Properties

Label 210.3.v.b.37.5
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.5
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.5

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-3.99375 - 3.00831i) q^{5} +2.44949 q^{6} +(6.54111 - 2.49277i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-3.99375 - 3.00831i) q^{5} +2.44949 q^{6} +(6.54111 - 2.49277i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-6.55669 - 2.64762i) q^{10} +(1.59310 + 2.75932i) q^{11} +(3.34607 - 0.896575i) q^{12} +(16.7146 - 16.7146i) q^{13} +(8.02290 - 5.79940i) q^{14} +(-5.33309 - 6.82335i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-3.89785 + 14.5470i) q^{17} +(4.09808 + 1.09808i) q^{18} +(-13.5028 - 7.79585i) q^{19} +(-9.92569 - 1.21680i) q^{20} +(12.0610 - 1.23819i) q^{21} +(3.18619 + 3.18619i) q^{22} +(-1.45196 - 5.41879i) q^{23} +(4.24264 - 2.44949i) q^{24} +(6.90012 + 24.0289i) q^{25} +(16.7146 - 28.9505i) q^{26} +(3.67423 + 3.67423i) q^{27} +(8.83676 - 10.8587i) q^{28} +47.4699i q^{29} +(-9.78266 - 7.36883i) q^{30} +(0.731778 + 1.26748i) q^{31} +(1.46410 - 5.46410i) q^{32} +(1.42833 + 5.33061i) q^{33} +21.2982i q^{34} +(-33.6226 - 9.72217i) q^{35} +6.00000 q^{36} +(-53.3715 + 14.3009i) q^{37} +(-21.2987 - 5.70696i) q^{38} +(35.4570 - 20.4711i) q^{39} +(-14.0041 + 1.97088i) q^{40} -27.2740 q^{41} +(16.0224 - 6.10602i) q^{42} +(-16.8709 + 16.8709i) q^{43} +(5.51865 + 3.18619i) q^{44} +(-5.86361 - 13.8065i) q^{45} +(-3.96683 - 6.87075i) q^{46} +(26.2915 - 7.04479i) q^{47} +(4.89898 - 4.89898i) q^{48} +(36.5722 - 32.6110i) q^{49} +(18.2209 + 30.2985i) q^{50} +(-13.0425 + 22.5902i) q^{51} +(12.2359 - 45.6651i) q^{52} +(33.3020 + 8.92325i) q^{53} +(6.36396 + 3.67423i) q^{54} +(1.93848 - 15.8126i) q^{55} +(8.09667 - 18.0678i) q^{56} +(-19.0959 - 19.0959i) q^{57} +(17.3752 + 64.8451i) q^{58} +(-46.3174 + 26.7414i) q^{59} +(-16.0605 - 6.48531i) q^{60} +(20.4235 - 35.3745i) q^{61} +(1.46356 + 1.46356i) q^{62} +(20.7335 + 3.33525i) q^{63} -8.00000i q^{64} +(-117.037 + 16.4712i) q^{65} +(3.90227 + 6.75894i) q^{66} +(-15.8467 + 59.1406i) q^{67} +(7.79570 + 29.0939i) q^{68} -9.71671i q^{69} +(-49.4879 - 0.974011i) q^{70} -102.469 q^{71} +(8.19615 - 2.19615i) q^{72} +(29.5654 + 7.92202i) q^{73} +(-67.6724 + 39.0707i) q^{74} +(0.772256 + 43.2944i) q^{75} -31.1834 q^{76} +(17.2990 + 14.0778i) q^{77} +(40.9422 - 40.9422i) q^{78} +(101.041 + 58.3361i) q^{79} +(-18.4086 + 7.81814i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-37.2570 + 9.98297i) q^{82} +(-74.9073 + 74.9073i) q^{83} +(19.6520 - 14.2056i) q^{84} +(59.3289 - 46.3711i) q^{85} +(-16.8709 + 29.2212i) q^{86} +(-21.2802 + 79.4187i) q^{87} +(8.70484 + 