Properties

Label 210.3.v.b.37.8
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.8
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.8

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.73071 + 1.61876i) q^{5} +2.44949 q^{6} +(-4.13228 + 5.65016i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.73071 + 1.61876i) q^{5} +2.44949 q^{6} +(-4.13228 + 5.65016i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(7.05478 + 0.479709i) q^{10} +(2.47138 + 4.28056i) q^{11} +(3.34607 - 0.896575i) q^{12} +(7.82868 - 7.82868i) q^{13} +(-3.57669 + 9.23078i) q^{14} +(7.18896 + 4.82896i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-0.914015 + 3.41115i) q^{17} +(4.09808 + 1.09808i) q^{18} +(-26.8487 - 15.5011i) q^{19} +(9.81259 - 1.92693i) q^{20} +(-9.44633 + 7.60045i) q^{21} +(4.94276 + 4.94276i) q^{22} +(-4.61097 - 17.2084i) q^{23} +(4.24264 - 2.44949i) q^{24} +(19.7592 + 15.3158i) q^{25} +(7.82868 - 13.5597i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-1.50715 + 13.9186i) q^{28} -24.0299i q^{29} +(11.5878 + 3.96514i) q^{30} +(7.79698 + 13.5048i) q^{31} +(1.46410 - 5.46410i) q^{32} +(2.21578 + 8.26940i) q^{33} +4.99427i q^{34} +(-28.6949 + 20.0401i) q^{35} +6.00000 q^{36} +(33.2900 - 8.92003i) q^{37} +(-42.3498 - 11.3476i) q^{38} +(16.6071 - 9.58813i) q^{39} +(12.6989 - 6.22390i) q^{40} -19.3822 q^{41} +(-10.1220 + 13.8400i) q^{42} +(-11.5955 + 11.5955i) q^{43} +(8.56111 + 4.94276i) q^{44} +(9.86260 + 11.3017i) q^{45} +(-12.5974 - 21.8194i) q^{46} +(-30.3558 + 8.13382i) q^{47} +(4.89898 - 4.89898i) q^{48} +(-14.8486 - 46.6960i) q^{49} +(32.5976 + 13.6894i) q^{50} +(-3.05835 + 5.29722i) q^{51} +(5.73099 - 21.3883i) q^{52} +(-100.477 - 26.9228i) q^{53} +(6.36396 + 3.67423i) q^{54} +(4.76218 + 24.2506i) q^{55} +(3.03577 + 19.5649i) q^{56} +(-37.9698 - 37.9698i) q^{57} +(-8.79557 - 32.8255i) q^{58} +(-13.5357 + 7.81482i) q^{59} +(17.2806 + 1.17504i) q^{60} +(-44.1937 + 76.5457i) q^{61} +(15.5940 + 15.5940i) q^{62} +(-19.2112 + 8.48113i) q^{63} -8.00000i q^{64} +(49.7079 - 24.3624i) q^{65} +(6.05362 + 10.4852i) q^{66} +(20.2731 - 75.6604i) q^{67} +(1.82803 + 6.82230i) q^{68} -30.8572i q^{69} +(-31.8627 + 37.8783i) q^{70} -59.7196 q^{71} +(8.19615 - 2.19615i) q^{72} +(102.892 + 27.5699i) q^{73} +(42.2100 - 24.3700i) q^{74} +(26.1920 + 34.4816i) q^{75} -62.0044 q^{76} +(-34.3982 - 3.72475i) q^{77} +(19.1763 - 19.1763i) q^{78} +(23.6823 + 13.6730i) q^{79} +(15.0690 - 13.1501i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-26.4765 + 7.09436i) q^{82} +(-48.9951 + 48.9951i) q^{83} +(-8.76107 + 22.6107i) q^{84} +(-9.84577 + 14.6576i) q^{85} +(-11.5955 + 20.0839i) q^{86} +(10.7723 - 40.2029i) q^{87} +(13.5039 + 3.61835i) q^{88} +(-98.6980 - 56.9833i) q^{89} +(17.6093 + 11.8285i) q^{90} +(11.8830 + 76.5835i) q^{91} +(-25.1948 - 25.1948i) q^{92} +(6.99058 + 26.0892i) q^{93} +(-38.4896 + 22.2220i) q^{94} +(-101.921 - 116.793i) q^{95} +(4.89898 - 8.48528i) q^{96} +(99.3285 + 99.3285i) q^{97} +(-37.3755 - 58.3530i) q^{98} +14.8283i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 4.73071 + 1.61876i 0.946142 + 0.323752i
\(6\) 2.44949 0.408248
\(7\) −4.13228 + 5.65016i −0.590325 + 0.807166i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 7.05478 + 0.479709i 0.705478 + 0.0479709i
\(11\) 2.47138 + 4.28056i 0.224671 + 0.389141i 0.956221 0.292647i \(-0.0945360\pi\)
−0.731550 + 0.681788i \(0.761203\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) 7.82868 7.82868i 0.602206 0.602206i −0.338692 0.940897i \(-0.609984\pi\)
0.940897 + 0.338692i \(0.109984\pi\)
\(14\) −3.57669 + 9.23078i −0.255478 + 0.659341i
\(15\) 7.18896 + 4.82896i 0.479264 + 0.321931i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −0.914015 + 3.41115i −0.0537656 + 0.200656i −0.987584 0.157091i \(-0.949788\pi\)
0.933819 + 0.357747i \(0.116455\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) −26.8487 15.5011i −1.41309 0.815848i −0.417412 0.908718i \(-0.637063\pi\)
−0.995678 + 0.0928696i \(0.970396\pi\)
\(20\) 9.81259 1.92693i 0.490630 0.0963467i
\(21\) −9.44633 + 7.60045i −0.449825 + 0.361926i
\(22\) 4.94276 + 4.94276i 0.224671 + 0.224671i
\(23\) −4.61097 17.2084i −0.200477 0.748191i −0.990781 0.135475i \(-0.956744\pi\)
0.790304 0.612715i \(-0.209923\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) 19.7592 + 15.3158i 0.790369 + 0.612631i
\(26\) 7.82868 13.5597i 0.301103 0.521526i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −1.50715 + 13.9186i −0.0538269 + 0.497094i
\(29\) 24.0299i 0.828619i −0.910136 0.414309i \(-0.864023\pi\)
0.910136 0.414309i \(-0.135977\pi\)
\(30\) 11.5878 + 3.96514i 0.386261 + 0.132171i
\(31\) 7.79698 + 13.5048i 0.251515 + 0.435638i 0.963943 0.266108i \(-0.0857377\pi\)
−0.712428 + 0.701745i \(0.752404\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 2.21578 + 8.26940i 0.0671448 + 0.250588i
\(34\) 4.99427i 0.146890i
\(35\) −28.6949 + 20.0401i −0.819853 + 0.572574i
\(36\) 6.00000 0.166667
\(37\) 33.2900 8.92003i 0.899730 0.241082i 0.220830 0.975312i \(-0.429124\pi\)
0.678900 + 0.734231i \(0.262457\pi\)
\(38\) −42.3498 11.3476i −1.11447 0.298621i
\(39\) 16.6071 9.58813i 0.425824 0.245850i
\(40\) 12.6989 6.22390i 0.317474 0.155597i
\(41\) −19.3822 −0.472736 −0.236368 0.971664i \(-0.575957\pi\)
−0.236368 + 0.971664i \(0.575957\pi\)
\(42\) −10.1220 + 13.8400i −0.240999 + 0.329524i
\(43\) −11.5955 + 11.5955i −0.269662 + 0.269662i −0.828964 0.559302i \(-0.811069\pi\)
0.559302 + 0.828964i \(0.311069\pi\)
\(44\) 8.56111 + 4.94276i 0.194571 + 0.112335i
\(45\) 9.86260 + 11.3017i 0.219169 + 0.251150i
\(46\) −12.5974 21.8194i −0.273857 0.474334i
\(47\) −30.3558 + 8.13382i −0.645869 + 0.173060i −0.566860 0.823814i \(-0.691842\pi\)
−0.0790084 + 0.996874i \(0.525175\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) −14.8486 46.6960i −0.303033 0.952980i
\(50\) 32.5976 + 13.6894i 0.651951 + 0.273787i
\(51\) −3.05835 + 5.29722i −0.0599677 + 0.103867i
