 0.737869i \(-0.735832\pi\)
0.737869 + 0.674944i \(0.235832\pi\)
\(44\) 4.61517 2.66457i 0.104890 0.0605584i
\(45\) −11.3838 9.76781i −0.252972 0.217062i
\(46\) 25.5851 44.3147i 0.556198 0.963363i
\(47\) 19.2185 71.7245i 0.408905 1.52605i −0.387834 0.921729i \(-0.626777\pi\)
0.796739 0.604324i \(-0.206557\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 38.7031 + 30.0511i 0.789859 + 0.613288i
\(50\) −14.2323 32.3642i −0.284646 0.647284i
\(51\) 2.42383 + 4.19820i 0.0475262 + 0.0823177i
\(52\) 25.0273 6.70605i 0.481295 0.128963i
\(53\) −2.09960 7.83581i −0.0396151 0.147845i 0.943285 0.331983i \(-0.107718\pi\)
−0.982901 + 0.184137i \(0.941051\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) −13.0942 2.45788i −0.238076 0.0446887i
\(56\) −17.7821 + 8.70607i −0.317538 + 0.155465i
\(57\) 23.4565 + 23.4565i 0.411518 + 0.411518i
\(58\) −17.0343 4.56433i −0.293695 0.0786953i
\(59\) 93.6121 + 54.0470i 1.58665 + 0.916050i 0.993855 + 0.110694i \(0.0353072\pi\)
0.592791 + 0.805356i \(0.298026\pi\)
\(60\) −17.2702 + 1.31942i −0.287836 + 0.0219903i
\(61\) 35.0235 + 60.6625i 0.574156 + 0.994467i 0.996133 + 0.0878604i \(0.0280029\pi\)
−0.421977 + 0.906606i \(0.638664\pi\)
\(62\) 10.6756 + 10.6756i 0.172188 + 0.172188i
\(63\) 20.6081 4.03799i 0.327113 0.0640951i
\(64\) 8.00000i 0.125000i
\(65\) −58.4014 28.0203i −0.898483 0.431082i
\(66\) −3.26342 + 5.65241i −0.0494457 + 0.0856425i
\(67\) −16.8687 + 4.51996i −0.251772 + 0.0674620i −0.382497 0.923957i \(-0.624936\pi\)
0.130726 + 0.991419i \(0.458269\pi\)
\(68\) 5.40687 + 1.44877i 0.0795128 + 0.0213054i
\(69\) 62.6705i 0.908267i
\(70\) 47.9111 + 12.4308i 0.684445 + 0.177583i
\(71\) 66.2750 0.933450 0.466725 0.884402i \(-0.345434\pi\)
0.466725 + 0.884402i \(0.345434\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) 9.37151 + 34.9749i 0.128377 + 0.479109i 0.999938 0.0111788i \(-0.00355839\pi\)
−0.871561 + 0.490288i \(0.836892\pi\)
\(74\) −27.8413 16.0742i −0.376233 0.217218i
\(75\) 34.9146 + 25.6120i 0.465528 + 0.341493i
\(76\) 38.3043 0.504004
\(77\) 14.0584 12.2580i 0.182577 0.159194i
\(78\) −22.4389 + 22.4389i −0.287678 + 0.287678i
\(79\) −83.6148 + 48.2750i −1.05841 + 0.611076i −0.924993 0.379983i \(-0.875930\pi\)
−0.133421 + 0.991059i \(0.542596\pi\)
\(80\) −13.0237 + 15.1783i −0.162797 + 0.189729i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 0.431888 1.61183i 0.00526693 0.0196565i
\(83\) −83.4979 + 83.4979i −1.00600 + 1.00600i −0.00601630 + 0.999982i \(0.501915\pi\)
−0.999982 + 0.00601630i \(0.998085\pi\)
\(84\) 13.5295 20.1235i 0.161065 0.239565i
\(85\) −7.89987 11.5509i −0.0929397 0.135894i
\(86\) 2.70577 + 4.68654i 0.0314625 + 0.0544946i
\(87\) 20.8627 5.59014i 0.239801 0.0642544i
\(88\) 1.95060 + 7.27974i 0.0221659 + 0.0827243i
\(89\) 125.762 72.6089i 1.41306 0.815830i 0.417384 0.908730i \(-0.362947\pi\)
0.995675 + 0.0928996i \(0.0296136\pi\)
\(90\) 17.5098 11.9752i 0.194554 0.133058i
\(91\) 81.4478 39.8765i 0.895031 0.438204i
\(92\) 51.1702 + 51.1702i 0.556198 + 0.556198i
\(93\) −17.8607 4.78576i −0.192051 0.0514598i
\(94\) 90.9430 + 52.5060i 0.967479 + 0.558574i
\(95\) −72.6745 62.3582i −0.764995 0.656402i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) −43.6910 43.6910i −0.450422 0.450422i 0.445072 0.895495i \(-0.353178\pi\)
−0.895495 + 0.445072i \(0.853178\pi\)
\(98\) −55.2169 + 41.8700i −0.563438 + 0.427245i
\(99\) 7.99371i 0.0807446i
\(100\) 49.4197 7.59554i 0.494197 0.0759554i
\(101\) 41.1858 71.3359i 0.407780 0.706296i −0.586861 0.809688i \(-0.699636\pi\)
0.994641 + 0.103392i \(0.0329697\pi\)
\(102\) −6.62204 + 1.77437i −0.0649219 + 0.0173958i
\(103\) 68.0759 + 18.2409i 0.660931 + 0.177096i 0.573666 0.819089i \(-0.305521\pi\)
0.0872648 + 0.996185i \(0.472187\pi\)
\(104\) 36.6425i 0.352332i
\(105\) −58.4297 + 16.1546i −0.556473 + 0.153853i
\(106\) 11.4724 0.108230
\(107\) 32.6260 121.762i 0.304916 1.13796i −0.628101 0.778132i \(-0.716168\pi\)
0.933017 0.359831i \(-0.117166\pi\)
\(108\) −2.68973 10.0382i −0.0249049 0.0929463i
\(109\) −187.044 107.990i −1.71600 0.990731i −0.925918 0.377725i \(-0.876706\pi\)
−0.790079 0.613006i \(-0.789960\pi\)
\(110\) 8.15032 16.9873i 0.0740939 0.154430i
\(111\) 39.3735 0.354716
\(112\) −5.38399 27.4775i −0.0480714 0.245335i
\(113\) −30.7458 + 30.7458i −0.272087 + 0.272087i −0.829940 0.557853i \(-0.811625\pi\)
0.557853 + 0.829940i \(0.311625\pi\)
\(114\) −40.6279 + 23.4565i −0.356385 + 0.205759i
\(115\) −13.7814 180.388i −0.119839 1.56859i
\(116\) 12.4700 21.5986i 0.107500 0.186195i
\(117\) 10.0591 37.5410i 0.0859750 0.320863i
\(118\) −108.094 + 108.094i −0.916050 + 0.916050i
\(119\) 19.5459 + 1.33724i 0.164251 + 0.0112373i
\(120\) 4.51896 24.0744i 0.0376580 0.200620i
\(121\) 56.9500 + 98.6403i 0.470661 + 0.815209i
\(122\) −95.6860 + 25.6390i −0.784311 + 0.210156i
\(123\) 0.528953 + 1.97408i 0.00430043 + 0.0160494i
\(124\) −18.4908 + 10.6756i −0.149119 + 0.0860939i
\(125\) −106.129 66.0427i −0.849032 0.528342i
\(126\) −2.02709 + 29.6292i −0.0160880 + 0.235153i
\(127\) −144.611 144.611i −1.13867 1.13867i −0.988689 0.149980i \(-0.952079\pi\)
−0.149980 0.988689i \(-0.547921\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) −5.73981 3.31388i −0.0444947 0.0256890i
\(130\) 59.6529 69.5216i 0.458868 0.534782i