2.33246i) q^{88} +(91.7988 + 53.0001i) q^{89} +(-13.0633 - 16.7137i) q^{90} +(67.6662 - 150.998i) q^{91} +(-7.93366 - 7.93366i) q^{92} +(0.656094 + 2.44858i) q^{93} +(33.3363 - 19.2467i) q^{94} +(30.4745 + 71.7554i) q^{95} +(4.89898 - 8.48528i) q^{96} +(-66.3214 - 66.3214i) q^{97} +(38.0221 - 57.9338i) q^{98} +9.55858i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −3.99375 3.00831i −0.798750 0.601662i
\(6\) 2.44949 0.408248
\(7\) 6.54111 2.49277i 0.934444 0.356110i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −6.55669 2.64762i −0.655669 0.264762i
\(11\) 1.59310 + 2.75932i 0.144827 + 0.250848i 0.929308 0.369305i \(-0.120404\pi\)
−0.784481 + 0.620152i \(0.787071\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) 16.7146 16.7146i 1.28574 1.28574i 0.348386 0.937351i \(-0.386730\pi\)
0.937351 0.348386i \(-0.113270\pi\)
\(14\) 8.02290 5.79940i 0.573064 0.414243i
\(15\) −5.33309 6.82335i −0.355539 0.454890i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −3.89785 + 14.5470i −0.229285 + 0.855704i 0.751357 + 0.659896i \(0.229400\pi\)
−0.980642 + 0.195808i \(0.937267\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) −13.5028 7.79585i −0.710674 0.410308i 0.100636 0.994923i \(-0.467912\pi\)
−0.811311 + 0.584615i \(0.801245\pi\)
\(20\) −9.92569 1.21680i −0.496285 0.0608398i
\(21\) 12.0610 1.23819i 0.574332 0.0589615i
\(22\) 3.18619 + 3.18619i 0.144827 + 0.144827i
\(23\) −1.45196 5.41879i −0.0631287 0.235600i 0.927151 0.374687i \(-0.122250\pi\)
−0.990280 + 0.139087i \(0.955583\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) 6.90012 + 24.0289i 0.276005 + 0.961156i
\(26\) 16.7146 28.9505i 0.642869 1.11348i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 8.83676 10.8587i 0.315598 0.387811i
\(29\) 47.4699i 1.63689i 0.574583 + 0.818446i \(0.305164\pi\)
−0.574583 + 0.818446i \(0.694836\pi\)
\(30\) −9.78266 7.36883i −0.326089 0.245628i
\(31\) 0.731778 + 1.26748i 0.0236057 + 0.0408863i 0.877587 0.479417i \(-0.159152\pi\)
−0.853981 + 0.520304i \(0.825819\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 1.42833 + 5.33061i 0.0432828 + 0.161533i
\(34\) 21.2982i 0.626419i
\(35\) −33.6226 9.72217i −0.960646 0.277776i
\(36\) 6.00000 0.166667
\(37\) −53.3715 + 14.3009i −1.44247 + 0.386510i −0.893399 0.449264i \(-0.851686\pi\)
−0.549074 + 0.835773i \(0.685020\pi\)
\(38\) −21.2987 5.70696i −0.560491 0.150183i
\(39\) 35.4570 20.4711i 0.909154 0.524900i
\(40\) −14.0041 + 1.97088i −0.350103 + 0.0492720i
\(41\) −27.2740 −0.665219 −0.332610 0.943065i \(-0.607929\pi\)
−0.332610 + 0.943065i \(0.607929\pi\)
\(42\) 16.0224 6.10602i 0.381485 0.145381i
\(43\) −16.8709 + 16.8709i −0.392346 + 0.392346i −0.875523 0.483177i \(-0.839483\pi\)