\(52\) 5.73099 21.3883i 0.110211 0.411314i
\(53\) −100.477 26.9228i −1.89580 0.507977i −0.997669 0.0682425i \(-0.978261\pi\)
−0.898128 0.439735i \(-0.855072\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 4.76218 + 24.2506i 0.0865852 + 0.440921i
\(56\) 3.03577 + 19.5649i 0.0542101 + 0.349373i
\(57\) −37.9698 37.9698i −0.666137 0.666137i
\(58\) −8.79557 32.8255i −0.151648 0.565957i
\(59\) −13.5357 + 7.81482i −0.229418 + 0.132455i −0.610304 0.792168i \(-0.708953\pi\)
0.380885 + 0.924622i \(0.375619\pi\)
\(60\) 17.2806 + 1.17504i 0.288010 + 0.0195840i
\(61\) −44.1937 + 76.5457i −0.724486 + 1.25485i 0.234699 + 0.972068i \(0.424590\pi\)
−0.959185 + 0.282779i \(0.908744\pi\)
\(62\) 15.5940 + 15.5940i 0.251515 + 0.251515i
\(63\) −19.2112 + 8.48113i −0.304940 + 0.134621i
\(64\) 8.00000i 0.125000i
\(65\) 49.7079 24.3624i 0.764738 0.374807i
\(66\) 6.05362 + 10.4852i 0.0917215 + 0.158866i
\(67\) 20.2731 75.6604i 0.302584 1.12926i −0.632421 0.774625i \(-0.717939\pi\)
0.935005 0.354634i \(-0.115395\pi\)
\(68\) 1.82803 + 6.82230i 0.0268828 + 0.100328i
\(69\) 30.8572i 0.447206i
\(70\) −31.8627 + 37.8783i −0.455182 + 0.541119i
\(71\) −59.7196 −0.841121 −0.420560 0.907265i \(-0.638167\pi\)
−0.420560 + 0.907265i \(0.638167\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) 102.892 + 27.5699i 1.40948 + 0.377670i 0.881741 0.471734i \(-0.156372\pi\)
0.527743 + 0.849404i \(0.323038\pi\)
\(74\) 42.2100 24.3700i 0.570406 0.329324i
\(75\) 26.1920 + 34.4816i 0.349226 + 0.459755i
\(76\) −62.0044 −0.815848
\(77\) −34.3982 3.72475i −0.446730 0.0483733i
\(78\) 19.1763 19.1763i 0.245850 0.245850i
\(79\) 23.6823 + 13.6730i 0.299776 + 0.173076i 0.642342 0.766418i \(-0.277963\pi\)
−0.342566 + 0.939494i \(0.611296\pi\)
\(80\) 15.0690 13.1501i 0.188362 0.164377i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −26.4765 + 7.09436i −0.322884 + 0.0865166i
\(83\) −48.9951 + 48.9951i −0.590302 + 0.590302i −0.937713 0.347411i \(-0.887061\pi\)
0.347411 + 0.937713i \(0.387061\pi\)
\(84\) −8.76107 + 22.6107i −0.104298 + 0.269175i
\(85\) −9.84577 + 14.6576i −0.115833 + 0.172442i
\(86\) −11.5955 + 20.0839i −0.134831 + 0.233534i
\(87\) 10.7723 40.2029i 0.123820 0.462102i
\(88\) 13.5039 + 3.61835i 0.153453 + 0.0411176i
\(89\) −98.6980 56.9833i −1.10897 0.640262i −0.170405 0.985374i \(-0.554508\pi\)
−0.938561 + 0.345112i \(0.887841\pi\)
\(90\) 17.6093 + 11.8285i 0.195659 + 0.131428i
\(91\) 11.8830 + 76.5835i 0.130583 + 0.841577i
\(92\) −25.1948 25.1948i −0.273857 0.273857i
\(93\) 6.99058 + 26.0892i 0.0751675 + 0.280529i
\(94\) −38.4896 + 22.2220i −0.409464 + 0.236404i
\(95\) −101.921 116.793i −1.07285 1.22940i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) 99.3285 + 99.3285i 1.02400 + 1.02400i 0.999705 + 0.0243000i \(0.00773568\pi\)
0.0243000 + 0.999705i \(0.492264\pi\)
\(98\) −37.3755 58.3530i −0.381383 0.595439i
\(99\) 14.8283i 0.149781i
\(100\) 49.5398 + 6.76847i 0.495398 + 0.0676847i
\(101\) 39.4954 + 68.4080i 0.391043 + 0.677307i 0.992587 0.121533i \(-0.0387810\pi\)
−0.601544 + 0.798839i \(0.705448\pi\)
\(102\) −2.23887 + 8.35558i −0.0219497 + 0.0819174i
\(103\) −23.4941 87.6811i −0.228098 0.851272i −0.981140 0.193300i \(-0.938081\pi\)
0.753042 0.657972i \(-0.228586\pi\)
\(104\) 31.3147i 0.301103i
\(105\) −56.9912 + 20.6642i −0.542773 + 0.196802i
\(106\) −147.109 −1.38782
\(107\) 76.5792 20.5193i 0.715694 0.191770i 0.117444 0.993079i \(-0.462530\pi\)
0.598250 + 0.801310i \(0.295863\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) −37.6062 + 21.7120i −0.345011 + 0.199192i −0.662486 0.749074i \(-0.730499\pi\)
0.317475 + 0.948267i \(0.397165\pi\)
\(110\) 15.3816 + 31.3839i 0.139833 + 0.285308i
\(111\) 59.6940 0.537784
\(112\) 11.3082 + 25.6149i 0.100966 + 0.228705i
\(113\) 129.101 129.101i 1.14249 1.14249i 0.154493 0.987994i \(-0.450625\pi\)
0.987994 0.154493i \(-0.0493745\pi\)
\(114\) −65.7656 37.9698i −0.576892 0.333068i
\(115\) 6.04309 88.8720i 0.0525486 0.772800i
\(116\) −24.0299 41.6211i −0.207155 0.358802i
\(117\) 32.0825 8.59648i 0.274209 0.0734742i
\(118\) −15.6296 + 15.6296i −0.132455 + 0.132455i
\(119\) −15.4966 19.2601i −0.130223 0.161850i
\(120\) 24.0358 4.72000i 0.200299 0.0393334i
\(121\) 48.2846 83.6313i 0.399046 0.691168i
\(122\) −32.3520 + 120.739i −0.265180 + 0.989666i
\(123\) −32.4270 8.68879i −0.263634 0.0706405i
\(124\) 27.0095 + 15.5940i 0.217819 + 0.125758i
\(125\) 68.6826 + 104.440i 0.549461 + 0.835520i
\(126\) −23.1387 + 18.6172i −0.183640 + 0.147756i
\(127\) 152.616 + 152.616i 1.20170 + 1.20170i 0.973648 + 0.228056i \(0.0732370\pi\)
0.228056 + 0.973648i \(0.426763\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) −24.5977 + 14.2015i −0.190680 + 0.110089i
\(130\) 58.9850 51.4741i 0.453731 0.395954i
\(131\) −97.2153 + 168.382i −0.742102 + 1.28536i 0.209435 + 0.977823i \(0.432838\pi\)
−0.951537 + 0.307535i \(0.900496\pi\)
\(132\) 12.1072 + 12.1072i 0.0917215 + 0.0917215i
\(133\) 198.530 87.6446i 1.49271 0.658982i
\(134\) 110.774i 0.826675i
\(135\) 11.4340 + 23.3294i 0.0846965 + 0.172811i
\(136\) 4.99427 + 8.65033i 0.0367226 + 0.0636054i
\(137\) 48.1776 179.801i 0.351661 1.31242i −0.532973 0.846132i \(-0.678925\pi\)
0.884634 0.466285i \(-0.154408\pi\)
\(138\) −11.2945 42.1518i −0.0818445 0.305448i
\(139\) 202.296i 1.45537i 0.685913 + 0.727683i \(0.259403\pi\)
−0.685913 + 0.727683i \(0.740597\pi\)
\(140\) −29.6608 + 63.4053i −0.211863 + 0.452895i
\(141\) −54.4326 −0.386047
\(142\) −81.5785 + 21.8589i −0.574496 + 0.153936i
\(143\) 52.8587 + 14.1634i 0.369641 + 0.0990451i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 38.8987 113.679i 0.268267 0.783991i
\(146\) 150.645 1.03181
\(147\) −3.90893 84.7804i −0.0265913 0.576738i
\(148\) 48.7399 48.7399i 0.329324 0.329324i
\(149\) 89.3747 + 51.6005i 0.599830 + 0.346312i 0.768975 0.639279i \(-0.220767\pi\)
−0.169144 + 0.985591i \(0.554100\pi\)
\(150\) 48.4000 + 37.5158i 0.322667 + 0.250106i
