Properties

Label 210.3.v.b.67.1
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.1
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.b.163.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-3.76724 + 3.28753i) q^{5} +2.44949 q^{6} +(5.65016 - 4.13228i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 + 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-3.76724 + 3.28753i) q^{5} +2.44949 q^{6} +(5.65016 - 4.13228i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-3.11195 - 6.34947i) q^{10} +(2.47138 - 4.28056i) q^{11} +(-0.896575 + 3.34607i) q^{12} +(7.82868 - 7.82868i) q^{13} +(3.57669 + 9.23078i) q^{14} +(7.18896 + 4.82896i) q^{15} +(2.00000 + 3.46410i) q^{16} +(3.41115 - 0.914015i) q^{17} +(-1.09808 - 4.09808i) q^{18} +(26.8487 - 15.5011i) q^{19} +(9.81259 - 1.92693i) q^{20} +(-9.44633 - 7.60045i) q^{21} +(4.94276 + 4.94276i) q^{22} +(17.2084 + 4.61097i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(3.38424 - 24.7699i) q^{25} +(7.82868 + 13.5597i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-13.9186 + 1.50715i) q^{28} -24.0299i q^{29} +(-9.22782 + 8.05278i) q^{30} +(7.79698 - 13.5048i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(-8.26940 - 2.21578i) q^{33} +4.99427i q^{34} +(-7.70052 + 34.1424i) q^{35} +6.00000 q^{36} +(-8.92003 + 33.2900i) q^{37} +(11.3476 + 42.3498i) q^{38} +(-16.6071 - 9.58813i) q^{39} +(-0.959417 + 14.1096i) q^{40} -19.3822 q^{41} +(13.8400 - 10.1220i) q^{42} +(-11.5955 + 11.5955i) q^{43} +(-8.56111 + 4.94276i) q^{44} +(4.85628 - 14.1921i) q^{45} +(-12.5974 + 21.8194i) q^{46} +(8.13382 - 30.3558i) q^{47} +(4.89898 - 4.89898i) q^{48} +(14.8486 - 46.6960i) q^{49} +(32.5976 + 13.6894i) q^{50} +(-3.05835 - 5.29722i) q^{51} +(-21.3883 + 5.73099i) q^{52} +(26.9228 + 100.477i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(4.76218 + 24.2506i) q^{55} +(3.03577 - 19.5649i) q^{56} +(-37.9698 - 37.9698i) q^{57} +(32.8255 + 8.79557i) q^{58} +(13.5357 + 7.81482i) q^{59} +(-7.62269 - 15.5530i) q^{60} +(-44.1937 - 76.5457i) q^{61} +(15.5940 + 15.5940i) q^{62} +(-8.48113 + 19.2112i) q^{63} -8.00000i q^{64} +(-3.75548 + 55.2296i) q^{65} +(6.05362 - 10.4852i) q^{66} +(-75.6604 + 20.2731i) q^{67} +(-6.82230 - 1.82803i) q^{68} -30.8572i q^{69} +(-43.8208 - 23.0161i) q^{70} -59.7196 q^{71} +(-2.19615 + 8.19615i) q^{72} +(-27.5699 - 102.892i) q^{73} +(-42.2100 - 24.3700i) q^{74} +(-42.9579 + 5.44209i) q^{75} -62.0044 q^{76} +(-3.72475 - 34.3982i) q^{77} +(19.1763 - 19.1763i) q^{78} +(-23.6823 + 13.6730i) q^{79} +(-18.9228 - 6.47504i) q^{80} +(4.50000 - 7.79423i) q^{81} +(7.09436 - 26.4765i) q^{82} +(-48.9951 + 48.9951i) q^{83} +(8.76107 + 22.6107i) q^{84} +(-9.84577 + 14.6576i) q^{85} +(-11.5955 - 20.0839i) q^{86} +(-40.2029 + 10.7723i) q^{87} +(-3.61835 - 13.5039i) q^{88} +(98.6980 - 56.9833i) q^{89} +(17.6093 + 11.8285i) q^{90} +(11.8830 - 76.5835i) q^{91} +(-25.1948 - 25.1948i) q^{92} +(-26.0892 - 6.99058i) q^{93} +(38.4896 + 22.2220i) q^{94} +(-50.1852 + 146.662i) q^{95} +(4.89898 + 8.48528i) q^{96} +(99.3285 + 99.3285i) q^{97} +(58.3530 + 37.3755i) q^{98} +14.8283i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) −0.448288 1.67303i −0.149429 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −3.76724 + 3.28753i −0.753449 + 0.657507i
\(6\) 2.44949 0.408248
\(7\) 5.65016 4.13228i 0.807166 0.590325i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −3.11195 6.34947i −0.311195 0.634947i
\(11\) 2.47138 4.28056i 0.224671 0.389141i −0.731550 0.681788i \(-0.761203\pi\)
0.956221 + 0.292647i \(0.0945360\pi\)
\(12\) −0.896575 + 3.34607i −0.0747146 + 0.278839i
\(13\) 7.82868 7.82868i 0.602206 0.602206i −0.338692 0.940897i \(-0.609984\pi\)
0.940897 + 0.338692i \(0.109984\pi\)
\(14\) 3.57669 + 9.23078i 0.255478 + 0.659341i
\(15\) 7.18896 + 4.82896i 0.479264 + 0.321931i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 3.41115 0.914015i 0.200656 0.0537656i −0.157091 0.987584i \(-0.550212\pi\)
0.357747 + 0.933819i \(0.383545\pi\)
\(18\) −1.09808 4.09808i −0.0610042 0.227671i
\(19\) 26.8487 15.5011i 1.41309 0.815848i 0.417412 0.908718i \(-0.362937\pi\)
0.995678 + 0.0928696i \(0.0296040\pi\)
\(20\) 9.81259 1.92693i 0.490630 0.0963467i
\(21\) −9.44633 7.60045i −0.449825 0.361926i
\(22\) 4.94276 + 4.94276i 0.224671 + 0.224671i
\(23\) 17.2084 + 4.61097i 0.748191 + 0.200477i 0.612715 0.790304i \(-0.290077\pi\)
0.135475 + 0.990781i \(0.456744\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 3.38424 24.7699i 0.135369 0.990795i
\(26\) 7.82868 + 13.5597i 0.301103 + 0.521526i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −13.9186 + 1.50715i −0.497094 + 0.0538269i
\(29\) 24.0299i 0.828619i −0.910136 0.414309i \(-0.864023\pi\)
0.910136 0.414309i \(-0.135977\pi\)
\(30\) −9.22782 + 8.05278i −0.307594 + 0.268426i
\(31\) 7.79698 13.5048i 0.251515 0.435638i −0.712428 0.701745i \(-0.752404\pi\)
0.963943 + 0.266108i \(0.0857377\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) −8.26940 2.21578i −0.250588 0.0671448i
\(34\) 4.99427i 0.146890i
\(35\) −7.70052 + 34.1424i −0.220015 + 0.975496i
\(36\) 6.00000 0.166667
\(37\) −8.92003 + 33.2900i −0.241082 + 0.899730i 0.734231 + 0.678900i \(0.237543\pi\)
−0.975312 + 0.220830i \(0.929124\pi\)
\(38\) 11.3476 + 42.3498i 0.298621 + 1.11447i
\(39\) −16.6071 9.58813i −0.425824 0.245850i
\(40\) −0.959417 + 14.1096i −0.0239854 + 0.352739i
\(41\) −19.3822 −0.472736 −0.236368 0.971664i \(-0.575957\pi\)
−0.236368 + 0.971664i \(0.575957\pi\)
\(42\) 13.8400 10.1220i 0.329524 0.240999i
\(43\) −11.5955 + 11.5955i −0.269662 + 0.269662i −0.828964 0.559302i \(-0.811069\pi\)
0.559302 + 0.828964i \(0.311069\pi\)
\(44\) −8.56111 + 4.94276i −0.194571 + 0.112335i
\(45\) 4.85628 14.1921i 0.107917 0.315381i
\(46\) −12.5974 + 21.8194i −0.273857 + 0.474334i
\(47\) 8.13382 30.3558i 0.173060 0.645869i −0.823814 0.566860i \(-0.808158\pi\)
0.996874 0.0790084i \(-0.0251754\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 14.8486 46.6960i 0.303033 0.952980i