\(131\) 76.1519 + 131.899i 0.581312 + 1.00686i 0.995324 + 0.0965906i \(0.0307938\pi\)
−0.414012 + 0.910271i \(0.635873\pi\)
\(132\) −6.52684 6.52684i −0.0494457 0.0494457i
\(133\) 131.563 25.7788i 0.989198 0.193825i
\(134\) 24.6975i 0.184310i
\(135\) −11.2387 + 23.4242i −0.0832493 + 0.173512i
\(136\) −3.95810 + 6.85564i −0.0291037 + 0.0504091i
\(137\) −236.953 + 63.4914i −1.72959 + 0.463441i −0.980088 0.198566i \(-0.936372\pi\)
−0.749498 + 0.662007i \(0.769705\pi\)
\(138\) −85.6094 22.9390i −0.620358 0.166224i
\(139\) 137.703i 0.990670i 0.868702 + 0.495335i \(0.164955\pi\)
−0.868702 + 0.495335i \(0.835045\pi\)
\(140\) −34.5175 + 60.8978i −0.246553 + 0.434984i
\(141\) −128.613 −0.912148
\(142\) −24.2583 + 90.5333i −0.170833 + 0.637558i
\(143\) −8.93437 33.3435i −0.0624781 0.233172i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) −58.8211 + 20.6782i −0.405663 + 0.142608i
\(146\) −51.2069 −0.350732
\(147\) 32.9264 78.2231i 0.223989 0.532130i
\(148\) 32.1483 32.1483i 0.217218 0.217218i
\(149\) −150.312 + 86.7825i −1.00880 + 0.582433i −0.910841 0.412757i \(-0.864566\pi\)
−0.0979622 + 0.995190i \(0.531232\pi\)
\(150\) −47.7662 + 38.3196i −0.318441 + 0.255464i
\(151\) 115.430 199.931i 0.764440 1.32405i −0.176102 0.984372i \(-0.556349\pi\)
0.940542 0.339677i \(-0.110318\pi\)
\(152\) −14.0204 + 52.3247i −0.0922392 + 0.344241i
\(153\) 5.93716 5.93716i 0.0388049 0.0388049i
\(154\) 11.5990 + 23.6909i 0.0753179 + 0.153837i
\(155\) 52.4620 + 9.84754i 0.338465 + 0.0635325i
\(156\) −22.4389 38.8653i −0.143839 0.249136i
\(157\) −190.802 + 51.1253i −1.21530 + 0.325639i −0.808840 0.588029i \(-0.799904\pi\)
−0.406461 + 0.913668i \(0.633237\pi\)
\(158\) −35.3398 131.890i −0.223669 0.834745i
\(159\) −12.1683 + 7.02539i −0.0765304 + 0.0441849i
\(160\) −15.9670 23.3464i −0.0997936 0.145915i
\(161\) 210.191 + 141.316i 1.30553 + 0.877740i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 56.2117 + 15.0619i 0.344857 + 0.0924042i 0.427091 0.904209i \(-0.359539\pi\)
−0.0822332 + 0.996613i \(0.526205\pi\)
\(164\) 2.04372 + 1.17994i 0.0124617 + 0.00719476i
\(165\) 1.75784 + 23.0088i 0.0106536 + 0.139447i
\(166\) −83.4979 144.623i −0.502999 0.871220i
\(167\) 133.293 + 133.293i 0.798159 + 0.798159i 0.982805 0.184646i \(-0.0591138\pi\)
−0.184646 + 0.982805i \(0.559114\pi\)
\(168\) 22.5370 + 25.8473i 0.134149 + 0.153853i
\(169\) 1.16549i 0.00689640i
\(170\) 18.6704 6.56349i 0.109826 0.0386088i
\(171\) 28.7282 49.7588i 0.168001 0.290987i
\(172\) −7.39231 + 1.98076i −0.0429786 + 0.0115161i
\(173\) 152.287 + 40.8051i 0.880270 + 0.235868i 0.670523 0.741888i \(-0.266070\pi\)
0.209746 + 0.977756i \(0.432736\pi\)
\(174\) 30.5451i 0.175546i
\(175\) 164.629 59.3477i 0.940740 0.339130i
\(176\) −10.6583 −0.0605584
\(177\) 48.4572 180.845i 0.273769 1.02172i
\(178\) 53.1534 + 198.371i 0.298615 + 1.11445i
\(179\) −99.0632 57.1941i −0.553425 0.319520i 0.197077 0.980388i \(-0.436855\pi\)
−0.750502 + 0.660868i \(0.770188\pi\)
\(180\) 9.94944 + 28.3021i 0.0552747 + 0.157234i
\(181\) −138.045 −0.762680 −0.381340 0.924435i \(-0.624537\pi\)
−0.381340 + 0.924435i \(0.624537\pi\)
\(182\) 24.6604 + 125.856i 0.135497 + 0.691515i
\(183\) 85.7897 85.7897i 0.468796 0.468796i
\(184\) −88.6294 + 51.1702i −0.481682 + 0.278099i
\(185\) −113.331 + 8.65836i −0.612601 + 0.0468019i
\(186\) 13.0749 22.6465i 0.0702954 0.121755i
\(187\) 1.93017 7.20350i 0.0103218 0.0385214i
\(188\) −105.012 + 105.012i −0.558574 + 0.558574i
\(189\) −15.9941 32.6679i −0.0846247 0.172846i
\(190\) 111.784 76.4506i 0.588335 0.402371i
\(191\) 58.2285 + 100.855i 0.304861 + 0.528035i 0.977230 0.212181i \(-0.0680567\pi\)
−0.672369 + 0.740216i \(0.734723\pi\)
\(192\) −13.3843 + 3.58630i −0.0697097 + 0.0186787i
\(193\) 68.1361 + 254.287i 0.353037 + 1.31755i 0.882937 + 0.469491i \(0.155563\pi\)
−0.529900 + 0.848060i \(0.677771\pi\)
\(194\) 75.6750 43.6910i 0.390077 0.225211i
\(195\) −20.6983 + 110.269i −0.106145 + 0.565480i
\(196\) −36.9846 90.7532i −0.188697 0.463026i
\(197\) 87.0401 + 87.0401i 0.441828 + 0.441828i 0.892626 0.450798i \(-0.148861\pi\)
−0.450798 + 0.892626i \(0.648861\pi\)
\(198\) 10.9196 + 2.92590i 0.0551496 + 0.0147773i
\(199\) −327.885 189.304i −1.64766 0.951278i −0.977998 0.208615i \(-0.933105\pi\)
−0.669664 0.742664i \(-0.733562\pi\)
\(200\) −7.71318 + 70.2887i −0.0385659 + 0.351444i
\(201\) 15.1241 + 26.1957i 0.0752441 + 0.130327i
\(202\) 82.3716 + 82.3716i 0.407780 + 0.407780i
\(203\) 28.2946 82.5768i 0.139382 0.406782i
\(204\) 9.69534i 0.0475262i
\(205\) −1.95663 5.56580i −0.00954452 0.0271502i
\(206\) −49.8350 + 86.3168i −0.241918 + 0.419013i
\(207\) 104.850 28.0944i 0.506520 0.135722i
\(208\) −50.0546 13.4121i −0.240647 0.0644813i
\(209\) 51.0323i 0.244174i
\(210\) −0.680850 85.7294i −0.00324214 0.408235i
\(211\) −282.104 −1.33698 −0.668492 0.743719i \(-0.733060\pi\)
−0.668492 + 0.743719i \(0.733060\pi\)
\(212\) −4.19920 + 15.6716i −0.0198075 + 0.0739227i
\(213\) −29.7102 110.880i −0.139485 0.520564i
\(214\) 154.388 + 89.1360i 0.721440 + 0.416523i
\(215\) 17.2500 + 8.27636i 0.0802326 + 0.0384947i
\(216\) 14.6969 0.0680414
\(217\) −56.3253 + 49.1118i −0.259563 + 0.226322i
\(218\) 215.979 215.979i 0.990731 0.990731i
\(219\) 54.3131 31.3577i 0.248005 0.143186i