\(151\) 37.3443 + 64.6822i 0.247313 + 0.428359i 0.962779 0.270288i \(-0.0871190\pi\)
−0.715466 + 0.698647i \(0.753786\pi\)
\(152\) −84.6996 + 22.6952i −0.557234 + 0.149311i
\(153\) −7.49140 + 7.49140i −0.0489634 + 0.0489634i
\(154\) −48.3522 + 7.50253i −0.313975 + 0.0487177i
\(155\) 15.0243 + 76.5086i 0.0969307 + 0.493604i
\(156\) 19.1763 33.2143i 0.122925 0.212912i
\(157\) 52.2685 195.069i 0.332920 1.24248i −0.573186 0.819425i \(-0.694293\pi\)
0.906106 0.423050i \(-0.139041\pi\)
\(158\) 37.3553 + 10.0093i 0.236426 + 0.0633502i
\(159\) −156.033 90.0854i −0.981336 0.566575i
\(160\) 15.7713 23.4790i 0.0985707 0.146744i
\(161\) 116.284 + 45.0571i 0.722261 + 0.279858i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −42.8461 159.904i −0.262859 0.981004i −0.963548 0.267537i \(-0.913790\pi\)
0.700688 0.713467i \(-0.252876\pi\)
\(164\) −33.5709 + 19.3822i −0.204701 + 0.118184i
\(165\) −2.90397 + 42.7069i −0.0175998 + 0.258830i
\(166\) −48.9951 + 84.8619i −0.295151 + 0.511216i
\(167\) 129.993 + 129.993i 0.778403 + 0.778403i 0.979559 0.201156i \(-0.0644698\pi\)
−0.201156 + 0.979559i \(0.564470\pi\)
\(168\) −3.69175 + 34.0936i −0.0219747 + 0.202938i
\(169\) 46.4237i 0.274696i
\(170\) −8.08453 + 23.6264i −0.0475560 + 0.138979i
\(171\) −46.5033 80.5461i −0.271949 0.471030i
\(172\) −8.48846 + 31.6794i −0.0493515 + 0.184182i
\(173\) 7.65408 + 28.5654i 0.0442432 + 0.165118i 0.984513 0.175313i \(-0.0560937\pi\)
−0.940270 + 0.340431i \(0.889427\pi\)
\(174\) 58.8611i 0.338282i
\(175\) −168.187 + 48.3538i −0.961069 + 0.276307i
\(176\) 19.7710 0.112335
\(177\) −26.1489 + 7.00658i −0.147734 + 0.0395852i
\(178\) −155.681 41.7147i −0.874614 0.234352i
\(179\) 187.148 108.050i 1.04552 0.603629i 0.124126 0.992266i \(-0.460387\pi\)
0.921391 + 0.388637i \(0.127054\pi\)
\(180\) 28.3843 + 9.71257i 0.157690 + 0.0539587i
\(181\) 138.273 0.763937 0.381968 0.924175i \(-0.375246\pi\)
0.381968 + 0.924175i \(0.375246\pi\)
\(182\) 44.2640 + 100.266i 0.243209 + 0.550910i
\(183\) −108.252 + 108.252i −0.591540 + 0.591540i
\(184\) −43.6387 25.1948i −0.237167 0.136928i
\(185\) 171.925 + 11.6905i 0.929323 + 0.0631918i
\(186\) 19.0986 + 33.0798i 0.102681 + 0.177848i
\(187\) −16.8605 + 4.51775i −0.0901631 + 0.0241591i
\(188\) −44.4440 + 44.4440i −0.236404 + 0.236404i
\(189\) −35.9430 + 5.57706i −0.190174 + 0.0295083i
\(190\) −181.976 122.236i −0.957767 0.643350i
\(191\) −76.7883 + 133.001i −0.402033 + 0.696342i −0.993971 0.109642i \(-0.965030\pi\)
0.591938 + 0.805983i \(0.298363\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) 300.636 + 80.5552i 1.55770 + 0.417385i 0.931935 0.362627i \(-0.118120\pi\)
0.625766 + 0.780011i \(0.284787\pi\)
\(194\) 172.042 + 99.3285i 0.886814 + 0.512002i
\(195\) 94.0844 18.4757i 0.482484 0.0947471i
\(196\) −72.4146 66.0313i −0.369462 0.336894i
\(197\) 67.5608 + 67.5608i 0.342948 + 0.342948i 0.857475 0.514526i \(-0.172032\pi\)
−0.514526 + 0.857475i \(0.672032\pi\)
\(198\) 5.42753 + 20.2558i 0.0274118 + 0.102302i
\(199\) −279.894 + 161.597i −1.40650 + 0.812044i −0.995049 0.0993866i \(-0.968312\pi\)
−0.411453 + 0.911431i \(0.634979\pi\)
\(200\) 70.1500 8.88690i 0.350750 0.0444345i
\(201\) 67.8352 117.494i 0.337489 0.584548i
\(202\) 78.9907 + 78.9907i 0.391043 + 0.391043i
\(203\) 135.773 + 99.2983i 0.668833 + 0.489154i
\(204\) 12.2334i 0.0599677i
\(205\) −91.6914 31.3751i −0.447275 0.153049i
\(206\) −64.1870 111.175i −0.311587 0.539685i
\(207\) 13.8329 51.6252i 0.0668257 0.249397i
\(208\) −11.4620 42.7767i −0.0551057 0.205657i
\(209\) 153.237i 0.733189i
\(210\) −70.2877 + 49.0880i −0.334704 + 0.233752i
\(211\) −327.292 −1.55115 −0.775575 0.631256i \(-0.782540\pi\)
−0.775575 + 0.631256i \(0.782540\pi\)
\(212\) −200.954 + 53.8456i −0.947898 + 0.253989i
\(213\) −99.9128 26.7716i −0.469074 0.125688i
\(214\) 97.0986 56.0599i 0.453732 0.261962i
\(215\) −73.6250 + 36.0845i −0.342442 + 0.167835i
\(216\) 14.6969 0.0680414
\(217\) −108.523 11.7512i −0.500108 0.0541532i
\(218\) −43.4239 + 43.4239i −0.199192 + 0.199192i
\(219\) 159.783 + 92.2507i 0.729603 + 0.421236i
\(220\) 32.4990 + 37.2412i 0.147723 + 0.169278i
\(221\) 19.5493 + 33.8603i 0.0884582 + 0.153214i
\(222\) 81.5435 21.8495i 0.367313 0.0984213i
\(223\) 87.5407 87.5407i 0.392559 0.392559i −0.483040 0.875599i \(-0.660467\pi\)
0.875599 + 0.483040i \(0.160467\pi\)
\(224\) 24.8230 + 30.8516i 0.110817 + 0.137730i
\(225\) 28.3623 + 69.4304i 0.126055 + 0.308580i
\(226\) 129.101 223.610i 0.571244 0.989423i
\(227\) 75.3933 281.372i 0.332129 1.23952i −0.574819 0.818280i \(-0.694928\pi\)
0.906948 0.421242i \(-0.138406\pi\)
\(228\) −103.735 27.7958i −0.454980 0.121912i
\(229\) −56.5510 32.6497i −0.246948 0.142575i 0.371418 0.928466i \(-0.378872\pi\)
−0.618366 + 0.785890i \(0.712205\pi\)
\(230\) −24.2744 123.613i −0.105541 0.537449i
\(231\) −55.8796 21.6519i −0.241903 0.0937313i
\(232\) −48.0599 48.0599i −0.207155 0.207155i
\(233\) 42.6828 + 159.294i 0.183188 + 0.683667i 0.995011 + 0.0997635i \(0.0318086\pi\)
−0.811823 + 0.583903i \(0.801525\pi\)
\(234\) 40.6790 23.4860i 0.173842 0.100368i
\(235\) −156.771 10.6601i −0.667112 0.0453621i
\(236\) −15.6296 + 27.0713i −0.0662273 + 0.114709i
\(237\) 33.4919 + 33.4919i 0.141316 + 0.141316i
\(238\) −28.2184 20.6377i −0.118565 0.0867130i
\(239\) 84.6324i 0.354110i 0.984201 + 0.177055i \(0.0566571\pi\)
−0.984201 + 0.177055i \(0.943343\pi\)
\(240\) 31.1059 15.2454i 0.129608 0.0635224i
\(241\) −220.268 381.516i −0.913976 1.58305i −0.808393 0.588643i \(-0.799662\pi\)
−0.105583 0.994410i \(-0.533671\pi\)
\(242\) 35.3468 131.916i 0.146061 0.545107i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 176.775i 0.724486i
\(245\) 5.34531 244.942i 0.0218176 0.999762i
\(246\) −47.4764 −0.192994
\(247\) −331.543 + 88.8367i −1.34228 + 0.359663i
\(248\) 42.6035 + 11.4156i 0.171788 + 0.0460305i
\(249\) −103.934 + 60.0064i −0.417406 + 0.240990i
\(250\) 132.050 + 117.528i 0.528199 + 0.470112i
