Properties

Label 210.3.v.b.37.7
Level $210$
Weight $3$
Character 210.37
Analytic conductor $5.722$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [210,3,Mod(37,210)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(210, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("210.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.7
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(3.25594 - 3.79459i) q^{5} +2.44949 q^{6} +(-2.26902 - 6.62205i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(3.25594 - 3.79459i) q^{5} +2.44949 q^{6} +(-2.26902 - 6.62205i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(3.05878 - 6.37526i) q^{10} +(-1.33229 - 2.30759i) q^{11} +(3.34607 - 0.896575i) q^{12} +(-9.16064 + 9.16064i) q^{13} +(-5.52338 - 8.21537i) q^{14} +(7.14835 - 4.88887i) q^{15} +(2.00000 - 3.46410i) q^{16} +(0.724383 - 2.70344i) q^{17} +(4.09808 + 1.09808i) q^{18} +(16.5863 + 9.57608i) q^{19} +(1.84486 - 9.82835i) q^{20} +(-0.827557 - 12.0961i) q^{21} +(-2.66457 - 2.66457i) q^{22} +(9.36480 + 34.9499i) q^{23} +(4.24264 - 2.44949i) q^{24} +(-3.79777 - 24.7099i) q^{25} +(-9.16064 + 15.8667i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-10.5521 - 9.20071i) q^{28} +12.4700i q^{29} +(7.97538 - 9.29480i) q^{30} +(5.33782 + 9.24538i) q^{31} +(1.46410 - 5.46410i) q^{32} +(-1.19449 - 4.45791i) q^{33} -3.95810i q^{34} +(-32.5157 - 12.9510i) q^{35} +6.00000 q^{36} +(21.9577 - 5.88355i) q^{37} +(26.1623 + 7.01018i) q^{38} +(-19.4326 + 11.2194i) q^{39} +(-1.07730 - 14.1010i) q^{40} -1.17994 q^{41} +(-5.55794 - 16.2206i) q^{42} +(2.70577 - 2.70577i) q^{43} +(-4.61517 - 2.66457i) q^{44} +(14.1510 - 4.97472i) q^{45} +(25.5851 + 44.3147i) q^{46} +(-71.7245 + 19.2185i) q^{47} +(4.89898 - 4.89898i) q^{48} +(-38.7031 + 30.0511i) q^{49} +(-14.2323 - 32.3642i) q^{50} +(2.42383 - 4.19820i) q^{51} +(-6.70605 + 25.0273i) q^{52} +(7.83581 + 2.09960i) q^{53} +(6.36396 + 3.67423i) q^{54} +(-13.0942 - 2.45788i) q^{55} +(-17.7821 - 8.70607i) q^{56} +(23.4565 + 23.4565i) q^{57} +(4.56433 + 17.0343i) q^{58} +(-93.6121 + 54.0470i) q^{59} +(7.49244 - 15.6161i) q^{60} +(35.0235 - 60.6625i) q^{61} +(10.6756 + 10.6756i) q^{62} +(4.03799 - 20.6081i) q^{63} -8.00000i q^{64} +(4.93438 + 64.5873i) q^{65} +(-3.26342 - 5.65241i) q^{66} +(4.51996 - 16.8687i) q^{67} +(-1.44877 - 5.40687i) q^{68} +62.6705i q^{69} +(-49.1577 - 5.78980i) q^{70} +66.2750 q^{71} +(8.19615 - 2.19615i) q^{72} +(-34.9749 - 9.37151i) q^{73} +(27.8413 - 16.0742i) q^{74} +(4.72334 - 43.0429i) q^{75} +38.3043 q^{76} +(-12.2580 + 14.0584i) q^{77} +(-22.4389 + 22.4389i) q^{78} +(83.6148 + 48.2750i) q^{79} +(-6.63296 - 18.8681i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-1.61183 + 0.431888i) q^{82} +(-83.4979 + 83.4979i) q^{83} +(-13.5295 - 20.1235i) q^{84} +(-7.89987 - 11.5509i) q^{85} +(2.70577 - 4.68654i) q^{86} +(-5.59014 + 20.8627i) q^{87} +(-7.27974 - 1.95060i) q^{88} +(-125.762 - 72.6089i) q^{89} +(17.5098 - 11.9752i) q^{90} +(81.4478 + 39.8765i) q^{91} +(51.1702 + 51.1702i) q^{92} +(4.78576 + 17.8607i) q^{93} +(-90.9430 + 52.5060i) q^{94} +(90.3410 - 31.7589i) q^{95} +(4.89898 - 8.48528i) q^{96} +(-43.6910 - 43.6910i) q^{97} +(-41.8700 + 55.2169i) q^{98} -7.99371i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{2} - 8 q^{5} + 24 q^{7} + 64 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 16 q^{2} - 8 q^{5} + 24 q^{7} + 64 q^{8} + 12 q^{10} + 16 q^{11} + 32 q^{13} + 48 q^{15} + 64 q^{16} - 56 q^{17} + 48 q^{18} + 16 q^{20} + 32 q^{22} - 28 q^{25} + 32 q^{26} + 72 q^{28} + 36 q^{30} + 112 q^{31} - 64 q^{32} + 12 q^{33} - 112 q^{35} + 192 q^{36} - 52 q^{37} - 8 q^{40} - 336 q^{41} - 312 q^{43} + 12 q^{45} - 212 q^{47} + 96 q^{50} - 144 q^{51} - 32 q^{52} - 96 q^{53} - 312 q^{55} + 96 q^{56} + 48 q^{57} - 96 q^{58} - 24 q^{60} + 216 q^{61} + 224 q^{62} + 36 q^{63} + 248 q^{65} - 24 q^{66} + 128 q^{67} + 112 q^{68} - 264 q^{70} - 848 q^{71} + 96 q^{72} + 84 q^{73} - 144 q^{75} - 324 q^{77} + 48 q^{78} + 32 q^{80} + 144 q^{81} - 168 q^{82} - 416 q^{83} + 536 q^{85} - 312 q^{86} - 72 q^{87} + 32 q^{88} - 24 q^{90} + 504 q^{91} + 168 q^{93} + 168 q^{95} + 488 q^{97} - 328 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 3.25594 3.79459i 0.651187 0.758917i
\(6\) 2.44949 0.408248
\(7\) −2.26902 6.62205i −0.324145 0.946007i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 3.05878 6.37526i 0.305878 0.637526i
\(11\) −1.33229 2.30759i −0.121117 0.209781i 0.799092 0.601209i \(-0.205314\pi\)
−0.920208 + 0.391429i \(0.871981\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) −9.16064 + 9.16064i −0.704664 + 0.704664i −0.965408 0.260744i \(-0.916032\pi\)
0.260744 + 0.965408i \(0.416032\pi\)
\(14\) −5.52338 8.21537i −0.394527 0.586812i
\(15\) 7.14835 4.88887i 0.476557 0.325925i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 0.724383 2.70344i 0.0426108 0.159026i −0.941342 0.337453i \(-0.890434\pi\)
0.983953 + 0.178428i \(0.0571011\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) 16.5863 + 9.57608i 0.872961 + 0.504004i 0.868331 0.495985i \(-0.165193\pi\)
0.00462986 + 0.999989i \(0.498526\pi\)
\(20\) 1.84486 9.82835i 0.0922430 0.491418i
\(21\) −0.827557 12.0961i −0.0394075 0.576004i
\(22\) −2.66457 2.66457i −0.121117 0.121117i
\(23\) 9.36480 + 34.9499i 0.407165 + 1.51956i 0.800027 + 0.599964i \(0.204818\pi\)
−0.392862 + 0.919597i \(0.628515\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) −3.79777 24.7099i −0.151911 0.988394i
\(26\) −9.16064 + 15.8667i −0.352332 + 0.610257i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −10.5521 9.20071i −0.376861 0.328597i
\(29\) 12.4700i 0.429999i 0.976614 + 0.215000i \(0.0689750\pi\)
−0.976614 + 0.215000i \(0.931025\pi\)
\(30\) 7.97538 9.29480i 0.265846 0.309827i
\(31\) 5.33782 + 9.24538i 0.172188 + 0.298238i 0.939184 0.343413i \(-0.111583\pi\)
−0.766997 + 0.641651i \(0.778250\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) −1.19449 4.45791i −0.0361968 0.135088i
\(34\) 3.95810i 0.116415i
\(35\) −32.5157 12.9510i −0.929021 0.370028i
\(36\) 6.00000 0.166667
\(37\) 21.9577 5.88355i 0.593452 0.159015i 0.0504215 0.998728i \(-0.483944\pi\)
0.543030 + 0.839713i \(0.317277\pi\)
\(38\) 26.1623 + 7.01018i 0.688483 + 0.184478i
\(39\) −19.4326 + 11.2194i −0.498273 + 0.287678i
\(40\) −1.07730 14.1010i −0.0269325 0.352526i
\(41\) −1.17994 −0.0287791 −0.0143895 0.999896i \(-0.504580\pi\)
−0.0143895 + 0.999896i \(0.504580\pi\)
\(42\) −5.55794 16.2206i −0.132332 0.386206i
\(43\) 2.70577 2.70577i 0.0629250 0.0629250i −0.674944 0.737869i \(-0.735832\pi\)
0.737869 + 0.674944i \(0.235832\pi\)
\(44\) −4.61517 2.66457i −0.104890 0.0605584i
\(45\) 14.1510 4.97472i 0.314468 0.110549i
\(46\) 25.5851 + 44.3147i 0.556198 + 0.963363i
\(47\) −71.7245 + 19.2185i −1.52605 + 0.408905i −0.921729 0.387834i \(-0.873223\pi\)
−0.604324 + 0.796739i \(0.706557\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) −38.7031 + 30.0511i −0.789859 + 0.613288i
\(50\) −14.2323 32.3642i −0.284646 0.647284i
\(51\) 2.42383 4.19820i 0.0475262 0.0823177i
\(52\) −6.70605 + 25.0273i −0.128963 + 0.481295i
\(53\) 7.83581 + 2.09960i 0.147845 + 0.0396151i 0.331983 0.943285i \(-0.392282\pi\)
−0.184137 + 0.982901i \(0.558949\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) −13.0942 2.45788i −0.238076 0.0446887i
\(56\) −17.7821 8.70607i −0.317538 0.155465i
\(57\) 23.4565 + 23.4565i 0.411518 + 0.411518i
\(58\) 4.56433 + 17.0343i 0.0786953 + 0.293695i
\(59\) −93.6121 + 54.0470i −1.58665 + 0.916050i −0.592791 + 0.805356i \(0.701974\pi\)
−0.993855 + 0.110694i \(0.964693\pi\)
\(60\) 7.49244 15.6161i 0.124874 0.260269i
\(61\) 35.0235 60.6625i 0.574156 0.994467i −0.421977 0.906606i \(-0.638664\pi\)
0.996133 0.0878604i \(-0.0280029\pi\)
\(62\) 10.6756 + 10.6756i 0.172188 + 0.172188i