\(220\) 20.2219 + 17.3513i 0.0919177 + 0.0788697i
\(221\) 18.1294 31.4010i 0.0820334 0.142086i
\(222\) −14.4117 + 53.7852i −0.0649176 + 0.242276i
\(223\) −284.006 + 284.006i −1.27357 + 1.27357i −0.329365 + 0.944203i \(0.606835\pi\)
−0.944203 + 0.329365i \(0.893165\pi\)
\(224\) 39.5056 + 2.70279i 0.176364 + 0.0120660i
\(225\) 27.1979 69.8947i 0.120880 0.310643i
\(226\) −30.7458 53.2533i −0.136043 0.235634i
\(227\) 251.195 67.3074i 1.10658 0.296508i 0.341141 0.940012i \(-0.389187\pi\)
0.765443 + 0.643504i \(0.222520\pi\)
\(228\) −17.1714 64.0844i −0.0753130 0.281072i
\(229\) 70.9480 40.9618i 0.309817 0.178873i −0.337028 0.941495i \(-0.609422\pi\)
0.646844 + 0.762622i \(0.276088\pi\)
\(230\) 251.459 + 47.2009i 1.09330 + 0.205221i
\(231\) −26.8102 18.0251i −0.116061 0.0780307i
\(232\) 24.9400 + 24.9400i 0.107500 + 0.107500i
\(233\) 0.0719192 + 0.0192707i 0.000308666 + 8.27069e-5i 0.258973 0.965884i \(-0.416616\pi\)
−0.258665 + 0.965967i \(0.583282\pi\)
\(234\) 47.6001 + 27.4819i 0.203419 + 0.117444i
\(235\) 370.195 28.2824i 1.57530 0.120351i
\(236\) −108.094 187.224i −0.458025 0.793323i
\(237\) 118.249 + 118.249i 0.498941 + 0.498941i
\(238\) −8.98101 + 26.2108i −0.0377353 + 0.110129i
\(239\) 214.333i 0.896789i 0.893836 + 0.448395i \(0.148004\pi\)
−0.893836 + 0.448395i \(0.851996\pi\)
\(240\) 31.2322 + 14.9849i 0.130134 + 0.0624370i
\(241\) 8.97579 15.5465i 0.0372439 0.0645084i −0.846803 0.531907i \(-0.821475\pi\)
0.884047 + 0.467399i \(0.154809\pi\)
\(242\) −155.590 + 41.6903i −0.642935 + 0.172274i
\(243\) −15.0573 4.03459i −0.0619642 0.0166032i
\(244\) 140.094i 0.574156i
\(245\) −77.5725 + 232.395i −0.316622 + 0.948552i
\(246\) −2.89025 −0.0117490
\(247\) 64.2177 239.664i 0.259991 0.970298i
\(248\) −7.81512 29.1664i −0.0315126 0.117606i
\(249\) 177.126 + 102.264i 0.711348 + 0.410697i
\(250\) 129.062 120.802i 0.516248 0.483206i
\(251\) 199.148 0.793420 0.396710 0.917944i \(-0.370152\pi\)
0.396710 + 0.917944i \(0.370152\pi\)
\(252\) −39.7323 13.6141i −0.157668 0.0540242i
\(253\) 68.1733 68.1733i 0.269460 0.269460i
\(254\) 250.473 144.611i 0.986116 0.569334i
\(255\) −15.7837 + 18.3949i −0.0618968 + 0.0721368i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −8.44926 + 31.5331i −0.0328765 + 0.122697i −0.980414 0.196948i \(-0.936897\pi\)
0.947537 + 0.319645i \(0.103564\pi\)
\(258\) 6.62777 6.62777i 0.0256890 0.0256890i
\(259\) 88.7836 132.055i 0.342794 0.509866i
\(260\) 73.1339 + 106.934i 0.281284 + 0.411285i
\(261\) −18.7050 32.3979i −0.0716665 0.124130i
\(262\) −208.051 + 55.7470i −0.794087 + 0.212775i
\(263\) −16.2941 60.8104i −0.0619547 0.231218i 0.928005 0.372568i \(-0.121523\pi\)
−0.989960 + 0.141350i \(0.954856\pi\)
\(264\) 11.3048 6.52684i 0.0428213 0.0247229i
\(265\) 33.4800 22.8975i 0.126340 0.0864056i
\(266\) −12.9411 + 189.155i −0.0486506 + 0.711107i
\(267\) −177.855 177.855i −0.666123 0.666123i
\(268\) 33.7374 + 9.03991i 0.125886 + 0.0337310i
\(269\) 254.691 + 147.046i 0.946807 + 0.546639i 0.892088 0.451863i \(-0.149240\pi\)
0.0547192 + 0.998502i \(0.482574\pi\)
\(270\) −27.8844 23.9261i −0.103276 0.0886153i
\(271\) −137.975 238.979i −0.509132 0.881843i −0.999944 0.0105773i \(-0.996633\pi\)
0.490812 0.871266i \(-0.336700\pi\)
\(272\) −7.91621 7.91621i −0.0291037 0.0291037i
\(273\) −103.227 118.389i −0.378120 0.433658i
\(274\) 346.924i 1.26614i
\(275\) −10.1194 65.8412i −0.0367979 0.239422i
\(276\) 62.6705 108.548i 0.227067 0.393291i
\(277\) 320.716 85.9356i 1.15782 0.310237i 0.371725 0.928343i \(-0.378766\pi\)
0.786095 + 0.618106i \(0.212100\pi\)
\(278\) −188.106 50.4029i −0.676641 0.181305i
\(279\) 32.0269i 0.114792i
\(280\) −70.5537 69.4419i −0.251978 0.248007i
\(281\) −386.157 −1.37423 −0.687113 0.726551i \(-0.741122\pi\)
−0.687113 + 0.726551i \(0.741122\pi\)
\(282\) 47.0756 175.688i 0.166935 0.623009i
\(283\) 40.3806 + 150.703i 0.142688 + 0.532518i 0.999847 + 0.0174672i \(0.00556027\pi\)
−0.857160 + 0.515051i \(0.827773\pi\)
\(284\) −114.792 66.2750i −0.404196 0.233363i
\(285\) −71.7482 + 149.541i −0.251748 + 0.524706i
\(286\) 48.8183 0.170693
\(287\) 7.81363 + 2.67731i 0.0272252 + 0.00932860i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) −243.498 + 140.583i −0.842552 + 0.486448i
\(290\) −6.71696 87.9198i −0.0231619 0.303172i
\(291\) −53.5103 + 92.6825i −0.183884 + 0.318497i
\(292\) 18.7430 69.9499i 0.0641884 0.239554i
\(293\) 86.2939 86.2939i 0.294519 0.294519i −0.544344 0.838862i \(-0.683221\pi\)
0.838862 + 0.544344i \(0.183221\pi\)
\(294\) 94.8029 + 73.6099i 0.322459 + 0.250374i
\(295\) −99.7091 + 531.192i −0.337997 + 1.80065i
\(296\) 32.1483 + 55.6825i 0.108609 + 0.188117i
\(297\) −13.3737 + 3.58348i −0.0450294 + 0.0120656i
\(298\) −63.5292 237.094i −0.213185 0.795618i
\(299\) 405.951 234.376i 1.35770 0.783866i
\(300\) −34.8618 79.2758i −0.116206 0.264253i
\(301\) −24.0572 + 11.7783i −0.0799243 + 0.0391306i
\(302\) 230.861 + 230.861i 0.764440 + 0.764440i
\(303\) −137.810 36.9262i −0.454820 0.121869i
\(304\) −66.3450 38.3043i −0.218240 0.126001i
\(305\) −228.069 + 265.799i −0.747766 + 0.871473i
\(306\) 5.93716 + 10.2835i 0.0194025 + 0.0336061i
\(307\) 216.926 + 216.926i 0.706601 + 0.706601i 0.965819 0.259218i \(-0.0834648\pi\)
−0.259218 + 0.965819i \(0.583465\pi\)