\(251\) −78.4347 −0.312489 −0.156244 0.987718i \(-0.549939\pi\)
−0.156244 + 0.987718i \(0.549939\pi\)
\(252\) −24.7937 + 33.9010i −0.0983875 + 0.134528i
\(253\) 62.2660 62.2660i 0.246111 0.246111i
\(254\) 264.339 + 152.616i 1.04071 + 0.600852i
\(255\) −23.0431 + 20.1089i −0.0903652 + 0.0788583i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −384.537 + 103.036i −1.49625 + 0.400920i −0.911843 0.410540i \(-0.865340\pi\)
−0.584409 + 0.811459i \(0.698674\pi\)
\(258\) −28.4029 + 28.4029i −0.110089 + 0.110089i
\(259\) −87.1639 + 224.954i −0.336540 + 0.868548i
\(260\) 61.7343 91.9049i 0.237439 0.353480i
\(261\) 36.0449 62.4316i 0.138103 0.239202i
\(262\) −71.1666 + 265.597i −0.271628 + 1.01373i
\(263\) −391.508 104.904i −1.48862 0.398876i −0.579352 0.815077i \(-0.696694\pi\)
−0.909272 + 0.416201i \(0.863361\pi\)
\(264\) 20.9704 + 12.1072i 0.0794332 + 0.0458608i
\(265\) −431.747 290.012i −1.62923 1.09439i
\(266\) 239.117 192.392i 0.898936 0.723277i
\(267\) −139.580 139.580i −0.522772 0.522772i
\(268\) −40.5463 151.321i −0.151292 0.564630i
\(269\) 113.642 65.6115i 0.422463 0.243909i −0.273668 0.961824i \(-0.588237\pi\)
0.696130 + 0.717915i \(0.254904\pi\)
\(270\) 24.1583 + 27.6835i 0.0894753 + 0.102531i
\(271\) 31.0750 53.8235i 0.114668 0.198611i −0.802979 0.596007i \(-0.796753\pi\)
0.917647 + 0.397397i \(0.130086\pi\)
\(272\) 9.98854 + 9.98854i 0.0367226 + 0.0367226i
\(273\) −14.4508 + 133.454i −0.0529332 + 0.488841i
\(274\) 263.247i 0.960756i
\(275\) −16.7275 + 122.432i −0.0608272 + 0.445206i
\(276\) −30.8572 53.4463i −0.111802 0.193646i
\(277\) −23.2422 + 86.7411i −0.0839068 + 0.313145i −0.995105 0.0988239i \(-0.968492\pi\)
0.911198 + 0.411968i \(0.135159\pi\)
\(278\) 74.0454 + 276.341i 0.266351 + 0.994034i
\(279\) 46.7819i 0.167677i
\(280\) −17.3095 + 97.4699i −0.0618197 + 0.348107i
\(281\) −3.27031 −0.0116381 −0.00581906 0.999983i \(-0.501852\pi\)
−0.00581906 + 0.999983i \(0.501852\pi\)
\(282\) −74.3563 + 19.9237i −0.263675 + 0.0706514i
\(283\) −197.270 52.8584i −0.697068 0.186779i −0.107151 0.994243i \(-0.534173\pi\)
−0.589917 + 0.807464i \(0.700840\pi\)
\(284\) −103.437 + 59.7196i −0.364216 + 0.210280i
\(285\) −118.160 241.088i −0.414597 0.845923i
\(286\) 77.3905 0.270596
\(287\) 80.0924 109.512i 0.279068 0.381576i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 239.481 + 138.264i 0.828653 + 0.478423i
\(290\) 11.5274 169.526i 0.0397495 0.584572i
\(291\) 121.652 + 210.707i 0.418048 + 0.724081i
\(292\) 205.785 55.1398i 0.704742 0.188835i
\(293\) −269.541 + 269.541i −0.919935 + 0.919935i −0.997024 0.0770891i \(-0.975437\pi\)
0.0770891 + 0.997024i \(0.475437\pi\)
\(294\) −36.3715 114.381i −0.123713 0.389053i
\(295\) −76.6837 + 15.0586i −0.259945 + 0.0510463i
\(296\) 48.7399 84.4201i 0.164662 0.285203i
\(297\) −6.64734 + 24.8082i −0.0223816 + 0.0835293i
\(298\) 140.975 + 37.7742i 0.473071 + 0.126759i
\(299\) −170.817 98.6211i −0.571293 0.329836i
\(300\) 79.8474 + 33.5319i 0.266158 + 0.111773i
\(301\) −17.6005 113.432i −0.0584736 0.376850i
\(302\) 74.6886 + 74.6886i 0.247313 + 0.247313i
\(303\) 35.4106 + 132.154i 0.116867 + 0.436152i
\(304\) −107.395 + 62.0044i −0.353272 + 0.203962i
\(305\) −332.976 + 290.576i −1.09173 + 0.952709i
\(306\) −7.49140 + 12.9755i −0.0244817 + 0.0424036i
\(307\) 167.472 + 167.472i 0.545511 + 0.545511i 0.925139 0.379628i \(-0.123948\pi\)
−0.379628 + 0.925139i \(0.623948\pi\)
\(308\) −63.3042 + 27.9468i −0.205533 + 0.0907363i
\(309\) 157.225i 0.508820i
\(310\) 48.5276 + 99.0134i 0.156541 + 0.319398i
\(311\) 275.366 + 476.948i 0.885422 + 1.53360i 0.845229 + 0.534404i \(0.179464\pi\)
0.0401933 + 0.999192i \(0.487203\pi\)
\(312\) 14.0380 52.3905i 0.0449936 0.167918i
\(313\) 73.4448 + 274.100i 0.234648 + 0.875718i 0.978307 + 0.207159i \(0.0664218\pi\)
−0.743659 + 0.668559i \(0.766912\pi\)
\(314\) 285.600i 0.909555i
\(315\) −104.612 + 9.02342i −0.332100 + 0.0286458i
\(316\) 54.6920 0.173076
\(317\) −364.326 + 97.6208i −1.14929 + 0.307952i −0.782682 0.622422i \(-0.786149\pi\)
−0.366611 + 0.930374i \(0.619482\pi\)
\(318\) −246.118 65.9471i −0.773956 0.207381i
\(319\) 102.861 59.3871i 0.322450 0.186167i
\(320\) 12.9501 37.8457i 0.0404690 0.118268i
\(321\) 137.318 0.427782
\(322\) 175.339 + 18.9862i 0.544531 + 0.0589634i
\(323\) 77.4167 77.4167i 0.239680 0.239680i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 274.591 34.7863i 0.844895 0.107035i
\(326\) −117.058 202.750i −0.359072 0.621932i
\(327\) −72.6497 + 19.4664i −0.222170 + 0.0595303i
\(328\) −38.7643 + 38.7643i −0.118184 + 0.118184i
\(329\) 79.4813 205.126i 0.241584 0.623485i
\(330\) 11.6649 + 59.4017i 0.0353482 + 0.180005i
\(331\) 203.687 352.797i 0.615369 1.06585i −0.374950 0.927045i \(-0.622340\pi\)
0.990320 0.138806i \(-0.0443264\pi\)
\(332\) −35.8669 + 133.857i −0.108033 + 0.403184i
\(333\) 99.8700 + 26.7601i 0.299910 + 0.0803606i
\(334\) 225.155 + 129.993i 0.674117 + 0.389202i
\(335\) 218.382 325.110i 0.651888 0.970477i
\(336\) 7.43608 + 47.9239i 0.0221312 + 0.142631i
\(337\) −51.7090 51.7090i −0.153439 0.153439i 0.626213 0.779652i \(-0.284604\pi\)
−0.779652 + 0.626213i \(0.784604\pi\)
\(338\) 16.9922 + 63.4159i 0.0502729 + 0.187621i
\(339\) 273.865 158.116i 0.807860 0.466418i
\(340\) −2.39579 + 35.2335i −0.00704645 + 0.103628i
\(341\) −38.5386 + 66.7508i −0.113016 + 0.195750i
\(342\) −93.0067 93.0067i −0.271949 0.271949i
\(343\) 325.198 + 109.064i 0.948101 + 0.317971i
\(344\) 46.3818i 0.134831i
\(345\) 49.9505 145.977i 0.144784 0.423121i
\(346\) 20.9113 + 36.2195i 0.0604374 + 0.104681i
\(347\) 124.666 465.261i 0.359269 1.34081i −0.515758 0.856734i \(-0.672490\pi\)
0.875027 0.484075i \(-0.160844\pi\)
\(348\) −21.5447 80.4058i −0.0619099 0.231051i
\(349\) 165.950i 0.475501i −0.971326 0.237750i \(-0.923590\pi\)
0.971326 0.237750i \(-0.0764100\pi\)
\(350\) −212.049 + 127.613i −0.605855 + 0.364609i
\(351\) 57.5288 0.163900
\(352\) 27.0077 7.23670i 0.0767265 0.0205588i