\(63\) 4.03799 20.6081i 0.0640951 0.327113i
\(64\) 8.00000i 0.125000i
\(65\) 4.93438 + 64.5873i 0.0759136 + 0.993650i
\(66\) −3.26342 5.65241i −0.0494457 0.0856425i
\(67\) 4.51996 16.8687i 0.0674620 0.251772i −0.923957 0.382497i \(-0.875064\pi\)
0.991419 + 0.130726i \(0.0417307\pi\)
\(68\) −1.44877 5.40687i −0.0213054 0.0795128i
\(69\) 62.6705i 0.908267i
\(70\) −49.1577 5.78980i −0.702253 0.0827114i
\(71\) 66.2750 0.933450 0.466725 0.884402i \(-0.345434\pi\)
0.466725 + 0.884402i \(0.345434\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) −34.9749 9.37151i −0.479109 0.128377i 0.0111788 0.999938i \(-0.496442\pi\)
−0.490288 + 0.871561i \(0.663108\pi\)
\(74\) 27.8413 16.0742i 0.376233 0.217218i
\(75\) 4.72334 43.0429i 0.0629778 0.573905i
\(76\) 38.3043 0.504004
\(77\) −12.2580 + 14.0584i −0.159194 + 0.182577i
\(78\) −22.4389 + 22.4389i −0.287678 + 0.287678i
\(79\) 83.6148 + 48.2750i 1.05841 + 0.611076i 0.924993 0.379983i \(-0.124070\pi\)
0.133421 + 0.991059i \(0.457404\pi\)
\(80\) −6.63296 18.8681i −0.0829120 0.235851i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −1.61183 + 0.431888i −0.0196565 + 0.00526693i
\(83\) −83.4979 + 83.4979i −1.00600 + 1.00600i −0.00601630 + 0.999982i \(0.501915\pi\)
−0.999982 + 0.00601630i \(0.998085\pi\)
\(84\) −13.5295 20.1235i −0.161065 0.239565i
\(85\) −7.89987 11.5509i −0.0929397 0.135894i
\(86\) 2.70577 4.68654i 0.0314625 0.0544946i
\(87\) −5.59014 + 20.8627i −0.0642544 + 0.239801i
\(88\) −7.27974 1.95060i −0.0827243 0.0221659i
\(89\) −125.762 72.6089i −1.41306 0.815830i −0.417384 0.908730i \(-0.637053\pi\)
−0.995675 + 0.0928996i \(0.970386\pi\)
\(90\) 17.5098 11.9752i 0.194554 0.133058i
\(91\) 81.4478 + 39.8765i 0.895031 + 0.438204i
\(92\) 51.1702 + 51.1702i 0.556198 + 0.556198i
\(93\) 4.78576 + 17.8607i 0.0514598 + 0.192051i
\(94\) −90.9430 + 52.5060i −0.967479 + 0.558574i
\(95\) 90.3410 31.7589i 0.950958 0.334304i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) −43.6910 43.6910i −0.450422 0.450422i 0.445072 0.895495i \(-0.353178\pi\)
−0.895495 + 0.445072i \(0.853178\pi\)
\(98\) −41.8700 + 55.2169i −0.427245 + 0.563438i
\(99\) 7.99371i 0.0807446i
\(100\) −31.2878 39.0010i −0.312878 0.390010i
\(101\) 41.1858 + 71.3359i 0.407780 + 0.706296i 0.994641 0.103392i \(-0.0329697\pi\)
−0.586861 + 0.809688i \(0.699636\pi\)
\(102\) 1.77437 6.62204i 0.0173958 0.0649219i
\(103\) −18.2409 68.0759i −0.177096 0.660931i −0.996185 0.0872648i \(-0.972187\pi\)
0.819089 0.573666i \(-0.194479\pi\)
\(104\) 36.6425i 0.352332i
\(105\) −48.5941 36.2438i −0.462801 0.345179i
\(106\) 11.4724 0.108230
\(107\) −121.762 + 32.6260i −1.13796 + 0.304916i −0.778132 0.628101i \(-0.783832\pi\)
−0.359831 + 0.933017i \(0.617166\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) 187.044 107.990i 1.71600 0.990731i 0.790079 0.613006i \(-0.210040\pi\)
0.925918 0.377725i \(-0.123294\pi\)
\(110\) −18.7866 + 1.43527i −0.170787 + 0.0130479i
\(111\) 39.3735 0.354716
\(112\) −27.4775 5.38399i −0.245335 0.0480714i
\(113\) −30.7458 + 30.7458i −0.272087 + 0.272087i −0.829940 0.557853i \(-0.811625\pi\)
0.557853 + 0.829940i \(0.311625\pi\)
\(114\) 40.6279 + 23.4565i 0.356385 + 0.205759i
\(115\) 163.112 + 78.2591i 1.41836 + 0.680514i
\(116\) 12.4700 + 21.5986i 0.107500 + 0.186195i
\(117\) −37.5410 + 10.0591i −0.320863 + 0.0859750i
\(118\) −108.094 + 108.094i −0.916050 + 0.916050i
\(119\) −19.5459 + 1.33724i −0.164251 + 0.0112373i
\(120\) 4.51896 24.0744i 0.0376580 0.200620i
\(121\) 56.9500 98.6403i 0.470661 0.815209i
\(122\) 25.6390 95.6860i 0.210156 0.784311i
\(123\) −1.97408 0.528953i −0.0160494 0.00430043i
\(124\) 18.4908 + 10.6756i 0.149119 + 0.0860939i
\(125\) −106.129 66.0427i −0.849032 0.528342i
\(126\) −2.02709 29.6292i −0.0160880 0.235153i
\(127\) −144.611 144.611i −1.13867 1.13867i −0.988689 0.149980i \(-0.952079\pi\)
−0.149980 0.988689i \(-0.547921\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 5.73981 3.31388i 0.0444947 0.0256890i
\(130\) 30.3811 + 86.4217i 0.233701 + 0.664783i
\(131\) 76.1519 131.899i 0.581312 1.00686i −0.414012 0.910271i \(-0.635873\pi\)
0.995324 0.0965906i \(-0.0307938\pi\)
\(132\) −6.52684 6.52684i −0.0494457 0.0494457i
\(133\) 25.7788 131.563i 0.193825 0.989198i
\(134\) 24.6975i 0.184310i
\(135\) 25.9053 1.97913i 0.191891 0.0146602i
\(136\) −3.95810 6.85564i −0.0291037 0.0504091i
\(137\) 63.4914 236.953i 0.463441 1.72959i −0.198566 0.980088i \(-0.563628\pi\)
0.662007 0.749498i \(-0.269705\pi\)
\(138\) 22.9390 + 85.6094i 0.166224 + 0.620358i
\(139\) 137.703i 0.990670i 0.868702 + 0.495335i \(0.164955\pi\)
−0.868702 + 0.495335i \(0.835045\pi\)
\(140\) −69.2699 + 10.0840i −0.494785 + 0.0720282i
\(141\) −128.613 −0.912148
\(142\) 90.5333 24.2583i 0.637558 0.170833i
\(143\) 33.3435 + 8.93437i 0.233172 + 0.0624781i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 47.3184 + 40.6014i 0.326334 + 0.280010i
\(146\) −51.2069 −0.350732
\(147\) −78.2231 + 32.9264i −0.532130 + 0.223989i
\(148\) 32.1483 32.1483i 0.217218 0.217218i
\(149\) 150.312 + 86.7825i 1.00880 + 0.582433i 0.910841 0.412757i \(-0.135434\pi\)
0.0979622 + 0.995190i \(0.468768\pi\)
\(150\) −9.30259 60.5265i −0.0620173 0.403510i
\(151\) 115.430 + 199.931i 0.764440 + 1.32405i 0.940542 + 0.339677i \(0.110318\pi\)
−0.176102 + 0.984372i \(0.556349\pi\)
\(152\) 52.3247 14.0204i 0.344241 0.0922392i
\(153\) 5.93716 5.93716i 0.0388049 0.0388049i
\(154\) −11.5990 + 23.6909i −0.0753179 + 0.153837i
\(155\) 52.4620 + 9.84754i 0.338465 + 0.0635325i
\(156\) −22.4389 + 38.8653i −0.143839 + 0.249136i
\(157\) 51.1253 190.802i 0.325639 1.21530i −0.588029 0.808840i \(-0.700096\pi\)
0.913668 0.406461i \(-0.133237\pi\)
\(158\) 131.890 + 35.3398i 0.834745 + 0.223669i
\(159\) 12.1683 + 7.02539i 0.0765304 + 0.0441849i
\(160\) −15.9670 23.3464i −0.0997936 0.145915i
\(161\) 210.191 141.316i 1.30553 0.877740i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −15.0619 56.2117i −0.0924042 0.344857i 0.904209 0.427091i \(-0.140461\pi\)
−0.996613 + 0.0822332i \(0.973795\pi\)
\(164\) −2.04372 + 1.17994i −0.0124617 + 0.00719476i
\(165\) −20.8051 9.98207i −0.126092 0.0604974i
\(166\) −83.4979 + 144.623i −0.502999 + 0.871220i
\(167\) 133.293 + 133.293i 0.798159 + 0.798159i 0.982805 0.184646i \(-0.0591138\pi\)
−0.184646 + 0.982805i \(0.559114\pi\)
\(168\) −25.8473 22.5370i −0.153853 0.134149i
\(169\) 1.16549i 0.00689640i
\(170\) −15.0194 12.8873i −0.0883492 0.0758078i
\(171\) 28.7282 + 49.7588i 0.168001 + 0.290987i
\(172\) 1.98076 7.39231i 0.0115161 0.0429786i
\(173\) −40.8051 152.287i −0.235868 0.880270i −0.977756 0.209746i \(-0.932736\pi\)
0.741888 0.670523i \(-0.233930\pi\)
\(174\) 30.5451i 0.175546i
\(175\) −155.013 + 81.2161i −0.885787 + 0.464092i
\(176\) −10.6583 −0.0605584
\(177\) −180.845 + 48.4572i −1.02172 + 0.273769i
\(178\) −198.371 53.1534i −1.11445 0.298615i
\(179\) 99.0632 57.1941i 0.553425 0.319520i −0.197077 0.980388i \(-0.563145\pi\)
0.750502 + 0.660868i \(0.229812\pi\)
\(180\) 19.5356 22.7675i 0.108531 0.126486i
\(181\) −138.045 −0.762680 −0.381340 0.924435i \(-0.624537\pi\)
−0.381340 + 0.924435i \(0.624537\pi\)
\(182\) 125.856 + 24.6604i 0.691515 + 0.135497i
\(183\) 85.7897 85.7897i 0.468796 0.468796i
\(184\) 88.6294 + 51.1702i 0.481682 + 0.278099i
\(185\) 49.1673 102.477i 0.265769 0.553929i
\(186\) 13.0749 + 22.6465i 0.0702954 + 0.121755i
\(187\) −7.20350 + 1.93017i −0.0385214 + 0.0103218i
\(188\) −105.012 + 105.012i −0.558574 + 0.558574i
\(189\) 15.9941 32.6679i 0.0846247 0.172846i
\(190\) 111.784 76.4506i 0.588335 0.402371i
\(191\) 58.2285 100.855i 0.304861 0.528035i −0.672369 0.740216i \(-0.734723\pi\)
0.977230 + 0.212181i \(0.0680567\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) −254.287 68.1361i −1.31755 0.353037i −0.469491 0.882937i \(-0.655563\pi\)