\(308\) −36.6079 + 7.17301i −0.118857 + 0.0232890i
\(309\) 122.070i 0.395050i
\(310\) −32.6544 + 68.0600i −0.105337 + 0.219548i
\(311\) −118.412 + 205.096i −0.380748 + 0.659474i −0.991169 0.132603i \(-0.957667\pi\)
0.610422 + 0.792077i \(0.291000\pi\)
\(312\) 61.3042 16.4264i 0.196488 0.0526487i
\(313\) 350.504 + 93.9171i 1.11982 + 0.300055i 0.770810 0.637065i \(-0.219852\pi\)
0.349009 + 0.937119i \(0.386518\pi\)
\(314\) 279.354i 0.889662i
\(315\) 53.2205 + 90.5129i 0.168954 + 0.287342i
\(316\) 193.100 0.611076
\(317\) 108.374 404.457i 0.341874 1.27589i −0.554348 0.832285i \(-0.687032\pi\)
0.896222 0.443606i \(-0.146301\pi\)
\(318\) −5.14294 19.1937i −0.0161728 0.0603576i
\(319\) −28.7755 16.6136i −0.0902055 0.0520801i
\(320\) 37.7361 13.2659i 0.117925 0.0414560i
\(321\) −218.338 −0.680180
\(322\) −269.977 + 235.401i −0.838437 + 0.731059i
\(323\) 37.9031 37.9031i 0.117347 0.117347i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) 35.3288 321.945i 0.108704 0.990599i
\(326\) −41.1499 + 71.2736i −0.126227 + 0.218631i
\(327\) −96.8209 + 361.340i −0.296088 + 1.10502i
\(328\) −2.35988 + 2.35988i −0.00719476 + 0.00719476i
\(329\) −290.010 + 431.356i −0.881490 + 1.31111i
\(330\) −32.0740 6.02055i −0.0971940 0.0182441i
\(331\) 137.911 + 238.870i 0.416651 + 0.721660i 0.995600 0.0937031i \(-0.0298704\pi\)
−0.578949 + 0.815364i \(0.696537\pi\)
\(332\) 228.120 61.1247i 0.687110 0.184110i
\(333\) −17.6507 65.8731i −0.0530050 0.197817i
\(334\) −230.870 + 133.293i −0.691226 + 0.399080i
\(335\) −49.2931 72.0748i −0.147143 0.215149i
\(336\) −43.5572 + 21.3254i −0.129634 + 0.0634685i
\(337\) 353.069 + 353.069i 1.04768 + 1.04768i 0.998805 + 0.0488767i \(0.0155642\pi\)
0.0488767 + 0.998805i \(0.484436\pi\)
\(338\) −1.59209 0.426600i −0.00471033 0.00126213i
\(339\) 65.2217 + 37.6558i 0.192394 + 0.111079i
\(340\) 2.13204 + 27.9067i 0.00627069 + 0.0820785i
\(341\) 14.2230 + 24.6350i 0.0417097 + 0.0722433i
\(342\) 57.4565 + 57.4565i 0.168001 + 0.168001i
\(343\) −188.107 286.818i −0.548418 0.836204i
\(344\) 10.8231i 0.0314625i
\(345\) −295.618 + 103.923i −0.856862 + 0.301225i
\(346\) −111.482 + 193.092i −0.322201 + 0.558069i
\(347\) −574.723 + 153.997i −1.65626 + 0.443794i −0.961357 0.275306i \(-0.911221\pi\)
−0.694906 + 0.719100i \(0.744554\pi\)
\(348\) −41.7254 11.1803i −0.119900 0.0321272i
\(349\) 455.965i 1.30649i −0.757147 0.653245i \(-0.773407\pi\)
0.757147 0.653245i \(-0.226593\pi\)
\(350\) 20.8119 + 246.611i 0.0594626 + 0.704602i
\(351\) −67.3167 −0.191785
\(352\) 3.90120 14.5595i 0.0110830 0.0413622i
\(353\) −73.5143 274.359i −0.208256 0.777221i −0.988432 0.151662i \(-0.951537\pi\)
0.780177 0.625559i \(-0.215129\pi\)
\(354\) 229.302 + 132.387i 0.647745 + 0.373976i
\(355\) 109.900 + 312.620i 0.309577 + 0.880620i
\(356\) −290.436 −0.815830
\(357\) −6.52495 33.3004i −0.0182772 0.0932786i
\(358\) 114.388 114.388i 0.319520 0.319520i
\(359\) −270.053 + 155.915i −0.752237 + 0.434304i −0.826502 0.562934i \(-0.809672\pi\)
0.0742647 + 0.997239i \(0.476339\pi\)
\(360\) −42.3031 + 3.23190i −0.117509 + 0.00897751i
\(361\) 2.90262 5.02749i 0.00804050 0.0139266i
\(362\) 50.5280 188.573i 0.139580 0.520920i
\(363\) 139.499 139.499i 0.384293 0.384293i
\(364\) −180.948 12.3796i −0.497111 0.0340100i
\(365\) −149.437 + 102.202i −0.409417 + 0.280007i
\(366\) 85.7897 + 148.592i 0.234398 + 0.405989i
\(367\) −223.110 + 59.7822i −0.607930 + 0.162894i −0.549635 0.835405i \(-0.685233\pi\)
−0.0582952 + 0.998299i \(0.518566\pi\)
\(368\) −37.4592 139.800i −0.101791 0.379890i
\(369\) 3.06558 1.76991i 0.00830780 0.00479651i
\(370\) 29.6546 157.983i 0.0801475 0.426980i
\(371\) −3.87594 + 56.6531i −0.0104473 + 0.152704i
\(372\) 26.1499 + 26.1499i 0.0702954 + 0.0702954i
\(373\) 523.306 + 140.219i 1.40296 + 0.375923i 0.879409 0.476068i \(-0.157938\pi\)
0.523556 + 0.851991i \(0.324605\pi\)
\(374\) 9.13367 + 5.27332i 0.0244216 + 0.0140998i
\(375\) −62.9153 + 207.163i −0.167774 + 0.552436i
\(376\) −105.012 181.886i −0.279287 0.483739i
\(377\) −114.233 114.233i −0.303005 0.303005i
\(378\) 50.4794 9.89102i 0.133543 0.0261667i
\(379\) 454.147i 1.19828i −0.800645 0.599139i \(-0.795510\pi\)
0.800645 0.599139i \(-0.204490\pi\)
\(380\) 63.5178 + 180.682i 0.167152 + 0.475479i
\(381\) −177.111 + 306.766i −0.464860 + 0.805160i
\(382\) −159.083 + 42.6262i −0.416448 + 0.111587i
\(383\) −190.725 51.1047i −0.497977 0.133433i 0.00108386 0.999999i \(-0.499655\pi\)
−0.499061 + 0.866567i \(0.666322\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 81.1333 + 45.9871i 0.210736 + 0.119447i
\(386\) −372.303 −0.964514
\(387\) −2.97115 + 11.0885i −0.00767738 + 0.0286524i
\(388\) 31.9840 + 119.366i 0.0824330 + 0.307644i
\(389\) 39.8246 + 22.9928i 0.102377 + 0.0591074i 0.550314 0.834958i \(-0.314508\pi\)
−0.447937 + 0.894065i \(0.647841\pi\)
\(390\) −143.054 68.6355i −0.366804 0.175988i
\(391\) 101.269 0.258999
\(392\) 137.508 17.3040i 0.350787 0.0441429i
\(393\) 186.533 186.533i 0.474639 0.474639i
\(394\) −150.758 + 87.0401i −0.382634 + 0.220914i
\(395\) −366.367 314.361i −0.927512 0.795850i
\(396\) −7.99371 + 13.8455i −0.0201861 + 0.0349634i
\(397\) −151.527 + 565.506i −0.381680 + 1.42445i 0.461655 + 0.887059i \(0.347256\pi\)
−0.843335 + 0.537388i \(0.819411\pi\)