\(50\) 32.5976 + 13.6894i 0.651951 + 0.273787i
\(51\) −3.05835 5.29722i −0.0599677 0.103867i
\(52\) −21.3883 + 5.73099i −0.411314 + 0.110211i
\(53\) 26.9228 + 100.477i 0.507977 + 1.89580i 0.439735 + 0.898128i \(0.355072\pi\)
0.0682425 + 0.997669i \(0.478261\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) 4.76218 + 24.2506i 0.0865852 + 0.440921i
\(56\) 3.03577 19.5649i 0.0542101 0.349373i
\(57\) −37.9698 37.9698i −0.666137 0.666137i
\(58\) 32.8255 + 8.79557i 0.565957 + 0.151648i
\(59\) 13.5357 + 7.81482i 0.229418 + 0.132455i 0.610304 0.792168i \(-0.291047\pi\)
−0.380885 + 0.924622i \(0.624381\pi\)
\(60\) −7.62269 15.5530i −0.127045 0.259216i
\(61\) −44.1937 76.5457i −0.724486 1.25485i −0.959185 0.282779i \(-0.908744\pi\)
0.234699 0.972068i \(-0.424590\pi\)
\(62\) 15.5940 + 15.5940i 0.251515 + 0.251515i
\(63\) −8.48113 + 19.2112i −0.134621 + 0.304940i
\(64\) 8.00000i 0.125000i
\(65\) −3.75548 + 55.2296i −0.0577767 + 0.849686i
\(66\) 6.05362 10.4852i 0.0917215 0.158866i
\(67\) −75.6604 + 20.2731i −1.12926 + 0.302584i −0.774625 0.632421i \(-0.782061\pi\)
−0.354634 + 0.935005i \(0.615395\pi\)
\(68\) −6.82230 1.82803i −0.100328 0.0268828i
\(69\) 30.8572i 0.447206i
\(70\) −43.8208 23.0161i −0.626011 0.328801i
\(71\) −59.7196 −0.841121 −0.420560 0.907265i \(-0.638167\pi\)
−0.420560 + 0.907265i \(0.638167\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) −27.5699 102.892i −0.377670 1.40948i −0.849404 0.527743i \(-0.823038\pi\)
0.471734 0.881741i \(-0.343628\pi\)
\(74\) −42.2100 24.3700i −0.570406 0.329324i
\(75\) −42.9579 + 5.44209i −0.572772 + 0.0725613i
\(76\) −62.0044 −0.815848
\(77\) −3.72475 34.3982i −0.0483733 0.446730i
\(78\) 19.1763 19.1763i 0.245850 0.245850i
\(79\) −23.6823 + 13.6730i −0.299776 + 0.173076i −0.642342 0.766418i \(-0.722037\pi\)
0.342566 + 0.939494i \(0.388704\pi\)
\(80\) −18.9228 6.47504i −0.236535 0.0809380i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 7.09436 26.4765i 0.0865166 0.322884i
\(83\) −48.9951 + 48.9951i −0.590302 + 0.590302i −0.937713 0.347411i \(-0.887061\pi\)
0.347411 + 0.937713i \(0.387061\pi\)
\(84\) 8.76107 + 22.6107i 0.104298 + 0.269175i
\(85\) −9.84577 + 14.6576i −0.115833 + 0.172442i
\(86\) −11.5955 20.0839i −0.134831 0.233534i
\(87\) −40.2029 + 10.7723i −0.462102 + 0.123820i
\(88\) −3.61835 13.5039i −0.0411176 0.153453i
\(89\) 98.6980 56.9833i 1.10897 0.640262i 0.170405 0.985374i \(-0.445492\pi\)
0.938561 + 0.345112i \(0.112159\pi\)
\(90\) 17.6093 + 11.8285i 0.195659 + 0.131428i
\(91\) 11.8830 76.5835i 0.130583 0.841577i
\(92\) −25.1948 25.1948i −0.273857 0.273857i
\(93\) −26.0892 6.99058i −0.280529 0.0751675i
\(94\) 38.4896 + 22.2220i 0.409464 + 0.236404i
\(95\) −50.1852 + 146.662i −0.528265 + 1.54382i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) 99.3285 + 99.3285i 1.02400 + 1.02400i 0.999705 + 0.0243000i \(0.00773568\pi\)
0.0243000 + 0.999705i \(0.492264\pi\)
\(98\) 58.3530 + 37.3755i 0.595439 + 0.381383i
\(99\) 14.8283i 0.149781i
\(100\) −30.6316 + 39.5185i −0.306316 + 0.395185i
\(101\) 39.4954 68.4080i 0.391043 0.677307i −0.601544 0.798839i \(-0.705448\pi\)
0.992587 + 0.121533i \(0.0387810\pi\)
\(102\) 8.35558 2.23887i 0.0819174 0.0219497i
\(103\) 87.6811 + 23.4941i 0.851272 + 0.228098i 0.657972 0.753042i \(-0.271414\pi\)
0.193300 + 0.981140i \(0.438081\pi\)
\(104\) 31.3147i 0.301103i
\(105\) 60.5734 2.42238i 0.576889 0.0230703i
\(106\) −147.109 −1.38782
\(107\) −20.5193 + 76.5792i −0.191770 + 0.715694i 0.801310 + 0.598250i \(0.204137\pi\)
−0.993079 + 0.117444i \(0.962530\pi\)
\(108\) −2.68973 10.0382i −0.0249049 0.0929463i
\(109\) 37.6062 + 21.7120i 0.345011 + 0.199192i 0.662486 0.749074i \(-0.269501\pi\)
−0.317475 + 0.948267i \(0.602835\pi\)
\(110\) −34.8701 2.37108i −0.317001 0.0215553i
\(111\) 59.6940 0.537784
\(112\) 25.6149 + 11.3082i 0.228705 + 0.100966i
\(113\) 129.101 129.101i 1.14249 1.14249i 0.154493 0.987994i \(-0.450625\pi\)
0.987994 0.154493i \(-0.0493745\pi\)
\(114\) 65.7656 37.9698i 0.576892 0.333068i
\(115\) −79.9869 + 39.2025i −0.695538 + 0.340891i
\(116\) −24.0299 + 41.6211i −0.207155 + 0.358802i
\(117\) −8.59648 + 32.0825i −0.0734742 + 0.274209i
\(118\) −15.6296 + 15.6296i −0.132455 + 0.132455i
\(119\) 15.4966 19.2601i 0.130223 0.161850i
\(120\) 24.0358 4.72000i 0.200299 0.0393334i
\(121\) 48.2846 + 83.6313i 0.399046 + 0.691168i
\(122\) 120.739 32.3520i 0.989666 0.265180i
\(123\) 8.68879 + 32.4270i 0.0706405 + 0.263634i
\(124\) −27.0095 + 15.5940i −0.217819 + 0.125758i
\(125\) 68.6826 + 104.440i 0.549461 + 0.835520i
\(126\) −23.1387 18.6172i −0.183640 0.147756i
\(127\) 152.616 + 152.616i 1.20170 + 1.20170i 0.973648 + 0.228056i \(0.0732370\pi\)
0.228056 + 0.973648i \(0.426763\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 24.5977 + 14.2015i 0.190680 + 0.110089i
\(130\) −74.0704 25.3455i −0.569772 0.194965i
\(131\) −97.2153 168.382i −0.742102 1.28536i −0.951537 0.307535i \(-0.900496\pi\)
0.209435 0.977823i \(-0.432838\pi\)
\(132\) 12.1072 + 12.1072i 0.0917215 + 0.0917215i
\(133\) 87.6446 198.530i 0.658982 1.49271i
\(134\) 110.774i 0.826675i
\(135\) −25.9209 1.76256i −0.192007 0.0130560i
\(136\) 4.99427 8.65033i 0.0367226 0.0636054i
\(137\) −179.801 + 48.1776i −1.31242 + 0.351661i −0.846132 0.532973i \(-0.821075\pi\)
−0.466285 + 0.884634i \(0.654408\pi\)
\(138\) 42.1518 + 11.2945i 0.305448 + 0.0818445i
\(139\) 202.296i 1.45537i 0.685913 + 0.727683i \(0.259403\pi\)
−0.685913 + 0.727683i \(0.740597\pi\)
\(140\) 47.4801 51.4358i 0.339143 0.367399i
\(141\) −54.4326 −0.386047
\(142\) 21.8589 81.5785i 0.153936 0.574496i
\(143\) −14.1634 52.8587i −0.0990451 0.369641i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 78.9993 + 90.5266i 0.544822 + 0.624322i
\(146\) 150.645 1.03181
\(147\) −84.7804 3.90893i −0.576738 0.0265913i
\(148\) 48.7399 48.7399i 0.329324 0.329324i