−0.848060 + 0.529900i \(0.822229\pi\)
\(194\) −75.6750 43.6910i −0.390077 0.225211i
\(195\) −20.6983 + 110.269i −0.106145 + 0.565480i
\(196\) −36.9846 + 90.7532i −0.188697 + 0.463026i
\(197\) 87.0401 + 87.0401i 0.441828 + 0.441828i 0.892626 0.450798i \(-0.148861\pi\)
−0.450798 + 0.892626i \(0.648861\pi\)
\(198\) −2.92590 10.9196i −0.0147773 0.0551496i
\(199\) 327.885 189.304i 1.64766 0.951278i 0.669664 0.742664i \(-0.266438\pi\)
0.977998 0.208615i \(-0.0668954\pi\)
\(200\) −57.0152 41.8242i −0.285076 0.209121i
\(201\) 15.1241 26.1957i 0.0752441 0.130327i
\(202\) 82.3716 + 82.3716i 0.407780 + 0.407780i
\(203\) 82.5768 28.2946i 0.406782 0.139382i
\(204\) 9.69534i 0.0475262i
\(205\) −3.84181 + 4.47739i −0.0187405 + 0.0218409i
\(206\) −49.8350 86.3168i −0.241918 0.419013i
\(207\) −28.0944 + 104.850i −0.135722 + 0.506520i
\(208\) 13.4121 + 50.0546i 0.0644813 + 0.240647i
\(209\) 51.0323i 0.244174i
\(210\) −79.6469 31.7233i −0.379271 0.151063i
\(211\) −282.104 −1.33698 −0.668492 0.743719i \(-0.733060\pi\)
−0.668492 + 0.743719i \(0.733060\pi\)
\(212\) 15.6716 4.19920i 0.0739227 0.0198075i
\(213\) 110.880 + 29.7102i 0.520564 + 0.139485i
\(214\) −154.388 + 89.1360i −0.721440 + 0.416523i
\(215\) −1.45747 19.0771i −0.00677892 0.0887308i
\(216\) 14.6969 0.0680414
\(217\) 49.1118 56.3253i 0.226322 0.259563i
\(218\) 215.979 215.979i 0.990731 0.990731i
\(219\) −54.3131 31.3577i −0.248005 0.143186i
\(220\) −25.1376 + 8.83700i −0.114262 + 0.0401682i
\(221\) 18.1294 + 31.4010i 0.0820334 + 0.142086i
\(222\) 53.7852 14.4117i 0.242276 0.0649176i
\(223\) −284.006 + 284.006i −1.27357 + 1.27357i −0.329365 + 0.944203i \(0.606835\pi\)
−0.944203 + 0.329365i \(0.893165\pi\)
\(224\) −39.5056 + 2.70279i −0.176364 + 0.0120660i
\(225\) 27.1979 69.8947i 0.120880 0.310643i
\(226\) −30.7458 + 53.2533i −0.136043 + 0.235634i
\(227\) −67.3074 + 251.195i −0.296508 + 1.10658i 0.643504 + 0.765443i \(0.277480\pi\)
−0.940012 + 0.341141i \(0.889187\pi\)
\(228\) 64.0844 + 17.1714i 0.281072 + 0.0753130i
\(229\) −70.9480 40.9618i −0.309817 0.178873i 0.337028 0.941495i \(-0.390578\pi\)
−0.646844 + 0.762622i \(0.723912\pi\)
\(230\) 251.459 + 47.2009i 1.09330 + 0.205221i
\(231\) −26.8102 + 18.0251i −0.116061 + 0.0780307i
\(232\) 24.9400 + 24.9400i 0.107500 + 0.107500i
\(233\) −0.0192707 0.0719192i −8.27069e−5 0.000308666i 0.965884 0.258973i \(-0.0833842\pi\)
−0.965967 + 0.258665i \(0.916718\pi\)
\(234\) −47.6001 + 27.4819i −0.203419 + 0.117444i
\(235\) −160.604 + 334.739i −0.683421 + 1.42442i
\(236\) −108.094 + 187.224i −0.458025 + 0.793323i
\(237\) 118.249 + 118.249i 0.498941 + 0.498941i
\(238\) −26.2108 + 8.98101i −0.110129 + 0.0377353i
\(239\) 214.333i 0.896789i 0.893836 + 0.448395i \(0.148004\pi\)
−0.893836 + 0.448395i \(0.851996\pi\)
\(240\) −2.63884 34.5404i −0.0109952 0.143918i
\(241\) 8.97579 + 15.5465i 0.0372439 + 0.0645084i 0.884047 0.467399i \(-0.154809\pi\)
−0.846803 + 0.531907i \(0.821475\pi\)
\(242\) 41.6903 155.590i 0.172274 0.642935i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 140.094i 0.574156i
\(245\) −11.9833 + 244.707i −0.0489115 + 0.998803i
\(246\) −2.89025 −0.0117490
\(247\) −239.664 + 64.2177i −0.970298 + 0.259991i
\(248\) 29.1664 + 7.81512i 0.117606 + 0.0315126i
\(249\) −177.126 + 102.264i −0.711348 + 0.410697i
\(250\) −169.148 51.3702i −0.676593 0.205481i
\(251\) 199.148 0.793420 0.396710 0.917944i \(-0.370152\pi\)
0.396710 + 0.917944i \(0.370152\pi\)
\(252\) −13.6141 39.7323i −0.0540242 0.157668i
\(253\) 68.1733 68.1733i 0.269460 0.269460i
\(254\) −250.473 144.611i −0.986116 0.569334i
\(255\) −8.03860 22.8665i −0.0315239 0.0896727i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 31.5331 8.44926i 0.122697 0.0328765i −0.196948 0.980414i \(-0.563103\pi\)
0.319645 + 0.947537i \(0.396436\pi\)
\(258\) 6.62777 6.62777i 0.0256890 0.0256890i
\(259\) −88.7836 132.055i −0.342794 0.509866i
\(260\) 73.1339 + 106.934i 0.281284 + 0.411285i
\(261\) −18.7050 + 32.3979i −0.0716665 + 0.124130i
\(262\) 55.7470 208.051i 0.212775 0.794087i
\(263\) 60.8104 + 16.2941i 0.231218 + 0.0619547i 0.372568 0.928005i \(-0.378477\pi\)
−0.141350 + 0.989960i \(0.545144\pi\)
\(264\) −11.3048 6.52684i −0.0428213 0.0247229i
\(265\) 33.4800 22.8975i 0.126340 0.0864056i
\(266\) −12.9411 189.155i −0.0486506 0.711107i
\(267\) −177.855 177.855i −0.666123 0.666123i
\(268\) −9.03991 33.7374i −0.0337310 0.125886i
\(269\) −254.691 + 147.046i −0.946807 + 0.546639i −0.892088 0.451863i \(-0.850760\pi\)
−0.0547192 + 0.998502i \(0.517426\pi\)
\(270\) 34.6628 12.1855i 0.128381 0.0451316i
\(271\) −137.975 + 238.979i −0.509132 + 0.881843i 0.490812 + 0.871266i \(0.336700\pi\)
−0.999944 + 0.0105773i \(0.996633\pi\)
\(272\) −7.91621 7.91621i −0.0291037 0.0291037i
\(273\) 118.389 + 103.227i 0.433658 + 0.378120i
\(274\) 346.924i 1.26614i
\(275\) −51.9604 + 41.6843i −0.188947 + 0.151579i
\(276\) 62.6705 + 108.548i 0.227067 + 0.393291i
\(277\) −85.9356 + 320.716i −0.310237 + 1.15782i 0.618106 + 0.786095i \(0.287900\pi\)
−0.928343 + 0.371725i \(0.878766\pi\)
\(278\) 50.4029 + 188.106i 0.181305 + 0.676641i
\(279\) 32.0269i 0.114792i
\(280\) −90.9334 + 39.1295i −0.324762 + 0.139748i
\(281\) −386.157 −1.37423 −0.687113 0.726551i \(-0.741122\pi\)
−0.687113 + 0.726551i \(0.741122\pi\)
\(282\) −175.688 + 47.0756i −0.623009 + 0.166935i
\(283\) −150.703 40.3806i −0.532518 0.142688i −0.0174672 0.999847i \(-0.505560\pi\)
−0.515051 + 0.857160i \(0.672227\pi\)
\(284\) 114.792 66.2750i 0.404196 0.233363i
\(285\) 165.381 12.6349i 0.580283 0.0443329i
\(286\) 48.8183 0.170693
\(287\) 2.67731 + 7.81363i 0.00932860 + 0.0272252i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 243.498 + 140.583i 0.842552 + 0.486448i
\(290\) 79.4993 + 38.1429i 0.274135 + 0.131527i
\(291\) −53.5103 92.6825i −0.183884 0.318497i
\(292\) −69.9499 + 18.7430i −0.239554 + 0.0641884i
\(293\) 86.2939 86.2939i 0.294519 0.294519i −0.544344 0.838862i \(-0.683221\pi\)
0.838862 + 0.544344i \(0.183221\pi\)
\(294\) −94.8029 + 73.6099i −0.322459 + 0.250374i
\(295\) −99.7091 + 531.192i −0.337997 + 1.80065i
\(296\) 32.1483 55.6825i 0.108609 0.188117i
\(297\) 3.58348 13.3737i 0.0120656 0.0450294i
\(298\) 237.094 + 63.5292i 0.795618 + 0.213185i
\(299\) −405.951 234.376i −1.35770 0.783866i
\(300\) −34.8618 79.2758i −0.116206 0.264253i
\(301\) −24.0572 11.7783i −0.0799243 0.0391306i
\(302\) 230.861 + 230.861i 0.764440 + 0.764440i
\(303\) 36.9262 + 137.810i 0.121869 + 0.454820i
\(304\) 66.3450 38.3043i 0.218240 0.126001i
\(305\) −116.155 330.413i −0.380835 1.08332i
\(306\) 5.93716 10.2835i 0.0194025 0.0336061i
\(307\) 216.926 + 216.926i 0.706601 + 0.706601i 0.965819 0.259218i \(-0.0834648\pi\)
−0.259218 + 0.965819i \(0.583465\pi\)
\(308\) −7.17301 + 36.6079i −0.0232890 + 0.118857i
\(309\) 122.070i 0.395050i
\(310\) 75.2689 5.75044i 0.242803 0.0185498i
\(311\) −118.412 205.096i −0.380748 0.659474i 0.610422 0.792077i \(-0.291000\pi\)
−0.991169 + 0.132603i \(0.957667\pi\)
\(312\) −16.4264 + 61.3042i −0.0526487 + 0.196488i
\(313\) −93.9171 350.504i −0.300055 1.11982i −0.937119 0.349009i \(-0.886518\pi\)
0.637065 0.770810i \(-0.280148\pi\)
\(314\) 279.354i 0.889662i
\(315\) −65.0518 82.4212i −0.206514 0.261655i
\(316\) 193.100 0.611076
\(317\) −404.457 + 108.374i −1.27589 + 0.341874i −0.832285 0.554348i \(-0.812968\pi\)
−0.443606 + 0.896222i \(0.646301\pi\)
\(318\) 19.1937 + 5.14294i 0.0603576 + 0.0161728i
\(319\) 28.7755 16.6136i 0.0902055 0.0520801i
\(320\) −30.3567 26.0475i −0.0948647 0.0813984i
\(321\) −218.338 −0.680180
\(322\) 235.401 269.977i 0.731059 0.838437i
\(323\) 37.9031 37.9031i 0.117347 0.117347i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 261.148 + 191.568i 0.803532 + 0.589440i
\(326\) −41.1499 71.2736i −0.126227 0.218631i
