Properties

Label 210.3.v.b.37.6
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.6
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-1.22909 + 4.84658i) q^{5} +2.44949 q^{6} +(6.32429 + 3.00056i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-1.22909 + 4.84658i) q^{5} +2.44949 q^{6} +(6.32429 + 3.00056i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(0.0950035 + 7.07043i) q^{10} +(-1.95694 - 3.38951i) q^{11} +(3.34607 - 0.896575i) q^{12} +(-8.93314 + 8.93314i) q^{13} +(9.73742 + 1.78399i) q^{14} +(-4.22897 + 7.55750i) q^{15} +(2.00000 - 3.46410i) q^{16} +(3.83238 - 14.3027i) q^{17} +(4.09808 + 1.09808i) q^{18} +(28.0079 + 16.1704i) q^{19} +(2.71773 + 9.62361i) q^{20} +(9.23562 + 7.85514i) q^{21} +(-3.91387 - 3.91387i) q^{22} +(-3.30186 - 12.3227i) q^{23} +(4.24264 - 2.44949i) q^{24} +(-21.9787 - 11.9138i) q^{25} +(-8.93314 + 15.4726i) q^{26} +(3.67423 + 3.67423i) q^{27} +(13.9546 - 1.12716i) q^{28} -26.6068i q^{29} +(-3.01064 + 11.8716i) q^{30} +(-17.0130 - 29.4674i) q^{31} +(1.46410 - 5.46410i) q^{32} +(-1.75454 - 6.54804i) q^{33} -20.9405i q^{34} +(-22.3156 + 26.9632i) q^{35} +6.00000 q^{36} +(-6.25026 + 1.67475i) q^{37} +(44.1783 + 11.8375i) q^{38} +(-18.9500 + 10.9408i) q^{39} +(7.23498 + 12.1513i) q^{40} -26.0073 q^{41} +(15.4913 + 7.34985i) q^{42} +(21.0534 - 21.0534i) q^{43} +(-6.77903 - 3.91387i) q^{44} +(-10.4631 + 10.7481i) q^{45} +(-9.02086 - 15.6246i) q^{46} +(-40.1094 + 10.7473i) q^{47} +(4.89898 - 4.89898i) q^{48} +(30.9932 + 37.9528i) q^{49} +(-34.3842 - 8.22975i) q^{50} +(12.8234 - 22.2108i) q^{51} +(-6.53951 + 24.4058i) q^{52} +(-43.7126 - 11.7128i) q^{53} +(6.36396 + 3.67423i) q^{54} +(18.8328 - 5.31843i) q^{55} +(18.6497 - 6.64745i) q^{56} +(39.6092 + 39.6092i) q^{57} +(-9.73878 - 36.3456i) q^{58} +(20.7971 - 12.0072i) q^{59} +(0.232710 + 17.3189i) q^{60} +(8.39818 - 14.5461i) q^{61} +(-34.0260 - 34.0260i) q^{62} +(11.9301 + 17.2821i) q^{63} -8.00000i q^{64} +(-32.3155 - 54.2748i) q^{65} +(-4.79349 - 8.30258i) q^{66} +(-15.2798 + 57.0249i) q^{67} +(-7.66477 - 28.6053i) q^{68} -22.0965i q^{69} +(-20.6144 + 45.0005i) q^{70} -132.560 q^{71} +(8.19615 - 2.19615i) q^{72} +(-8.56704 - 2.29553i) q^{73} +(-7.92501 + 4.57551i) q^{74} +(-31.4302 - 29.7849i) q^{75} +64.6815 q^{76} +(-2.20578 - 27.3082i) q^{77} +(-21.8816 + 21.8816i) q^{78} +(-90.6550 - 52.3397i) q^{79} +(14.3309 + 13.9509i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-35.5266 + 9.51932i) q^{82} +(94.1629 - 94.1629i) q^{83} +(23.8517 + 4.36988i) q^{84} +(64.6086 + 36.1532i) q^{85} +(21.0534 - 36.4656i) q^{86} +(11.9275 - 44.5141i) q^{87} +(-10.6929 - 2.86515i) q^{88} +(43.2731 + 24.9837i) q^{89} +(-10.3588 + 18.5120i) q^{90} +(-83.3002 + 29.6913i) q^{91} +(-18.0417 - 18.0417i) q^{92} +(-15.2534 - 56.9266i) q^{93} +(-50.8567 + 29.3621i) q^{94} +(-112.795 + 115.868i) q^{95} +(4.89898 - 8.48528i) q^{96} +(118.224 + 118.224i) q^{97} +(56.2293 + 40.5002i) q^{98} -11.7416i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −1.22909 + 4.84658i −0.245818 + 0.969316i
\(6\) 2.44949 0.408248
\(7\) 6.32429 + 3.00056i 0.903470 + 0.428652i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 0.0950035 + 7.07043i 0.00950035 + 0.707043i
\(11\) −1.95694 3.38951i −0.177903 0.308138i 0.763259 0.646093i \(-0.223598\pi\)
−0.941162 + 0.337955i \(0.890265\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) −8.93314 + 8.93314i −0.687164 + 0.687164i −0.961604 0.274440i \(-0.911508\pi\)
0.274440 + 0.961604i \(0.411508\pi\)
\(14\) 9.73742 + 1.78399i 0.695530 + 0.127428i
\(15\) −4.22897 + 7.55750i −0.281931 + 0.503833i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 3.83238 14.3027i 0.225434 0.841332i −0.756796 0.653651i \(-0.773236\pi\)
0.982230 0.187681i \(-0.0600971\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) 28.0079 + 16.1704i 1.47410 + 0.851072i 0.999574 0.0291696i \(-0.00928630\pi\)
0.474526 + 0.880242i \(0.342620\pi\)
\(20\) 2.71773 + 9.62361i 0.135887 + 0.481181i
\(21\) 9.23562 + 7.85514i 0.439792 + 0.374054i
\(22\) −3.91387 3.91387i −0.177903 0.177903i
\(23\) −3.30186 12.3227i −0.143559 0.535770i −0.999815 0.0192188i \(-0.993882\pi\)
0.856256 0.516552i \(-0.172785\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) −21.9787 11.9138i −0.879147 0.476551i
\(26\) −8.93314 + 15.4726i −0.343582 + 0.595102i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 13.9546 1.12716i 0.498377 0.0402557i
\(29\) 26.6068i 0.917478i −0.888571 0.458739i \(-0.848301\pi\)
0.888571 0.458739i \(-0.151699\pi\)
\(30\) −3.01064 + 11.8716i −0.100355 + 0.395722i
\(31\) −17.0130 29.4674i −0.548807 0.950561i −0.998357 0.0573060i \(-0.981749\pi\)
0.449550 0.893255i \(-0.351584\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) −1.75454 6.54804i −0.0531679 0.198425i
\(34\) 20.9405i 0.615898i
\(35\) −22.3156 + 26.9632i −0.637588 + 0.770377i
\(36\) 6.00000 0.166667
\(37\) −6.25026 + 1.67475i −0.168926 + 0.0452636i −0.342291 0.939594i \(-0.611203\pi\)
0.173365 + 0.984858i \(0.444536\pi\)
\(38\) 44.1783 + 11.8375i 1.16259 + 0.311514i
\(39\) −18.9500 + 10.9408i −0.485898 + 0.280534i
\(40\) 7.23498 + 12.1513i 0.180875 + 0.303783i
\(41\) −26.0073 −0.634324 −0.317162 0.948371i \(-0.602730\pi\)
−0.317162 + 0.948371i \(0.602730\pi\)
\(42\) 15.4913 + 7.34985i 0.368840 + 0.174996i
\(43\) 21.0534 21.0534i 0.489614 0.489614i −0.418570 0.908185i \(-0.637469\pi\)
0.908185 + 0.418570i \(0.137469\pi\)
\(44\) −6.77903 3.91387i −0.154069 0.0889516i
\(45\) −10.4631 + 10.7481i −0.232514 + 0.238848i
\(46\) −9.02086 15.6246i −0.196106 0.339665i
\(47\) −40.1094 + 10.7473i −0.853391 + 0.228666i −0.658892 0.752237i \(-0.728975\pi\)
−0.194499 + 0.980903i \(0.562308\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 30.9932 + 37.9528i 0.632515 + 0.774548i
\(50\) −34.3842 8.22975i −0.687683 0.164595i
\(51\) 12.8234 22.2108i 0.251439 0.435506i
\(52\) −6.53951 + 24.4058i −0.125760 + 0.469342i