\(149\) −89.3747 + 51.6005i −0.599830 + 0.346312i −0.768975 0.639279i \(-0.779233\pi\)
0.169144 + 0.985591i \(0.445900\pi\)
\(150\) 8.28965 60.6736i 0.0552644 0.404490i
\(151\) 37.3443 64.6822i 0.247313 0.428359i −0.715466 0.698647i \(-0.753786\pi\)
0.962779 + 0.270288i \(0.0871190\pi\)
\(152\) 22.6952 84.6996i 0.149311 0.557234i
\(153\) −7.49140 + 7.49140i −0.0489634 + 0.0489634i
\(154\) 48.3522 + 7.50253i 0.313975 + 0.0487177i
\(155\) 15.0243 + 76.5086i 0.0969307 + 0.493604i
\(156\) 19.1763 + 33.2143i 0.122925 + 0.212912i
\(157\) −195.069 + 52.2685i −1.24248 + 0.332920i −0.819425 0.573186i \(-0.805707\pi\)
−0.423050 + 0.906106i \(0.639041\pi\)
\(158\) −10.0093 37.3553i −0.0633502 0.236426i
\(159\) 156.033 90.0854i 0.981336 0.566575i
\(160\) 15.7713 23.4790i 0.0985707 0.146744i
\(161\) 116.284 45.0571i 0.722261 0.279858i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 159.904 + 42.8461i 0.981004 + 0.262859i 0.713467 0.700688i \(-0.247124\pi\)
0.267537 + 0.963548i \(0.413790\pi\)
\(164\) 33.5709 + 19.3822i 0.204701 + 0.118184i
\(165\) 38.4373 18.8386i 0.232953 0.114173i
\(166\) −48.9951 84.8619i −0.295151 0.511216i
\(167\) 129.993 + 129.993i 0.778403 + 0.778403i 0.979559 0.201156i \(-0.0644698\pi\)
−0.201156 + 0.979559i \(0.564470\pi\)
\(168\) −34.0936 + 3.69175i −0.202938 + 0.0219747i
\(169\) 46.4237i 0.274696i
\(170\) −16.4188 18.8146i −0.0965814 0.110674i
\(171\) −46.5033 + 80.5461i −0.271949 + 0.471030i
\(172\) 31.6794 8.48846i 0.184182 0.0493515i
\(173\) −28.5654 7.65408i −0.165118 0.0442432i 0.175313 0.984513i \(-0.443906\pi\)
−0.340431 + 0.940270i \(0.610573\pi\)
\(174\) 58.8611i 0.338282i
\(175\) −83.2345 153.938i −0.475626 0.879648i
\(176\) 19.7710 0.112335
\(177\) 7.00658 26.1489i 0.0395852 0.147734i
\(178\) 41.7147 + 155.681i 0.234352 + 0.874614i
\(179\) −187.148 108.050i −1.04552 0.603629i −0.124126 0.992266i \(-0.539613\pi\)
−0.921391 + 0.388637i \(0.872946\pi\)
\(180\) −22.6035 + 19.7252i −0.125575 + 0.109584i
\(181\) 138.273 0.763937 0.381968 0.924175i \(-0.375246\pi\)
0.381968 + 0.924175i \(0.375246\pi\)
\(182\) 100.266 + 44.2640i 0.550910 + 0.243209i
\(183\) −108.252 + 108.252i −0.591540 + 0.591540i
\(184\) 43.6387 25.1948i 0.237167 0.136928i
\(185\) −75.8381 154.736i −0.409936 0.836413i
\(186\) 19.0986 33.0798i 0.102681 0.177848i
\(187\) 4.51775 16.8605i 0.0241591 0.0901631i
\(188\) −44.4440 + 44.4440i −0.236404 + 0.236404i
\(189\) 35.9430 + 5.57706i 0.190174 + 0.0295083i
\(190\) −181.976 122.236i −0.957767 0.643350i
\(191\) −76.7883 133.001i −0.402033 0.696342i 0.591938 0.805983i \(-0.298363\pi\)
−0.993971 + 0.109642i \(0.965030\pi\)
\(192\) −13.3843 + 3.58630i −0.0697097 + 0.0186787i
\(193\) −80.5552 300.636i −0.417385 1.55770i −0.780011 0.625766i \(-0.784787\pi\)
0.362627 0.931935i \(-0.381880\pi\)
\(194\) −172.042 + 99.3285i −0.886814 + 0.512002i
\(195\) 94.0844 18.4757i 0.482484 0.0947471i
\(196\) −72.4146 + 66.0313i −0.369462 + 0.336894i
\(197\) 67.5608 + 67.5608i 0.342948 + 0.342948i 0.857475 0.514526i \(-0.172032\pi\)
−0.514526 + 0.857475i \(0.672032\pi\)
\(198\) −20.2558 5.42753i −0.102302 0.0274118i
\(199\) 279.894 + 161.597i 1.40650 + 0.812044i 0.995049 0.0993866i \(-0.0316880\pi\)
0.411453 + 0.911431i \(0.365021\pi\)
\(200\) −42.7713 56.3082i −0.213856 0.281541i
\(201\) 67.8352 + 117.494i 0.337489 + 0.584548i
\(202\) 78.9907 + 78.9907i 0.391043 + 0.391043i
\(203\) −99.2983 135.773i −0.489154 0.668833i
\(204\) 12.2334i 0.0599677i
\(205\) 73.0173 63.7195i 0.356182 0.310827i
\(206\) −64.1870 + 111.175i −0.311587 + 0.539685i
\(207\) −51.6252 + 13.8329i −0.249397 + 0.0668257i
\(208\) 42.7767 + 11.4620i 0.205657 + 0.0551057i
\(209\) 153.237i 0.733189i
\(210\) −18.8624 + 83.6314i −0.0898207 + 0.398245i
\(211\) −327.292 −1.55115 −0.775575 0.631256i \(-0.782540\pi\)
−0.775575 + 0.631256i \(0.782540\pi\)
\(212\) 53.8456 200.954i 0.253989 0.947898i
\(213\) 26.7716 + 99.9128i 0.125688 + 0.469074i
\(214\) −97.0986 56.0599i −0.453732 0.261962i
\(215\) 5.56244 81.8033i 0.0258718 0.380481i
\(216\) 14.6969 0.0680414
\(217\) −11.7512 108.523i −0.0541532 0.500108i
\(218\) −43.4239 + 43.4239i −0.199192 + 0.199192i
\(219\) −159.783 + 92.2507i −0.729603 + 0.421236i
\(220\) 16.0023 46.7655i 0.0727377 0.212571i
\(221\) 19.5493 33.8603i 0.0884582 0.153214i
\(222\) −21.8495 + 81.5435i −0.0984213 + 0.367313i
\(223\) 87.5407 87.5407i 0.392559 0.392559i −0.483040 0.875599i \(-0.660467\pi\)
0.875599 + 0.483040i \(0.160467\pi\)
\(224\) −24.8230 + 30.8516i −0.110817 + 0.137730i
\(225\) 28.3623 + 69.4304i 0.126055 + 0.308580i
\(226\) 129.101 + 223.610i 0.571244 + 0.989423i
\(227\) −281.372 + 75.3933i −1.23952 + 0.332129i −0.818280 0.574819i \(-0.805072\pi\)
−0.421242 + 0.906948i \(0.638406\pi\)
\(228\) 27.7958 + 103.735i 0.121912 + 0.454980i
\(229\) 56.5510 32.6497i 0.246948 0.142575i −0.371418 0.928466i \(-0.621128\pi\)
0.618366 + 0.785890i \(0.287795\pi\)
\(230\) −24.2744 123.613i −0.105541 0.537449i
\(231\) −55.8796 + 21.6519i −0.241903 + 0.0937313i
\(232\) −48.0599 48.0599i −0.207155 0.207155i
\(233\) −159.294 42.6828i −0.683667 0.183188i −0.0997635 0.995011i \(-0.531809\pi\)
−0.583903 + 0.811823i \(0.698475\pi\)
\(234\) −40.6790 23.4860i −0.173842 0.100368i
\(235\) 69.1537 + 141.098i 0.294271 + 0.600417i
\(236\) −15.6296 27.0713i −0.0662273 0.114709i
\(237\) 33.4919 + 33.4919i 0.141316 + 0.141316i
\(238\) 20.6377 + 28.2184i 0.0867130 + 0.118565i
\(239\) 84.6324i 0.354110i 0.984201 + 0.177055i \(0.0566571\pi\)
−0.984201 + 0.177055i \(0.943343\pi\)
\(240\) −2.35008 + 34.5612i −0.00979201 + 0.144005i
\(241\) −220.268 + 381.516i −0.913976 + 1.58305i −0.105583 + 0.994410i \(0.533671\pi\)
−0.808393 + 0.588643i \(0.799662\pi\)
\(242\) −131.916 + 35.3468i −0.545107 + 0.146061i
\(243\) −15.0573 4.03459i −0.0619642 0.0166032i
\(244\) 176.775i 0.724486i
\(245\) 97.5765 + 224.731i 0.398272 + 0.917268i
\(246\) −47.4764 −0.192994
\(247\) 88.8367 331.543i 0.359663 1.34228i
\(248\) −11.4156 42.6035i −0.0460305 0.171788i