\(398\) 378.609 378.609i 0.951278 0.951278i
\(399\) −102.107 208.553i −0.255907 0.522690i
\(400\) −93.1930 36.2639i −0.232982 0.0906596i
\(401\) −203.933 353.222i −0.508561 0.880853i −0.999951 0.00991335i \(-0.996844\pi\)
0.491390 0.870940i \(-0.336489\pi\)
\(402\) −41.3197 + 11.0716i −0.102785 + 0.0275413i
\(403\) 35.7957 + 133.591i 0.0888231 + 0.331492i
\(404\) −142.672 + 82.3716i −0.353148 + 0.203890i
\(405\) 44.2276 + 8.30187i 0.109204 + 0.0204984i
\(406\) 102.445 + 68.8764i 0.252329 + 0.169646i
\(407\) −42.8307 42.8307i −0.105235 0.105235i
\(408\) 13.2441 + 3.54874i 0.0324610 + 0.00869789i
\(409\) 273.205 + 157.735i 0.667983 + 0.385660i 0.795312 0.606201i \(-0.207307\pi\)
−0.127329 + 0.991861i \(0.540640\pi\)
\(410\) 8.31920 0.635576i 0.0202907 0.00155019i
\(411\) 212.446 + 367.968i 0.516901 + 0.895299i
\(412\) −99.6700 99.6700i −0.241918 0.241918i
\(413\) −497.270 570.309i −1.20404 1.38089i
\(414\) 153.511i 0.370799i
\(415\) −532.320 255.401i −1.28270 0.615425i
\(416\) 36.6425 63.4667i 0.0880830 0.152564i
\(417\) 230.382 61.7307i 0.552475 0.148035i
\(418\) 69.7114 + 18.6791i 0.166774 + 0.0446869i
\(419\) 661.489i 1.57873i −0.613922 0.789367i \(-0.710409\pi\)
0.613922 0.789367i \(-0.289591\pi\)
\(420\) 117.358 + 30.4491i 0.279423 + 0.0724978i
\(421\) −392.108 −0.931372 −0.465686 0.884950i \(-0.654192\pi\)
−0.465686 + 0.884950i \(0.654192\pi\)
\(422\) 103.257 385.361i 0.244685 0.913177i
\(423\) 57.6556 + 215.173i 0.136302 + 0.508684i
\(424\) −19.8708 11.4724i −0.0468651 0.0270576i
\(425\) 41.3861 56.4181i 0.0973791 0.132748i
\(426\) 162.340 0.381079
\(427\) −94.2831 481.179i −0.220804 1.12688i
\(428\) −178.272 + 178.272i −0.416523 + 0.416523i
\(429\) −51.7797 + 29.8950i −0.120698 + 0.0696853i
\(430\) −17.6197 + 20.5346i −0.0409759 + 0.0477549i
\(431\) 21.8126 37.7805i 0.0506093 0.0876579i −0.839611 0.543188i \(-0.817217\pi\)
0.890220 + 0.455530i \(0.150550\pi\)
\(432\) −5.37945 + 20.0764i −0.0124524 + 0.0464731i
\(433\) 527.265 527.265i 1.21770 1.21770i 0.249268 0.968434i \(-0.419810\pi\)
0.968434 0.249268i \(-0.0801901\pi\)
\(434\) −46.4714 94.9179i −0.107077 0.218705i
\(435\) 60.9641 + 89.1398i 0.140147 + 0.204919i
\(436\) 215.979 + 374.087i 0.495365 + 0.857998i
\(437\) 669.366 179.356i 1.53173 0.410426i
\(438\) 22.9554 + 85.6708i 0.0524096 + 0.195595i
\(439\) −307.063 + 177.283i −0.699459 + 0.403833i −0.807146 0.590352i \(-0.798989\pi\)
0.107687 + 0.994185i \(0.465656\pi\)
\(440\) −31.1041 + 21.2726i −0.0706911 + 0.0483468i
\(441\) −145.630 20.0204i −0.330227 0.0453977i
\(442\) 36.2588 + 36.2588i 0.0820334 + 0.0820334i
\(443\) 582.736 + 156.144i 1.31543 + 0.352469i 0.847265 0.531171i \(-0.178248\pi\)
0.468167 + 0.883640i \(0.344915\pi\)
\(444\) −68.1969 39.3735i −0.153597 0.0886790i
\(445\) 551.042 + 472.820i 1.23830 + 1.06252i
\(446\) −284.006 491.912i −0.636784 1.10294i
\(447\) 212.573 + 212.573i 0.475554 + 0.475554i
\(448\) −18.1521 + 52.9764i −0.0405182 + 0.118251i
\(449\) 304.047i 0.677165i 0.940937 + 0.338583i \(0.109947\pi\)
−0.940937 + 0.338583i \(0.890053\pi\)
\(450\) 85.5229 + 62.7363i 0.190051 + 0.139414i
\(451\) 1.57202 2.72282i 0.00348563 0.00603728i
\(452\) 83.9991 22.5075i 0.185839 0.0497954i
\(453\) −386.238 103.492i −0.852622 0.228459i
\(454\) 367.774i 0.810076i
\(455\) 323.158 + 318.066i 0.710238 + 0.699046i
\(456\) 93.8260 0.205759
\(457\) 66.4786 248.101i 0.145467 0.542891i −0.854267 0.519835i \(-0.825994\pi\)
0.999734 0.0230567i \(-0.00733981\pi\)
\(458\) 29.9861 + 111.910i 0.0654719 + 0.244345i
\(459\) −12.5946 7.27150i −0.0274392 0.0158421i
\(460\) −156.518 + 326.223i −0.340257 + 0.709181i
\(461\) −528.700 −1.14685 −0.573427 0.819257i \(-0.694386\pi\)
−0.573427 + 0.819257i \(0.694386\pi\)
\(462\) 34.4359 30.0258i 0.0745367 0.0649909i
\(463\) −415.206 + 415.206i −0.896773 + 0.896773i −0.995149 0.0983763i \(-0.968635\pi\)
0.0983763 + 0.995149i \(0.468635\pi\)
\(464\) −43.1973 + 24.9400i −0.0930975 + 0.0537499i
\(465\) −7.04283 92.1852i −0.0151459 0.198248i
\(466\) −0.0526485 + 0.0911900i −0.000112980 + 0.000195687i
\(467\) 109.764 409.645i 0.235041 0.877185i −0.743089 0.669192i \(-0.766640\pi\)
0.978130 0.207993i \(-0.0666930\pi\)
\(468\) −54.9638 + 54.9638i −0.117444 + 0.117444i
\(469\) 121.961 + 8.34402i 0.260045 + 0.0177911i
\(470\) −96.8662 + 516.047i −0.206098 + 1.09797i
\(471\) 171.069 + 296.300i 0.363203 + 0.629086i
\(472\) 295.318 79.1302i 0.625674 0.167649i
\(473\) 2.63894 + 9.84867i 0.00557916 + 0.0208217i
\(474\) −204.813 + 118.249i −0.432096 + 0.249471i
\(475\) 173.633 446.212i 0.365543 0.939393i
\(476\) −32.5173 21.8621i −0.0683137 0.0459288i
\(477\) 17.2086 + 17.2086i 0.0360768 + 0.0360768i
\(478\) −292.784 78.4512i −0.612518 0.164124i
\(479\) 225.668 + 130.289i 0.471123 + 0.272003i 0.716710 0.697372i \(-0.245647\pi\)
−0.245587 + 0.969375i \(0.578981\pi\)
\(480\) −31.9015 + 37.1792i −0.0664615 + 0.0774567i
\(481\) −147.250 255.044i −0.306132 0.530236i
\(482\) 17.9516 + 17.9516i 0.0372439 + 0.0372439i
\(483\) 142.200 415.007i 0.294411 0.859228i
\(484\) 227.800i 0.470661i
\(485\) 133.641 278.541i 0.275548 0.574312i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) −457.565 + 122.604i −0.939558 + 0.251754i −0.695925 0.718114i \(-0.745006\pi\)
−0.243632 + 0.969868i \(0.578339\pi\)