\(53\) −43.7126 11.7128i −0.824766 0.220995i −0.178337 0.983969i \(-0.557072\pi\)
−0.646429 + 0.762974i \(0.723738\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 18.8328 5.31843i 0.342414 0.0966988i
\(56\) 18.6497 6.64745i 0.333030 0.118704i
\(57\) 39.6092 + 39.6092i 0.694897 + 0.694897i
\(58\) −9.73878 36.3456i −0.167910 0.626649i
\(59\) 20.7971 12.0072i 0.352494 0.203512i −0.313289 0.949658i \(-0.601431\pi\)
0.665783 + 0.746145i \(0.268098\pi\)
\(60\) 0.232710 + 17.3189i 0.00387850 + 0.288649i
\(61\) 8.39818 14.5461i 0.137675 0.238460i −0.788941 0.614469i \(-0.789370\pi\)
0.926616 + 0.376009i \(0.122704\pi\)
\(62\) −34.0260 34.0260i −0.548807 0.548807i
\(63\) 11.9301 + 17.2821i 0.189367 + 0.274319i
\(64\) 8.00000i 0.125000i
\(65\) −32.3155 54.2748i −0.497162 0.834997i
\(66\) −4.79349 8.30258i −0.0726287 0.125797i
\(67\) −15.2798 + 57.0249i −0.228056 + 0.851118i 0.753100 + 0.657906i \(0.228557\pi\)
−0.981157 + 0.193213i \(0.938109\pi\)
\(68\) −7.66477 28.6053i −0.112717 0.420666i
\(69\) 22.0965i 0.320239i
\(70\) −20.6144 + 45.0005i −0.294492 + 0.642864i
\(71\) −132.560 −1.86705 −0.933524 0.358515i \(-0.883283\pi\)
−0.933524 + 0.358515i \(0.883283\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) −8.56704 2.29553i −0.117357 0.0314457i 0.199663 0.979865i \(-0.436015\pi\)
−0.317019 + 0.948419i \(0.602682\pi\)
\(74\) −7.92501 + 4.57551i −0.107095 + 0.0618312i
\(75\) −31.4302 29.7849i −0.419070 0.397132i
\(76\) 64.6815 0.851072
\(77\) −2.20578 27.3082i −0.0286465 0.354651i
\(78\) −21.8816 + 21.8816i −0.280534 + 0.280534i
\(79\) −90.6550 52.3397i −1.14753 0.662528i −0.199247 0.979949i \(-0.563850\pi\)
−0.948284 + 0.317422i \(0.897183\pi\)
\(80\) 14.3309 + 13.9509i 0.179136 + 0.174386i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −35.5266 + 9.51932i −0.433251 + 0.116089i
\(83\) 94.1629 94.1629i 1.13449 1.13449i 0.145072 0.989421i \(-0.453659\pi\)
0.989421 0.145072i \(-0.0463413\pi\)
\(84\) 23.8517 + 4.36988i 0.283949 + 0.0520223i
\(85\) 64.6086 + 36.1532i 0.760101 + 0.425332i
\(86\) 21.0534 36.4656i 0.244807 0.424019i
\(87\) 11.9275 44.5141i 0.137098 0.511657i
\(88\) −10.6929 2.86515i −0.121510 0.0325586i
\(89\) 43.2731 + 24.9837i 0.486215 + 0.280716i 0.723003 0.690845i \(-0.242761\pi\)
−0.236788 + 0.971561i \(0.576095\pi\)
\(90\) −10.3588 + 18.5120i −0.115098 + 0.205689i
\(91\) −83.3002 + 29.6913i −0.915386 + 0.326278i
\(92\) −18.0417 18.0417i −0.196106 0.196106i
\(93\) −15.2534 56.9266i −0.164016 0.612114i
\(94\) −50.8567 + 29.3621i −0.541028 + 0.312363i
\(95\) −112.795 + 115.868i −1.18732 + 1.21966i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) 118.224 + 118.224i 1.21881 + 1.21881i 0.968050 + 0.250755i \(0.0806790\pi\)
0.250755 + 0.968050i \(0.419321\pi\)
\(98\) 56.2293 + 40.5002i 0.573768 + 0.413268i
\(99\) 11.7416i 0.118602i
\(100\) −49.9819 + 1.34343i −0.499819 + 0.0134343i
\(101\) −55.9197 96.8557i −0.553660 0.958967i −0.998006 0.0631124i \(-0.979897\pi\)
0.444346 0.895855i \(-0.353436\pi\)
\(102\) 9.38738 35.0342i 0.0920332 0.343473i
\(103\) 47.9268 + 178.865i 0.465309 + 1.73656i 0.655864 + 0.754879i \(0.272304\pi\)
−0.190556 + 0.981676i \(0.561029\pi\)
\(104\) 35.7325i 0.343582i
\(105\) −49.4220 + 35.1065i −0.470686 + 0.334348i
\(106\) −63.9997 −0.603771
\(107\) −30.9123 + 8.28292i −0.288900 + 0.0774105i −0.400358 0.916359i \(-0.631114\pi\)
0.111459 + 0.993769i \(0.464448\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) 151.129 87.2544i 1.38651 0.800499i 0.393586 0.919288i \(-0.371234\pi\)
0.992920 + 0.118788i \(0.0379010\pi\)
\(110\) 23.7794 14.1584i 0.216176 0.128713i
\(111\) −11.2077 −0.100970
\(112\) 23.0428 15.9069i 0.205740 0.142025i
\(113\) −6.20286 + 6.20286i −0.0548925 + 0.0548925i −0.734020 0.679128i \(-0.762358\pi\)
0.679128 + 0.734020i \(0.262358\pi\)
\(114\) 68.6051 + 39.6092i 0.601799 + 0.347449i
\(115\) 63.7813 0.857013i 0.554620 0.00745229i
\(116\) −26.6068 46.0844i −0.229369 0.397279i
\(117\) −36.6087 + 9.80926i −0.312895 + 0.0838399i
\(118\) 24.0145 24.0145i 0.203512 0.203512i
\(119\) 67.1531 78.9548i 0.564312 0.663486i
\(120\) 6.65706 + 23.5729i 0.0554755 + 0.196441i
\(121\) 52.8408 91.5230i 0.436701 0.756388i
\(122\) 6.14790 22.9443i 0.0503926 0.188068i
\(123\) −43.5110 11.6587i −0.353748 0.0947865i
\(124\) −58.9348 34.0260i −0.475281 0.274403i
\(125\) 84.7548 91.8783i 0.678038 0.735027i
\(126\) 22.6226 + 19.2411i 0.179544 + 0.152707i
\(127\) 38.4037 + 38.4037i 0.302392 + 0.302392i 0.841949 0.539557i \(-0.181408\pi\)
−0.539557 + 0.841949i \(0.681408\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 44.6610 25.7851i 0.346210 0.199884i
\(130\) −64.0098 62.3124i −0.492383 0.479326i
\(131\) −73.5861 + 127.455i −0.561726 + 0.972938i 0.435620 + 0.900131i \(0.356529\pi\)
−0.997346 + 0.0728073i \(0.976804\pi\)
\(132\) −9.58699 9.58699i −0.0726287 0.0726287i
\(133\) 128.610 + 186.306i 0.966991 + 1.40079i
\(134\) 83.4903i 0.623062i
\(135\) −22.3234 + 13.2915i −0.165359 + 0.0984556i
\(136\) −20.9405 36.2701i −0.153975 0.266692i
\(137\) −0.303261 + 1.13179i −0.00221359 + 0.00826122i −0.967024 0.254686i \(-0.918028\pi\)
0.964810 + 0.262947i \(0.0846945\pi\)
\(138\) −8.08788 30.1844i −0.0586078 0.218727i
\(139\) 234.615i 1.68788i −0.536439 0.843939i \(-0.680231\pi\)
0.536439 0.843939i \(-0.319769\pi\)
\(140\) −11.6885 + 69.0172i −0.0834894 + 0.492980i
\(141\) −71.9222 −0.510086
\(142\) −181.081 + 48.5205i −1.27522 + 0.341694i
\(143\) 47.7605 + 12.7974i 0.333990 + 0.0894923i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 128.952 + 32.7022i 0.889326 + 0.225532i
\(146\) −12.5430 −0.0859111
\(147\) 34.8389 + 77.3902i 0.236999 + 0.526464i
\(148\) −9.15101 + 9.15101i −0.0618312 + 0.0618312i
\(149\) 224.139 + 129.407i 1.50429 + 0.868501i 0.999988 + 0.00497290i \(0.00158293\pi\)
0.504300 + 0.863528i \(0.331750\pi\)
\(150\) −53.8365 29.1826i −0.358910 0.194551i