\(249\) 103.934 + 60.0064i 0.417406 + 0.240990i
\(250\) −167.807 + 55.5945i −0.671229 + 0.222378i
\(251\) −78.4347 −0.312489 −0.156244 0.987718i \(-0.549939\pi\)
−0.156244 + 0.987718i \(0.549939\pi\)
\(252\) 33.9010 24.7937i 0.134528 0.0983875i
\(253\) 62.2660 62.2660i 0.246111 0.246111i
\(254\) −264.339 + 152.616i −1.04071 + 0.600852i
\(255\) 28.9364 + 9.90148i 0.113476 + 0.0388293i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 103.036 384.537i 0.400920 1.49625i −0.410540 0.911843i \(-0.634660\pi\)
0.811459 0.584409i \(-0.198674\pi\)
\(258\) −28.4029 + 28.4029i −0.110089 + 0.110089i
\(259\) 87.1639 + 224.954i 0.336540 + 0.868548i
\(260\) 61.7343 91.9049i 0.237439 0.353480i
\(261\) 36.0449 + 62.4316i 0.138103 + 0.239202i
\(262\) 265.597 71.1666i 1.01373 0.271628i
\(263\) 104.904 + 391.508i 0.398876 + 1.48862i 0.815077 + 0.579352i \(0.196694\pi\)
−0.416201 + 0.909272i \(0.636639\pi\)
\(264\) −20.9704 + 12.1072i −0.0794332 + 0.0458608i
\(265\) −431.747 290.012i −1.62923 1.09439i
\(266\) 239.117 + 192.392i 0.898936 + 0.723277i
\(267\) −139.580 139.580i −0.522772 0.522772i
\(268\) 151.321 + 40.5463i 0.564630 + 0.151292i
\(269\) −113.642 65.6115i −0.422463 0.243909i 0.273668 0.961824i \(-0.411763\pi\)
−0.696130 + 0.717915i \(0.745096\pi\)
\(270\) 11.8954 34.7635i 0.0440571 0.128754i
\(271\) 31.0750 + 53.8235i 0.114668 + 0.198611i 0.917647 0.397397i \(-0.130086\pi\)
−0.802979 + 0.596007i \(0.796753\pi\)
\(272\) 9.98854 + 9.98854i 0.0367226 + 0.0367226i
\(273\) −133.454 + 14.4508i −0.488841 + 0.0529332i
\(274\) 263.247i 0.960756i
\(275\) −97.6651 75.7022i −0.355146 0.275281i
\(276\) −30.8572 + 53.4463i −0.111802 + 0.193646i
\(277\) 86.7411 23.2422i 0.313145 0.0839068i −0.0988239 0.995105i \(-0.531508\pi\)
0.411968 + 0.911198i \(0.364841\pi\)
\(278\) −276.341 74.0454i −0.994034 0.266351i
\(279\) 46.7819i 0.167677i
\(280\) 52.8837 + 83.6858i 0.188870 + 0.298878i
\(281\) −3.27031 −0.0116381 −0.00581906 0.999983i \(-0.501852\pi\)
−0.00581906 + 0.999983i \(0.501852\pi\)
\(282\) 19.9237 74.3563i 0.0706514 0.263675i
\(283\) 52.8584 + 197.270i 0.186779 + 0.697068i 0.994243 + 0.107151i \(0.0341729\pi\)
−0.807464 + 0.589917i \(0.799160\pi\)
\(284\) 103.437 + 59.7196i 0.364216 + 0.210280i
\(285\) 267.869 + 18.2144i 0.939890 + 0.0639103i
\(286\) 77.3905 0.270596
\(287\) −109.512 + 80.0924i −0.381576 + 0.279068i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) −239.481 + 138.264i −0.828653 + 0.478423i
\(290\) −152.577 + 74.7799i −0.526129 + 0.257862i
\(291\) 121.652 210.707i 0.418048 0.724081i
\(292\) −55.1398 + 205.785i −0.188835 + 0.704742i
\(293\) −269.541 + 269.541i −0.919935 + 0.919935i −0.997024 0.0770891i \(-0.975437\pi\)
0.0770891 + 0.997024i \(0.475437\pi\)
\(294\) 36.3715 114.381i 0.123713 0.389053i
\(295\) −76.6837 + 15.0586i −0.259945 + 0.0510463i
\(296\) 48.7399 + 84.4201i 0.164662 + 0.285203i
\(297\) 24.8082 6.64734i 0.0835293 0.0223816i
\(298\) −37.7742 140.975i −0.126759 0.473071i
\(299\) 170.817 98.6211i 0.571293 0.329836i
\(300\) 79.8474 + 33.5319i 0.266158 + 0.111773i
\(301\) −17.6005 + 113.432i −0.0584736 + 0.376850i
\(302\) 74.6886 + 74.6886i 0.247313 + 0.247313i
\(303\) −132.154 35.4106i −0.436152 0.116867i
\(304\) 107.395 + 62.0044i 0.353272 + 0.203962i
\(305\) 418.135 + 143.078i 1.37093 + 0.469108i
\(306\) −7.49140 12.9755i −0.0244817 0.0424036i
\(307\) 167.472 + 167.472i 0.545511 + 0.545511i 0.925139 0.379628i \(-0.123948\pi\)
−0.379628 + 0.925139i \(0.623948\pi\)
\(308\) −27.9468 + 63.3042i −0.0907363 + 0.205533i
\(309\) 157.225i 0.508820i
\(310\) −110.012 7.48056i −0.354877 0.0241308i
\(311\) 275.366 476.948i 0.885422 1.53360i 0.0401933 0.999192i \(-0.487203\pi\)
0.845229 0.534404i \(-0.179464\pi\)
\(312\) −52.3905 + 14.0380i −0.167918 + 0.0449936i
\(313\) −274.100 73.4448i −0.875718 0.234648i −0.207159 0.978307i \(-0.566422\pi\)
−0.668559 + 0.743659i \(0.733088\pi\)
\(314\) 285.600i 0.909555i
\(315\) −31.2070 100.255i −0.0990699 0.318271i
\(316\) 54.6920 0.173076
\(317\) 97.6208 364.326i 0.307952 1.14929i −0.622422 0.782682i \(-0.713851\pi\)
0.930374 0.366611i \(-0.119482\pi\)
\(318\) 65.9471 + 246.118i 0.207381 + 0.773956i
\(319\) −102.861 59.3871i −0.322450 0.186167i
\(320\) 26.3003 + 30.1379i 0.0821884 + 0.0941811i
\(321\) 137.318 0.427782
\(322\) 18.9862 + 175.339i 0.0589634 + 0.544531i
\(323\) 77.4167 77.4167i 0.239680 0.239680i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −167.421 220.409i −0.515142 0.678183i
\(326\) −117.058 + 202.750i −0.359072 + 0.621932i
\(327\) 19.4664 72.6497i 0.0595303 0.222170i
\(328\) −38.7643 + 38.7643i −0.118184 + 0.118184i
\(329\) −79.4813 205.126i −0.241584 0.623485i
\(330\) 11.6649 + 59.4017i 0.0353482 + 0.180005i
\(331\) 203.687 + 352.797i 0.615369 + 1.06585i 0.990320 + 0.138806i \(0.0443264\pi\)
−0.374950 + 0.927045i \(0.622340\pi\)
\(332\) 133.857 35.8669i 0.403184 0.108033i
\(333\) −26.7601 99.8700i −0.0803606 0.299910i
\(334\) −225.155 + 129.993i −0.674117 + 0.389202i
\(335\) 218.382 325.110i 0.651888 0.970477i
\(336\) 7.43608 47.9239i 0.0221312 0.142631i
\(337\) −51.7090 51.7090i −0.153439 0.153439i 0.626213 0.779652i \(-0.284604\pi\)
−0.779652 + 0.626213i \(0.784604\pi\)
\(338\) −63.4159 16.9922i −0.187621 0.0502729i
\(339\) −273.865 158.116i −0.807860 0.466418i
\(340\) 31.7110 15.5419i 0.0932675 0.0457115i
\(341\) −38.5386 66.7508i −0.113016 0.195750i
\(342\) −93.0067 93.0067i −0.271949 0.271949i
\(343\) −109.064 325.198i −0.317971 0.948101i
\(344\) 46.3818i 0.134831i
\(345\) 101.444 + 116.247i 0.294041 + 0.336947i
\(346\) 20.9113 36.2195i 0.0604374 0.104681i
\(347\) −465.261 + 124.666i −1.34081 + 0.359269i −0.856734 0.515758i \(-0.827510\pi\)
−0.484075 + 0.875027i \(0.660844\pi\)
\(348\) 80.4058 + 21.5447i 0.231051 + 0.0619099i
\(349\) 165.950i 0.475501i −0.971326 0.237750i \(-0.923590\pi\)
0.971326 0.237750i \(-0.0764100\pi\)
\(350\) 240.750 57.3551i 0.687856 0.163872i