\(488\) 191.372 + 51.2780i 0.392156 + 0.105078i
\(489\) 100.796i 0.206127i
\(490\) −289.064 191.029i −0.589927 0.389854i
\(491\) 149.141 0.303750 0.151875 0.988400i \(-0.451469\pi\)
0.151875 + 0.988400i \(0.451469\pi\)
\(492\) 1.05791 3.94816i 0.00215022 0.00802471i
\(493\) −9.03304 33.7118i −0.0183226 0.0683809i
\(494\) 303.881 + 175.446i 0.615144 + 0.355154i
\(495\) 37.7065 13.2555i 0.0761747 0.0267788i
\(496\) 42.7026 0.0860939
\(497\) −438.876 150.379i −0.883050 0.302574i
\(498\) −204.527 + 204.527i −0.410697 + 0.410697i
\(499\) 298.044 172.076i 0.597282 0.344841i −0.170690 0.985325i \(-0.554600\pi\)
0.767971 + 0.640484i \(0.221266\pi\)
\(500\) 117.778 + 220.518i 0.235556 + 0.441037i
\(501\) 163.249 282.756i 0.325847 0.564384i
\(502\) −72.8933 + 272.042i −0.145206 + 0.541916i
\(503\) −392.676 + 392.676i −0.780667 + 0.780667i −0.979943 0.199276i \(-0.936141\pi\)
0.199276 + 0.979943i \(0.436141\pi\)
\(504\) 33.1403 49.2922i 0.0657545 0.0978020i
\(505\) 404.788 + 75.9820i 0.801561 + 0.150459i
\(506\) 68.1733 + 118.080i 0.134730 + 0.233359i
\(507\) 1.94991 0.522476i 0.00384597 0.00103052i
\(508\) 105.863 + 395.084i 0.208391 + 0.777725i
\(509\) −4.48117 + 2.58721i −0.00880388 + 0.00508292i −0.504395 0.863473i \(-0.668285\pi\)
0.495592 + 0.868556i \(0.334951\pi\)
\(510\) −19.3507 28.2939i −0.0379425 0.0554783i
\(511\) 17.3002 252.870i 0.0338556 0.494853i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −96.1266 25.7570i −0.187381 0.0502086i
\(514\) −39.9823 23.0838i −0.0777866 0.0449101i
\(515\) 26.8437 + 351.363i 0.0521236 + 0.682258i
\(516\) 6.62777 + 11.4796i 0.0128445 + 0.0222473i
\(517\) 139.906 + 139.906i 0.270611 + 0.270611i
\(518\) 147.894 + 169.616i 0.285509 + 0.327445i
\(519\) 273.073i 0.526152i
\(520\) −172.843 + 60.7621i −0.332391 + 0.116850i
\(521\) 330.348 572.180i 0.634065 1.09823i −0.352647 0.935756i \(-0.614718\pi\)
0.986712 0.162477i \(-0.0519484\pi\)
\(522\) 51.1029 13.6930i 0.0978983 0.0262318i
\(523\) −615.606 164.951i −1.17707 0.315394i −0.383305 0.923622i \(-0.625214\pi\)
−0.793763 + 0.608228i \(0.791881\pi\)
\(524\) 304.607i 0.581312i
\(525\) −173.092 248.826i −0.329699 0.473953i
\(526\) 89.0325 0.169263
\(527\) −7.73326 + 28.8609i −0.0146741 + 0.0547646i
\(528\) 4.77798 + 17.8317i 0.00904920 + 0.0337721i
\(529\) 675.669 + 390.098i 1.27726 + 0.737425i
\(530\) 19.0240 + 54.1156i 0.0358944 + 0.102105i
\(531\) −324.282 −0.610700
\(532\) −253.653 86.9132i −0.476792 0.163371i
\(533\) 10.8090 10.8090i 0.0202796 0.0202796i
\(534\) 308.054 177.855i 0.576879 0.333061i
\(535\) 628.455 48.0132i 1.17468 0.0897442i
\(536\) −24.6975 + 42.7773i −0.0460774 + 0.0798084i
\(537\) −51.2789 + 191.375i −0.0954914 + 0.356379i
\(538\) −294.092 + 294.092i −0.546639 + 0.546639i
\(539\) −120.909 + 49.2741i −0.224321 + 0.0914176i
\(540\) 42.8901 29.3332i 0.0794261 0.0543208i
\(541\) 363.828 + 630.169i 0.672511 + 1.16482i 0.977190 + 0.212368i \(0.0681175\pi\)
−0.304679 + 0.952455i \(0.598549\pi\)
\(542\) 376.954 101.005i 0.695488 0.186355i
\(543\) 61.8839 + 230.954i 0.113967 + 0.425330i
\(544\) 13.7113 7.91621i 0.0252046 0.0145519i
\(545\) 199.226 1061.36i 0.365552 1.94745i
\(546\) 199.506 97.6772i 0.365395 0.178896i
\(547\) −157.847 157.847i −0.288568 0.288568i 0.547946 0.836514i \(-0.315410\pi\)
−0.836514 + 0.547946i \(0.815410\pi\)
\(548\) 473.906 + 126.983i 0.864793 + 0.231720i
\(549\) −181.987 105.070i −0.331489 0.191385i
\(550\) 93.6447 + 10.2762i 0.170263 + 0.0186839i
\(551\) −119.413 206.830i −0.216721 0.375372i
\(552\) 125.341 + 125.341i 0.227067 + 0.227067i
\(553\) 663.238 129.956i 1.19935 0.235002i
\(554\) 469.561i 0.847583i
\(555\) 65.2907 + 185.725i 0.117641 + 0.334640i
\(556\) 137.703 238.509i 0.247668 0.428973i
\(557\) 251.964 67.5136i 0.452359 0.121209i −0.0254439 0.999676i \(-0.508100\pi\)
0.477803 + 0.878467i \(0.341433\pi\)
\(558\) −43.7496 11.7227i −0.0784043 0.0210084i
\(559\) 49.5732i 0.0886820i
\(560\) 120.684 70.9607i 0.215507 0.126715i
\(561\) −12.9170 −0.0230249
\(562\) 141.343 527.501i 0.251501 0.938613i
\(563\) 261.631 + 976.421i 0.464709 + 1.73432i 0.657851 + 0.753148i \(0.271466\pi\)
−0.193142 + 0.981171i \(0.561868\pi\)
\(564\) 222.764 + 128.613i 0.394972 + 0.228037i
\(565\) −196.012 94.0446i −0.346925 0.166451i
\(566\) −220.644 −0.389830
\(567\) −47.4845 + 41.4032i −0.0837469 + 0.0730215i
\(568\) 132.550 132.550i 0.233363 0.233363i
\(569\) −232.943 + 134.490i −0.409391 + 0.236362i −0.690528 0.723306i \(-0.742622\pi\)
0.281137 + 0.959668i \(0.409288\pi\)
\(570\) −178.015 152.746i −0.312308 0.267975i
\(571\) 30.3033 52.4869i 0.0530706 0.0919209i −0.838270 0.545256i \(-0.816433\pi\)
0.891340 + 0.453335i \(0.149766\pi\)
\(572\) −17.8687 + 66.6871i −0.0312391 + 0.116586i
\(573\) 142.630 142.630i 0.248918 0.248918i
\(574\) −6.51726 + 9.69365i −0.0113541 + 0.0168879i
\(575\) 828.042 364.134i 1.44007 0.633277i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 173.023 46.3613i 0.299866 0.0803488i −0.105749 0.994393i \(-0.533724\pi\)
0.405615 + 0.914044i \(0.367057\pi\)
\(578\) −102.914 384.081i −0.178052 0.664500i
\(579\) 394.886 227.988i 0.682015 0.393761i
\(580\) 122.559 + 23.0054i 0.211309 + 0.0396644i
\(581\) 742.385 363.469i 1.27777 0.625592i
\(582\) −107.021 107.021i −0.183884 0.183884i