\(151\) −72.8305 126.146i −0.482321 0.835405i 0.517473 0.855700i \(-0.326873\pi\)
−0.999794 + 0.0202948i \(0.993540\pi\)
\(152\) 88.3565 23.6751i 0.581293 0.155757i
\(153\) 31.4108 31.4108i 0.205299 0.205299i
\(154\) −13.0086 36.4963i −0.0844717 0.236989i
\(155\) 163.727 46.2368i 1.05630 0.298302i
\(156\) −21.8816 + 37.9001i −0.140267 + 0.242949i
\(157\) −2.55973 + 9.55304i −0.0163040 + 0.0608474i −0.973599 0.228267i \(-0.926694\pi\)
0.957295 + 0.289114i \(0.0933608\pi\)
\(158\) −142.995 38.3153i −0.905029 0.242502i
\(159\) −67.8819 39.1917i −0.426930 0.246488i
\(160\) 24.6827 + 13.8118i 0.154267 + 0.0863235i
\(161\) 16.0932 87.8399i 0.0999575 0.545589i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 59.3922 + 221.655i 0.364369 + 1.35985i 0.868274 + 0.496086i \(0.165230\pi\)
−0.503904 + 0.863760i \(0.668104\pi\)
\(164\) −45.0459 + 26.0073i −0.274670 + 0.158581i
\(165\) 33.8921 0.455399i 0.205406 0.00275999i
\(166\) 94.1629 163.095i 0.567246 0.982500i
\(167\) 181.703 + 181.703i 1.08804 + 1.08804i 0.995730 + 0.0923104i \(0.0294252\pi\)
0.0923104 + 0.995730i \(0.470575\pi\)
\(168\) 34.1815 2.76097i 0.203461 0.0164343i
\(169\) 9.39820i 0.0556106i
\(170\) 101.490 + 25.7378i 0.597000 + 0.151399i
\(171\) 48.5111 + 84.0237i 0.283691 + 0.491367i
\(172\) 15.4122 57.5190i 0.0896057 0.334413i
\(173\) 67.1837 + 250.733i 0.388345 + 1.44932i 0.832826 + 0.553535i \(0.186721\pi\)
−0.444481 + 0.895788i \(0.646612\pi\)
\(174\) 65.1732i 0.374559i
\(175\) −103.251 141.294i −0.590008 0.807397i
\(176\) −15.6555 −0.0889516
\(177\) 40.1770 10.7654i 0.226988 0.0608214i
\(178\) 68.2568 + 18.2894i 0.383465 + 0.102749i
\(179\) −267.294 + 154.322i −1.49326 + 0.862135i −0.999970 0.00772900i \(-0.997540\pi\)
−0.493292 + 0.869864i \(0.664206\pi\)
\(180\) −7.37454 + 29.0795i −0.0409697 + 0.161553i
\(181\) 172.566 0.953406 0.476703 0.879064i \(-0.341832\pi\)
0.476703 + 0.879064i \(0.341832\pi\)
\(182\) −102.922 + 71.0490i −0.565507 + 0.390379i
\(183\) 20.5713 20.5713i 0.112411 0.112411i
\(184\) −31.2492 18.0417i −0.169832 0.0980528i
\(185\) −0.434689 32.3508i −0.00234967 0.174869i
\(186\) −41.6732 72.1801i −0.224049 0.388065i
\(187\) −55.9787 + 14.9995i −0.299352 + 0.0802110i
\(188\) −58.7242 + 58.7242i −0.312363 + 0.312363i
\(189\) 12.2121 + 34.2617i 0.0646145 + 0.181279i
\(190\) −111.671 + 199.564i −0.587740 + 1.05034i
\(191\) 67.6472 117.168i 0.354174 0.613447i −0.632802 0.774313i \(-0.718095\pi\)
0.986976 + 0.160866i \(0.0514288\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) −21.2706 5.69944i −0.110210 0.0295308i 0.203292 0.979118i \(-0.434836\pi\)
−0.313503 + 0.949587i \(0.601502\pi\)
\(194\) 204.770 + 118.224i 1.05552 + 0.609403i
\(195\) −29.7342 105.290i −0.152483 0.539949i
\(196\) 91.6347 + 34.7430i 0.467524 + 0.177260i
\(197\) 61.7521 + 61.7521i 0.313462 + 0.313462i 0.846249 0.532787i \(-0.178855\pi\)
−0.532787 + 0.846249i \(0.678855\pi\)
\(198\) −4.29773 16.0393i −0.0217057 0.0810068i
\(199\) −287.540 + 166.011i −1.44492 + 0.834227i −0.998172 0.0604310i \(-0.980752\pi\)
−0.446751 + 0.894658i \(0.647419\pi\)
\(200\) −67.7849 + 20.1298i −0.338924 + 0.100649i
\(201\) −51.1272 + 88.5548i −0.254364 + 0.440571i
\(202\) −111.839 111.839i −0.553660 0.553660i
\(203\) 79.8355 168.269i 0.393278 0.828913i
\(204\) 51.2936i 0.251439i
\(205\) 31.9653 126.046i 0.155928 0.614860i
\(206\) 130.938 + 226.792i 0.635623 + 1.10093i
\(207\) 9.90559 36.9682i 0.0478531 0.178590i
\(208\) 13.0790 + 48.8116i 0.0628799 + 0.234671i
\(209\) 126.578i 0.605634i
\(210\) −54.6618 + 66.0461i −0.260294 + 0.314505i
\(211\) −4.76592 −0.0225873 −0.0112936 0.999936i \(-0.503595\pi\)
−0.0112936 + 0.999936i \(0.503595\pi\)
\(212\) −87.4252 + 23.4255i −0.412383 + 0.110498i
\(213\) −221.778 59.4252i −1.04121 0.278992i
\(214\) −39.1952 + 22.6294i −0.183155 + 0.105745i
\(215\) 76.1605 + 127.914i 0.354235 + 0.594947i
\(216\) 14.6969 0.0680414
\(217\) −19.1764 237.409i −0.0883705 1.09405i
\(218\) 174.509 174.509i 0.800499 0.800499i
\(219\) −13.3039 7.68100i −0.0607483 0.0350731i
\(220\) 27.3009 28.0446i 0.124095 0.127475i
\(221\) 93.5323 + 162.003i 0.423223 + 0.733044i
\(222\) −15.3099 + 4.10229i −0.0689637 + 0.0184788i
\(223\) −96.4999 + 96.4999i −0.432735 + 0.432735i −0.889558 0.456823i \(-0.848987\pi\)
0.456823 + 0.889558i \(0.348987\pi\)
\(224\) 25.6548 30.1634i 0.114530 0.134658i
\(225\) −39.2316 63.9209i −0.174363 0.284093i
\(226\) −6.20286 + 10.7437i −0.0274463 + 0.0475383i
\(227\) −15.9499 + 59.5258i −0.0702639 + 0.262228i −0.992118 0.125309i \(-0.960008\pi\)
0.921854 + 0.387538i \(0.126674\pi\)
\(228\) 108.214 + 28.9959i 0.474624 + 0.127175i
\(229\) −390.888 225.680i −1.70694 0.985500i −0.938305 0.345808i \(-0.887605\pi\)
−0.768631 0.639693i \(-0.779062\pi\)
\(230\) 86.8132 24.5163i 0.377449 0.106593i
\(231\) 8.55157 46.6763i 0.0370198 0.202062i
\(232\) −53.2137 53.2137i −0.229369 0.229369i
\(233\) −66.3620 247.666i −0.284816 1.06295i −0.948974 0.315354i \(-0.897877\pi\)
0.664158 0.747592i \(-0.268790\pi\)
\(234\) −46.4179 + 26.7994i −0.198367 + 0.114527i
\(235\) −2.78950 207.603i −0.0118702 0.883416i
\(236\) 24.0145 41.5943i 0.101756 0.176247i
\(237\) −128.205 128.205i −0.540951 0.540951i
\(238\) 62.8334 132.434i 0.264006 0.556445i
\(239\) 7.06316i 0.0295529i 0.999891 + 0.0147765i \(0.00470367\pi\)
−0.999891 + 0.0147765i \(0.995296\pi\)
\(240\) 17.7220 + 29.7646i 0.0738417 + 0.124019i
\(241\) −45.2255 78.3328i −0.187658 0.325033i 0.756811 0.653634i \(-0.226756\pi\)
−0.944469 + 0.328601i \(0.893423\pi\)
\(242\) 38.6822 144.364i 0.159844 0.596544i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 33.5927i 0.137675i
\(245\) −222.035 + 103.564i −0.906265 + 0.422709i
\(246\) −63.7046 −0.258962
\(247\) −394.650 + 105.746i −1.59778 + 0.428123i
\(248\) −92.9608 24.9088i −0.374842 0.100439i
\(249\) 199.750 115.326i 0.802208 0.463155i
\(250\) 82.1474 156.531i 0.328590 0.626122i
\(251\) 79.0027 0.314752 0.157376 0.987539i \(-0.449697\pi\)