\(351\) 57.5288 0.163900
\(352\) −7.23670 + 27.0077i −0.0205588 + 0.0767265i
\(353\) 16.3422 + 60.9899i 0.0462951 + 0.172776i 0.985203 0.171394i \(-0.0548271\pi\)
−0.938907 + 0.344170i \(0.888160\pi\)
\(354\) 33.1555 + 19.1423i 0.0936596 + 0.0540744i
\(355\) 224.978 196.330i 0.633741 0.553043i
\(356\) −227.933 −0.640262
\(357\) −39.1698 17.2922i −0.109719 0.0484375i
\(358\) 216.099 216.099i 0.603629 0.603629i
\(359\) −140.408 + 81.0646i −0.391109 + 0.225807i −0.682640 0.730754i \(-0.739168\pi\)
0.291532 + 0.956561i \(0.405835\pi\)
\(360\) −18.6717 38.0968i −0.0518658 0.105825i
\(361\) 300.069 519.734i 0.831215 1.43971i
\(362\) −50.6113 + 188.884i −0.139810 + 0.521778i
\(363\) 118.273 118.273i 0.325820 0.325820i
\(364\) −97.1655 + 120.764i −0.266938 + 0.331768i
\(365\) 442.125 + 296.983i 1.21130 + 0.813653i
\(366\) −108.252 187.498i −0.295770 0.512289i
\(367\) 18.5994 4.98370i 0.0506796 0.0135796i −0.233390 0.972383i \(-0.574982\pi\)
0.284070 + 0.958804i \(0.408315\pi\)
\(368\) 18.4439 + 68.8336i 0.0501193 + 0.187048i
\(369\) 50.3563 29.0732i 0.136467 0.0787893i
\(370\) 239.133 46.9593i 0.646304 0.126917i
\(371\) 567.318 + 456.460i 1.52916 + 1.23035i
\(372\) 38.1972 + 38.1972i 0.102681 + 0.102681i
\(373\) −326.843 87.5772i −0.876253 0.234791i −0.207463 0.978243i \(-0.566521\pi\)
−0.668790 + 0.743451i \(0.733187\pi\)
\(374\) 21.3782 + 12.3427i 0.0571611 + 0.0330020i
\(375\) 143.942 161.727i 0.383845 0.431273i
\(376\) −44.4440 76.9793i −0.118202 0.204732i
\(377\) −188.123 188.123i −0.498999 0.498999i
\(378\) −20.7744 + 47.0577i −0.0549588 + 0.124491i
\(379\) 531.207i 1.40160i 0.713357 + 0.700801i \(0.247174\pi\)
−0.713357 + 0.700801i \(0.752826\pi\)
\(380\) 233.586 203.842i 0.614699 0.536426i
\(381\) 186.916 323.748i 0.490594 0.849733i
\(382\) 209.790 56.2129i 0.549187 0.147154i
\(383\) −96.4442 25.8421i −0.251813 0.0674730i 0.130705 0.991421i \(-0.458276\pi\)
−0.382517 + 0.923948i \(0.624943\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 127.117 + 117.341i 0.330175 + 0.304783i
\(386\) 440.162 1.14032
\(387\) 12.7327 47.5191i 0.0329010 0.122788i
\(388\) −72.7135 271.370i −0.187406 0.699408i
\(389\) 528.011 + 304.848i 1.35736 + 0.783670i 0.989267 0.146121i \(-0.0466788\pi\)
0.368089 + 0.929791i \(0.380012\pi\)
\(390\) −9.19902 + 135.284i −0.0235872 + 0.346883i
\(391\) 62.9149 0.160908
\(392\) −63.6949 123.089i −0.162487 0.314003i
\(393\) −238.128 + 238.128i −0.605924 + 0.605924i
\(394\) −117.019 + 67.5608i −0.297002 + 0.171474i
\(395\) 44.2666 129.366i 0.112067 0.327509i
\(396\) 14.8283 25.6833i 0.0374451 0.0648569i
\(397\) −173.904 + 649.017i −0.438044 + 1.63480i 0.295631 + 0.955302i \(0.404470\pi\)
−0.733675 + 0.679501i \(0.762196\pi\)
\(398\) −323.194 + 323.194i −0.812044 + 0.812044i
\(399\) −371.437 57.6337i −0.930920 0.144445i
\(400\) 92.5739 37.8164i 0.231435 0.0945410i
\(401\) 304.095 + 526.709i 0.758343 + 1.31349i 0.943695 + 0.330816i \(0.107324\pi\)
−0.185353 + 0.982672i \(0.559343\pi\)
\(402\) −185.329 + 49.6588i −0.461018 + 0.123529i
\(403\) −44.6844 166.764i −0.110879 0.413808i
\(404\) −136.816 + 78.9907i −0.338653 + 0.195522i
\(405\) 8.67120 + 44.1567i 0.0214104 + 0.109029i
\(406\) 221.815 85.9477i 0.546343 0.211694i
\(407\) 120.455 + 120.455i 0.295958 + 0.295958i
\(408\) −16.7112 4.47774i −0.0409587 0.0109749i
\(409\) −322.212 186.029i −0.787804 0.454839i 0.0513849 0.998679i \(-0.483636\pi\)
−0.839189 + 0.543840i \(0.816970\pi\)
\(410\) 60.3163 + 123.066i 0.147113 + 0.300162i
\(411\) 161.205 + 279.216i 0.392227 + 0.679357i
\(412\) −128.374 128.374i −0.311587 0.311587i
\(413\) 108.772 11.7781i 0.263370 0.0285185i
\(414\) 75.5845i 0.182571i
\(415\) 23.5033 345.649i 0.0566346 0.832890i
\(416\) −31.3147 + 54.2387i −0.0752757 + 0.130381i
\(417\) 338.448 90.6868i 0.811625 0.217474i
\(418\) 209.325 + 56.0885i 0.500777 + 0.134183i
\(419\) 338.166i 0.807079i −0.914962 0.403540i \(-0.867780\pi\)
0.914962 0.403540i \(-0.132220\pi\)
\(420\) −107.339 56.3777i −0.255568 0.134233i
\(421\) 13.7324 0.0326186 0.0163093 0.999867i \(-0.494808\pi\)
0.0163093 + 0.999867i \(0.494808\pi\)
\(422\) 119.797 447.090i 0.283880 1.05945i
\(423\) 24.4015 + 91.0675i 0.0576867 + 0.215290i
\(424\) 254.800 + 147.109i 0.600943 + 0.346955i
\(425\) −11.0959 87.5870i −0.0261080 0.206087i
\(426\) −146.282 −0.343386
\(427\) −566.009 249.875i −1.32555 0.585187i
\(428\) 112.120 112.120i 0.261962 0.261962i
\(429\) −82.0851 + 47.3918i −0.191340 + 0.110470i
\(430\) 109.709 + 37.5405i 0.255138 + 0.0873036i
\(431\) −54.4290 + 94.2738i −0.126285 + 0.218733i −0.922235 0.386631i \(-0.873639\pi\)
0.795949 + 0.605363i \(0.206972\pi\)
\(432\) −5.37945 + 20.0764i −0.0124524 + 0.0464731i
\(433\) −449.174 + 449.174i −1.03735 + 1.03735i −0.0380787 + 0.999275i \(0.512124\pi\)
−0.999275 + 0.0380787i \(0.987876\pi\)
\(434\) 152.547 + 23.6698i 0.351491 + 0.0545387i
\(435\) 116.040 172.750i 0.266758 0.397127i
\(436\) −43.4239 75.2125i −0.0995962 0.172506i
\(437\) 533.498 142.950i 1.22082 0.327118i
\(438\) −67.5322 252.034i −0.154183 0.575419i
\(439\) 97.0976 56.0593i 0.221179 0.127698i −0.385317 0.922784i \(-0.625908\pi\)
0.606496 + 0.795086i \(0.292575\pi\)
\(440\) 58.0256 + 38.9769i 0.131876 + 0.0885839i
\(441\) 31.4663 + 143.593i 0.0713521 + 0.325607i
\(442\) 39.0985 + 39.0985i 0.0884582 + 0.0884582i
\(443\) 614.169 + 164.566i 1.38639 + 0.371481i 0.873437 0.486938i \(-0.161886\pi\)
0.512950 + 0.858419i \(0.328553\pi\)
\(444\) −103.393 59.6940i −0.232867 0.134446i
\(445\) −184.485 + 539.143i −0.414572 + 1.21156i
\(446\) 87.5407 + 151.625i 0.196279 + 0.339966i
\(447\) 126.395 + 126.395i 0.282763 + 0.282763i
\(448\) −33.0582 45.2013i −0.0737906 0.100896i
\(449\) 199.822i 0.445038i 0.974928 + 0.222519i \(0.0714279\pi\)
−0.974928 + 0.222519i \(0.928572\pi\)
\(450\) −105.225 + 13.3304i −0.233833 + 0.0296230i
\(451\) −47.9007 + 82.9664i −0.106210 + 0.183961i
\(452\) −352.711 + 94.5085i −0.780333 + 0.209090i