\(327\) 361.340 96.8209i 1.10502 0.296088i
\(328\) −2.35988 + 2.35988i −0.00719476 + 0.00719476i
\(329\) 290.010 + 431.356i 0.881490 + 1.31111i
\(330\) −32.0740 6.02055i −0.0971940 0.0182441i
\(331\) 137.911 238.870i 0.416651 0.721660i −0.578949 0.815364i \(-0.696537\pi\)
0.995600 + 0.0937031i \(0.0298704\pi\)
\(332\) −61.1247 + 228.120i −0.184110 + 0.687110i
\(333\) 65.8731 + 17.6507i 0.197817 + 0.0530050i
\(334\) 230.870 + 133.293i 0.691226 + 0.399080i
\(335\) −49.2931 72.0748i −0.147143 0.215149i
\(336\) −43.5572 21.3254i −0.129634 0.0634685i
\(337\) 353.069 + 353.069i 1.04768 + 1.04768i 0.998805 + 0.0488767i \(0.0155642\pi\)
0.0488767 + 0.998805i \(0.484436\pi\)
\(338\) 0.426600 + 1.59209i 0.00126213 + 0.00471033i
\(339\) −65.2217 + 37.6558i −0.192394 + 0.111079i
\(340\) −25.2339 12.1070i −0.0742174 0.0356087i
\(341\) 14.2230 24.6350i 0.0417097 0.0722433i
\(342\) 57.4565 + 57.4565i 0.168001 + 0.168001i
\(343\) 286.818 + 188.107i 0.836204 + 0.548418i
\(344\) 10.8231i 0.0314625i
\(345\) 237.808 + 204.051i 0.689300 + 0.591452i
\(346\) −111.482 193.092i −0.322201 0.558069i
\(347\) 153.997 574.723i 0.443794 1.65626i −0.275306 0.961357i \(-0.588779\pi\)
0.719100 0.694906i \(-0.244554\pi\)
\(348\) 11.1803 + 41.7254i 0.0321272 + 0.119900i
\(349\) 455.965i 1.30649i −0.757147 0.653245i \(-0.773407\pi\)
0.757147 0.653245i \(-0.226593\pi\)
\(350\) −182.024 + 167.682i −0.520069 + 0.479091i
\(351\) −67.3167 −0.191785
\(352\) −14.5595 + 3.90120i −0.0413622 + 0.0110830i
\(353\) 274.359 + 73.5143i 0.777221 + 0.208256i 0.625559 0.780177i \(-0.284871\pi\)
0.151662 + 0.988432i \(0.451537\pi\)
\(354\) −229.302 + 132.387i −0.647745 + 0.373976i
\(355\) 215.787 251.486i 0.607851 0.708411i
\(356\) −290.436 −0.815830
\(357\) −33.3004 6.52495i −0.0932786 0.0182772i
\(358\) 114.388 114.388i 0.319520 0.319520i
\(359\) 270.053 + 155.915i 0.752237 + 0.434304i 0.826502 0.562934i \(-0.190328\pi\)
−0.0742647 + 0.997239i \(0.523661\pi\)
\(360\) 18.3527 38.2515i 0.0509796 0.106254i
\(361\) 2.90262 + 5.02749i 0.00804050 + 0.0139266i
\(362\) −188.573 + 50.5280i −0.520920 + 0.139580i
\(363\) 139.499 139.499i 0.384293 0.384293i
\(364\) 180.948 12.3796i 0.497111 0.0340100i
\(365\) −149.437 + 102.202i −0.409417 + 0.280007i
\(366\) 85.7897 148.592i 0.234398 0.405989i
\(367\) 59.7822 223.110i 0.162894 0.607930i −0.835405 0.549635i \(-0.814767\pi\)
0.998299 0.0582952i \(-0.0185665\pi\)
\(368\) 139.800 + 37.4592i 0.379890 + 0.101791i
\(369\) −3.06558 1.76991i −0.00830780 0.00479651i
\(370\) 29.6546 157.983i 0.0801475 0.426980i
\(371\) −3.87594 56.6531i −0.0104473 0.152704i
\(372\) 26.1499 + 26.1499i 0.0702954 + 0.0702954i
\(373\) −140.219 523.306i −0.375923 1.40296i −0.851991 0.523556i \(-0.824605\pi\)
0.476068 0.879409i \(-0.342062\pi\)
\(374\) −9.13367 + 5.27332i −0.0244216 + 0.0140998i
\(375\) −147.951 158.068i −0.394536 0.421515i
\(376\) −105.012 + 181.886i −0.279287 + 0.483739i
\(377\) −114.233 114.233i −0.303005 0.303005i
\(378\) 9.89102 50.4794i 0.0261667 0.133543i
\(379\) 454.147i 1.19828i −0.800645 0.599139i \(-0.795510\pi\)
0.800645 0.599139i \(-0.204490\pi\)
\(380\) 124.716 145.349i 0.328201 0.382497i
\(381\) −177.111 306.766i −0.464860 0.805160i
\(382\) 42.6262 159.083i 0.111587 0.416448i
\(383\) 51.1047 + 190.725i 0.133433 + 0.497977i 0.999999 0.00108386i \(-0.000345004\pi\)
−0.866567 + 0.499061i \(0.833678\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 13.4347 + 92.2872i 0.0348953 + 0.239707i
\(386\) −372.303 −0.964514
\(387\) 11.0885 2.97115i 0.0286524 0.00767738i
\(388\) −119.366 31.9840i −0.307644 0.0824330i
\(389\) −39.8246 + 22.9928i −0.102377 + 0.0591074i −0.550314 0.834958i \(-0.685492\pi\)
0.447937 + 0.894065i \(0.352159\pi\)
\(390\) 12.0867 + 158.206i 0.0309916 + 0.405656i
\(391\) 101.269 0.258999
\(392\) −17.3040 + 137.508i −0.0441429 + 0.350787i
\(393\) 186.533 186.533i 0.474639 0.474639i
\(394\) 150.758 + 87.0401i 0.382634 + 0.220914i
\(395\) 455.428 160.103i 1.15298 0.405324i
\(396\) −7.99371 13.8455i −0.0201861 0.0349634i
\(397\) 565.506 151.527i 1.42445 0.381680i 0.537388 0.843335i \(-0.319411\pi\)
0.887059 + 0.461655i \(0.152744\pi\)
\(398\) 378.609 378.609i 0.951278 0.951278i
\(399\) 102.107 208.553i 0.255907 0.522690i
\(400\) −93.1930 36.2639i −0.232982 0.0906596i
\(401\) −203.933 + 353.222i −0.508561 + 0.880853i 0.491390 + 0.870940i \(0.336489\pi\)
−0.999951 + 0.00991335i \(0.996844\pi\)
\(402\) 11.0716 41.3197i 0.0275413 0.102785i
\(403\) −133.591 35.7957i −0.331492 0.0888231i
\(404\) 142.672 + 82.3716i 0.353148 + 0.203890i
\(405\) 44.2276 + 8.30187i 0.109204 + 0.0204984i
\(406\) 102.445 68.8764i 0.252329 0.169646i
\(407\) −42.8307 42.8307i −0.105235 0.105235i
\(408\) −3.54874 13.2441i −0.00869789 0.0324610i
\(409\) −273.205 + 157.735i −0.667983 + 0.385660i −0.795312 0.606201i \(-0.792693\pi\)
0.127329 + 0.991861i \(0.459360\pi\)
\(410\) −3.60918 + 7.52243i −0.00880287 + 0.0183474i
\(411\) 212.446 367.968i 0.516901 0.895299i
\(412\) −99.6700 99.6700i −0.241918 0.241918i
\(413\) 570.309 + 497.270i 1.38089 + 1.20404i
\(414\) 153.511i 0.370799i
\(415\) 44.9762 + 588.703i 0.108376 + 1.41856i
\(416\) 36.6425 + 63.4667i 0.0880830 + 0.152564i
\(417\) −61.7307 + 230.382i −0.148035 + 0.552475i
\(418\) −18.6791 69.7114i −0.0446869 0.166774i
\(419\) 661.489i 1.57873i −0.613922 0.789367i \(-0.710409\pi\)
0.613922 0.789367i \(-0.289591\pi\)
\(420\) −120.411 14.1820i −0.286693 0.0337668i
\(421\) −392.108 −0.931372 −0.465686 0.884950i \(-0.654192\pi\)
−0.465686 + 0.884950i \(0.654192\pi\)
\(422\) −385.361 + 103.257i −0.913177 + 0.244685i
\(423\) −215.173 57.6556i −0.508684 0.136302i
\(424\) 19.8708 11.4724i 0.0468651 0.0270576i
\(425\) −69.5525 7.63239i −0.163653 0.0179586i
\(426\) 162.340 0.381079
\(427\) −481.179 94.2831i −1.12688 0.220804i
\(428\) −178.272 + 178.272i −0.416523 + 0.416523i
\(429\) 51.7797 + 29.8950i 0.120698 + 0.0696853i
\(430\) −8.97365 25.5264i −0.0208689 0.0593636i
\(431\) 21.8126 + 37.7805i 0.0506093 + 0.0876579i 0.890220 0.455530i \(-0.150550\pi\)
−0.839611 + 0.543188i \(0.817217\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) 527.265 527.265i 1.21770 1.21770i 0.249268 0.968434i \(-0.419810\pi\)
0.968434 0.249268i \(-0.0801901\pi\)
\(434\) 46.4714 94.9179i 0.107077 0.218705i
\(435\) 60.9641 + 89.1398i 0.140147 + 0.204919i
\(436\) 215.979 374.087i 0.495365 0.857998i
\(437\) −179.356 + 669.366i −0.410426 + 1.53173i
\(438\) −85.6708 22.9554i −0.195595 0.0524096i
\(439\) 307.063 + 177.283i 0.699459 + 0.403833i 0.807146 0.590352i \(-0.201011\pi\)
−0.107687 + 0.994185i \(0.534344\pi\)
\(440\) −31.1041 + 21.2726i −0.0706911 + 0.0483468i
\(441\) −145.630 + 20.0204i −0.330227 + 0.0453977i
\(442\) 36.2588 + 36.2588i 0.0820334 + 0.0820334i
\(443\) −156.144 582.736i −0.352469 1.31543i −0.883640 0.468167i \(-0.844915\pi\)
0.531171 0.847265i \(-0.321752\pi\)
\(444\) 68.1969 39.3735i 0.153597 0.0886790i
\(445\) −684.995 + 240.806i −1.53931 + 0.541137i
\(446\) −284.006 + 491.912i −0.636784 + 1.10294i
\(447\) 212.573 + 212.573i 0.475554 + 0.475554i
\(448\) −52.9764 + 18.1521i −0.118251 + 0.0405182i
\(449\) 304.047i 0.677165i 0.940937 + 0.338583i \(0.109947\pi\)
−0.940937 + 0.338583i \(0.890053\pi\)
\(450\) 11.5698 105.433i 0.0257106 0.234296i
\(451\) 1.57202 + 2.72282i 0.00348563 + 0.00603728i
\(452\) −22.5075 + 83.9991i −0.0497954 + 0.185839i
\(453\) 103.492 + 386.238i 0.228459 + 0.852622i
\(454\) 367.774i 0.810076i
\(455\) 416.504 179.225i 0.915393 0.393902i
\(456\) 93.8260 0.205759
\(457\) −248.101 + 66.4786i −0.542891 + 0.145467i −0.519835 0.854267i \(-0.674006\pi\)
−0.0230567 + 0.999734i \(0.507340\pi\)
\(458\) −111.910 29.9861i −0.244345 0.0654719i
\(459\) 12.5946 7.27150i 0.0274392 0.0158421i
\(460\) 360.777 27.5629i 0.784297 0.0599193i