0.157376 + 0.987539i \(0.449697\pi\)
\(252\) 37.9457 + 18.0034i 0.150578 + 0.0714420i
\(253\) −35.3065 + 35.3065i −0.139551 + 0.139551i
\(254\) 66.5172 + 38.4037i 0.261879 + 0.151196i
\(255\) 91.8853 + 89.4487i 0.360334 + 0.350779i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 278.141 74.5277i 1.08226 0.289991i 0.326739 0.945115i \(-0.394050\pi\)
0.755522 + 0.655124i \(0.227383\pi\)
\(258\) 51.5701 51.5701i 0.199884 0.199884i
\(259\) −44.5536 8.16268i −0.172022 0.0315161i
\(260\) −110.247 61.6911i −0.424027 0.237274i
\(261\) 39.9103 69.1266i 0.152913 0.264853i
\(262\) −53.8688 + 201.041i −0.205606 + 0.767332i
\(263\) −257.786 69.0735i −0.980174 0.262637i −0.267056 0.963681i \(-0.586051\pi\)
−0.713118 + 0.701044i \(0.752718\pi\)
\(264\) −16.6052 9.58699i −0.0628983 0.0363144i
\(265\) 110.494 197.461i 0.416957 0.745134i
\(266\) 243.877 + 207.424i 0.916830 + 0.779788i
\(267\) 61.1974 + 61.1974i 0.229204 + 0.229204i
\(268\) 30.5596 + 114.050i 0.114028 + 0.425559i
\(269\) −127.690 + 73.7221i −0.474686 + 0.274060i −0.718199 0.695838i \(-0.755033\pi\)
0.243514 + 0.969898i \(0.421700\pi\)
\(270\) −25.6294 + 26.3275i −0.0949235 + 0.0975092i
\(271\) −248.993 + 431.268i −0.918793 + 1.59140i −0.117542 + 0.993068i \(0.537501\pi\)
−0.801251 + 0.598328i \(0.795832\pi\)
\(272\) −41.8811 41.8811i −0.153975 0.153975i
\(273\) −152.674 + 12.3321i −0.559246 + 0.0451724i
\(274\) 1.65705i 0.00604763i
\(275\) 2.62901 + 97.8115i 0.00956003 + 0.355678i
\(276\) −22.0965 38.2723i −0.0800598 0.138668i
\(277\) 67.3127 251.215i 0.243006 0.906912i −0.731369 0.681982i \(-0.761118\pi\)
0.974375 0.224930i \(-0.0722152\pi\)
\(278\) −85.8751 320.490i −0.308903 1.15284i
\(279\) 102.078i 0.365871i
\(280\) 9.29524 + 98.5576i 0.0331973 + 0.351991i
\(281\) −170.124 −0.605422 −0.302711 0.953082i \(-0.597892\pi\)
−0.302711 + 0.953082i \(0.597892\pi\)
\(282\) −98.2475 + 26.3253i −0.348396 + 0.0933523i
\(283\) −328.238 87.9512i −1.15985 0.310782i −0.372946 0.927853i \(-0.621652\pi\)
−0.786907 + 0.617072i \(0.788319\pi\)
\(284\) −229.601 + 132.560i −0.808456 + 0.466762i
\(285\) −240.652 + 143.286i −0.844393 + 0.502757i
\(286\) 69.9263 0.244498
\(287\) −164.478 78.0365i −0.573092 0.271904i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 60.4027 + 34.8735i 0.209006 + 0.120670i
\(290\) 188.122 2.52774i 0.648696 0.00871636i
\(291\) 144.794 + 250.791i 0.497575 + 0.861826i
\(292\) −17.1341 + 4.59106i −0.0586784 + 0.0157228i
\(293\) −373.925 + 373.925i −1.27619 + 1.27619i −0.333415 + 0.942780i \(0.608201\pi\)
−0.942780 + 0.333415i \(0.891799\pi\)
\(294\) 75.9176 + 92.9651i 0.258223 + 0.316208i
\(295\) 32.6324 + 115.553i 0.110618 + 0.391705i
\(296\) −9.15101 + 15.8500i −0.0309156 + 0.0535474i
\(297\) 5.26362 19.6441i 0.0177226 0.0661418i
\(298\) 353.546 + 94.7323i 1.18639 + 0.317893i
\(299\) 139.577 + 80.5845i 0.466811 + 0.269514i
\(300\) −84.2237 20.1587i −0.280746 0.0671956i
\(301\) 196.320 69.9758i 0.652226 0.232478i
\(302\) −145.661 145.661i −0.482321 0.482321i
\(303\) −50.1362 187.111i −0.165466 0.617528i
\(304\) 112.032 64.6815i 0.368525 0.212768i
\(305\) 60.1766 + 58.5809i 0.197300 + 0.192069i
\(306\) 31.4108 54.4051i 0.102650 0.177794i
\(307\) −7.39324 7.39324i −0.0240822 0.0240822i 0.694963 0.719045i \(-0.255421\pi\)
−0.719045 + 0.694963i \(0.755421\pi\)
\(308\) −31.1287 45.0933i −0.101067 0.146407i
\(309\) 320.732i 1.03797i
\(310\) 206.731 123.089i 0.666874 0.397061i
\(311\) −146.398 253.569i −0.470733 0.815334i 0.528707 0.848805i \(-0.322677\pi\)
−0.999440 + 0.0334709i \(0.989344\pi\)
\(312\) −16.0185 + 59.7817i −0.0513412 + 0.191608i
\(313\) −89.1847 332.842i −0.284935 1.06339i −0.948887 0.315617i \(-0.897788\pi\)
0.663951 0.747776i \(-0.268878\pi\)
\(314\) 13.9866i 0.0445434i
\(315\) −98.4224 + 36.5791i −0.312452 + 0.116124i
\(316\) −209.359 −0.662528
\(317\) 123.264 33.0285i 0.388845 0.104191i −0.0590994 0.998252i \(-0.518823\pi\)
0.447944 + 0.894061i \(0.352156\pi\)
\(318\) −107.074 28.6903i −0.336709 0.0902210i
\(319\) −90.1842 + 52.0679i −0.282709 + 0.163222i
\(320\) 38.7726 + 9.83272i 0.121165 + 0.0307272i
\(321\) −55.4304 −0.172680
\(322\) −10.1680 125.882i −0.0315775 0.390938i
\(323\) 338.616 338.616i 1.04835 1.04835i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 302.766 89.9112i 0.931587 0.276650i
\(326\) 162.263 + 281.047i 0.497738 + 0.862107i
\(327\) 291.959 78.2302i 0.892841 0.239236i
\(328\) −52.0146 + 52.0146i −0.158581 + 0.158581i
\(329\) −285.911 52.3819i −0.869031 0.159215i
\(330\) 46.1307 13.0274i 0.139790 0.0394771i
\(331\) 115.234 199.591i 0.348139 0.602994i −0.637780 0.770218i \(-0.720147\pi\)
0.985919 + 0.167225i \(0.0534805\pi\)
\(332\) 68.9320 257.258i 0.207627 0.774873i
\(333\) −18.7508 5.02425i −0.0563086 0.0150879i
\(334\) 314.718 + 181.703i 0.942271 + 0.544020i
\(335\) −257.596 144.143i −0.768942 0.430279i
\(336\) 45.6823 16.2829i 0.135959 0.0484609i
\(337\) 261.018 + 261.018i 0.774533 + 0.774533i 0.978895 0.204363i \(-0.0655122\pi\)
−0.204363 + 0.978895i \(0.565512\pi\)
\(338\) 3.43998 + 12.8382i 0.0101775 + 0.0379828i
\(339\) −13.1582 + 7.59692i −0.0388149 + 0.0224098i
\(340\) 148.059 1.98942i 0.435466 0.00585125i
\(341\) −66.5867 + 115.332i −0.195269 + 0.338216i
\(342\) 97.0222 + 97.0222i 0.283691 + 0.283691i
\(343\) 82.1303 + 333.022i 0.239447 + 0.970909i
\(344\) 84.2137i 0.244807i
\(345\) 107.092 + 27.1586i 0.310413 + 0.0787205i
\(346\) 183.549 + 317.917i 0.530489 + 0.918834i
\(347\) −27.0336 + 100.891i −0.0779066 + 0.290751i −0.993877 0.110495i \(-0.964756\pi\)
0.915970 + 0.401247i \(0.131423\pi\)
\(348\) −23.8550 89.0283i −0.0685490 0.255828i
\(349\) 425.240i 1.21845i 0.792996 + 0.609227i \(0.208520\pi\)
−0.792996 + 0.609227i \(0.791480\pi\)
\(350\) −192.762 155.219i −0.550747 0.443483i
\(351\) −65.6449 −0.187022
\(352\) −21.3858 + 5.73031i −0.0607551 + 0.0162793i