\(353\) −60.9899 16.3422i −0.172776 0.0462951i 0.171394 0.985203i \(-0.445173\pi\)
−0.344170 + 0.938907i \(0.611840\pi\)
\(354\) −33.1555 + 19.1423i −0.0936596 + 0.0540744i
\(355\) −282.516 96.6717i −0.795820 0.272315i
\(356\) −227.933 −0.640262
\(357\) −17.2922 39.1698i −0.0484375 0.109719i
\(358\) 216.099 216.099i 0.603629 0.603629i
\(359\) 140.408 + 81.0646i 0.391109 + 0.225807i 0.682640 0.730754i \(-0.260832\pi\)
−0.291532 + 0.956561i \(0.594165\pi\)
\(360\) 42.3287 + 2.87825i 0.117580 + 0.00799514i
\(361\) 300.069 + 519.734i 0.831215 + 1.43971i
\(362\) 188.884 50.6113i 0.521778 0.139810i
\(363\) 118.273 118.273i 0.325820 0.325820i
\(364\) 97.1655 + 120.764i 0.266938 + 0.331768i
\(365\) 442.125 + 296.983i 1.21130 + 0.813653i
\(366\) −108.252 + 187.498i −0.295770 + 0.512289i
\(367\) −4.98370 + 18.5994i −0.0135796 + 0.0506796i −0.972383 0.233390i \(-0.925018\pi\)
0.958804 + 0.284070i \(0.0916847\pi\)
\(368\) −68.8336 18.4439i −0.187048 0.0501193i
\(369\) −50.3563 29.0732i −0.136467 0.0787893i
\(370\) 239.133 46.9593i 0.646304 0.126917i
\(371\) 567.318 456.460i 1.52916 1.23035i
\(372\) 38.1972 + 38.1972i 0.102681 + 0.102681i
\(373\) 87.5772 + 326.843i 0.234791 + 0.876253i 0.978243 + 0.207463i \(0.0665208\pi\)
−0.743451 + 0.668790i \(0.766813\pi\)
\(374\) −21.3782 + 12.3427i −0.0571611 + 0.0330020i
\(375\) 68.0891 + 205.521i 0.181571 + 0.548056i
\(376\) −44.4440 + 76.9793i −0.118202 + 0.204732i
\(377\) −188.123 188.123i −0.498999 0.498999i
\(378\) −47.0577 + 20.7744i −0.124491 + 0.0549588i
\(379\) 531.207i 1.40160i 0.713357 + 0.700801i \(0.247174\pi\)
−0.713357 + 0.700801i \(0.752826\pi\)
\(380\) −293.325 100.370i −0.771908 0.264133i
\(381\) 186.916 + 323.748i 0.490594 + 0.849733i
\(382\) −56.2129 + 209.790i −0.147154 + 0.549187i
\(383\) 25.8421 + 96.4442i 0.0674730 + 0.251813i 0.991421 0.130705i \(-0.0417240\pi\)
−0.923948 + 0.382517i \(0.875057\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −156.699 73.3032i −0.407009 0.190398i
\(386\) 440.162 1.14032
\(387\) −47.5191 + 12.7327i −0.122788 + 0.0329010i
\(388\) 271.370 + 72.7135i 0.699408 + 0.187406i
\(389\) −528.011 + 304.848i −1.35736 + 0.783670i −0.989267 0.146121i \(-0.953321\pi\)
−0.368089 + 0.929791i \(0.619988\pi\)
\(390\) 121.759 59.6755i 0.312203 0.153014i
\(391\) 62.9149 0.160908
\(392\) −123.089 63.6949i −0.314003 0.162487i
\(393\) −238.128 + 238.128i −0.605924 + 0.605924i
\(394\) 117.019 + 67.5608i 0.297002 + 0.171474i
\(395\) 89.9009 + 103.019i 0.227597 + 0.260808i
\(396\) 14.8283 + 25.6833i 0.0374451 + 0.0648569i
\(397\) 649.017 173.904i 1.63480 0.438044i 0.679501 0.733675i \(-0.262196\pi\)
0.955302 + 0.295631i \(0.0955298\pi\)
\(398\) −323.194 + 323.194i −0.812044 + 0.812044i
\(399\) 371.437 57.6337i 0.930920 0.144445i
\(400\) 92.5739 37.8164i 0.231435 0.0945410i
\(401\) 304.095 526.709i 0.758343 1.31349i −0.185353 0.982672i \(-0.559343\pi\)
0.943695 0.330816i \(-0.107324\pi\)
\(402\) 49.6588 185.329i 0.123529 0.461018i
\(403\) 166.764 + 44.6844i 0.413808 + 0.110879i
\(404\) 136.816 + 78.9907i 0.338653 + 0.195522i
\(405\) 8.67120 + 44.1567i 0.0214104 + 0.109029i
\(406\) 221.815 + 85.9477i 0.546343 + 0.211694i
\(407\) 120.455 + 120.455i 0.295958 + 0.295958i
\(408\) 4.47774 + 16.7112i 0.0109749 + 0.0409587i
\(409\) 322.212 186.029i 0.787804 0.454839i −0.0513849 0.998679i \(-0.516364\pi\)
0.839189 + 0.543840i \(0.183030\pi\)
\(410\) −136.737 9.29779i −0.333504 0.0226775i
\(411\) 161.205 279.216i 0.392227 0.679357i
\(412\) −128.374 128.374i −0.311587 0.311587i
\(413\) 11.7781 108.772i 0.0285185 0.263370i
\(414\) 75.5845i 0.182571i
\(415\) −311.093 + 152.470i −0.749621 + 0.367398i
\(416\) −31.3147 54.2387i −0.0752757 0.130381i
\(417\) −90.6868 + 338.448i −0.217474 + 0.811625i
\(418\) −56.0885 209.325i −0.134183 0.500777i
\(419\) 338.166i 0.807079i −0.914962 0.403540i \(-0.867780\pi\)
0.914962 0.403540i \(-0.132220\pi\)
\(420\) −78.0474 + 92.7826i −0.185827 + 0.220911i
\(421\) 13.7324 0.0326186 0.0163093 0.999867i \(-0.494808\pi\)
0.0163093 + 0.999867i \(0.494808\pi\)
\(422\) −447.090 + 119.797i −1.05945 + 0.283880i
\(423\) −91.0675 24.4015i −0.215290 0.0576867i
\(424\) −254.800 + 147.109i −0.600943 + 0.346955i
\(425\) −70.3046 + 53.4028i −0.165423 + 0.125654i
\(426\) −146.282 −0.343386
\(427\) −249.875 566.009i −0.585187 1.32555i
\(428\) 112.120 112.120i 0.261962 0.261962i
\(429\) 82.0851 + 47.3918i 0.191340 + 0.110470i
\(430\) −87.3658 + 76.2409i −0.203176 + 0.177304i
\(431\) −54.4290 94.2738i −0.126285 0.218733i 0.795949 0.605363i \(-0.206972\pi\)
−0.922235 + 0.386631i \(0.873639\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) −449.174 + 449.174i −1.03735 + 1.03735i −0.0380787 + 0.999275i \(0.512124\pi\)
−0.999275 + 0.0380787i \(0.987876\pi\)
\(434\) −152.547 + 23.6698i −0.351491 + 0.0545387i
\(435\) 116.040 172.750i 0.266758 0.397127i
\(436\) −43.4239 + 75.2125i −0.0995962 + 0.172506i
\(437\) −142.950 + 533.498i −0.327118 + 1.22082i
\(438\) 252.034 + 67.5322i 0.575419 + 0.154183i
\(439\) −97.0976 56.0593i −0.221179 0.127698i 0.385317 0.922784i \(-0.374092\pi\)
−0.606496 + 0.795086i \(0.707425\pi\)
\(440\) 58.0256 + 38.9769i 0.131876 + 0.0885839i
\(441\) 31.4663 143.593i 0.0713521 0.325607i
\(442\) 39.0985 + 39.0985i 0.0884582 + 0.0884582i
\(443\) −164.566 614.169i −0.371481 1.38639i −0.858419 0.512950i \(-0.828553\pi\)
0.486938 0.873437i \(-0.338114\pi\)
\(444\) 103.393 59.6940i 0.232867 0.134446i
\(445\) −374.669 429.340i −0.841953 0.964809i
\(446\) 87.5407 151.625i 0.196279 0.339966i
\(447\) 126.395 + 126.395i 0.282763 + 0.282763i
\(448\) 45.2013 + 33.0582i 0.100896 + 0.0737906i
\(449\) 199.822i 0.445038i 0.974928 + 0.222519i \(0.0714279\pi\)
−0.974928 + 0.222519i \(0.928572\pi\)
\(450\) 64.1569 + 84.4624i 0.142571 + 0.187694i
\(451\) −47.9007 82.9664i −0.106210 0.183961i
\(452\) 94.5085 352.711i 0.209090 0.780333i
\(453\) 33.4820 + 124.956i 0.0739116 + 0.275842i
\(454\) 411.957i 0.907393i