\(461\) −528.700 −1.14685 −0.573427 0.819257i \(-0.694386\pi\)
−0.573427 + 0.819257i \(0.694386\pi\)
\(462\) −30.0258 + 34.4359i −0.0649909 + 0.0745367i
\(463\) −415.206 + 415.206i −0.896773 + 0.896773i −0.995149 0.0983763i \(-0.968635\pi\)
0.0983763 + 0.995149i \(0.468635\pi\)
\(464\) 43.1973 + 24.9400i 0.0930975 + 0.0537499i
\(465\) 83.3561 + 39.9933i 0.179260 + 0.0860071i
\(466\) −0.0526485 0.0911900i −0.000112980 0.000195687i
\(467\) −409.645 + 109.764i −0.877185 + 0.235041i −0.669192 0.743089i \(-0.733360\pi\)
−0.207993 + 0.978130i \(0.566693\pi\)
\(468\) −54.9638 + 54.9638i −0.117444 + 0.117444i
\(469\) −121.961 + 8.34402i −0.260045 + 0.0177911i
\(470\) −96.8662 + 516.047i −0.206098 + 1.09797i
\(471\) 171.069 296.300i 0.363203 0.629086i
\(472\) −79.1302 + 295.318i −0.167649 + 0.625674i
\(473\) −9.84867 2.63894i −0.0208217 0.00557916i
\(474\) 204.813 + 118.249i 0.432096 + 0.249471i
\(475\) 173.633 446.212i 0.365543 0.939393i
\(476\) −32.5173 + 21.8621i −0.0683137 + 0.0459288i
\(477\) 17.2086 + 17.2086i 0.0360768 + 0.0360768i
\(478\) 78.4512 + 292.784i 0.164124 + 0.612518i
\(479\) −225.668 + 130.289i −0.471123 + 0.272003i −0.716710 0.697372i \(-0.754353\pi\)
0.245587 + 0.969375i \(0.421019\pi\)
\(480\) −16.2474 46.2171i −0.0338487 0.0962857i
\(481\) −147.250 + 255.044i −0.306132 + 0.530236i
\(482\) 17.9516 + 17.9516i 0.0372439 + 0.0372439i
\(483\) 415.007 142.200i 0.859228 0.294411i
\(484\) 227.800i 0.470661i
\(485\) −308.044 + 23.5342i −0.635142 + 0.0485241i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) 122.604 457.565i 0.251754 0.939558i −0.718114 0.695925i \(-0.754994\pi\)
0.969868 0.243632i \(-0.0783390\pi\)
\(488\) −51.2780 191.372i −0.105078 0.392156i
\(489\) 100.796i 0.206127i
\(490\) 73.1994 + 338.662i 0.149386 + 0.691147i
\(491\) 149.141 0.303750 0.151875 0.988400i \(-0.451469\pi\)
0.151875 + 0.988400i \(0.451469\pi\)
\(492\) −3.94816 + 1.05791i −0.00802471 + 0.00215022i
\(493\) 33.7118 + 9.03304i 0.0683809 + 0.0183226i
\(494\) −303.881 + 175.446i −0.615144 + 0.355154i
\(495\) −30.3328 26.0270i −0.0612784 0.0525798i
\(496\) 42.7026 0.0860939
\(497\) −150.379 438.876i −0.302574 0.883050i
\(498\) −204.527 + 204.527i −0.410697 + 0.410697i
\(499\) −298.044 172.076i −0.597282 0.344841i 0.170690 0.985325i \(-0.445400\pi\)
−0.767971 + 0.640484i \(0.778734\pi\)
\(500\) −249.863 8.26042i −0.499727 0.0165208i
\(501\) 163.249 + 282.756i 0.325847 + 0.564384i
\(502\) 272.042 72.8933i 0.541916 0.145206i
\(503\) −392.676 + 392.676i −0.780667 + 0.780667i −0.979943 0.199276i \(-0.936141\pi\)
0.199276 + 0.979943i \(0.436141\pi\)
\(504\) −33.1403 49.2922i −0.0657545 0.0978020i
\(505\) 404.788 + 75.9820i 0.801561 + 0.150459i
\(506\) 68.1733 118.080i 0.134730 0.233359i
\(507\) −0.522476 + 1.94991i −0.00103052 + 0.00384597i
\(508\) −395.084 105.863i −0.777725 0.208391i
\(509\) 4.48117 + 2.58721i 0.00880388 + 0.00508292i 0.504395 0.863473i \(-0.331715\pi\)
−0.495592 + 0.868556i \(0.665049\pi\)
\(510\) −19.3507 28.2939i −0.0379425 0.0554783i
\(511\) 17.3002 + 252.870i 0.0338556 + 0.494853i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 25.7570 + 96.1266i 0.0502086 + 0.187381i
\(514\) 39.9823 23.0838i 0.0777866 0.0449101i
\(515\) −317.711 152.434i −0.616914 0.295989i
\(516\) 6.62777 11.4796i 0.0128445 0.0222473i
\(517\) 139.906 + 139.906i 0.270611 + 0.270611i
\(518\) −169.616 147.894i −0.327445 0.285509i
\(519\) 273.073i 0.526152i
\(520\) 139.043 + 119.306i 0.267391 + 0.229434i
\(521\) 330.348 + 572.180i 0.634065 + 1.09823i 0.986712 + 0.162477i \(0.0519484\pi\)
−0.352647 + 0.935756i \(0.614718\pi\)
\(522\) −13.6930 + 51.1029i −0.0262318 + 0.0978983i
\(523\) 164.951 + 615.606i 0.315394 + 1.17707i 0.923622 + 0.383305i \(0.125214\pi\)
−0.608228 + 0.793763i \(0.708119\pi\)
\(524\) 304.607i 0.581312i
\(525\) −295.750 + 66.3869i −0.563332 + 0.126451i
\(526\) 89.0325 0.169263
\(527\) 28.8609 7.73326i 0.0547646 0.0146741i
\(528\) −17.8317 4.77798i −0.0337721 0.00904920i
\(529\) −675.669 + 390.098i −1.27726 + 0.737425i
\(530\) 37.3535 43.5331i 0.0704782 0.0821379i
\(531\) −324.282 −0.610700
\(532\) −86.9132 253.653i −0.163371 0.476792i
\(533\) 10.8090 10.8090i 0.0202796 0.0202796i
\(534\) −308.054 177.855i −0.576879 0.333061i
\(535\) −272.647 + 568.265i −0.509621 + 1.06218i
\(536\) −24.6975 42.7773i −0.0460774 0.0798084i
\(537\) 191.375 51.2789i 0.356379 0.0954914i
\(538\) −294.092 + 294.092i −0.546639 + 0.546639i
\(539\) 120.909 + 49.2741i 0.224321 + 0.0914176i
\(540\) 42.8901 29.3332i 0.0794261 0.0543208i
\(541\) 363.828 630.169i 0.672511 1.16482i −0.304679 0.952455i \(-0.598549\pi\)
0.977190 0.212368i \(-0.0681175\pi\)
\(542\) −101.005 + 376.954i −0.186355 + 0.695488i
\(543\) −230.954 61.8839i −0.425330 0.113967i
\(544\) −13.7113 7.91621i −0.0252046 0.0145519i
\(545\) 199.226 1061.36i 0.365552 1.94745i
\(546\) 199.506 + 97.6772i 0.365395 + 0.178896i
\(547\) −157.847 157.847i −0.288568 0.288568i 0.547946 0.836514i \(-0.315410\pi\)
−0.836514 + 0.547946i \(0.815410\pi\)
\(548\) −126.983 473.906i −0.231720 0.864793i
\(549\) 181.987 105.070i 0.331489 0.191385i
\(550\) −55.7217 + 75.9606i −0.101312 + 0.138110i
\(551\) −119.413 + 206.830i −0.216721 + 0.375372i
\(552\) 125.341 + 125.341i 0.227067 + 0.227067i
\(553\) 129.956 663.238i 0.235002 1.19935i
\(554\) 469.561i 0.847583i
\(555\) 128.198 149.406i 0.230987 0.269200i
\(556\) 137.703 + 238.509i 0.247668 + 0.428973i
\(557\) −67.5136 + 251.964i −0.121209 + 0.452359i −0.999676 0.0254439i \(-0.991900\pi\)
0.878467 + 0.477803i \(0.158567\pi\)
\(558\) 11.7227 + 43.7496i 0.0210084 + 0.0784043i
\(559\) 49.5732i 0.0886820i
\(560\) −109.895 + 86.7358i −0.196241 + 0.154885i
\(561\) −12.9170 −0.0230249
\(562\) −527.501 + 141.343i −0.938613 + 0.251501i
\(563\) −976.421 261.631i −1.73432 0.464709i −0.753148 0.657851i \(-0.771466\pi\)
−0.981171 + 0.193142i \(0.938132\pi\)
\(564\) −222.764 + 128.613i −0.394972 + 0.228037i
\(565\) 16.5613 + 216.774i 0.0293120 + 0.383671i
\(566\) −220.644 −0.389830
\(567\) 41.4032 47.4845i 0.0730215 0.0837469i
\(568\) 132.550 132.550i 0.233363 0.233363i
\(569\) 232.943 + 134.490i 0.409391 + 0.236362i 0.690528 0.723306i \(-0.257378\pi\)
−0.281137 + 0.959668i \(0.590712\pi\)
\(570\) 221.289 77.7931i 0.388227 0.136479i
\(571\) 30.3033 + 52.4869i 0.0530706 + 0.0919209i 0.891340 0.453335i \(-0.149766\pi\)
−0.838270 + 0.545256i \(0.816433\pi\)
\(572\) 66.6871 17.8687i 0.116586 0.0312391i
\(573\) 142.630 142.630i 0.248918 0.248918i
\(574\) 6.51726 + 9.69365i 0.0113541 + 0.0168879i
\(575\) 828.042 364.134i 1.44007 0.633277i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −46.3613 + 173.023i −0.0803488 + 0.299866i −0.994393 0.105749i \(-0.966276\pi\)
0.914044 + 0.405615i \(0.132943\pi\)
\(578\) 384.081 + 102.914i 0.664500 + 0.178052i
\(579\) −394.886 227.988i −0.682015 0.393761i
\(580\) 122.559 + 23.0054i 0.211309 + 0.0396644i
\(581\) 742.385 + 363.469i 1.27777 + 0.625592i
\(582\) −107.021 107.021i −0.183884 0.183884i
\(583\) −5.59453 20.8791i −0.00959610 0.0358131i
\(584\) −88.6929 + 51.2069i −0.151871 + 0.0876830i
\(585\) −84.0610 + 175.204i −0.143694 + 0.299494i
\(586\) 86.2939 149.465i 0.147259 0.255061i
\(587\) 9.92331 + 9.92331i 0.0169051 + 0.0169051i 0.715509 0.698604i \(-0.246195\pi\)
−0.698604 + 0.715509i \(0.746195\pi\)
\(588\) −102.560 + 135.253i −0.174422 + 0.230022i
\(589\) 204.462i 0.347134i
\(590\) 58.2249 + 762.118i 0.0986862 + 1.29173i
\(591\) 106.602 + 184.640i 0.180375 + 0.312419i
\(592\) 23.5342 87.8309i 0.0397537 0.148363i
\(593\) 63.6101 + 237.396i 0.107268 + 0.400331i 0.998593 0.0530356i \(-0.0168897\pi\)
−0.891324 + 0.453366i \(0.850223\pi\)
\(594\) 19.5805i 0.0329638i
\(595\) −58.5660 + 78.5227i −0.0984303 + 0.131971i
\(596\) 347.130 0.582433
\(597\) 633.425 169.726i 1.06101 0.284298i