\(353\) −58.8597 15.7714i −0.166741 0.0446782i 0.174483 0.984660i \(-0.444175\pi\)
−0.341224 + 0.939982i \(0.610841\pi\)
\(354\) 50.9423 29.4116i 0.143905 0.0830836i
\(355\) 162.929 642.465i 0.458954 1.80976i
\(356\) 99.9350 0.280716
\(357\) 147.744 101.990i 0.413848 0.285686i
\(358\) −308.644 + 308.644i −0.862135 + 0.862135i
\(359\) 527.860 + 304.760i 1.47036 + 0.848914i 0.999447 0.0332639i \(-0.0105902\pi\)
0.470916 + 0.882178i \(0.343924\pi\)
\(360\) 0.570021 + 42.4226i 0.00158339 + 0.117840i
\(361\) 342.462 + 593.161i 0.948647 + 1.64311i
\(362\) 235.730 63.1637i 0.651188 0.174485i
\(363\) 129.433 129.433i 0.356565 0.356565i
\(364\) −114.589 + 134.727i −0.314804 + 0.370129i
\(365\) 21.6551 38.6994i 0.0593292 0.106026i
\(366\) 20.5713 35.6305i 0.0562056 0.0973510i
\(367\) 21.7126 81.0326i 0.0591625 0.220797i −0.930015 0.367522i \(-0.880206\pi\)
0.989177 + 0.146724i \(0.0468730\pi\)
\(368\) −49.2909 13.2075i −0.133943 0.0358898i
\(369\) −67.5689 39.0109i −0.183114 0.105721i
\(370\) −12.4350 44.0329i −0.0336081 0.119008i
\(371\) −241.306 205.237i −0.650421 0.553200i
\(372\) −83.3464 83.3464i −0.224049 0.224049i
\(373\) −36.5025 136.229i −0.0978620 0.365226i 0.899576 0.436765i \(-0.143876\pi\)
−0.997438 + 0.0715386i \(0.977209\pi\)
\(374\) −70.9782 + 40.9793i −0.189781 + 0.109570i
\(375\) 182.985 115.721i 0.487961 0.308589i
\(376\) −58.7242 + 101.713i −0.156181 + 0.270514i
\(377\) 237.683 + 237.683i 0.630458 + 0.630458i
\(378\) 29.2228 + 42.3324i 0.0773089 + 0.111990i
\(379\) 123.783i 0.326603i −0.986576 0.163302i \(-0.947786\pi\)
0.986576 0.163302i \(-0.0522144\pi\)
\(380\) −79.4993 + 313.484i −0.209209 + 0.824958i
\(381\) 47.0348 + 81.4666i 0.123451 + 0.213823i
\(382\) 49.5212 184.816i 0.129637 0.483810i
\(383\) 81.7732 + 305.182i 0.213507 + 0.796819i 0.986687 + 0.162632i \(0.0519984\pi\)
−0.773180 + 0.634187i \(0.781335\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 135.062 + 22.8737i 0.350811 + 0.0594122i
\(386\) −31.1423 −0.0806796
\(387\) 86.2785 23.1183i 0.222942 0.0597371i
\(388\) 322.994 + 86.5461i 0.832460 + 0.223057i
\(389\) 300.792 173.662i 0.773243 0.446432i −0.0607870 0.998151i \(-0.519361\pi\)
0.834030 + 0.551718i \(0.186028\pi\)
\(390\) −79.1566 132.946i −0.202966 0.340886i
\(391\) −188.902 −0.483124
\(392\) 137.892 + 13.9192i 0.351766 + 0.0355082i
\(393\) −180.248 + 180.248i −0.458647 + 0.458647i
\(394\) 106.958 + 61.7521i 0.271466 + 0.156731i
\(395\) 365.092 375.036i 0.924282 0.949459i
\(396\) −11.7416 20.3371i −0.0296505 0.0513563i
\(397\) −365.656 + 97.9772i −0.921047 + 0.246794i −0.688033 0.725679i \(-0.741526\pi\)
−0.233014 + 0.972473i \(0.574859\pi\)
\(398\) −332.022 + 332.022i −0.834227 + 0.834227i
\(399\) 131.650 + 369.349i 0.329950 + 0.925688i
\(400\) −85.2278 + 52.3088i −0.213070 + 0.130772i
\(401\) −85.2179 + 147.602i −0.212513 + 0.368084i −0.952500 0.304537i \(-0.901498\pi\)
0.739987 + 0.672621i \(0.234832\pi\)
\(402\) −37.4277 + 139.682i −0.0931037 + 0.347468i
\(403\) 415.216 + 111.257i 1.03031 + 0.276071i
\(404\) −193.711 111.839i −0.479484 0.276830i
\(405\) −43.3063 + 12.2298i −0.106929 + 0.0301970i
\(406\) 47.4665 259.082i 0.116913 0.638133i
\(407\) 17.9079 + 17.9079i 0.0439999 + 0.0439999i
\(408\) −18.7748 70.0684i −0.0460166 0.171736i
\(409\) −230.144 + 132.873i −0.562698 + 0.324874i −0.754228 0.656613i \(-0.771989\pi\)
0.191530 + 0.981487i \(0.438655\pi\)
\(410\) −2.47078 183.883i −0.00602630 0.448494i
\(411\) −1.01473 + 1.75757i −0.00246894 + 0.00427632i
\(412\) 261.877 + 261.877i 0.635623 + 0.635623i
\(413\) 167.555 13.5341i 0.405703 0.0327702i
\(414\) 54.1251i 0.130737i
\(415\) 340.633 + 572.103i 0.820803 + 1.37856i
\(416\) 35.7325 + 61.8906i 0.0858955 + 0.148775i
\(417\) 105.175 392.519i 0.252218 0.941292i
\(418\) −46.3306 172.908i −0.110839 0.413656i
\(419\) 173.250i 0.413485i −0.978395 0.206742i \(-0.933714\pi\)
0.978395 0.206742i \(-0.0662862\pi\)
\(420\) −50.4949 + 110.228i −0.120226 + 0.262448i
\(421\) 541.087 1.28524 0.642621 0.766184i \(-0.277847\pi\)
0.642621 + 0.766184i \(0.277847\pi\)
\(422\) −6.51036 + 1.74445i −0.0154274 + 0.00413376i
\(423\) −120.328 32.2418i −0.284464 0.0762218i
\(424\) −110.851 + 63.9997i −0.261440 + 0.150943i
\(425\) −254.629 + 268.695i −0.599127 + 0.632224i
\(426\) −324.705 −0.762219
\(427\) 96.7590 66.7943i 0.226602 0.156427i
\(428\) −45.2587 + 45.2587i −0.105745 + 0.105745i
\(429\) 74.1680 + 42.8209i 0.172886 + 0.0998157i
\(430\) 150.857 + 146.857i 0.350830 + 0.341527i
\(431\) 272.438 + 471.876i 0.632106 + 1.09484i 0.987120 + 0.159979i \(0.0511428\pi\)
−0.355014 + 0.934861i \(0.615524\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) −440.714 + 440.714i −1.01782 + 1.01782i −0.0179771 + 0.999838i \(0.505723\pi\)
−0.999838 + 0.0179771i \(0.994277\pi\)
\(434\) −113.093 317.288i −0.260583 0.731077i
\(435\) 201.081 + 112.520i 0.462256 + 0.258666i
\(436\) 174.509 302.258i 0.400250 0.693253i
\(437\) 106.785 398.526i 0.244359 0.911959i
\(438\) −20.9849 5.62288i −0.0479107 0.0128376i
\(439\) −411.747 237.722i −0.937920 0.541508i −0.0486121 0.998818i \(-0.515480\pi\)
−0.889308 + 0.457310i \(0.848813\pi\)
\(440\) 27.0287 48.3025i 0.0614289 0.109778i
\(441\) 23.5935 + 145.094i 0.0535001 + 0.329012i
\(442\) 187.065 + 187.065i 0.423223 + 0.423223i
\(443\) −121.797 454.552i −0.274937 1.02608i −0.955884 0.293745i \(-0.905098\pi\)
0.680947 0.732332i \(-0.261568\pi\)
\(444\) −19.4122 + 11.2077i −0.0437212 + 0.0252425i
\(445\) −174.272 + 179.019i −0.391623 + 0.402291i
\(446\) −96.4999 + 167.143i −0.216367 + 0.374759i
\(447\) 316.980 + 316.980i 0.709128 + 0.709128i
\(448\) 24.0045 50.5943i 0.0535815 0.112934i
\(449\) 728.737i 1.62302i −0.584337 0.811511i \(-0.698645\pi\)
0.584337 0.811511i \(-0.301355\pi\)
\(450\) −76.9881 72.9578i −0.171085 0.162128i
\(451\) 50.8946 + 88.1520i 0.112848 + 0.195459i
\(452\) −4.54081 + 16.9465i −0.0100460 + 0.0374923i
\(453\) −65.2980 243.696i −0.144146 0.537959i