\(455\) −67.7553 + 381.530i −0.148913 + 0.838528i
\(456\) −151.879 −0.333068
\(457\) −409.459 + 109.714i −0.895971 + 0.240075i −0.677285 0.735720i \(-0.736844\pi\)
−0.218686 + 0.975795i \(0.570177\pi\)
\(458\) −89.2008 23.9013i −0.194761 0.0521862i
\(459\) −15.8917 + 9.17506i −0.0346224 + 0.0199892i
\(460\) −78.4050 159.974i −0.170446 0.347769i
\(461\) −768.361 −1.66673 −0.833364 0.552725i \(-0.813588\pi\)
−0.833364 + 0.552725i \(0.813588\pi\)
\(462\) −84.2581 9.12373i −0.182377 0.0197483i
\(463\) −2.18079 + 2.18079i −0.00471013 + 0.00471013i −0.709458 0.704748i \(-0.751060\pi\)
0.704748 + 0.709458i \(0.251060\pi\)
\(464\) −83.2422 48.0599i −0.179401 0.103577i
\(465\) −9.16177 + 134.737i −0.0197027 + 0.289756i
\(466\) 116.612 + 201.977i 0.250239 + 0.433427i
\(467\) 831.079 222.687i 1.77961 0.476846i 0.789100 0.614265i \(-0.210547\pi\)
0.990513 + 0.137419i \(0.0438808\pi\)
\(468\) 46.9721 46.9721i 0.100368 0.100368i
\(469\) 343.719 + 427.196i 0.732876 + 0.910866i
\(470\) −218.055 + 42.8203i −0.463948 + 0.0911071i
\(471\) 174.894 302.925i 0.371324 0.643153i
\(472\) −11.4417 + 42.7010i −0.0242409 + 0.0904682i
\(473\) −78.2918 20.9782i −0.165522 0.0443514i
\(474\) 58.0096 + 33.4919i 0.122383 + 0.0706579i
\(475\) −293.098 717.499i −0.617049 1.51052i
\(476\) −46.1010 17.8630i −0.0968508 0.0375272i
\(477\) −220.663 220.663i −0.462606 0.462606i
\(478\) 30.9776 + 115.610i 0.0648067 + 0.241862i
\(479\) −440.106 + 254.095i −0.918801 + 0.530470i −0.883252 0.468898i \(-0.844651\pi\)
−0.0355485 + 0.999368i \(0.511318\pi\)
\(480\) 36.9113 32.2111i 0.0768985 0.0671065i
\(481\) 190.785 330.449i 0.396642 0.687003i
\(482\) −440.537 440.537i −0.913976 0.913976i
\(483\) 174.348 + 127.511i 0.360970 + 0.263997i
\(484\) 193.138i 0.399046i
\(485\) 309.105 + 630.683i 0.637330 + 1.30038i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) −196.648 + 733.901i −0.403795 + 1.50698i 0.402473 + 0.915432i \(0.368151\pi\)
−0.806268 + 0.591551i \(0.798516\pi\)
\(488\) 64.7040 + 241.479i 0.132590 + 0.494833i
\(489\) 286.731i 0.586363i
\(490\) −82.3530 336.553i −0.168067 0.686843i
\(491\) −160.570 −0.327027 −0.163514 0.986541i \(-0.552283\pi\)
−0.163514 + 0.986541i \(0.552283\pi\)
\(492\) −64.8540 + 17.3776i −0.131817 + 0.0353203i
\(493\) 81.9697 + 21.9637i 0.166267 + 0.0445512i
\(494\) −420.380 + 242.706i −0.850971 + 0.491308i
\(495\) −24.0034 + 70.1483i −0.0484918 + 0.141714i
\(496\) 62.3758 0.125758
\(497\) 246.778 337.425i 0.496535 0.678924i
\(498\) −120.013 + 120.013i −0.240990 + 0.240990i
\(499\) 53.3534 + 30.8036i 0.106921 + 0.0617307i 0.552507 0.833508i \(-0.313671\pi\)
−0.445586 + 0.895239i \(0.647005\pi\)
\(500\) 223.402 + 112.213i 0.446803 + 0.224425i
\(501\) 159.209 + 275.758i 0.317782 + 0.550414i
\(502\) −107.144 + 28.7091i −0.213434 + 0.0571894i
\(503\) 10.2453 10.2453i 0.0203684 0.0203684i −0.696849 0.717218i \(-0.745415\pi\)
0.717218 + 0.696849i \(0.245415\pi\)
\(504\) −21.4602 + 55.3847i −0.0425797 + 0.109890i
\(505\) 76.1049 + 387.552i 0.150703 + 0.767429i
\(506\) 62.2660 107.848i 0.123055 0.213138i
\(507\) −20.8112 + 77.6683i −0.0410476 + 0.153192i
\(508\) 416.956 + 111.723i 0.820779 + 0.219927i
\(509\) −447.613 258.430i −0.879398 0.507720i −0.00893787 0.999960i \(-0.502845\pi\)
−0.870460 + 0.492240i \(0.836178\pi\)
\(510\) −24.1171 + 35.9036i −0.0472885 + 0.0703992i
\(511\) −580.954 + 467.432i −1.13690 + 0.914739i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −41.6937 155.603i −0.0812744 0.303320i
\(514\) −487.573 + 281.500i −0.948586 + 0.547666i
\(515\) 30.7910 452.825i 0.0597884 0.879272i
\(516\) −28.4029 + 49.1953i −0.0550445 + 0.0953398i
\(517\) −109.838 109.838i −0.212453 0.212453i
\(518\) −36.7293 + 339.197i −0.0709059 + 0.654820i
\(519\) 51.2221i 0.0986938i
\(520\) 50.6910 148.141i 0.0974827 0.284886i
\(521\) −319.243 552.945i −0.612751 1.06132i −0.990775 0.135520i \(-0.956730\pi\)
0.378024 0.925796i \(-0.376604\pi\)
\(522\) 26.3867 98.4765i 0.0505492 0.188652i
\(523\) −178.051 664.497i −0.340442 1.27055i −0.897847 0.440307i \(-0.854870\pi\)
0.557405 0.830241i \(-0.311797\pi\)
\(524\) 388.861i 0.742102i
\(525\) −303.059 + 5.50120i −0.577255 + 0.0104785i
\(526\) −573.208 −1.08975
\(527\) −53.1933 + 14.2531i −0.100936 + 0.0270457i
\(528\) 33.0776 + 8.86311i 0.0626470 + 0.0167862i
\(529\) 183.260 105.805i 0.346427 0.200010i
\(530\) −695.929 238.134i −1.31307 0.449310i
\(531\) −46.8889 −0.0883031
\(532\) 256.219 350.335i 0.481615 0.658524i
\(533\) −151.737 + 151.737i −0.284684 + 0.284684i
\(534\) −241.760 139.580i −0.452734 0.261386i
\(535\) 395.490 + 26.8924i 0.739234 + 0.0502662i
\(536\) −110.774 191.867i −0.206669 0.357961i
\(537\) 361.541 96.8747i 0.673261 0.180400i
\(538\) 131.223 131.223i 0.243909 0.243909i
\(539\) 163.188 178.964i 0.302761 0.332029i
\(540\) 43.1338 + 28.9738i 0.0798773 + 0.0536551i
\(541\) 63.2590 109.568i 0.116930 0.202528i −0.801620 0.597834i \(-0.796028\pi\)
0.918550 + 0.395306i \(0.129361\pi\)
\(542\) 22.7485 84.8985i 0.0419714 0.156639i
\(543\) 231.334 + 61.9859i 0.426030 + 0.114154i
\(544\) 17.3007 + 9.98854i 0.0318027 + 0.0183613i
\(545\) −213.051 + 41.8375i −0.390919 + 0.0767661i
\(546\) 29.1073 + 187.591i 0.0533101 + 0.343572i
\(547\) 425.173 + 425.173i 0.777281 + 0.777281i 0.979368 0.202087i \(-0.0647723\pi\)
−0.202087 + 0.979368i \(0.564772\pi\)
\(548\) −96.3552 359.602i −0.175831 0.656209i
\(549\) −229.637 + 132.581i −0.418282 + 0.241495i
\(550\) 21.9629 + 173.367i 0.0399326 + 0.315213i
\(551\) −372.491 + 645.173i −0.676027 + 1.17091i
\(552\) −61.7145 61.7145i −0.111802 0.111802i
\(553\) −175.116 + 77.3083i −0.316666 + 0.139798i
\(554\) 126.998i 0.229238i
\(555\) 282.395 + 96.6303i 0.508820 + 0.174109i
\(556\) 202.296 + 350.387i 0.363842 + 0.630192i
\(557\) 3.95376 14.7556i 0.00709831 0.0264912i −0.962286 0.272040i \(-0.912302\pi\)
0.969384 + 0.245549i \(0.0789683\pi\)
\(558\) 17.1234 + 63.9052i 0.0306870 + 0.114526i