0.483177 + 0.875523i \(0.339483\pi\)
\(44\) 5.51865 + 3.18619i 0.125424 + 0.0724135i
\(45\) −5.86361 13.8065i −0.130302 0.306810i
\(46\) −3.96683 6.87075i −0.0862355 0.149364i
\(47\) 26.2915 7.04479i 0.559394 0.149889i 0.0319661 0.999489i \(-0.489823\pi\)
0.527428 + 0.849600i \(0.323156\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 36.5722 32.6110i 0.746371 0.665530i
\(50\) 18.2209 + 30.2985i 0.364419 + 0.605970i
\(51\) −13.0425 + 22.5902i −0.255734 + 0.442945i
\(52\) 12.2359 45.6651i 0.235306 0.878175i
\(53\) 33.3020 + 8.92325i 0.628340 + 0.168363i 0.558916 0.829224i \(-0.311217\pi\)
0.0694239 + 0.997587i \(0.477884\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 1.93848 15.8126i 0.0352450 0.287502i
\(56\) 8.09667 18.0678i 0.144583 0.322639i
\(57\) −19.0959 19.0959i −0.335015 0.335015i
\(58\) 17.3752 + 64.8451i 0.299572 + 1.11802i
\(59\) −46.3174 + 26.7414i −0.785041 + 0.453243i −0.838214 0.545342i \(-0.816400\pi\)
0.0531731 + 0.998585i \(0.483067\pi\)
\(60\) −16.0605 6.48531i −0.267676 0.108088i
\(61\) 20.4235 35.3745i 0.334812 0.579911i −0.648637 0.761098i \(-0.724661\pi\)
0.983449 + 0.181187i \(0.0579940\pi\)
\(62\) 1.46356 + 1.46356i 0.0236057 + 0.0236057i
\(63\) 20.7335 + 3.33525i 0.329102 + 0.0529404i
\(64\) 8.00000i 0.125000i
\(65\) −117.037 + 16.4712i −1.80056 + 0.253403i
\(66\) 3.90227 + 6.75894i 0.0591254 + 0.102408i
\(67\) −15.8467 + 59.1406i −0.236517 + 0.882695i 0.740941 + 0.671570i \(0.234380\pi\)
−0.977459 + 0.211126i \(0.932287\pi\)
\(68\) 7.79570 + 29.0939i 0.114643 + 0.427852i
\(69\) 9.71671i 0.140822i
\(70\) −49.4879 0.974011i −0.706970 0.0139144i
\(71\) −102.469 −1.44323 −0.721616 0.692294i \(-0.756600\pi\)
−0.721616 + 0.692294i \(0.756600\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) 29.5654 + 7.92202i 0.405005 + 0.108521i 0.455570 0.890200i \(-0.349435\pi\)
−0.0505648 + 0.998721i \(0.516102\pi\)
\(74\) −67.6724 + 39.0707i −0.914492 + 0.527982i
\(75\) 0.772256 + 43.2944i 0.0102968 + 0.577258i
\(76\) −31.1834 −0.410308
\(77\) 17.2990 + 14.0778i 0.224662 + 0.182829i
\(78\) 40.9422 40.9422i 0.524900 0.524900i
\(79\) 101.041 + 58.3361i 1.27900 + 0.738431i 0.976665 0.214770i \(-0.0689003\pi\)
0.302336 + 0.953202i \(0.402234\pi\)
\(80\) −18.4086 + 7.81814i −0.230108 + 0.0977268i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −37.2570 + 9.98297i −0.454353 + 0.121744i
\(83\) −74.9073 + 74.9073i −0.902497 + 0.902497i −0.995652 0.0931546i \(-0.970305\pi\)
0.0931546 + 0.995652i \(0.470305\pi\)
\(84\) 19.6520 14.2056i 0.233953 0.169114i
\(85\) 59.3289 46.3711i 0.697987 0.545542i
\(86\) −16.8709 + 29.2212i −0.196173 + 0.339782i
\(87\) −21.2802 + 79.4187i −0.244600 + 0.912858i