\(454\) 87.1519i 0.191965i
\(455\) −41.5178 440.214i −0.0912480 0.967504i
\(456\) 158.437 0.347449
\(457\) −601.427 + 161.152i −1.31603 + 0.352630i −0.847490 0.530811i \(-0.821887\pi\)
−0.468543 + 0.883441i \(0.655221\pi\)
\(458\) −616.568 165.209i −1.34622 0.360718i
\(459\) 66.6324 38.4702i 0.145169 0.0838131i
\(460\) 109.616 65.2657i 0.238295 0.141882i
\(461\) −796.674 −1.72814 −0.864071 0.503370i \(-0.832093\pi\)
−0.864071 + 0.503370i \(0.832093\pi\)
\(462\) −5.40304 66.8911i −0.0116949 0.144786i
\(463\) 215.541 215.541i 0.465531 0.465531i −0.434932 0.900463i \(-0.643228\pi\)
0.900463 + 0.434932i \(0.143228\pi\)
\(464\) −92.1688 53.2137i −0.198640 0.114685i
\(465\) 294.647 3.95910i 0.633650 0.00851419i
\(466\) −181.304 314.028i −0.389065 0.673881i
\(467\) 276.298 74.0339i 0.591645 0.158531i 0.0494401 0.998777i \(-0.484256\pi\)
0.542205 + 0.840246i \(0.317590\pi\)
\(468\) −53.5988 + 53.5988i −0.114527 + 0.114527i
\(469\) −267.741 + 314.794i −0.570876 + 0.671203i
\(470\) −79.7984 282.570i −0.169784 0.601212i
\(471\) −8.56502 + 14.8351i −0.0181848 + 0.0314969i
\(472\) 17.5798 65.6087i 0.0372453 0.139001i
\(473\) −112.561 30.1606i −0.237973 0.0637646i
\(474\) −222.058 128.205i −0.468478 0.270476i
\(475\) −422.927 689.083i −0.890372 1.45070i
\(476\) 37.3578 203.907i 0.0784828 0.428376i
\(477\) −95.9996 95.9996i −0.201257 0.201257i
\(478\) 2.58529 + 9.64845i 0.00540857 + 0.0201850i
\(479\) 581.667 335.826i 1.21434 0.701098i 0.250636 0.968081i \(-0.419360\pi\)
0.963701 + 0.266984i \(0.0860270\pi\)
\(480\) 35.1033 + 34.1725i 0.0731319 + 0.0711926i
\(481\) 40.8736 70.7952i 0.0849763 0.147183i
\(482\) −90.4510 90.4510i −0.187658 0.187658i
\(483\) 66.3019 139.745i 0.137271 0.289326i
\(484\) 211.363i 0.436701i
\(485\) −718.291 + 427.675i −1.48101 + 0.881804i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) 26.4722 98.7957i 0.0543578 0.202866i −0.933406 0.358821i \(-0.883179\pi\)
0.987764 + 0.155955i \(0.0498455\pi\)
\(488\) −12.2958 45.8885i −0.0251963 0.0940339i
\(489\) 397.460i 0.812802i
\(490\) −265.398 + 222.741i −0.541630 + 0.454574i
\(491\) 260.790 0.531140 0.265570 0.964092i \(-0.414440\pi\)
0.265570 + 0.964092i \(0.414440\pi\)
\(492\) −87.0220 + 23.3175i −0.176874 + 0.0473933i
\(493\) −380.548 101.968i −0.771904 0.206831i
\(494\) −500.397 + 288.904i −1.01295 + 0.584826i
\(495\) 56.9067 + 14.4315i 0.114963 + 0.0291545i
\(496\) −136.104 −0.274403
\(497\) −838.350 397.756i −1.68682 0.800314i
\(498\) 230.651 230.651i 0.463155 0.463155i
\(499\) −82.9389 47.8848i −0.166210 0.0959615i 0.414587 0.910009i \(-0.363926\pi\)
−0.580798 + 0.814048i \(0.697259\pi\)
\(500\) 54.9213 243.893i 0.109843 0.487785i
\(501\) 222.540 + 385.450i 0.444191 + 0.769361i
\(502\) 107.920 28.9170i 0.214979 0.0576036i
\(503\) −172.595 + 172.595i −0.343132 + 0.343132i −0.857543 0.514412i \(-0.828010\pi\)
0.514412 + 0.857543i \(0.328010\pi\)
\(504\) 58.4245 + 10.7040i 0.115922 + 0.0212380i
\(505\) 538.149 151.975i 1.06564 0.300940i
\(506\) −35.3065 + 61.1526i −0.0697757 + 0.120855i
\(507\) −4.21310 + 15.7235i −0.00830985 + 0.0310128i
\(508\) 104.921 + 28.1135i 0.206537 + 0.0553415i
\(509\) −165.245 95.4042i −0.324646 0.187435i 0.328815 0.944394i \(-0.393351\pi\)
−0.653462 + 0.756960i \(0.726684\pi\)
\(510\) 158.258 + 88.5569i 0.310310 + 0.173641i
\(511\) −47.2926 40.2236i −0.0925491 0.0787154i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 43.4939 + 162.321i 0.0847834 + 0.316416i
\(514\) 352.669 203.613i 0.686126 0.396135i
\(515\) −925.791 + 12.4396i −1.79765 + 0.0241546i
\(516\) 51.5701 89.3221i 0.0999421 0.173105i
\(517\) 114.920 + 114.920i 0.222282 + 0.222282i
\(518\) −63.8491 + 5.15733i −0.123261 + 0.00995624i
\(519\) 449.602i 0.866285i
\(520\) −173.181 43.9185i −0.333040 0.0844587i
\(521\) 321.064 + 556.100i 0.616246 + 1.06737i 0.990164 + 0.139908i \(0.0446808\pi\)
−0.373918 + 0.927462i \(0.621986\pi\)
\(522\) 29.2163 109.037i 0.0559700 0.208883i
\(523\) 30.1396 + 112.482i 0.0576283 + 0.215072i 0.988735 0.149674i \(-0.0478225\pi\)
−0.931107 + 0.364746i \(0.881156\pi\)
\(524\) 294.344i 0.561726i
\(525\) −109.403 282.677i −0.208386 0.538432i
\(526\) −377.424 −0.717537
\(527\) −486.662 + 130.401i −0.923458 + 0.247440i
\(528\) −26.1921 7.01816i −0.0496063 0.0132920i
\(529\) 317.180 183.124i 0.599585 0.346170i
\(530\) 78.6614 310.180i 0.148418 0.585245i
\(531\) 72.0434 0.135675
\(532\) 409.064 + 194.081i 0.768918 + 0.364814i
\(533\) 232.327 232.327i 0.435885 0.435885i
\(534\) 105.997 + 61.1974i 0.198496 + 0.114602i
\(535\) −2.14987 159.999i −0.00401845 0.299064i
\(536\) 83.4903 + 144.609i 0.155765 + 0.269794i
\(537\) −516.372 + 138.361i −0.961587 + 0.257656i
\(538\) −147.444 + 147.444i −0.274060 + 0.274060i
\(539\) 67.9899 179.323i 0.126141 0.332696i
\(540\) −25.3738 + 45.3450i −0.0469886 + 0.0839722i
\(541\) 211.339 366.049i 0.390645 0.676616i −0.601890 0.798579i \(-0.705585\pi\)
0.992535 + 0.121963i \(0.0389188\pi\)
\(542\) −182.275 + 680.261i −0.336302 + 1.25509i
\(543\) 288.709 + 77.3594i 0.531693 + 0.142467i
\(544\) −72.5401 41.8811i −0.133346 0.0769873i
\(545\) 237.134 + 839.703i 0.435109 + 1.54074i
\(546\) −204.043 + 72.7285i −0.373705 + 0.133202i
\(547\) −57.9153 57.9153i −0.105878 0.105878i 0.652183 0.758061i \(-0.273853\pi\)
−0.758061 + 0.652183i \(0.773853\pi\)
\(548\) 0.606523 + 2.26357i 0.00110679 + 0.00413061i
\(549\) 43.6382 25.1946i 0.0794868 0.0458917i
\(550\) 39.3928 + 132.651i 0.0716232 + 0.241183i
\(551\) 430.243 745.202i 0.780840 1.35245i
\(552\) −44.1930 44.1930i −0.0800598 0.0800598i
\(553\) −416.280 603.027i −0.752766 1.09046i
\(554\) 367.804i 0.663906i
\(555\) 13.7752 54.3188i 0.0248202 0.0978717i
\(556\) −234.615 406.365i −0.421970 0.730873i
\(557\) −6.94144 + 25.9058i −0.0124622 + 0.0465095i −0.971877 0.235489i \(-0.924331\pi\)
0.959415 + 0.281999i \(0.0909974\pi\)
\(558\) −37.3632 139.441i −0.0669591 0.249895i
\(559\) 376.146i 0.672891i