\(598\) −640.327 171.575i −1.07078 0.286915i
\(599\) 415.536 239.910i 0.693715 0.400517i −0.111287 0.993788i \(-0.535497\pi\)
0.805002 + 0.593272i \(0.202164\pi\)
\(600\) −76.6391 95.5324i −0.127732 0.159221i
\(601\) 425.170 0.707437 0.353719 0.935352i \(-0.384917\pi\)
0.353719 + 0.935352i \(0.384917\pi\)
\(602\) −37.1739 7.28393i −0.0617507 0.0120996i
\(603\) 37.0462 37.0462i 0.0614366 0.0614366i
\(604\) 399.863 + 230.861i 0.662024 + 0.382220i
\(605\) −188.874 537.268i −0.312188 0.888047i
\(606\) 100.884 + 174.736i 0.166476 + 0.288344i
\(607\) 983.437 263.511i 1.62016 0.434120i 0.669111 0.743163i \(-0.266675\pi\)
0.951048 + 0.309042i \(0.100008\pi\)
\(608\) 76.6086 76.6086i 0.126001 0.126001i
\(609\) 150.838 10.3196i 0.247681 0.0169452i
\(610\) −279.610 408.837i −0.458377 0.670224i
\(611\) 480.988 833.096i 0.787215 1.36350i
\(612\) 4.34630 16.2206i 0.00710180 0.0265043i
\(613\) 519.456 + 139.188i 0.847400 + 0.227060i 0.656290 0.754509i \(-0.272125\pi\)
0.191110 + 0.981569i \(0.438791\pi\)
\(614\) 375.728 + 216.926i 0.611934 + 0.353300i
\(615\) −8.43463 + 5.76858i −0.0137149 + 0.00937980i
\(616\) 3.60089 + 52.6328i 0.00584560 + 0.0854428i
\(617\) 260.554 + 260.554i 0.422292 + 0.422292i 0.885992 0.463700i \(-0.153479\pi\)
−0.463700 + 0.885992i \(0.653479\pi\)
\(618\) −44.6808 166.751i −0.0722991 0.269824i
\(619\) 208.960 120.643i 0.337577 0.194900i −0.321623 0.946868i \(-0.604228\pi\)
0.659200 + 0.751967i \(0.270895\pi\)
\(620\) 100.714 35.4056i 0.162443 0.0571058i
\(621\) −94.0057 + 162.823i −0.151378 + 0.262194i
\(622\) −236.825 236.825i −0.380748 0.380748i
\(623\) −195.463 + 997.555i −0.313745 + 1.60121i
\(624\) 89.7555i 0.143839i
\(625\) −596.154 + 187.685i −0.953846 + 0.300295i
\(626\) −256.586 444.421i −0.409882 0.709937i
\(627\) 22.8771 85.3787i 0.0364867 0.136170i
\(628\) −102.251 381.604i −0.162819 0.607650i
\(629\) 63.6232i 0.101150i
\(630\) −119.031 88.7789i −0.188938 0.140919i
\(631\) −477.838 −0.757271 −0.378635 0.925546i \(-0.623607\pi\)
−0.378635 + 0.925546i \(0.623607\pi\)
\(632\) 263.780 70.6795i 0.417373 0.111835i
\(633\) −471.969 126.464i −0.745606 0.199785i
\(634\) −512.831 + 296.083i −0.808882 + 0.467008i
\(635\) −1019.58 + 77.8948i −1.60564 + 0.122669i
\(636\) 28.1016 0.0441849
\(637\) 79.2579 629.832i 0.124424 0.988748i
\(638\) 33.2271 33.2271i 0.0520801 0.0520801i
\(639\) 172.187 + 99.4124i 0.269464 + 0.155575i
\(640\) −51.0020 24.4702i −0.0796907 0.0382347i
\(641\) 353.417 + 612.135i 0.551352 + 0.954969i 0.998177 + 0.0603483i \(0.0192212\pi\)
−0.446825 + 0.894621i \(0.647446\pi\)
\(642\) −298.255 + 79.9172i −0.464571 + 0.124482i
\(643\) −473.054 + 473.054i −0.735698 + 0.735698i −0.971742 0.236044i \(-0.924149\pi\)
0.236044 + 0.971742i \(0.424149\pi\)
\(644\) 222.746 454.958i 0.345878 0.706456i
\(645\) 6.11365 32.5700i 0.00947853 0.0504961i
\(646\) 37.9031 65.6501i 0.0586736 0.101626i
\(647\) 219.834 820.431i 0.339774 1.26805i −0.558825 0.829285i \(-0.688748\pi\)
0.898600 0.438769i \(-0.144586\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) 249.436 + 144.012i 0.384339 + 0.221898i
\(650\) 426.854 + 166.100i 0.656698 + 0.255538i
\(651\) 107.416 72.2178i 0.165001 0.110934i
\(652\) −82.2997 82.2997i −0.126227 0.126227i
\(653\) −91.9014 342.981i −0.140737 0.525238i −0.999908 0.0135498i \(-0.995687\pi\)
0.859171 0.511689i \(-0.170980\pi\)
\(654\) 458.161 264.520i 0.700553 0.404464i
\(655\) −252.556 718.419i −0.385582 1.09682i
\(656\) −2.35988 + 4.08744i −0.00359738 + 0.00623085i
\(657\) −76.8103 76.8103i −0.116911 0.116911i
\(658\) 554.049 + 483.092i 0.842019 + 0.734183i
\(659\) 477.254i 0.724210i 0.932137 + 0.362105i \(0.117942\pi\)
−0.932137 + 0.362105i \(0.882058\pi\)
\(660\) −46.0176 + 3.51569i −0.0697237 + 0.00532680i
\(661\) −34.1279 59.1113i −0.0516308 0.0894271i 0.839055 0.544047i \(-0.183109\pi\)
−0.890686 + 0.454620i \(0.849775\pi\)
\(662\) 100.958 376.781i 0.152505 0.569156i
\(663\) 16.2544 + 60.6621i 0.0245164 + 0.0914964i
\(664\) 333.991i 0.502999i
\(665\) −415.294 526.182i −0.624503 0.791250i
\(666\) 96.4450 0.144812
\(667\) −435.824 + 116.779i −0.653410 + 0.175081i
\(668\) 364.162 + 97.5770i 0.545153 + 0.146073i
\(669\) −602.467 + 347.834i −0.900548 + 0.519932i
\(670\) −93.7168 80.4135i −0.139876 0.120020i
\(671\) −186.645 −0.278160
\(672\) −67.3058 13.1880i −0.100157 0.0196250i
\(673\) −425.308 + 425.308i −0.631958 + 0.631958i −0.948559 0.316601i \(-0.897458\pi\)
0.316601 + 0.948559i \(0.397458\pi\)
\(674\) 611.533 + 353.069i 0.907319 + 0.523841i
\(675\) 76.8359 104.744i 0.113831 0.155176i
\(676\) 1.16549 + 2.01869i 0.00172410 + 0.00298623i
\(677\) 591.029 158.366i 0.873012 0.233923i 0.205622 0.978631i \(-0.434078\pi\)
0.667390 + 0.744709i \(0.267412\pi\)
\(678\) −75.3116 + 75.3116i −0.111079 + 0.111079i
\(679\) −190.188 + 388.459i −0.280100 + 0.572105i
\(680\) −38.9016 7.30215i −0.0572083 0.0107385i
\(681\) −225.215 + 390.084i −0.330712 + 0.572810i
\(682\) 10.4120 38.8580i 0.0152668 0.0569765i
\(683\) −403.439 108.101i −0.590687 0.158274i −0.0489198 0.998803i \(-0.515578\pi\)
−0.541767 + 0.840529i \(0.682245\pi\)
\(684\) 99.5175 + 57.4565i 0.145493 + 0.0840007i
\(685\) −692.415 1012.43i −1.01083 1.47800i
\(686\) 460.653 + 151.977i 0.671506 + 0.221541i
\(687\) −100.336 100.336i −0.146049 0.146049i
\(688\) −3.96153 14.7846i −0.00575804 0.0214893i
\(689\) −91.0146 + 52.5473i −0.132097 + 0.0762661i
\(690\) 399.540 + 191.695i 0.579044 + 0.277819i
\(691\) −303.668 + 525.968i −0.439462 + 0.761170i −0.997648 0.0685458i \(-0.978164\pi\)
0.558186 + 0.829716i \(0.311497\pi\)
\(692\) −222.963 222.963i −0.322201 0.322201i
\(693\) −52.9348 + 18.1379i −0.0763849 + 0.0261730i
\(694\) 841.453i 1.21247i
\(695\) 522.527 + 448.353i 0.751837 + 0.645112i
\(696\) 30.5451 + 52.9056i 0.0438866 + 0.0760138i
\(697\) −0.854730 + 3.18989i −0.00122630 + 0.00457661i
\(698\) −166.895 622.860i −0.239104 0.892349i
\(699\) 0.128962i 0.000184495i
\(700\) −187.274 + 295.683i −0.267534 + 0.422405i
\(701\) 483.579 0.689842 0.344921 0.938632i \(-0.387906\pi\)
0.344921 + 0.938632i \(0.387906\pi\)
\(702\) −91.9563 + 24.6396i −0.130992 + 0.0350992i
\(703\) 420.538 + 112.683i 0.598204 + 0.160288i
\(704\) −18.4607 + 10.6583i −0.0262226 + 0.0151396i
\(705\) −418.755 + 488.033i −0.593979 + 0.692245i
\(706\) 401.690 0.568966
\(707\) 378.938 434.597i 0.535981 0.614705i
\(708\) −264.775 + 264.775i −0.373976 + 0.373976i
\(709\) −744.478 429.824i −1.05004 0.606240i −0.127379 0.991854i \(-0.540656\pi\)
−0.922660 + 0.385614i \(0.873990\pi\)
\(710\) 202.720 422.520i 0.285521 0.595098i
\(711\) 144.825 + 250.844i 0.203692 + 0.352805i
\(712\) −396.742 + 106.307i −0.557223 + 0.149307i
\(713\) −273.138 + 273.138i −0.383082 + 0.383082i
\(714\) −47.8775 + 3.27556i −0.0670554 + 0.00458762i
\(715\) 142.467 97.4352i 0.199254 0.136273i
\(716\) 114.388 198.126i 0.159760 0.276713i
\(717\) −96.0827 + 358.585i −0.134007 + 0.500119i
\(718\) 425.968 + 114.138i 0.593271 + 0.158966i
\(719\) −488.623 282.107i −0.679587 0.392360i 0.120112 0.992760i \(-0.461674\pi\)
−0.799699 + 0.600401i \(0.795008\pi\)
\(720\) 11.0692 58.9701i 0.0153738 0.0819029i
\(721\) −409.413 + 275.257i −0.567841 + 0.381772i
\(722\) 5.80524 + 5.80524i 0.00804050 + 0.00804050i
\(723\) 8.04747 + 30.0336i 0.0111307 + 0.0415402i
\(724\) −239.101 + 138.045i −0.330250 + 0.190670i
\(725\) 308.131 47.3581i 0.425009 0.0653215i
\(726\) 139.499 241.619i 0.192147 0.332808i
\(727\) 445.432 + 445.432i 0.612699 + 0.612699i 0.943649 0.330949i \(-0.107369\pi\)
−0.330949 + 0.943649i \(0.607369\pi\)
\(728\) 242.649 83.1426i 0.333309 0.114207i
\(729\) 27.0000i 0.0370370i
\(730\) −166.726 + 194.309i −0.228392 + 0.266177i
\(731\) −5.35487 9.27490i −0.00732540 0.0126880i
\(732\) 62.8024 234.382i 0.0857957 0.320194i