\(583\) 20.8791 + 5.59453i 0.0358131 + 0.00959610i
\(584\) 88.6929 + 51.2069i 0.151871 + 0.0876830i
\(585\) 193.762 14.8031i 0.331217 0.0253045i
\(586\) 86.2939 + 149.465i 0.147259 + 0.255061i
\(587\) 9.92331 + 9.92331i 0.0169051 + 0.0169051i 0.715509 0.698604i \(-0.246195\pi\)
−0.698604 + 0.715509i \(0.746195\pi\)
\(588\) −135.253 + 102.560i −0.230022 + 0.174422i
\(589\) 204.462i 0.347134i
\(590\) −689.126 330.635i −1.16801 0.560398i
\(591\) 106.602 184.640i 0.180375 0.312419i
\(592\) −87.8309 + 23.5342i −0.148363 + 0.0397537i
\(593\) −237.396 63.6101i −0.400331 0.107268i 0.0530356 0.998593i \(-0.483110\pi\)
−0.453366 + 0.891324i \(0.649777\pi\)
\(594\) 19.5805i 0.0329638i
\(595\) 26.1041 + 94.4159i 0.0438724 + 0.158682i
\(596\) 347.130 0.582433
\(597\) −169.726 + 633.425i −0.284298 + 1.06101i
\(598\) 171.575 + 640.327i 0.286915 + 1.07078i
\(599\) −415.536 239.910i −0.693715 0.400517i 0.111287 0.993788i \(-0.464503\pi\)
−0.805002 + 0.593272i \(0.797836\pi\)
\(600\) 121.053 18.6052i 0.201755 0.0310086i
\(601\) 425.170 0.707437 0.353719 0.935352i \(-0.384917\pi\)
0.353719 + 0.935352i \(0.384917\pi\)
\(602\) −7.28393 37.1739i −0.0120996 0.0617507i
\(603\) 37.0462 37.0462i 0.0614366 0.0614366i
\(604\) −399.863 + 230.861i −0.662024 + 0.382220i
\(605\) −370.851 + 432.204i −0.612977 + 0.714386i
\(606\) 100.884 174.736i 0.166476 0.288344i
\(607\) −263.511 + 983.437i −0.434120 + 1.62016i 0.309042 + 0.951048i \(0.399992\pi\)
−0.743163 + 0.669111i \(0.766675\pi\)
\(608\) 76.6086 76.6086i 0.126001 0.126001i
\(609\) −150.838 10.3196i −0.247681 0.0169452i
\(610\) −279.610 408.837i −0.458377 0.670224i
\(611\) 480.988 + 833.096i 0.787215 + 1.36350i
\(612\) −16.2206 + 4.34630i −0.0265043 + 0.00710180i
\(613\) −139.188 519.456i −0.227060 0.847400i −0.981569 0.191110i \(-0.938791\pi\)
0.754509 0.656290i \(-0.227875\pi\)
\(614\) −375.728 + 216.926i −0.611934 + 0.353300i
\(615\) −8.43463 + 5.76858i −0.0137149 + 0.00937980i
\(616\) 3.60089 52.6328i 0.00584560 0.0854428i
\(617\) 260.554 + 260.554i 0.422292 + 0.422292i 0.885992 0.463700i \(-0.153479\pi\)
−0.463700 + 0.885992i \(0.653479\pi\)
\(618\) 166.751 + 44.6808i 0.269824 + 0.0722991i
\(619\) −208.960 120.643i −0.337577 0.194900i 0.321623 0.946868i \(-0.395772\pi\)
−0.659200 + 0.751967i \(0.729105\pi\)
\(620\) −81.0193 69.5184i −0.130676 0.112127i
\(621\) −94.0057 162.823i −0.151378 0.262194i
\(622\) −236.825 236.825i −0.380748 0.380748i
\(623\) −997.555 + 195.463i −1.60121 + 0.313745i
\(624\) 89.7555i 0.143839i
\(625\) 135.537 610.127i 0.216860 0.976203i
\(626\) −256.586 + 444.421i −0.409882 + 0.709937i
\(627\) −85.3787 + 22.8771i −0.136170 + 0.0364867i
\(628\) 381.604 + 102.251i 0.607650 + 0.162819i
\(629\) 63.6232i 0.101150i
\(630\) −143.123 + 39.5705i −0.227179 + 0.0628104i
\(631\) −477.838 −0.757271 −0.378635 0.925546i \(-0.623607\pi\)
−0.378635 + 0.925546i \(0.623607\pi\)
\(632\) −70.6795 + 263.780i −0.111835 + 0.417373i
\(633\) 126.464 + 471.969i 0.199785 + 0.745606i
\(634\) 512.831 + 296.083i 0.808882 + 0.467008i
\(635\) 442.332 921.932i 0.696586 1.45186i
\(636\) 28.1016 0.0441849
\(637\) −629.832 + 79.2579i −0.988748 + 0.124424i
\(638\) 33.2271 33.2271i 0.0520801 0.0520801i
\(639\) −172.187 + 99.4124i −0.269464 + 0.155575i
\(640\) 4.30920 + 56.4042i 0.00673313 + 0.0881315i
\(641\) 353.417 612.135i 0.551352 0.954969i −0.446825 0.894621i \(-0.647446\pi\)
0.998177 0.0603483i \(-0.0192212\pi\)
\(642\) 79.9172 298.255i 0.124482 0.464571i
\(643\) −473.054 + 473.054i −0.735698 + 0.735698i −0.971742 0.236044i \(-0.924149\pi\)
0.236044 + 0.971742i \(0.424149\pi\)
\(644\) −222.746 454.958i −0.345878 0.706456i
\(645\) 6.11365 32.5700i 0.00947853 0.0504961i
\(646\) 37.9031 + 65.6501i 0.0586736 + 0.101626i
\(647\) −820.431 + 219.834i −1.26805 + 0.339774i −0.829285 0.558825i \(-0.811252\pi\)
−0.438769 + 0.898600i \(0.644586\pi\)
\(648\) −6.58846 24.5885i −0.0101674 0.0379452i
\(649\) −249.436 + 144.012i −0.384339 + 0.221898i
\(650\) 426.854 + 166.100i 0.656698 + 0.255538i
\(651\) 107.416 + 72.2178i 0.165001 + 0.110934i
\(652\) −82.2997 82.2997i −0.126227 0.126227i
\(653\) 342.981 + 91.9014i 0.525238 + 0.140737i 0.511689 0.859171i \(-0.329020\pi\)
0.0135498 + 0.999908i \(0.495687\pi\)
\(654\) −458.161 264.520i −0.700553 0.404464i
\(655\) −495.891 + 577.930i −0.757086 + 0.882335i
\(656\) −2.35988 4.08744i −0.00359738 0.00623085i
\(657\) −76.8103 76.8103i −0.116911 0.116911i
\(658\) −483.092 554.049i −0.734183 0.842019i
\(659\) 477.254i 0.724210i 0.932137 + 0.362105i \(0.117942\pi\)
−0.932137 + 0.362105i \(0.882058\pi\)
\(660\) 19.9641 41.6103i 0.0302487 0.0630459i
\(661\) −34.1279 + 59.1113i −0.0516308 + 0.0894271i −0.890686 0.454620i \(-0.849775\pi\)
0.839055 + 0.544047i \(0.183109\pi\)
\(662\) −376.781 + 100.958i −0.569156 + 0.152505i
\(663\) −60.6621 16.2544i −0.0914964 0.0245164i
\(664\) 333.991i 0.502999i
\(665\) 339.762 + 577.839i 0.510921 + 0.868931i
\(666\) 96.4450 0.144812
\(667\) 116.779 435.824i 0.175081 0.653410i
\(668\) −97.5770 364.162i −0.146073 0.545153i
\(669\) 602.467 + 347.834i 0.900548 + 0.519932i
\(670\) 116.498 40.9544i 0.173878 0.0611259i
\(671\) −186.645 −0.278160
\(672\) −13.1880 67.3058i −0.0196250 0.100157i