\(560\) 48.7721 + 131.230i 0.0870931 + 0.234339i
\(561\) −100.378 −0.178928
\(562\) −232.393 + 62.2696i −0.413511 + 0.110800i
\(563\) 1003.19 + 268.804i 1.78186 + 0.477449i 0.990921 0.134443i \(-0.0429245\pi\)
0.790942 + 0.611892i \(0.209591\pi\)
\(564\) −124.573 + 71.9222i −0.220874 + 0.127522i
\(565\) −22.4388 37.6865i −0.0397146 0.0667018i
\(566\) −480.574 −0.849071
\(567\) 5.07222 + 62.7955i 0.00894572 + 0.110750i
\(568\) −265.121 + 265.121i −0.466762 + 0.466762i
\(569\) 35.1341 + 20.2847i 0.0617471 + 0.0356497i 0.530556 0.847650i \(-0.321983\pi\)
−0.468809 + 0.883300i \(0.655317\pi\)
\(570\) −276.291 + 283.817i −0.484721 + 0.497924i
\(571\) −104.960 181.797i −0.183819 0.318383i 0.759359 0.650672i \(-0.225513\pi\)
−0.943178 + 0.332289i \(0.892179\pi\)
\(572\) 95.5211 25.5948i 0.166995 0.0447462i
\(573\) 165.701 165.701i 0.289182 0.289182i
\(574\) −253.244 46.3969i −0.441191 0.0808308i
\(575\) −74.2394 + 310.175i −0.129112 + 0.539434i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 9.56994 35.7155i 0.0165857 0.0618986i −0.957137 0.289635i \(-0.906466\pi\)
0.973723 + 0.227737i \(0.0731326\pi\)
\(578\) 95.2762 + 25.5292i 0.164838 + 0.0441681i
\(579\) −33.0314 19.0707i −0.0570491 0.0329373i
\(580\) 256.054 72.3103i 0.441472 0.124673i
\(581\) 878.055 312.972i 1.51128 0.538678i
\(582\) 289.589 + 289.589i 0.497575 + 0.497575i
\(583\) 45.8422 + 171.086i 0.0786316 + 0.293457i
\(584\) −21.7252 + 12.5430i −0.0372006 + 0.0214778i
\(585\) −2.54604 189.483i −0.00435220 0.323903i
\(586\) −373.925 + 647.657i −0.638097 + 1.10522i
\(587\) 452.761 + 452.761i 0.771314 + 0.771314i 0.978336 0.207022i \(-0.0663773\pi\)
−0.207022 + 0.978336i \(0.566377\pi\)
\(588\) 137.733 + 99.2049i 0.234240 + 0.168716i
\(589\) 1100.43i 1.86830i
\(590\) 86.8721 + 145.904i 0.147241 + 0.247295i
\(591\) 75.6305 + 130.996i 0.127970 + 0.221651i
\(592\) −6.69901 + 25.0010i −0.0113159 + 0.0422315i
\(593\) 1.05483 + 3.93666i 0.00177880 + 0.00663855i 0.966810 0.255498i \(-0.0822395\pi\)
−0.965031 + 0.262137i \(0.915573\pi\)
\(594\) 28.7610i 0.0484191i
\(595\) 300.123 + 422.505i 0.504409 + 0.710093i
\(596\) 517.627 0.868501
\(597\) −555.484 + 148.842i −0.930459 + 0.249316i
\(598\) 220.161 + 58.9920i 0.368162 + 0.0986488i
\(599\) −499.784 + 288.550i −0.834364 + 0.481720i −0.855344 0.518060i \(-0.826654\pi\)
0.0209807 + 0.999780i \(0.493321\pi\)
\(600\) −122.430 + 3.29072i −0.204050 + 0.00548454i
\(601\) 16.8472 0.0280319 0.0140160 0.999902i \(-0.495538\pi\)
0.0140160 + 0.999902i \(0.495538\pi\)
\(602\) 242.565 167.447i 0.402932 0.278151i
\(603\) −125.235 + 125.235i −0.207687 + 0.207687i
\(604\) −252.292 145.661i −0.417702 0.241161i
\(605\) 378.627 + 368.587i 0.625830 + 0.609235i
\(606\) −136.975 237.247i −0.226031 0.391497i
\(607\) 400.443 107.298i 0.659709 0.176768i 0.0865941 0.996244i \(-0.472402\pi\)
0.573115 + 0.819475i \(0.305735\pi\)
\(608\) 129.363 129.363i 0.212768 0.212768i
\(609\) 209.001 245.731i 0.343186 0.403499i
\(610\) 103.645 + 57.9968i 0.169910 + 0.0950768i
\(611\) 262.296 454.310i 0.429289 0.743551i
\(612\) 22.9943 85.8159i 0.0375724 0.140222i
\(613\) 958.356 + 256.791i 1.56339 + 0.418908i 0.933734 0.357968i \(-0.116530\pi\)
0.629653 + 0.776876i \(0.283197\pi\)
\(614\) −12.8055 7.39324i −0.0208558 0.0120411i
\(615\) 109.984 196.550i 0.178836 0.319594i
\(616\) −59.0279 50.2048i −0.0958245 0.0815012i
\(617\) −435.763 435.763i −0.706261 0.706261i 0.259486 0.965747i \(-0.416447\pi\)
−0.965747 + 0.259486i \(0.916447\pi\)
\(618\) 117.396 + 438.128i 0.189961 + 0.708946i
\(619\) −339.430 + 195.970i −0.548352 + 0.316591i −0.748457 0.663183i \(-0.769205\pi\)
0.200105 + 0.979774i \(0.435872\pi\)
\(620\) 237.346 243.811i 0.382816 0.393244i
\(621\) 33.1447 57.4084i 0.0533732 0.0924451i
\(622\) −292.796 292.796i −0.470733 0.470733i
\(623\) 198.706 + 287.848i 0.318951 + 0.462035i
\(624\) 87.5265i 0.140267i
\(625\) 341.124 + 523.698i 0.545799 + 0.837916i
\(626\) −243.657 422.027i −0.389229 0.674164i
\(627\) 56.7431 211.768i 0.0904994 0.337748i
\(628\) 5.11946 + 19.1061i 0.00815201 + 0.0304237i
\(629\) 95.8136i 0.152327i
\(630\) −121.059 + 85.9931i −0.192157 + 0.136497i
\(631\) −786.782 −1.24688 −0.623441 0.781870i \(-0.714266\pi\)
−0.623441 + 0.781870i \(0.714266\pi\)
\(632\) −285.989 + 76.6306i −0.452515 + 0.121251i
\(633\) −7.97353 2.13650i −0.0125964 0.00337520i
\(634\) 156.292 90.2354i 0.246518 0.142327i
\(635\) −233.328 + 138.925i −0.367446 + 0.218780i
\(636\) −156.767 −0.246488
\(637\) −615.905 62.1711i −0.966883 0.0975998i
\(638\) −104.136 + 104.136i −0.163222 + 0.163222i
\(639\) −344.402 198.841i −0.538970 0.311175i
\(640\) 56.5634 0.760028i 0.0883804 0.00118754i
\(641\) −350.141 606.461i −0.546241 0.946118i −0.998528 0.0542449i \(-0.982725\pi\)
0.452286 0.891873i \(-0.350609\pi\)
\(642\) −75.7193 + 20.2889i −0.117943 + 0.0316027i
\(643\) 175.844 175.844i 0.273474 0.273474i −0.557023 0.830497i \(-0.688056\pi\)
0.830497 + 0.557023i \(0.188056\pi\)
\(644\) −59.9657 168.236i −0.0931144 0.261236i
\(645\) 70.0770 + 248.146i 0.108646 + 0.384722i
\(646\) 338.616 586.500i 0.524174 0.907895i
\(647\) −320.893 + 1197.59i −0.495971 + 1.85099i 0.0285523 + 0.999592i \(0.490910\pi\)
−0.524523 + 0.851396i \(0.675756\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) −81.3973 46.9947i −0.125420 0.0724110i
\(650\) 380.676 233.641i 0.585655 0.359448i
\(651\) 74.3448 405.789i 0.114201 0.623332i
\(652\) 324.525 + 324.525i 0.497738 + 0.497738i
\(653\) −13.1774 49.1787i −0.0201798 0.0753119i 0.955102 0.296278i \(-0.0957456\pi\)
−0.975281 + 0.220966i \(0.929079\pi\)
\(654\) 370.189 213.729i 0.566039 0.326802i
\(655\) −527.276 513.294i −0.805002 0.783656i
\(656\) −52.0146 + 90.0919i −0.0792905 + 0.137335i
\(657\) −18.8145 18.8145i −0.0286370 0.0286370i
\(658\) −409.735 + 33.0958i −0.622698 + 0.0502976i
\(659\) 741.347i 1.12496i 0.826812 + 0.562479i \(0.190152\pi\)