\(733\) 210.719 + 786.415i 0.287475 + 1.07287i 0.947012 + 0.321199i \(0.104086\pi\)
−0.659537 + 0.751672i \(0.729247\pi\)
\(734\) 326.656i 0.445036i
\(735\) −129.748 + 404.030i −0.176527 + 0.549701i
\(736\) 204.681 0.278099
\(737\) −44.9479 + 12.0437i −0.0609876 + 0.0163416i
\(738\) −4.83549 1.29567i −0.00655215 0.00175564i
\(739\) 1181.31 682.028i 1.59852 0.922906i 0.606747 0.794895i \(-0.292474\pi\)
0.991773 0.128011i \(-0.0408594\pi\)
\(740\) −17.3167 226.662i −0.0234010 0.306301i
\(741\) −429.753 −0.579964
\(742\) −26.0311 75.9709i −0.0350824 0.102387i
\(743\) −355.898 + 355.898i −0.479002 + 0.479002i −0.904812 0.425810i \(-0.859989\pi\)
0.425810 + 0.904812i \(0.359989\pi\)
\(744\) 45.2929 + 26.1499i 0.0608776 + 0.0351477i
\(745\) 818.709 287.812i 1.09894 0.386325i
\(746\) −383.086 663.525i −0.513521 0.889444i
\(747\) −342.181 + 91.6870i −0.458073 + 0.122740i
\(748\) −10.5466 + 10.5466i −0.0140998 + 0.0140998i
\(749\) 492.332 + 732.285i 0.657319 + 0.977684i
\(750\) −259.962 161.771i −0.346616 0.215695i
\(751\) −52.5404 + 91.0027i −0.0699606 + 0.121175i −0.898884 0.438187i \(-0.855621\pi\)
0.828923 + 0.559363i \(0.188954\pi\)
\(752\) −76.8741 + 286.898i −0.102226 + 0.381513i
\(753\) 333.182 + 89.2757i 0.442472 + 0.118560i
\(754\) −197.857 114.233i −0.262410 0.151503i
\(755\) 1134.49 + 212.953i 1.50264 + 0.282057i
\(756\) −4.96534 72.5765i −0.00656792 0.0960006i
\(757\) 352.398 + 352.398i 0.465519 + 0.465519i 0.900459 0.434940i \(-0.143231\pi\)
−0.434940 + 0.900459i \(0.643231\pi\)
\(758\) −166.229 620.377i −0.219300 0.818439i
\(759\) 144.617 83.4949i 0.190537 0.110006i
\(760\) 117.164 244.200i 0.154164 0.321316i
\(761\) 210.153 363.996i 0.276154 0.478313i −0.694271 0.719713i \(-0.744273\pi\)
0.970426 + 0.241400i \(0.0776066\pi\)
\(762\) −354.223 354.223i −0.464860 0.464860i
\(763\) −1139.52 993.582i −1.49347 1.30220i
\(764\) 232.914i 0.304861i
\(765\) −3.19805 41.8601i −0.00418046 0.0547190i
\(766\) 139.621 + 241.830i 0.182272 + 0.315705i
\(767\) 362.442 1352.65i 0.472545 1.76356i
\(768\) −7.17260 26.7685i −0.00933933 0.0348548i
\(769\) 187.682i 0.244059i 0.992526 + 0.122030i \(0.0389403\pi\)
−0.992526 + 0.122030i \(0.961060\pi\)
\(770\) 52.1316 + 121.149i 0.0677034 + 0.157337i
\(771\) 56.5435 0.0733379
\(772\) −508.575 + 136.272i −0.658776 + 0.176518i
\(773\) −96.9480 25.9771i −0.125418 0.0336056i 0.195564 0.980691i \(-0.437346\pi\)
−0.320982 + 0.947085i \(0.604013\pi\)
\(774\) 14.0596 8.11732i 0.0181649 0.0104875i
\(775\) 208.180 167.009i 0.268620 0.215495i
\(776\) −174.764 −0.225211
\(777\) −89.3392 260.733i −0.114980 0.335564i
\(778\) −45.9855 + 45.9855i −0.0591074 + 0.0591074i
\(779\) −19.5708 11.2992i −0.0251230 0.0145048i
\(780\) 74.4181 + 211.689i 0.0954078 + 0.271396i
\(781\) −88.2971 152.935i −0.113057 0.195820i
\(782\) 138.335 37.0669i 0.176899 0.0474001i
\(783\) −45.8176 + 45.8176i −0.0585155 + 0.0585155i
\(784\) 26.6939 + 194.174i 0.0340483 + 0.247671i
\(785\) −557.555 815.239i −0.710261 1.03852i
\(786\) 186.533 323.085i 0.237320 0.411050i
\(787\) −25.9653 + 96.9040i −0.0329928 + 0.123131i −0.980458 0.196727i \(-0.936969\pi\)
0.947465 + 0.319858i \(0.103635\pi\)
\(788\) 237.798 + 63.7177i 0.301774 + 0.0808601i
\(789\) 94.4333 + 54.5211i 0.119687 + 0.0691015i
\(790\) 563.524 385.403i 0.713322 0.487852i
\(791\) 273.363 + 133.838i 0.345592 + 0.169200i
\(792\) −15.9874 15.9874i −0.0201861 0.0201861i
\(793\) 234.869 + 876.544i 0.296178 + 1.10535i
\(794\) 717.032 413.979i 0.903064 0.521384i
\(795\) 66.2778 23.2996i 0.0833683 0.0293076i
\(796\) 378.609 655.770i 0.475639 0.823831i
\(797\) 583.267 + 583.267i 0.731828 + 0.731828i 0.970982 0.239154i \(-0.0768700\pi\)
−0.239154 + 0.970982i \(0.576870\pi\)
\(798\) 63.1448 322.263i 0.0791289 0.403838i
\(799\) 207.824i 0.260105i
\(800\) −140.577 15.4264i −0.175722 0.0192829i
\(801\) −217.827 377.287i −0.271943 0.471020i
\(802\) −149.289 + 557.155i −0.186146 + 0.694707i
\(803\) 24.9711 + 93.1932i 0.0310972 + 0.116056i
\(804\) 60.4963i 0.0752441i
\(805\) 148.133 1257.70i 0.184016 1.56237i
\(806\) −195.591 −0.242669
\(807\) −492.025 + 131.838i −0.609697 + 0.163368i
\(808\) 225.043 + 60.3002i 0.278519 + 0.0746289i
\(809\) −400.303 + 231.115i −0.494812 + 0.285680i −0.726569 0.687094i \(-0.758886\pi\)
0.231757 + 0.972774i \(0.425553\pi\)
\(810\) 63.4547 4.84786i 0.0783391 0.00598501i
\(811\) 727.161 0.896622 0.448311 0.893878i \(-0.352026\pi\)
0.448311 + 0.893878i \(0.352026\pi\)
\(812\) 114.733 131.584i 0.141296 0.162050i
\(813\) −337.968 + 337.968i −0.415705 + 0.415705i
\(814\) −74.1850 42.8307i −0.0911364 0.0526176i
\(815\) −262.341 125.868i −0.321891 0.154439i
\(816\) −9.69534 16.7928i −0.0118815 0.0205794i
\(817\) 70.7894 18.9680i 0.0866455 0.0232166i
\(818\) −315.470 + 315.470i −0.385660 + 0.385660i
\(819\) 151.793 + 225.774i 0.185339 + 0.275670i
\(820\) −2.17683 + 11.5969i −0.00265467 + 0.0141425i
\(821\) 174.689 302.569i 0.212775 0.368538i −0.739807 0.672819i \(-0.765083\pi\)
0.952582 + 0.304282i \(0.0984164\pi\)
\(822\) 155.522 580.414i 0.189199 0.706100i
\(823\) 1237.17 + 331.498i 1.50324 + 0.402792i 0.914183 0.405301i \(-0.132833\pi\)
0.589056 + 0.808093i \(0.299500\pi\)
\(824\) −172.634 99.6700i −0.209507 0.120959i
\(825\) −105.618 + 46.4459i −0.128022 + 0.0562981i
\(826\) 961.070 + 470.536i 1.16352 + 0.569657i
\(827\) −66.3759 66.3759i −0.0802611 0.0802611i 0.665837 0.746098i \(-0.268075\pi\)
−0.746098 + 0.665837i \(0.768075\pi\)
\(828\) 56.1888 + 209.699i 0.0678609 + 0.253260i
\(829\) 723.468 417.694i 0.872699 0.503853i 0.00445501 0.999990i \(-0.498582\pi\)
0.868244 + 0.496137i \(0.165249\pi\)
\(830\) 276.919 + 787.721i 0.333637 + 0.949062i
\(831\) −287.546 + 498.044i −0.346024 + 0.599332i
\(832\) 73.2851 + 73.2851i 0.0880830 + 0.0880830i
\(833\) 53.2053 + 126.400i 0.0638720 + 0.151741i
\(834\) 337.303i 0.404440i
\(835\) 939.782 71.7981i 1.12549 0.0859858i
\(836\) −51.0323 88.3905i −0.0610434 0.105730i
\(837\) −14.3573 + 53.5821i −0.0171533 + 0.0640169i
\(838\) −242.122 903.611i −0.288928 1.07829i
\(839\) 1320.93i 1.57441i 0.616689 + 0.787207i \(0.288473\pi\)
−0.616689 + 0.787207i \(0.711527\pi\)
\(840\) −169.676 + 24.7005i −0.201995 + 0.0294054i
\(841\) 685.500 0.815101
\(842\) −535.629 + 143.521i −0.636139 + 0.170453i
\(843\) −646.054 173.110i −0.766375 0.205349i
\(844\) −488.618 + 282.104i −0.578931 + 0.334246i
\(845\) 4.42256 + 3.79477i 0.00523380 + 0.00449085i
\(846\) −315.036 −0.372383
\(847\) −782.422 153.309i −0.923757 0.181003i
\(848\) 22.9448 22.9448i 0.0270576 0.0270576i
\(849\) −234.028 135.116i −0.275652 0.159148i
\(850\) −97.8042 + 15.0320i −0.115064 + 0.0176847i
\(851\) 411.259 + 712.322i 0.483266 + 0.837041i
\(852\) 221.760 59.4205i 0.260282 0.0697424i
\(853\) −98.5485 + 98.5485i −0.115532 + 0.115532i −0.762509 0.646977i \(-0.776033\pi\)
0.646977 + 0.762509i \(0.276033\pi\)
\(854\) −691.813 + 47.3306i −0.810085 + 0.0554222i
\(855\) 282.351 + 52.9996i 0.330235 + 0.0619878i
\(856\) −178.272 + 308.776i −0.208262 + 0.360720i
\(857\) −58.1059 + 216.854i −0.0678016 + 0.253039i −0.991505 0.130070i \(-0.958480\pi\)
0.923703 + 0.383109i \(0.125147\pi\)
\(858\) 81.6747 + 21.8847i 0.0951919 + 0.0255066i
\(859\) −1277.65 737.654i −1.48737 0.858736i −0.487477 0.873136i \(-0.662083\pi\)
−0.999896 + 0.0144001i \(0.995416\pi\)
\(860\) −21.6015 31.5851i −0.0251181 0.0367268i
\(861\) 0.976469 + 14.2727i 0.00113411 + 0.0165768i
\(862\) 43.6252 + 43.6252i 0.0506093 + 0.0506093i
\(863\) −40.4550 150.980i −0.0468771 0.174948i 0.938518 0.345229i \(-0.112199\pi\)
−0.985395 + 0.170282i \(0.945532\pi\)
\(864\) 25.4558 14.6969i 0.0294628 0.0170103i
\(865\) −710.724 340.997i −0.821646 0.394216i
\(866\) 527.265 913.250i 0.608851 1.05456i
\(867\) 344.357 + 344.357i 0.397183 + 0.397183i