\(453\) −124.956 33.4820i −0.275842 0.0739116i
\(454\) 411.957i 0.907393i
\(455\) 207.005 + 327.575i 0.454955 + 0.719944i
\(456\) −151.879 −0.333068
\(457\) 109.714 409.459i 0.240075 0.895971i −0.735720 0.677285i \(-0.763156\pi\)
0.975795 0.218686i \(-0.0701771\pi\)
\(458\) 23.9013 + 89.2008i 0.0521862 + 0.194761i
\(459\) 15.8917 + 9.17506i 0.0346224 + 0.0199892i
\(460\) 177.744 + 12.0862i 0.386400 + 0.0262743i
\(461\) −768.361 −1.66673 −0.833364 0.552725i \(-0.813588\pi\)
−0.833364 + 0.552725i \(0.813588\pi\)
\(462\) −9.12373 84.2581i −0.0197483 0.182377i
\(463\) −2.18079 + 2.18079i −0.00471013 + 0.00471013i −0.709458 0.704748i \(-0.751060\pi\)
0.704748 + 0.709458i \(0.251060\pi\)
\(464\) 83.2422 48.0599i 0.179401 0.103577i
\(465\) 121.266 59.4339i 0.260787 0.127815i
\(466\) 116.612 201.977i 0.250239 0.433427i
\(467\) −222.687 + 831.079i −0.476846 + 1.77961i 0.137419 + 0.990513i \(0.456119\pi\)
−0.614265 + 0.789100i \(0.710547\pi\)
\(468\) 46.9721 46.9721i 0.100368 0.100368i
\(469\) −343.719 + 427.196i −0.732876 + 0.910866i
\(470\) −218.055 + 42.8203i −0.463948 + 0.0911071i
\(471\) 174.894 + 302.925i 0.371324 + 0.643153i
\(472\) 42.7010 11.4417i 0.0904682 0.0242409i
\(473\) 20.9782 + 78.2918i 0.0443514 + 0.165522i
\(474\) −58.0096 + 33.4919i −0.122383 + 0.0706579i
\(475\) −293.098 717.499i −0.617049 1.51052i
\(476\) −46.1010 + 17.8630i −0.0968508 + 0.0375272i
\(477\) −220.663 220.663i −0.462606 0.462606i
\(478\) −115.610 30.9776i −0.241862 0.0648067i
\(479\) 440.106 + 254.095i 0.918801 + 0.530470i 0.883252 0.468898i \(-0.155349\pi\)
0.0355485 + 0.999368i \(0.488682\pi\)
\(480\) −46.3513 15.8606i −0.0965652 0.0330428i
\(481\) 190.785 + 330.449i 0.396642 + 0.687003i
\(482\) −440.537 440.537i −0.913976 0.913976i
\(483\) −127.511 174.348i −0.263997 0.360970i
\(484\) 193.138i 0.399046i
\(485\) −700.740 47.6487i −1.44482 0.0982448i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) 733.901 196.648i 1.50698 0.403795i 0.591551 0.806268i \(-0.298516\pi\)
0.915432 + 0.402473i \(0.131849\pi\)
\(488\) −241.479 64.7040i −0.494833 0.132590i
\(489\) 286.731i 0.586363i
\(490\) −342.703 + 51.0349i −0.699394 + 0.104153i
\(491\) −160.570 −0.327027 −0.163514 0.986541i \(-0.552283\pi\)
−0.163514 + 0.986541i \(0.552283\pi\)
\(492\) 17.3776 64.8540i 0.0353203 0.131817i
\(493\) −21.9637 81.9697i −0.0445512 0.166267i
\(494\) 420.380 + 242.706i 0.850971 + 0.491308i
\(495\) −48.7485 55.8617i −0.0984818 0.112852i
\(496\) 62.3758 0.125758
\(497\) −337.425 + 246.778i −0.678924 + 0.496535i
\(498\) −120.013 + 120.013i −0.240990 + 0.240990i
\(499\) −53.3534 + 30.8036i −0.106921 + 0.0617307i −0.552507 0.833508i \(-0.686329\pi\)
0.445586 + 0.895239i \(0.352995\pi\)
\(500\) −14.5218 249.578i −0.0290436 0.499156i
\(501\) 159.209 275.758i 0.317782 0.550414i
\(502\) 28.7091 107.144i 0.0571894 0.213434i
\(503\) 10.2453 10.2453i 0.0203684 0.0203684i −0.696849 0.717218i \(-0.745415\pi\)
0.717218 + 0.696849i \(0.245415\pi\)
\(504\) 21.4602 + 55.3847i 0.0425797 + 0.109890i
\(505\) 76.1049 + 387.552i 0.150703 + 0.767429i
\(506\) 62.2660 + 107.848i 0.123055 + 0.213138i
\(507\) 77.6683 20.8112i 0.153192 0.0410476i
\(508\) −111.723 416.956i −0.219927 0.820779i
\(509\) 447.613 258.430i 0.879398 0.507720i 0.00893787 0.999960i \(-0.497155\pi\)
0.870460 + 0.492240i \(0.163822\pi\)
\(510\) −24.1171 + 35.9036i −0.0472885 + 0.0703992i
\(511\) −580.954 467.432i −1.13690 0.914739i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 155.603 + 41.6937i 0.303320 + 0.0812744i
\(514\) 487.573 + 281.500i 0.948586 + 0.547666i
\(515\) −407.553 + 199.747i −0.791366 + 0.387858i
\(516\) −28.4029 49.1953i −0.0550445 0.0953398i
\(517\) −109.838 109.838i −0.212453 0.212453i
\(518\) −339.197 + 36.7293i −0.654820 + 0.0709059i
\(519\) 51.2221i 0.0986938i
\(520\) 102.948 + 117.970i 0.197977 + 0.226866i
\(521\) −319.243 + 552.945i −0.612751 + 1.06132i 0.378024 + 0.925796i \(0.376604\pi\)
−0.990775 + 0.135520i \(0.956730\pi\)
\(522\) −98.4765 + 26.3867i −0.188652 + 0.0505492i
\(523\) 664.497 + 178.051i 1.27055 + 0.340442i 0.830241 0.557405i \(-0.188203\pi\)
0.440307 + 0.897847i \(0.354870\pi\)
\(524\) 388.861i 0.742102i
\(525\) −220.231 + 208.263i −0.419487 + 0.396691i
\(526\) −573.208 −1.08975
\(527\) 14.2531 53.1933i 0.0270457 0.100936i
\(528\) −8.86311 33.0776i −0.0167862 0.0626470i
\(529\) −183.260 105.805i −0.346427 0.200010i
\(530\) 554.195 483.625i 1.04565 0.912501i
\(531\) −46.8889 −0.0883031
\(532\) −350.335 + 256.219i −0.658524 + 0.481615i
\(533\) −151.737 + 151.737i −0.284684 + 0.284684i
\(534\) 241.760 139.580i 0.452734 0.261386i
\(535\) −174.456 355.951i −0.326085 0.665328i
\(536\) −110.774 + 191.867i −0.206669 + 0.357961i
\(537\) −96.8747 + 361.541i −0.180400 + 0.673261i
\(538\) 131.223 131.223i 0.243909 0.243909i
\(539\) −163.188 178.964i −0.302761 0.332029i
\(540\) 43.1338 + 28.9738i 0.0798773 + 0.0536551i
\(541\) 63.2590 + 109.568i 0.116930 + 0.202528i 0.918550 0.395306i \(-0.129361\pi\)
−0.801620 + 0.597834i \(0.796028\pi\)
\(542\) −84.8985 + 22.7485i −0.156639 + 0.0419714i
\(543\) −61.9859 231.334i −0.114154 0.426030i
\(544\) −17.3007 + 9.98854i −0.0318027 + 0.0183613i
\(545\) −213.051 + 41.8375i −0.390919 + 0.0767661i
\(546\) 29.1073 187.591i 0.0533101 0.343572i
\(547\) 425.173 + 425.173i 0.777281 + 0.777281i 0.979368 0.202087i \(-0.0647723\pi\)
−0.202087 + 0.979368i \(0.564772\pi\)
\(548\) 359.602 + 96.3552i 0.656209 + 0.175831i
\(549\) 229.637 + 132.581i 0.418282 + 0.241495i
\(550\) 139.159 105.704i 0.253016 0.192189i
\(551\) −372.491 645.173i −0.676027 1.17091i
\(552\) −61.7145 61.7145i −0.111802 0.111802i
\(553\) −77.3083 + 175.116i −0.139798 + 0.316666i
\(554\) 126.998i 0.229238i
\(555\) −224.882 + 196.246i −0.405192 + 0.353596i
\(556\) 202.296 350.387i 0.363842 0.630192i
\(557\) −14.7556 + 3.95376i −0.0264912 + 0.00709831i −0.272040 0.962286i \(-0.587698\pi\)
0.245549 + 0.969384i \(0.421032\pi\)