\(673\) −425.308 + 425.308i −0.631958 + 0.631958i −0.948559 0.316601i \(-0.897458\pi\)
0.316601 + 0.948559i \(0.397458\pi\)
\(674\) −611.533 + 353.069i −0.907319 + 0.523841i
\(675\) −129.129 14.1700i −0.191302 0.0209926i
\(676\) 1.16549 2.01869i 0.00172410 0.00298623i
\(677\) −158.366 + 591.029i −0.233923 + 0.873012i 0.744709 + 0.667390i \(0.232588\pi\)
−0.978631 + 0.205622i \(0.934078\pi\)
\(678\) −75.3116 + 75.3116i −0.111079 + 0.111079i
\(679\) 190.188 + 388.459i 0.280100 + 0.572105i
\(680\) −38.9016 7.30215i −0.0572083 0.0107385i
\(681\) −225.215 390.084i −0.330712 0.572810i
\(682\) −38.8580 + 10.4120i −0.0569765 + 0.0152668i
\(683\) 108.101 + 403.439i 0.158274 + 0.590687i 0.998803 + 0.0489198i \(0.0155779\pi\)
−0.840529 + 0.541767i \(0.817755\pi\)
\(684\) −99.5175 + 57.4565i −0.145493 + 0.0840007i
\(685\) −692.415 1012.43i −1.01083 1.47800i
\(686\) 460.653 151.977i 0.671506 0.221541i
\(687\) −100.336 100.336i −0.146049 0.146049i
\(688\) 14.7846 + 3.96153i 0.0214893 + 0.00575804i
\(689\) 91.0146 + 52.5473i 0.132097 + 0.0762661i
\(690\) −33.7575 441.859i −0.0489239 0.640376i
\(691\) −303.668 525.968i −0.439462 0.761170i 0.558186 0.829716i \(-0.311497\pi\)
−0.997648 + 0.0685458i \(0.978164\pi\)
\(692\) −222.963 222.963i −0.322201 0.322201i
\(693\) −18.1379 + 52.9348i −0.0261730 + 0.0763849i
\(694\) 841.453i 1.21247i
\(695\) −649.548 + 228.345i −0.934602 + 0.328554i
\(696\) 30.5451 52.9056i 0.0438866 0.0760138i
\(697\) 3.18989 0.854730i 0.00457661 0.00122630i
\(698\) 622.860 + 166.895i 0.892349 + 0.239104i
\(699\) 0.128962i 0.000184495i
\(700\) −344.494 61.8362i −0.492135 0.0883374i
\(701\) 483.579 0.689842 0.344921 0.938632i \(-0.387906\pi\)
0.344921 + 0.938632i \(0.387906\pi\)
\(702\) 24.6396 91.9563i 0.0350992 0.130992i
\(703\) −112.683 420.538i −0.160288 0.598204i
\(704\) 18.4607 + 10.6583i 0.0262226 + 0.0151396i
\(705\) −213.271 606.669i −0.302512 0.860523i
\(706\) 401.690 0.568966
\(707\) −434.597 + 378.938i −0.614705 + 0.535981i
\(708\) −264.775 + 264.775i −0.373976 + 0.373976i
\(709\) 744.478 429.824i 1.05004 0.606240i 0.127379 0.991854i \(-0.459344\pi\)
0.922660 + 0.385614i \(0.126010\pi\)
\(710\) −467.273 + 35.6990i −0.658131 + 0.0502803i
\(711\) 144.825 250.844i 0.203692 0.352805i
\(712\) 106.307 396.742i 0.149307 0.557223i
\(713\) −273.138 + 273.138i −0.383082 + 0.383082i
\(714\) 47.8775 + 3.27556i 0.0670554 + 0.00458762i
\(715\) 142.467 97.4352i 0.199254 0.136273i
\(716\) 114.388 + 198.126i 0.159760 + 0.276713i
\(717\) 358.585 96.0827i 0.500119 0.134007i
\(718\) −114.138 425.968i −0.158966 0.593271i
\(719\) 488.623 282.107i 0.679587 0.392360i −0.120112 0.992760i \(-0.538326\pi\)
0.799699 + 0.600401i \(0.204992\pi\)
\(720\) 11.0692 58.9701i 0.0153738 0.0819029i
\(721\) −409.413 275.257i −0.567841 0.381772i
\(722\) 5.80524 + 5.80524i 0.00804050 + 0.00804050i
\(723\) −30.0336 8.04747i −0.0415402 0.0111307i
\(724\) 239.101 + 138.045i 0.330250 + 0.190670i
\(725\) −195.079 243.170i −0.269074 0.335408i
\(726\) 139.499 + 241.619i 0.192147 + 0.332808i
\(727\) 445.432 + 445.432i 0.612699 + 0.612699i 0.943649 0.330949i \(-0.107369\pi\)
−0.330949 + 0.943649i \(0.607369\pi\)
\(728\) 83.1426 242.649i 0.114207 0.333309i
\(729\) 27.0000i 0.0370370i
\(730\) −84.9133 241.544i −0.116320 0.330882i
\(731\) −5.35487 + 9.27490i −0.00732540 + 0.0126880i
\(732\) −234.382 + 62.8024i −0.320194 + 0.0857957i
\(733\) −786.415 210.719i −1.07287 0.287475i −0.321199 0.947012i \(-0.604086\pi\)
−0.751672 + 0.659537i \(0.770753\pi\)
\(734\) 326.656i 0.445036i
\(735\) 423.579 + 25.6014i 0.576299 + 0.0348319i
\(736\) 204.681 0.278099
\(737\) 12.0437 44.9479i 0.0163416 0.0609876i
\(738\) 1.29567 + 4.83549i 0.00175564 + 0.00655215i
\(739\) −1181.31 682.028i −1.59852 0.922906i −0.991773 0.128011i \(-0.959141\pi\)
−0.606747 0.794895i \(-0.707526\pi\)
\(740\) 204.954 + 98.3345i 0.276965 + 0.132884i
\(741\) −429.753 −0.579964
\(742\) −75.9709 26.0311i −0.102387 0.0350824i
\(743\) −355.898 + 355.898i −0.479002 + 0.479002i −0.904812 0.425810i \(-0.859989\pi\)
0.425810 + 0.904812i \(0.359989\pi\)
\(744\) −45.2929 + 26.1499i −0.0608776 + 0.0351477i
\(745\) −658.607 565.116i −0.884037 0.758545i
\(746\) −383.086 + 663.525i −0.513521 + 0.889444i
\(747\) 91.6870 342.181i 0.122740 0.458073i
\(748\) −10.5466 + 10.5466i −0.0140998 + 0.0140998i
\(749\) −492.332 + 732.285i −0.657319 + 0.977684i
\(750\) −259.962 161.771i −0.346616 0.215695i
\(751\) −52.5404 91.0027i −0.0699606 0.121175i 0.828923 0.559363i \(-0.188954\pi\)
−0.898884 + 0.438187i \(0.855621\pi\)
\(752\) 286.898 76.8741i 0.381513 0.102226i
\(753\) −89.2757 333.182i −0.118560 0.442472i
\(754\) 197.857 114.233i 0.262410 0.151503i
\(755\) 1134.49 + 212.953i 1.50264 + 0.282057i
\(756\) −4.96534 + 72.5765i −0.00656792 + 0.0960006i
\(757\) 352.398 + 352.398i 0.465519 + 0.465519i 0.900459 0.434940i \(-0.143231\pi\)
−0.434940 + 0.900459i \(0.643231\pi\)
\(758\) 620.377 + 166.229i 0.818439 + 0.219300i
\(759\) −144.617 83.4949i −0.190537 0.110006i
\(760\) −270.065 + 20.6326i −0.355349 + 0.0271482i
\(761\) 210.153 + 363.996i 0.276154 + 0.478313i 0.970426 0.241400i \(-0.0776066\pi\)
−0.694271 + 0.719713i \(0.744273\pi\)
\(762\) −354.223 354.223i −0.464860 0.464860i
\(763\) 993.582 + 1139.52i 1.30220 + 1.49347i
\(764\) − </