\(559\) 181.554i 0.324784i
\(560\) 12.0312 + 139.482i 0.0214843 + 0.249075i
\(561\) −30.2334 −0.0538920
\(562\) −4.46733 + 1.19702i −0.00794899 + 0.00212992i
\(563\) 229.658 + 61.5366i 0.407918 + 0.109301i 0.456942 0.889496i \(-0.348945\pi\)
−0.0490246 + 0.998798i \(0.515611\pi\)
\(564\) −94.2800 + 54.4326i −0.167163 + 0.0965117i
\(565\) 819.723 401.756i 1.45084 0.711072i
\(566\) −288.824 −0.510290
\(567\) −62.6339 6.78219i −0.110465 0.0119615i
\(568\) −119.439 + 119.439i −0.210280 + 0.210280i
\(569\) −179.993 103.919i −0.316331 0.182634i 0.333425 0.942777i \(-0.391796\pi\)
−0.649756 + 0.760143i \(0.725129\pi\)
\(570\) −249.654 286.083i −0.437990 0.501900i
\(571\) −214.885 372.192i −0.376331 0.651824i 0.614194 0.789155i \(-0.289481\pi\)
−0.990525 + 0.137331i \(0.956148\pi\)
\(572\) 105.717 28.3269i 0.184821 0.0495226i
\(573\) −188.092 + 188.092i −0.328259 + 0.328259i
\(574\) 69.3240 178.912i 0.120774 0.311694i
\(575\) 172.451 410.645i 0.299914 0.714165i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −95.6927 + 357.130i −0.165845 + 0.618943i 0.832086 + 0.554647i \(0.187147\pi\)
−0.997931 + 0.0642958i \(0.979520\pi\)
\(578\) 377.745 + 101.217i 0.653538 + 0.175115i
\(579\) 466.862 + 269.543i 0.806325 + 0.465532i
\(580\) −46.3041 235.796i −0.0798347 0.406545i
\(581\) −74.3688 479.291i −0.128001 0.824941i
\(582\) 243.304 + 243.304i 0.418048 + 0.418048i
\(583\) −133.073 496.635i −0.228255 0.851861i
\(584\) 260.924 150.645i 0.446788 0.257953i
\(585\) 165.689 + 11.2664i 0.283229 + 0.0192589i
\(586\) −269.541 + 466.859i −0.459968 + 0.796687i
\(587\) 425.963 + 425.963i 0.725661 + 0.725661i 0.969752 0.244091i \(-0.0784897\pi\)
−0.244091 + 0.969752i \(0.578490\pi\)
\(588\) −91.5509 142.935i −0.155699 0.243087i
\(589\) 483.447i 0.820794i
\(590\) −99.2400 + 48.6387i −0.168203 + 0.0824384i
\(591\) 82.7447 + 143.318i 0.140008 + 0.242501i
\(592\) 35.6801 133.160i 0.0602705 0.224932i
\(593\) 49.0753 + 183.152i 0.0827577 + 0.308856i 0.994880 0.101062i \(-0.0322240\pi\)
−0.912122 + 0.409918i \(0.865557\pi\)
\(594\) 36.3217i 0.0611477i
\(595\) −42.1322 116.199i −0.0708105 0.195293i
\(596\) 206.402 0.346312
\(597\) −540.714 + 144.884i −0.905718 + 0.242686i
\(598\) −269.438 72.1956i −0.450565 0.120729i
\(599\) 238.166 137.505i 0.397605 0.229557i −0.287845 0.957677i \(-0.592939\pi\)
0.685450 + 0.728120i \(0.259605\pi\)
\(600\) 121.347 + 16.5793i 0.202245 + 0.0276322i
\(601\) −1029.92 −1.71368 −0.856842 0.515580i \(-0.827577\pi\)
−0.856842 + 0.515580i \(0.827577\pi\)
\(602\) −65.5617 148.508i −0.108906 0.246692i
\(603\) 166.162 166.162i 0.275558 0.275558i
\(604\) 129.364 + 74.6886i 0.214179 + 0.123657i
\(605\) 363.799 317.474i 0.601321 0.524751i
\(606\) 96.7435 + 167.565i 0.159643 + 0.276509i
\(607\) −25.4962 + 6.83168i −0.0420036 + 0.0112548i −0.279760 0.960070i \(-0.590255\pi\)
0.237756 + 0.971325i \(0.423588\pi\)
\(608\) −124.009 + 124.009i −0.203962 + 0.203962i
\(609\) 182.638 + 226.995i 0.299899 + 0.372734i
\(610\) −348.496 + 518.812i −0.571305 + 0.850512i
\(611\) −173.969 + 301.323i −0.284728 + 0.493164i
\(612\) −5.48409 + 20.4669i −0.00896093 + 0.0334426i
\(613\) 33.5012 + 8.97661i 0.0546511 + 0.0146437i 0.286041 0.958217i \(-0.407661\pi\)
−0.231390 + 0.972861i \(0.574327\pi\)
\(614\) 290.070 + 167.472i 0.472427 + 0.272756i
\(615\) −139.338 93.5957i −0.226565 0.152188i
\(616\) −76.2460 + 61.3470i −0.123776 + 0.0995893i
\(617\) 349.027 + 349.027i 0.565684 + 0.565684i 0.930916 0.365232i \(-0.119011\pi\)
−0.365232 + 0.930916i \(0.619011\pi\)
\(618\) −57.5485 214.774i −0.0931205 0.347530i
\(619\) 942.217 543.989i 1.52216 0.878820i 0.522503 0.852638i \(-0.324998\pi\)
0.999657 0.0261820i \(-0.00833493\pi\)
\(620\) 102.531 + 117.492i 0.165373 + 0.189504i
\(621\) 46.2859 80.1695i 0.0745344 0.129097i
\(622\) 550.733 + 550.733i 0.885422 + 0.885422i
\(623\) 729.812 322.189i 1.17145 0.517157i
\(624\) 76.7050i 0.122925i
\(625\) 155.854 + 605.256i 0.249367 + 0.968409i
\(626\) 200.655 + 347.544i 0.320535 + 0.555183i
\(627\) 68.6940 256.370i 0.109560 0.408883i
\(628\) −104.537 390.137i −0.166460 0.621238i
\(629\) 121.710i 0.193498i
\(630\) −139.599 + 50.6167i −0.221586 + 0.0803440i
\(631\) 573.080 0.908209 0.454104 0.890949i \(-0.349959\pi\)
0.454104 + 0.890949i \(0.349959\pi\)
\(632\) 74.7106 20.0187i 0.118213 0.0316751i
\(633\) −547.571 146.721i −0.865041 0.231787i
\(634\) −461.947 + 266.705i −0.728623 + 0.420671i
\(635\) 474.934 + 969.033i 0.747928 + 1.52604i
\(636\) −360.342 −0.566575
\(637\) −481.813 249.323i −0.756378 0.391402i
\(638\) 118.774 118.774i 0.186167 0.186167i
\(639\) −155.156 89.5794i −0.242811 0.140187i
\(640\) 3.83767 56.4382i 0.00599636 0.0881847i
\(641\) 515.594 + 893.035i 0.804359 + 1.39319i 0.916723 + 0.399523i \(0.130824\pi\)
−0.112364 + 0.993667i \(0.535842\pi\)
\(642\) 187.580 50.2619i 0.292181 0.0782896i
\(643\) 413.439 413.439i 0.642985 0.642985i −0.308303 0.951288i \(-0.599761\pi\)
0.951288 + 0.308303i \(0.0997612\pi\)
\(644\) 246.467 38.2428i 0.382712 0.0593833i
\(645\) −139.353 + 27.3653i −0.216052 + 0.0424268i
\(646\) 77.4167 134.090i 0.119840 0.207569i
\(647\) −196.283 + 732.536i −0.303373 + 1.13220i 0.630963 + 0.775813i \(0.282660\pi\)
−0.934337 + 0.356392i \(0.884007\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) −66.9036 38.6268i −0.103087 0.0595174i
\(650\) 362.365 148.026i 0.557485 0.227733i
\(651\) −176.295 68.3099i −0.270807 0.104931i
\(652\) −234.115 234.115i −0.359072 0.359072i
\(653\) −190.326 710.307i −0.291464 1.08776i −0.943985 0.329988i \(-0.892955\pi\)
0.652521 0.757771i \(-0.273712\pi\)
\(654\) −92.1161 + 53.1832i −0.140850 + 0.0813199i
\(655\) −732.468 + 639.198i −1.11827 + 0.975874i
\(656\) −38.7643 + 67.1418i −0.0590920 + 0.102350i
\(657\) 225.967 + 225.967i 0.343938 + 0.343938i
\(658\) 33.4919 309.300i 0.0508996 0.470061i
\(659\) 913.700i 1.38650i −0.720700 0.693248i \(-0.756179\pi\)
0.720700 0.693248i \(-0.243821\pi\)