−0.826812 + 0.562479i \(0.809848\pi\)
\(660\) 58.2474 34.6808i 0.0882536 0.0525467i
\(661\) −337.951 585.348i −0.511272 0.885549i −0.999915 0.0130653i \(-0.995841\pi\)
0.488642 0.872484i \(-0.337492\pi\)
\(662\) 84.3571 314.825i 0.127428 0.475566i
\(663\) 83.8588 + 312.965i 0.126484 + 0.472044i
\(664\) 376.652i 0.567246i
\(665\) −1061.02 + 394.332i −1.59552 + 0.592980i
\(666\) −27.4530 −0.0412208
\(667\) −327.869 + 87.8522i −0.491557 + 0.131712i
\(668\) 496.421 + 133.016i 0.743146 + 0.199125i
\(669\) −204.707 + 118.188i −0.305990 + 0.176663i
\(670\) −404.642 102.617i −0.603944 0.153160i
\(671\) −65.7388 −0.0979714
\(672\) 56.4432 38.9637i 0.0839928 0.0579817i
\(673\) 212.014 212.014i 0.315029 0.315029i −0.531825 0.846854i \(-0.678494\pi\)
0.846854 + 0.531825i \(0.178494\pi\)
\(674\) 452.096 + 261.018i 0.670765 + 0.387266i
\(675\) −36.9808 124.529i −0.0547864 0.184487i
\(676\) 9.39820 + 16.2782i 0.0139027 + 0.0240801i
\(677\) 815.048 218.391i 1.20391 0.322587i 0.399541 0.916715i \(-0.369170\pi\)
0.804370 + 0.594128i \(0.202503\pi\)
\(678\) −15.1938 + 15.1938i −0.0224098 + 0.0224098i
\(679\) 392.945 + 1102.42i 0.578711 + 1.62360i
\(680\) 201.524 56.9108i 0.296358 0.0836924i
\(681\) −53.3694 + 92.4385i −0.0783692 + 0.135739i
\(682\) −48.7449 + 181.918i −0.0714734 + 0.266742i
\(683\) 910.072 + 243.853i 1.33246 + 0.357032i 0.853633 0.520875i \(-0.174394\pi\)
0.478830 + 0.877908i \(0.341061\pi\)
\(684\) 168.047 + 97.0222i 0.245683 + 0.141845i
\(685\) −5.11256 2.86085i −0.00746359 0.00417642i
\(686\) 234.087 + 424.855i 0.341234 + 0.619322i
\(687\) −552.800 552.800i −0.804658 0.804658i
\(688\) −30.8243 115.038i −0.0448028 0.167206i
\(689\) 495.122 285.859i 0.718610 0.414890i
\(690\) 156.232 2.09925i 0.226423 0.00304238i
\(691\) 241.773 418.764i 0.349889 0.606026i −0.636340 0.771408i \(-0.719553\pi\)
0.986229 + 0.165383i \(0.0528860\pi\)
\(692\) 367.098 + 367.098i 0.530489 + 0.530489i
\(693\) 35.2315 74.2574i 0.0508390 0.107153i
\(694\) 147.714i 0.212845i
\(695\) 1137.08 + 288.363i 1.63609 + 0.414911i
\(696\) −65.1732 112.883i −0.0936397 0.162189i
\(697\) −99.6699 + 371.973i −0.142998 + 0.533677i
\(698\) 155.649 + 580.889i 0.222993 + 0.832220i
\(699\) 444.103i 0.635341i
\(700\) −320.131 141.478i −0.457330 0.202111i
\(701\) −1192.55 −1.70122 −0.850609 0.525799i \(-0.823767\pi\)
−0.850609 + 0.525799i \(0.823767\pi\)
\(702\) −89.6726 + 24.0277i −0.127739 + 0.0342275i
\(703\) −202.138 54.1627i −0.287536 0.0770451i
\(704\) −27.1161 + 15.6555i −0.0385172 + 0.0222379i
\(705\) 88.3988 348.577i 0.125388 0.494435i
\(706\) −86.1765 −0.122063
\(707\) −63.0305 780.334i −0.0891520 1.10373i
\(708\) 58.8232 58.8232i 0.0830836 0.0830836i
\(709\) 1102.14 + 636.323i 1.55450 + 0.897494i 0.997766 + 0.0668057i \(0.0212808\pi\)
0.556738 + 0.830688i \(0.312053\pi\)
\(710\) −12.5937 937.259i −0.0177376 1.32008i
\(711\) −157.019 271.965i −0.220843 0.382510i
\(712\) 136.514 36.5787i 0.191733 0.0513746i
\(713\) −306.944 + 306.944i −0.430496 + 0.430496i
\(714\) 164.491 193.399i 0.230379 0.270867i
\(715\) −120.726 + 215.746i −0.168847 + 0.301743i
\(716\) −308.644 + 534.588i −0.431068 + 0.746631i
\(717\) −3.16633 + 11.8169i −0.00441608 + 0.0164810i
\(718\) 832.620 + 223.100i 1.15964 + 0.310724i
\(719\) 492.720 + 284.472i 0.685285 + 0.395650i 0.801843 0.597534i \(-0.203853\pi\)
−0.116558 + 0.993184i \(0.537186\pi\)
\(720\) 16.3064 + 57.7417i 0.0226478 + 0.0801968i
\(721\) −233.593 + 1275.00i −0.323985 + 1.76838i
\(722\) 684.923 + 684.923i 0.948647 + 0.948647i
\(723\) −40.5481 151.327i −0.0560831 0.209305i
\(724\) 298.894 172.566i 0.412837 0.238351i
\(725\) −316.988 + 584.783i −0.437224 + 0.806598i
\(726\) 129.433 224.185i 0.178282 0.308794i
\(727\) −467.794 467.794i −0.643459 0.643459i 0.307945 0.951404i \(-0.400359\pi\)
−0.951404 + 0.307945i \(0.900359\pi\)
\(728\) −107.218 + 225.983i −0.147277 + 0.310416i
\(729\) 27.0000i 0.0370370i
\(730\) 15.4165 60.7908i 0.0211185 0.0832750i
\(731\) −220.435 381.805i −0.301553 0.522304i
\(732\) 15.0592 56.2017i 0.0205727 0.0767783i
\(733\) −164.832 615.162i −0.224873 0.839239i −0.982455 0.186499i \(-0.940286\pi\)
0.757582 0.652740i \(-0.226381\pi\)
\(734\) 118.640i 0.161635i
\(735\) −417.898 + 73.7300i −0.568569 + 0.100313i
\(736\) −72.1669 −0.0980528
\(737\) 223.188 59.8031i 0.302833 0.0811440i
\(738\) −106.580 28.5580i −0.144417 0.0386964i
\(739\) 306.153 176.758i 0.414280 0.239185i −0.278347 0.960481i \(-0.589787\pi\)
0.692627 + 0.721296i \(0.256453\pi\)
\(740\) −33.1037 55.5985i −0.0447347 0.0751332i
\(741\) −707.668 −0.955017
\(742\) −404.753 192.035i −0.545489 0.258807i
\(743\) −278.067 + 278.067i −0.374250 + 0.374250i −0.869022 0.494773i \(-0.835251\pi\)
0.494773 + 0.869022i \(0.335251\pi\)
\(744\) −144.360 83.3464i −0.194032 0.112025i
\(745\) −902.667 + 927.255i −1.21163 + 1.24464i
\(746\) −99.7268 172.732i −0.133682 0.231544i
\(747\) 385.887 103.398i 0.516582 0.138418i
\(748\) −81.9586 + 81.9586i −0.109570 + 0.109570i
\(749\) −220.352 40.3707i −0.294194 0.0538994i
\(750\) 207.606 225.055i 0.276808 0.300073i
\(751\) 375.703 650.737i 0.500271 0.866494i −0.499729 0.866182i \(-0.666567\pi\)
1.00000 0.000312486i \(-9.94674e-5\pi\)
\(752\) −42.9891 + 160.438i −0.0571664 + 0.213348i
\(753\) 132.174 + 35.4159i 0.175530 + 0.0470331i
\(754\) 411.678 + 237.683i 0.545992 + 0.315229i
\(755\) 700.893 197.934i 0.928335 0.262164i
\(756\) 55.4137 + 47.1308i 0.0732986 + 0.0623424i
\(757\) −554.603 554.603i −0.732632 0.732632i 0.238508 0.971140i \(-0.423342\pi\)
−0.971140 + 0.238508i \(0.923342\pi\)
\(758\) −45.3076 169.090i −0.0597726 0.223074i
\(759\) −74.8964 + 43.2414i −0.0986777 + 0.0569716i
\(760\) 6.14497 + 457.326i 0.00808548 + 0.601745i
\(761\) 127.641 221.080i 0.167728 0.290513i −0.769893 0.638173i \(-0.779690\pi\)
0.937621 + 0.347660i \(0.113024\pi\)
\(762\) 94.0696 + 94.0696i 0.123451 + 0.123451i
\(763\) 1217.60 98.3498i 1.59580 0.128899i
\(764\)