\(88\) 8.70484 + 2.33246i 0.0989187 + 0.0265052i
\(89\) 91.7988 + 53.0001i 1.03145 + 0.595506i 0.917399 0.397969i \(-0.130285\pi\)
0.114048 + 0.993475i \(0.463618\pi\)
\(90\) −13.0633 16.7137i −0.145148 0.185708i
\(91\) 67.6662 150.998i 0.743585 1.65931i
\(92\) −7.93366 7.93366i −0.0862355 0.0862355i
\(93\) 0.656094 + 2.44858i 0.00705478 + 0.0263288i
\(94\) 33.3363 19.2467i 0.354642 0.204752i
\(95\) 30.4745 + 71.7554i 0.320784 + 0.755320i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) −66.3214 66.3214i −0.683725 0.683725i 0.277112 0.960838i \(-0.410623\pi\)
−0.960838 + 0.277112i \(0.910623\pi\)
\(98\) 38.0221 57.9338i 0.387980 0.591161i
\(99\) 9.55858i 0.0965513i
\(100\) 35.9803 + 34.7192i 0.359803 + 0.347192i
\(101\) −90.1553 156.154i −0.892627 1.54608i −0.836714 0.547640i \(-0.815526\pi\)
−0.0559130 0.998436i \(-0.517807\pi\)
\(102\) −9.54774 + 35.6327i −0.0936053 + 0.349340i
\(103\) 20.5538 + 76.7078i 0.199551 + 0.744736i 0.991042 + 0.133554i \(0.0426389\pi\)
−0.791490 + 0.611182i \(0.790694\pi\)
\(104\) 66.8583i 0.642869i
\(105\) −51.8934 31.3381i −0.494223 0.298458i
\(106\) 48.7576 0.459977
\(107\) −58.3476 + 15.6342i −0.545305 + 0.146114i −0.520947 0.853589i \(-0.674421\pi\)
−0.0243583 + 0.999703i \(0.507754\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) 12.3921 7.15460i 0.113689 0.0656385i −0.442077 0.896977i \(-0.645758\pi\)
0.555766 + 0.831339i \(0.312425\pi\)
\(110\) −3.13980 22.3099i −0.0285437 0.202818i
\(111\) −95.7032 −0.862191
\(112\) 4.44700 27.6446i 0.0397053 0.246827i
\(113\) 66.0293 66.0293i 0.584330 0.584330i −0.351760 0.936090i \(-0.614417\pi\)
0.936090 + 0.351760i \(0.114417\pi\)
\(114\) −33.0750 19.0959i −0.290132 0.167508i
\(115\) −10.5026 + 26.0093i −0.0913273 + 0.226168i
\(116\) 47.4699 + 82.2202i 0.409223 + 0.708795i
\(117\) 68.4976 18.3539i 0.585450 0.156871i
\(118\) −53.4827 + 53.4827i −0.453243 + 0.453243i
\(119\) 10.7660 + 104.870i 0.0904710 + 0.881259i
\(120\) −24.3129 2.98053i −0.202607 0.0248378i
\(121\) 55.4241 95.9973i 0.458050 0.793366i
\(122\) 14.9510 55.7980i 0.122550 0.457361i
\(123\) −45.6303 12.2266i −0.370978 0.0994032i
\(124\) 2.53495 + 1.46356i 0.0204432 + 0.0118029i
\(125\) 44.7291 116.723i 0.357833 0.933786i
\(126\) 29.5432 3.03294i 0.234470 0.0240709i
\(127\) 150.156 + 150.156i 1.18233 + 1.18233i 0.979139 + 0.203192i \(0.0651317\pi\)
0.203192 + 0.979139i \(0.434868\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) −35.7885 + 20.6625i −0.277431 + 0.160175i
\(130\) −153.846 + 65.3385i −1.18343 + 0.502604i
\(131\) 118.435 205.135i 0.904084 1.56592i 0.0819423 0.996637i \(-0.473888\pi\)
0.822142 0.569283i \(-0.192779\pi\)