\(558\) −63.9052 17.1234i −0.114526 0.0306870i
\(559\) 181.554i 0.324784i
\(560\) −133.674 + 41.6094i −0.238703 + 0.0743024i
\(561\) −30.2334 −0.0538920
\(562\) 1.19702 4.46733i 0.00212992 0.00794899i
\(563\) −61.5366 229.658i −0.109301 0.407918i 0.889496 0.456942i \(-0.151055\pi\)
−0.998798 + 0.0490246i \(0.984389\pi\)
\(564\) 94.2800 + 54.4326i 0.167163 + 0.0965117i
\(565\) −61.9309 + 910.779i −0.109612 + 1.61200i
\(566\) −288.824 −0.510290
\(567\) −6.78219 62.6339i −0.0119615 0.110465i
\(568\) −119.439 + 119.439i −0.210280 + 0.210280i
\(569\) 179.993 103.919i 0.316331 0.182634i −0.333425 0.942777i \(-0.608204\pi\)
0.649756 + 0.760143i \(0.274871\pi\)
\(570\) −122.928 + 359.248i −0.215663 + 0.630260i
\(571\) −214.885 + 372.192i −0.376331 + 0.651824i −0.990525 0.137331i \(-0.956148\pi\)
0.614194 + 0.789155i \(0.289481\pi\)
\(572\) −28.3269 + 105.717i −0.0495226 + 0.184821i
\(573\) −188.092 + 188.092i −0.328259 + 0.328259i
\(574\) −69.3240 178.912i −0.120774 0.311694i
\(575\) 172.451 410.645i 0.299914 0.714165i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 357.130 95.6927i 0.618943 0.165845i 0.0642958 0.997931i \(-0.479520\pi\)
0.554647 + 0.832086i \(0.312853\pi\)
\(578\) −101.217 377.745i −0.175115 0.653538i
\(579\) −466.862 + 269.543i −0.806325 + 0.465532i
\(580\) −46.3041 235.796i −0.0798347 0.406545i
\(581\) −74.3688 + 479.291i −0.128001 + 0.824941i
\(582\) 243.304 + 243.304i 0.418048 + 0.418048i
\(583\) 496.635 + 133.073i 0.851861 + 0.228255i
\(584\) −260.924 150.645i −0.446788 0.257953i
\(585\) −73.0873 149.124i −0.124936 0.254913i
\(586\) −269.541 466.859i −0.459968 0.796687i
\(587\) 425.963 + 425.963i 0.725661 + 0.725661i 0.969752 0.244091i \(-0.0784897\pi\)
−0.244091 + 0.969752i \(0.578490\pi\)
\(588\) 142.935 + 91.5509i 0.243087 + 0.155699i
\(589\) 483.447i 0.820794i
\(590\) 7.49768 110.264i 0.0127079 0.186888i
\(591\) 82.7447 143.318i 0.140008 0.242501i
\(592\) −133.160 + 35.6801i −0.224932 + 0.0602705i
\(593\) −183.152 49.0753i −0.308856 0.0827577i 0.101062 0.994880i \(-0.467776\pi\)
−0.409918 + 0.912122i \(0.634443\pi\)
\(594\) 36.3217i 0.0611477i
\(595\) 4.93900 + 123.503i 0.00830084 + 0.207568i
\(596\) 206.402 0.346312
\(597\) 144.884 540.714i 0.242686 0.905718i
\(598\) 72.1956 + 269.438i 0.120729 + 0.450565i
\(599\) −238.166 137.505i −0.397605 0.229557i 0.287845 0.957677i \(-0.407061\pi\)
−0.685450 + 0.728120i \(0.740395\pi\)
\(600\) −75.0317 + 96.8000i −0.125053 + 0.161333i
\(601\) −1029.92 −1.71368 −0.856842 0.515580i \(-0.827577\pi\)
−0.856842 + 0.515580i \(0.827577\pi\)
\(602\) −148.508 65.5617i −0.246692 0.108906i
\(603\) 166.162 166.162i 0.275558 0.275558i
\(604\) −129.364 + 74.6886i −0.214179 + 0.123657i
\(605\) −456.840 156.322i −0.755108 0.258384i
\(606\) 96.7435 167.565i 0.159643 0.276509i
\(607\) 6.83168 25.4962i 0.0112548 0.0420036i −0.960070 0.279760i \(-0.909745\pi\)
0.971325 + 0.237756i \(0.0764119\pi\)
\(608\) −124.009 + 124.009i −0.203962 + 0.203962i
\(609\) −182.638 + 226.995i −0.299899 + 0.372734i
\(610\) −348.496 + 518.812i −0.571305 + 0.850512i
\(611\) −173.969 301.323i −0.284728 0.493164i
\(612\) 20.4669 5.48409i 0.0334426 0.00896093i
\(613\) −8.97661 33.5012i −0.0146437 0.0546511i 0.958217 0.286041i \(-0.0923394\pi\)
−0.972861 + 0.231390i \(0.925673\pi\)
\(614\) −290.070 + 167.472i −0.472427 + 0.272756i
\(615\) −139.338 93.5957i −0.226565 0.152188i
\(616\) −76.2460 61.3470i −0.123776 0.0995893i
\(617\) 349.027 + 349.027i 0.565684 + 0.565684i 0.930916 0.365232i \(-0.119011\pi\)
−0.365232 + 0.930916i \(0.619011\pi\)
\(618\) 214.774 + 57.5485i 0.347530 + 0.0931205i
\(619\) −942.217 543.989i −1.52216 0.878820i −0.999657 0.0261820i \(-0.991665\pi\)
−0.522503 0.852638i \(-0.675002\pi\)
\(620\) 50.4858 147.541i 0.0814287 0.237969i
\(621\) 46.2859 + 80.1695i 0.0745344 + 0.129097i
\(622\) 550.733 + 550.733i 0.885422 + 0.885422i
\(623\) 322.189 729.812i 0.517157 1.17145i
\(624\) 76.7050i 0.122925i
\(625\) −602.094 167.654i −0.963350 0.268247i
\(626\) 200.655 347.544i 0.320535 0.555183i
\(627\) −256.370 + 68.6940i −0.408883 + 0.109560i
\(628\) 390.137 + 104.537i 0.621238 + 0.166460i
\(629\) 121.710i 0.193498i
\(630\) 148.374 5.93360i 0.235514 0.00941841i
\(631\) 573.080 0.908209 0.454104 0.890949i \(-0.349959\pi\)
0.454104 + 0.890949i \(0.349959\pi\)
\(632\) −20.0187 + 74.7106i −0.0316751 + 0.118213i
\(633\) 146.721 + 547.571i 0.231787 + 0.865041i
\(634\) 461.947 + 266.705i 0.728623 + 0.420671i
\(635\) −1076.67 73.2114i −1.69555 0.115294i
\(636\) −360.342 −0.566575
\(637\) −249.323 481.813i −0.391402 0.756378i
\(638\) 118.774 118.774i 0.186167 0.186167i
\(639\) 155.156 89.5794i 0.242811 0.140187i
\(640\) −50.7958 + 24.8956i −0.0793684 + 0.0388994i
\(641\) 515.594 893.035i 0.804359 1.39319i −0.112364 0.993667i \(-0.535842\pi\)
0.916723 0.399523i \(-0.130824\pi\)
\(642\) −50.2619 + 187.580i −0.0782896 + 0.292181i
\(643\) 413.439 413.439i 0.642985 0.642985i −0.308303 0.951288i \(-0.599761\pi\)
0.951288 + 0.308303i \(0.0997612\pi\)
\(644\) −246.467 38.2428i −0.382712 0.0593833i
\(645\) −139.353 + 27.3653i −0.216052 + 0.0424268i
\(646\) 77.4167 + 134.090i 0.119840 + 0.207569i
\(647\) 732.536 196.283i 1.13220 0.303373i 0.356392 0.934337i \(-0.384007\pi\)
0.775813 + 0.630963i \(0.217340\pi\)
\(648\) −6.58846 24.5885i −0.0101674 0.0379452i
\(649\) 66.9036 38.6268i 0.103087 0.0595174i
\(650\) 362.365 148.026i 0.557485 0.227733i
\(651\) −176.295 + 68.3099i −0.270807 + 0.104931i
\(652\) −234.115 234.115i −0.359072 0.359072i
\(653\) 710.307 + 190.326i 1.08776 + 0.291464i 0.757771 0.652521i \(-0.226288\pi\)
0.329988 + 0.943985i \(0.392955\pi\)
\(654\) 92.1161 + 53.1832i 0.140850 + 0.0813199i
\(655\) 919.795 + 314.737i 1.40427 + 0.480514i
\(656\) −38.7643 67.1418i −0.0590920 0.102350i
\(657\) 225.967 + 225.967i 0.343938 + 0.343938i
\(658\) 309.300 33.4919i 0.470061 0.0508996i
\(659\) 913.700i 1.38650i −0.720700 0.693248i \(-0.756179\pi\)