\(868\) 28.7388 146.670i 0.0331092 0.168975i
\(869\) 257.264i 0.296046i
\(870\) 115.906 + 99.4528i 0.133225 + 0.114314i
\(871\) 113.122 + 195.934i 0.129876 + 0.224953i
\(872\) 158.108 590.067i 0.181316 0.676682i
\(873\) −47.9760 179.049i −0.0549553 0.205096i
\(874\) 980.020i 1.12130i
\(875\) −196.530 + 852.644i −0.224606 + 0.974450i
\(876\) −125.431 −0.143186
\(877\) −1117.68 + 299.481i −1.27443 + 0.341483i −0.831727 0.555185i \(-0.812648\pi\)
−0.442705 + 0.896668i \(0.645981\pi\)
\(878\) 484.345 + 129.780i 0.551646 + 0.147813i
\(879\) 183.057 105.688i 0.208256 0.120237i
\(880\) −34.7027 + 40.4438i −0.0394349 + 0.0459588i
\(881\) −126.852 −0.143986 −0.0719929 0.997405i \(-0.522936\pi\)
−0.0719929 + 0.997405i \(0.522936\pi\)
\(882\) −191.607 + 80.6528i −0.217241 + 0.0914430i
\(883\) 268.615 268.615i 0.304207 0.304207i −0.538450 0.842657i \(-0.680990\pi\)
0.842657 + 0.538450i \(0.180990\pi\)
\(884\) 62.8020 + 36.2588i 0.0710430 + 0.0410167i
\(885\) −404.944 + 844.004i −0.457563 + 0.953677i
\(886\) −426.592 738.880i −0.481481 0.833950i
\(887\) −550.121 + 147.404i −0.620204 + 0.166183i −0.555220 0.831703i \(-0.687366\pi\)
−0.0649835 + 0.997886i \(0.520699\pi\)
\(888\) 78.7470 78.7470i 0.0886790 0.0886790i
\(889\) −629.496 + 1285.75i −0.708095 + 1.44628i
\(890\) −847.579 + 579.673i −0.952336 + 0.651318i
\(891\) 11.9906 20.7683i 0.0134574 0.0233089i
\(892\) −207.907 + 775.918i −0.233079 + 0.869863i
\(893\) −1373.68 368.076i −1.53827 0.412179i
\(894\) 368.187 + 212.573i 0.411842 + 0.237777i
\(895\) 105.515 562.124i 0.117894 0.628072i
\(896\) −65.7230 + 44.1870i −0.0733515 + 0.0493159i
\(897\) −574.101 574.101i −0.640024 0.640024i
\(898\) 111.289 + 415.336i 0.123930 + 0.462512i
\(899\) −115.290 + 66.5625i −0.128242 + 0.0740406i
\(900\) −22.7866 148.259i −0.0253185 0.164732i
\(901\) 11.3523 19.6627i 0.0125996 0.0218232i
\(902\) 3.14404 + 3.14404i 0.00348563 + 0.00348563i
\(903\) −34.9684 30.4901i −0.0387247 0.0337653i
\(904\) 122.983i 0.136043i
\(905\) −449.466 + 523.824i −0.496647 + 0.578811i
\(906\) 282.746 + 489.730i 0.312081 + 0.540541i
\(907\) −197.842 + 738.355i −0.218128 + 0.814063i 0.766915 + 0.641749i \(0.221791\pi\)
−0.985042 + 0.172314i \(0.944876\pi\)
\(908\) 134.615 + 502.389i 0.148254 + 0.553292i
\(909\) 247.115i 0.271853i
\(910\) 503.354 397.277i 0.553136 0.436569i
\(911\) 1309.05 1.43693 0.718467 0.695561i \(-0.244844\pi\)
0.718467 + 0.695561i \(0.244844\pi\)
\(912\) 128.169 34.3427i 0.140536 0.0376565i
\(913\) 303.921 + 81.4355i 0.332882 + 0.0891955i
\(914\) −314.580 + 181.623i −0.344179 + 0.198712i
\(915\) −46.2107 604.862i −0.0505035 0.661052i
\(916\) −163.847 −0.178873
\(917\) −1046.23 205.001i −1.14093 0.223556i
\(918\) 14.5430 14.5430i 0.0158421 0.0158421i
\(919\) −17.4000 10.0459i −0.0189336 0.0109313i 0.490503 0.871439i \(-0.336813\pi\)
−0.509437 + 0.860508i \(0.670146\pi\)
\(920\) 482.741 169.705i 0.524719 0.184462i
\(921\) 265.680 + 460.170i 0.288469 + 0.499642i
\(922\) −722.217 + 193.518i −0.783316 + 0.209889i
\(923\) −607.121 + 607.121i −0.657769 + 0.657769i
\(924\) −28.4115 + 58.0306i −0.0307484 + 0.0628037i
\(925\) −228.772 520.228i −0.247321 0.562408i
\(926\) −415.206 + 719.158i −0.448386 + 0.776628i
\(927\) 54.7226 204.228i 0.0590320 0.220310i
\(928\) 68.1372 + 18.2573i 0.0734237 + 0.0196738i
\(929\) 593.913 + 342.896i 0.639304 + 0.369102i 0.784346 0.620323i \(-0.212999\pi\)
−0.145042 + 0.989425i \(0.546332\pi\)
\(930\) 128.505 + 24.1214i 0.138178 + 0.0259370i
\(931\) −929.712 + 127.811i −0.998616 + 0.137284i
\(932\) −0.105297 0.105297i −0.000112980 0.000112980i
\(933\) −106.166 396.216i −0.113790 0.424669i
\(934\) −519.409 + 299.881i −0.556113 + 0.321072i
\(935\) −16.1299 + 33.6188i −0.0172512 + 0.0359559i
\(936\) −54.9638 + 95.2001i −0.0587220 + 0.101710i
\(937\) 950.723 + 950.723i 1.01465 + 1.01465i 0.999891 + 0.0147549i \(0.00469679\pi\)
0.0147549 + 0.999891i \(0.495303\pi\)
\(938\) −163.548 + 56.0391i −0.174358 + 0.0597431i
\(939\) 628.506i 0.669335i
\(940\) 56.5648 + 740.389i 0.0601753 + 0.787648i
\(941\) −593.868 1028.61i −0.631103 1.09310i −0.987327 0.158701i \(-0.949269\pi\)
0.356224 0.934401i \(-0.384064\pi\)
\(942\) 125.231 467.368i 0.132942 0.496144i
\(943\) −11.0499 41.2388i −0.0117178 0.0437315i
\(944\) 432.376i 0.458025i
\(945\) −71.8854 167.055i −0.0760692 0.176778i
\(946\) −14.4195 −0.0152426
\(947\) 221.786 59.4273i 0.234198 0.0627532i −0.139811 0.990178i \(-0.544650\pi\)
0.374009 + 0.927425i \(0.377983\pi\)
\(948\) 323.063 + 86.5644i 0.340783 + 0.0913126i
\(949\) 406.242 234.544i 0.428074 0.247148i
\(950\) 73.8620 673.091i 0.0777495 0.708516i
\(951\) −725.253 −0.762621
\(952\) −36.4174 + 41.7663i −0.0382535 + 0.0438722i
\(953\) 1044.99 1044.99i 1.09653 1.09653i 0.101717 0.994813i \(-0.467566\pi\)
0.994813 0.101717i \(-0.0324337\pi\)
\(954\) 29.8062 + 17.2086i 0.0312434 + 0.0180384i
\(955\) −193.114 549.329i −0.202213 0.575214i
\(956\) 214.333 + 371.235i 0.224197 + 0.388321i
\(957\) 55.5901 14.8953i 0.0580879 0.0155646i
\(958\) −260.579 + 260.579i −0.272003 + 0.272003i
\(959\) −1713.18 + 117.208i −1.78642 + 0.122219i
\(960\) −39.1110 57.1868i −0.0407406 0.0595696i
\(961\) 423.515 733.550i 0.440703 0.763319i
\(962\) −107.794 + 402.293i −0.112052 + 0.418184i
\(963\) −365.286 97.8781i −0.379321 0.101639i
\(964\) 31.0930 + 17.9516i 0.0322542 + 0.0186220i
\(965\) −1086.49 + 743.069i −1.12590 + 0.770019i
\(966\) 514.861 346.152i 0.532982 0.358336i
\(967\) 12.1019 + 12.1019i 0.0125149 + 0.0125149i 0.713337 0.700822i \(-0.247183\pi\)
−0.700822 + 0.713337i \(0.747183\pi\)
\(968\) −83.3806 311.181i −0.0861370 0.321468i
\(969\) 80.4047 46.4217i 0.0829770 0.0479068i
\(970\) −412.182 + 144.900i −0.424930 + 0.149382i
\(971\) 157.069 272.051i 0.161760 0.280176i −0.773740 0.633503i \(-0.781616\pi\)
0.935500 + 0.353327i \(0.114950\pi\)
\(972\) 22.0454 + 22.0454i 0.0226805 + 0.0226805i
\(973\) 911.878 312.451i 0.937181 0.321121i
\(974\) 669.921i 0.687804i
\(975\) 351.031 + 437.569i 0.360032 + 0.448789i
\(976\) −140.094 242.650i −0.143539 0.248617i
\(977\) −416.307 + 1553.68i −0.426107 + 1.59025i 0.335387 + 0.942081i \(0.391133\pi\)
−0.761494 + 0.648172i \(0.775534\pi\)
\(978\) −36.8939 137.690i −0.0377239 0.140787i
\(979\) 386.943i 0.395243i
\(980\) 223.951 + 435.828i 0.228521 + 0.444722i
\(981\) 647.938 0.660487
\(982\) 203.730 54.5894i 0.207465 0.0555900i
\(983\) 988.604 + 264.896i 1.00570 + 0.269477i 0.723832 0.689976i \(-0.242379\pi\)
0.281869 + 0.959453i \(0.409046\pi\)
\(984\) −5.00607 + 2.89025i −0.00508747 + 0.00293725i
\(985\) 613.678 46.8842i 0.623023 0.0475981i
\(986\) 49.3575 0.0500583
\(987\) 291.825 + 851.681i 0.295669 + 0.862899i
\(988\) −350.892 + 350.892i −0.355154 + 0.355154i
\(989\) 119.906 + 69.2275i 0.121239 + 0.0699975i
\(990\) −50.9620 24.4510i −0.0514767 0.0246980i
\(991\) −128.671 222.864i −0.129839 0.224888i 0.793775 0.608211i \(-0.208113\pi\)
−0.923614 + 0.383324i \(0.874779\pi\)
\(992\) 58.3328 15.6302i 0.0588032 0.0157563i
\(993\) 337.813 337.813i 0.340194 0.340194i
\(994\) −366.061 544.473i −0.368271 0.547760i
\(995\) 349.240 1860.55i 0.350995 1.86990i
\(996\) −204.527 + 354.251i −0.205349 + 0.355674i
\(997\) −71.9807 + 268.636i −0.0721973 + 0.269444i −0.992583 0.121567i \(-0.961208\pi\)
0.920386 + 0.391011i \(0.127875\pi\)
\(998\) −470.119 125.968i −0.471061 0.126220i
\(999\) 102.295 + 59.0602i 0.102398 + 0.0591194i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 210.3.v.b.37.7 32
5.3 odd 4 inner 210.3.v.b.163.3 yes 32
7.4 even 3 inner 210.3.v.b.67.3 yes 32
35.18 odd 12 inner 210.3.v.b.193.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.3.v.b.37.7 32 1.1 even 1 trivial
210.3.v.b.67.3 yes 32 7.4 even 3 inner
210.3.v.b.163.3 yes 32 5.3 odd 4 inner
210.3.v.b.193.7 yes 32 35.18 odd 12 inner