\(660\) 37.6771 + 76.8746i 0.0570865 + 0.116477i
\(661\) −27.1929 47.0994i −0.0411390 0.0712548i 0.844723 0.535204i \(-0.179765\pi\)
−0.885862 + 0.463949i \(0.846432\pi\)
\(662\) 149.109 556.484i 0.225241 0.840610i
\(663\) 17.5274 + 65.4131i 0.0264365 + 0.0986623i
\(664\) 195.980i 0.295151i
\(665\) 1081.06 93.2487i 1.62566 0.140224i
\(666\) 146.220 0.219549
\(667\) −413.517 + 110.801i −0.619965 + 0.166119i
\(668\) 355.148 + 95.1617i 0.531659 + 0.142458i
\(669\) 185.702 107.215i 0.277581 0.160262i
\(670\) 179.317 524.042i 0.267638 0.782152i
\(671\) −436.877 −0.651084
\(672\) 27.6993 + 62.7435i 0.0412191 + 0.0933684i
\(673\) −93.9180 + 93.9180i −0.139551 + 0.139551i −0.773431 0.633880i \(-0.781461\pi\)
0.633880 + 0.773431i \(0.281461\pi\)
\(674\) −89.5626 51.7090i −0.132882 0.0767196i
\(675\) 16.3263 + 128.874i 0.0241871 + 0.190924i
\(676\) 46.4237 + 80.4081i 0.0686741 + 0.118947i
\(677\) −227.229 + 60.8859i −0.335642 + 0.0899349i −0.422704 0.906268i \(-0.638919\pi\)
0.0870620 + 0.996203i \(0.472252\pi\)
\(678\) 316.232 316.232i 0.466418 0.466418i
\(679\) −971.674 + 150.769i −1.43104 + 0.222046i
\(680\) 9.62362 + 49.0067i 0.0141524 + 0.0720687i
\(681\) 252.271 436.946i 0.370442 0.641624i
\(682\) −28.2122 + 105.289i −0.0413669 + 0.154383i
\(683\) −523.038 140.148i −0.765795 0.205194i −0.145282 0.989390i \(-0.546409\pi\)
−0.620513 + 0.784196i \(0.713076\pi\)
\(684\) −161.092 93.0067i −0.235515 0.135975i
\(685\) 518.969 772.599i 0.757619 1.12788i
\(686\) 484.150 + 29.9532i 0.705757 + 0.0436636i
\(687\) −79.9752 79.9752i −0.116412 0.116412i
\(688\) 16.9769 + 63.3587i 0.0246758 + 0.0920912i
\(689\) −997.373 + 575.834i −1.44757 + 0.835753i
\(690\) 14.8025 217.691i 0.0214529 0.315494i
\(691\) −245.831 + 425.792i −0.355761 + 0.616196i −0.987248 0.159190i \(-0.949112\pi\)
0.631487 + 0.775387i \(0.282445\pi\)
\(692\) 41.8227 + 41.8227i 0.0604374 + 0.0604374i
\(693\) −83.7821 61.2745i −0.120898 0.0884192i
\(694\) 681.189i 0.981540i
\(695\) −327.469 + 957.003i −0.471178 + 1.37698i
\(696\) −58.8611 101.950i −0.0845705 0.146480i
\(697\) 17.7156 66.1155i 0.0254169 0.0948572i
\(698\) −60.7418 226.692i −0.0870226 0.324773i
\(699\) 285.639i 0.408639i
\(700\) −242.955 + 251.938i −0.347078 + 0.359912i
\(701\) −372.833 −0.531858 −0.265929 0.963993i \(-0.585679\pi\)
−0.265929 + 0.963993i \(0.585679\pi\)
\(702\) 78.5858 21.0570i 0.111946 0.0299957i
\(703\) −1032.06 276.541i −1.46809 0.393372i
\(704\) 34.2444 19.7710i 0.0486427 0.0280839i
\(705\) −257.505 88.1133i −0.365255 0.124983i
\(706\) −89.2954 −0.126481
\(707\) −549.722 59.5255i −0.777541 0.0841945i
\(708\) −38.2847 + 38.2847i −0.0540744 + 0.0540744i
\(709\) −471.040 271.955i −0.664372 0.383575i 0.129569 0.991570i \(-0.458641\pi\)
−0.793941 + 0.607995i \(0.791974\pi\)
\(710\) −421.308 28.6480i −0.593392 0.0403493i
\(711\) 41.0190 + 71.0470i 0.0576920 + 0.0999254i
\(712\) −311.363 + 83.4294i −0.437307 + 0.117176i
\(713\) 196.444 196.444i 0.275517 0.275517i
\(714\) −37.9587 47.1775i −0.0531634 0.0660749i
\(715\) 227.132 + 152.569i 0.317667 + 0.213383i
\(716\) 216.099 374.295i 0.301815 0.522758i
\(717\) −37.9396 + 141.593i −0.0529144 + 0.197479i
\(718\) 221.473 + 59.3434i 0.308458 + 0.0826510i
\(719\) 479.506 + 276.843i 0.666906 + 0.385039i 0.794903 0.606736i \(-0.207521\pi\)
−0.127997 + 0.991775i \(0.540855\pi\)
\(720\) 58.8755 11.5616i 0.0817716 0.0160578i
\(721\) 592.496 + 229.577i 0.821770 + 0.318415i
\(722\) 600.138 + 600.138i 0.831215 + 0.831215i
\(723\) −197.487 737.032i −0.273150 1.01941i
\(724\) 239.495 138.273i 0.330794 0.190984i
\(725\) 368.037 474.813i 0.507638 0.654915i
\(726\) 118.273 204.854i 0.162910 0.282168i
\(727\) 544.208 + 544.208i 0.748566 + 0.748566i 0.974210 0.225644i \(-0.0724485\pi\)
−0.225644 + 0.974210i \(0.572449\pi\)
\(728\) 176.933 + 129.401i 0.243040 + 0.177749i
\(729\) 27.0000i 0.0370370i
\(730\) 712.657 + 243.858i 0.976242 + 0.334052i
\(731\) −28.9554 50.1522i −0.0396107 0.0686077i
\(732\) −79.2459 + 295.750i −0.108259 + 0.404030i
\(733\) 7.94468 + 29.6500i 0.0108386 + 0.0404501i 0.971133 0.238537i \(-0.0766679\pi\)
−0.960295 + 0.278987i \(0.910001\pi\)
\(734\) 27.2314i 0.0371001i
\(735\) 118.747 407.399i 0.161561 0.554285i
\(736\) −100.779 −0.136928
\(737\) 373.971 100.205i 0.507423 0.135964i
\(738\) −79.4296 21.2831i −0.107628 0.0288389i
\(739\) −70.2506 + 40.5592i −0.0950616 + 0.0548839i −0.546777 0.837278i \(-0.684146\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(740\) 309.473 151.676i 0.418207 0.204968i
\(741\) −594.507 −0.802303
\(742\) 607.894 831.188i 0.819265 1.12020i
\(743\) 824.672 824.672i 1.10992 1.10992i 0.116761 0.993160i \(-0.462749\pi\)
0.993160 0.116761i \(-0.0372513\pi\)
\(744\) 66.1596 + 38.1972i 0.0889242 + 0.0513404i
\(745\) 339.277 + 388.783i 0.455405 + 0.521857i
\(746\) 239.265 + 414.420i 0.320731 + 0.555522i
\(747\) −200.785 + 53.8003i −0.268789 + 0.0720218i
\(748\) −24.6855 + 24.6855i −0.0330020 + 0.0330020i
\(749\) −200.509 + 517.477i −0.267702 + 0.690890i
\(750\) 168.237 + 255.825i 0.224316 + 0.341099i
\(751\) 91.6006 158.657i 0.121972 0.211261i −0.798574 0.601897i \(-0.794412\pi\)
0.920545 + 0.390636i \(0.127745\pi\)
\(752\) −32.5353 + 121.423i −0.0432650 + 0.161467i
\(753\) −131.224 35.1613i −0.174268 0.0466950i
\(754\) −325.838 188.123i −0.432146 0.249500i
\(755\) 71.9600 + 366.444i 0.0953112 + 0.485357i
\(756\) −56.6780 + 45.6027i −0.0749709 + 0.0603210i
\(757\) 298.331 + 298.331i 0.394096 + 0.394096i 0.876145 0.482048i \(-0.160107\pi\)
−0.482048 + 0.876145i \(0.660107\pi\)
\(758\) 194.435 + 725.642i 0.256511 + 0.957312i
\(759\) 132.086 76.2600i 0.174027 0.100474i
\(760\) −437.427 29.7441i −0.575562 0.0391369i
\(761\) 16.0986 27.8836i 0.0211546 0.0366408i −0.855254 0.518208i \(-0.826599\pi\)
0.876409 + 0.481568i \(0.159932\pi\)
\(762\) 373.832 + 373.832i 0.490594 + 0.490594i
\(763\) 32.7232 302.201i 0.0428876 0.396069i
\(764\) 307.153i 0.402033i
\(765\)