0.720700 0.693248i \(-0.243821\pi\)
\(660\) −85.4139 5.80795i −0.129415 0.00879992i
\(661\) −27.1929 + 47.0994i −0.0411390 + 0.0712548i −0.885862 0.463949i \(-0.846432\pi\)
0.844723 + 0.535204i \(0.179765\pi\)
\(662\) −556.484 + 149.109i −0.840610 + 0.225241i
\(663\) −65.4131 17.5274i −0.0986623 0.0264365i
\(664\) 195.980i 0.295151i
\(665\) 322.496 + 1036.05i 0.484956 + 1.55796i
\(666\) 146.220 0.219549
\(667\) 110.801 413.517i 0.166119 0.619965i
\(668\) −95.1617 355.148i −0.142458 0.531659i
\(669\) −185.702 107.215i −0.277581 0.160262i
\(670\) 364.175 + 417.314i 0.543545 + 0.622857i
\(671\) −436.877 −0.651084
\(672\) 62.7435 + 27.6993i 0.0933684 + 0.0412191i
\(673\) −93.9180 + 93.9180i −0.139551 + 0.139551i −0.773431 0.633880i \(-0.781461\pi\)
0.633880 + 0.773431i \(0.281461\pi\)
\(674\) 89.5626 51.7090i 0.132882 0.0767196i
\(675\) 103.445 78.5759i 0.153252 0.116409i
\(676\) 46.4237 80.4081i 0.0686741 0.118947i
\(677\) 60.8859 227.229i 0.0899349 0.335642i −0.906268 0.422704i \(-0.861081\pi\)
0.996203 + 0.0870620i \(0.0277478\pi\)
\(678\) 316.232 316.232i 0.466418 0.466418i
\(679\) 971.674 + 150.769i 1.43104 + 0.222046i
\(680\) 9.62362 + 49.0067i 0.0141524 + 0.0720687i
\(681\) 252.271 + 436.946i 0.370442 + 0.641624i
\(682\) 105.289 28.2122i 0.154383 0.0413669i
\(683\) 140.148 + 523.038i 0.205194 + 0.765795i 0.989390 + 0.145282i \(0.0464089\pi\)
−0.784196 + 0.620513i \(0.786924\pi\)
\(684\) 161.092 93.0067i 0.235515 0.135975i
\(685\) 518.969 772.599i 0.757619 1.12788i
\(686\) 484.150 29.9532i 0.705757 0.0436636i
\(687\) −79.9752 79.9752i −0.116412 0.116412i
\(688\) −63.3587 16.9769i −0.0920912 0.0246758i
\(689\) 997.373 + 575.834i 1.44757 + 0.835753i
\(690\) −195.927 + 96.0262i −0.283952 + 0.139168i
\(691\) −245.831 425.792i −0.355761 0.616196i 0.631487 0.775387i \(-0.282445\pi\)
−0.987248 + 0.159190i \(0.949112\pi\)
\(692\) 41.8227 + 41.8227i 0.0604374 + 0.0604374i
\(693\) 61.2745 + 83.7821i 0.0884192 + 0.120898i
\(694\) 681.189i 0.981540i
\(695\) −665.055 762.098i −0.956913 1.09654i
\(696\) −58.8611 + 101.950i −0.0845705 + 0.146480i
\(697\) −66.1155 + 17.7156i −0.0948572 + 0.0254169i
\(698\) 226.692 + 60.7418i 0.324773 + 0.0870226i
\(699\) 285.639i 0.408639i
\(700\) −9.77199 + 349.864i −0.0139600 + 0.499805i
\(701\) −372.833 −0.531858 −0.265929 0.963993i \(-0.585679\pi\)
−0.265929 + 0.963993i \(0.585679\pi\)
\(702\) −21.0570 + 78.5858i −0.0299957 + 0.111946i
\(703\) 276.541 + 1032.06i 0.393372 + 1.46809i
\(704\) −34.2444 19.7710i −0.0486427 0.0280839i
\(705\) 205.061 178.949i 0.290866 0.253828i
\(706\) −89.2954 −0.126481
\(707\) −59.5255 549.722i −0.0841945 0.777541i
\(708\) −38.2847 + 38.2847i −0.0540744 + 0.0540744i
\(709\) 471.040 271.955i 0.664372 0.383575i −0.129569 0.991570i \(-0.541359\pi\)
0.793941 + 0.607995i \(0.208026\pi\)
\(710\) 185.844 + 379.188i 0.261752 + 0.534067i
\(711\) 41.0190 71.0470i 0.0576920 0.0999254i
\(712\) 83.4294 311.363i 0.117176 0.437307i
\(713\) 196.444 196.444i 0.275517 0.275517i
\(714\) 37.9587 47.1775i 0.0531634 0.0660749i
\(715\) 227.132 + 152.569i 0.317667 + 0.213383i
\(716\) 216.099 + 374.295i 0.301815 + 0.522758i
\(717\) 141.593 37.9396i 0.197479 0.0529144i
\(718\) −59.3434 221.473i −0.0826510 0.308458i
\(719\) −479.506 + 276.843i −0.666906 + 0.385039i −0.794903 0.606736i \(-0.792479\pi\)
0.127997 + 0.991775i \(0.459145\pi\)
\(720\) 58.8755 11.5616i 0.0817716 0.0160578i
\(721\) 592.496 229.577i 0.821770 0.318415i
\(722\) 600.138 + 600.138i 0.831215 + 0.831215i
\(723\) 737.032 + 197.487i 1.01941 + 0.273150i
\(724\) −239.495 138.273i −0.330794 0.190984i
\(725\) −595.219 81.3230i −0.820991 0.112170i
\(726\) 118.273 + 204.854i 0.162910 + 0.282168i
\(727\) 544.208 + 544.208i 0.748566 + 0.748566i 0.974210 0.225644i \(-0.0724485\pi\)
−0.225644 + 0.974210i \(0.572449\pi\)
\(728\) −129.401 176.933i −0.177749 0.243040i
\(729\) 27.0000i 0.0370370i
\(730\) −567.516 + 495.250i −0.777419 + 0.678425i
\(731\) −28.9554 + 50.1522i −0.0396107 + 0.0686077i
\(732\) 295.750 79.2459i 0.404030 0.108259i
\(733\) −29.6500 7.94468i −0.0404501 0.0108386i 0.238537 0.971133i \(-0.423332\pi\)
−0.278987 + 0.960295i \(0.589999\pi\)
\(734\) 27.2314i 0.0371001i
\(735\) 332.239 263.993i 0.452026 0.359174i
\(736\) −100.779 −0.136928
\(737\) −100.205 + 373.971i −0.135964 + 0.507423i
\(738\) 21.2831 + 79.4296i 0.0288389 + 0.107628i
\(739\) 70.2506 + 40.5592i 0.0950616 + 0.0548839i 0.546777 0.837278i \(-0.315854\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(740\) −23.3810 + 343.849i −0.0315959 + 0.464661i
\(741\) −594.507 −0.802303
\(742\) −831.188 + 607.894i −1.12020 + 0.819265i
\(743\) 824.672 824.672i 1.10992 1.10992i 0.116761 0.993160i \(-0.462749\pi\)
0.993160 0.116761i \(-0.0372513\pi\)
\(744\) −66.1596 + 38.1972i −0.0889242 + 0.0513404i
\(745\) 167.058 488.214i 0.224239 0.655321i
\(746\) 239.265 414.420i 0.320731 0.555522i
\(747\) 53.8003 200.785i 0.0720218 0.268789i
\(748\) −24.6855 + 24.6855i −0.0330020 + 0.0330020i
\(749\) 200.509 + 517.477i 0.267702 + 0.690890i
\(750\) 168.237 + 255.825i 0.224316 + 0.341099i
\(751\) 91.6006 + 158.657i 0.121972 + 0.211261i 0.920545 0.390636i \(-0.127745\pi\)
−0.798574 + 0.601897i \(0.794412\pi\)
\(752\) 121.423 32.5353i 0.161467 0.0432650i
\(753\) 35.1613 + 131.224i 0.0466950 + 0.174268i
\(754\) 325.838 188.123i 0.432146 0.249500i
\(755\) 71.9600 + 366.444i 0.0953112 + 0.485357i
\(756\) −56.6780 45.6027i −0.0749709 0.0603210i
\(757\) 298.331 + 298.331i 0.394096 + 0.394096i 0.876145 0.482048i \(-0.160107\pi\)
−0.482048 + 0.876145i \(0.660107\pi\)
\(758\) −725.642 194.435i −0.957312 0.256511i
\(759\) −132.086 76.2600i −0.174027 0.100474i
\(760\) 192.955 + 393.695i 0.253888 + 0.518020i
\(761\) 16.0986 + 27.8836i 0.0211546 + 0.0366408i 0.876409 0.481568i \(-0.159932\pi\)
−0.855254 + 0.518208i \(0.826599\pi\)
\(762\) 373.832 + 373.832i 0.490594 + 0.490594i
\(763\) 302.201 32.7232i 0.396069 0.0428876i
\(764\) 307.153i