\(132\) 7.80455 + 7.80455i 0.0591254 + 0.0591254i
\(133\) −107.757 17.3341i −0.810200 0.130331i
\(134\) 86.5878i 0.646178i
\(135\) −3.62074 25.7272i −0.0268203 0.190572i
\(136\) 21.2982 + 36.8896i 0.156605 + 0.271247i
\(137\) −27.7420 + 103.535i −0.202496 + 0.755727i 0.787702 + 0.616057i \(0.211271\pi\)
−0.990198 + 0.139670i \(0.955396\pi\)
\(138\) −3.55656 13.2733i −0.0257722 0.0961832i
\(139\) 259.949i 1.87014i −0.354464 0.935070i \(-0.615337\pi\)
0.354464 0.935070i \(-0.384663\pi\)
\(140\) −67.9582 + 16.7833i −0.485416 + 0.119881i
\(141\) 47.1447 0.334359
\(142\) −139.976 + 37.5064i −0.985745 + 0.264130i
\(143\) 72.7489 + 19.4930i 0.508734 + 0.136315i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 142.804 189.583i 0.984857 1.30747i
\(146\) 43.2867 0.296484
\(147\) 75.8055 38.1644i 0.515684 0.259622i
\(148\) −78.1413 + 78.1413i −0.527982 + 0.527982i
\(149\) −26.3910 15.2369i −0.177121 0.102261i 0.408818 0.912616i \(-0.365941\pi\)
−0.585939 + 0.810355i \(0.699274\pi\)
\(150\) 16.9018 + 58.8586i 0.112678 + 0.392390i
\(151\) 46.5201 + 80.5751i 0.308080 + 0.533610i 0.977942 0.208875i \(-0.0669803\pi\)
−0.669862 + 0.742485i \(0.733647\pi\)
\(152\) −42.5973 + 11.4139i −0.280246 + 0.0750916i
\(153\) −31.9474 + 31.9474i −0.208806 + 0.208806i
\(154\) 28.7837 + 12.8988i 0.186907 + 0.0837583i
\(155\) 0.890425 7.26341i 0.00574468 0.0468607i
\(156\) 40.9422 70.9140i 0.262450 0.454577i
\(157\) −11.5978 + 43.2837i −0.0738715 + 0.275692i −0.992975 0.118324i \(-0.962248\pi\)
0.919104 + 0.394016i \(0.128915\pi\)
\(158\) 159.377 + 42.7050i 1.00872 + 0.270285i
\(159\) 51.7152 + 29.8578i 0.325253 + 0.187785i
\(160\) −22.2850 + 17.4178i −0.139281 + 0.108861i
\(161\) −23.0052 31.8255i −0.142890 0.197674i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 35.6285 + 132.967i 0.218580 + 0.815750i 0.984876 + 0.173263i \(0.0554309\pi\)
−0.766296 + 0.642488i \(0.777902\pi\)
\(164\) −47.2399 + 27.2740i −0.288048 + 0.166305i
\(165\) 10.3317 25.5860i 0.0626165 0.155067i
\(166\) −74.9073 + 129.743i −0.451249 + 0.781585i
\(167\) −44.3224 44.3224i −0.265404 0.265404i 0.561841 0.827245i \(-0.310093\pi\)
−0.827245 + 0.561841i \(0.810093\pi\)
\(168\) 21.6455 26.5983i 0.128843 0.158323i
\(169\) 389.755i 2.30624i
\(170\) 64.0718 85.0599i 0.376893 0.500353i
\(171\) −23.3876 40.5084i −0.136769 0.236891i
\(172\) −12.3503 + 46.0921i −0.0718043 + 0.267977i
\(173\) −28.6810 107.039i −0.165786 0.618723i −0.997939 0.0641758i \(-0.979558\pi\)
0.832152 0.554547i \(-0.187109\pi\)
\(174\) 116.277i 0.668258i
\(175\) 105.033 + 139.975i 0.600189 + 0.799858i
\(176\) 12.7448 0.0724135
\(177\) −89.4783 + 23.9756i −0.505527 + 0.135456i
\(178\) 144.799 + 38.7987i 0.813477 + 0.217970i
\(179\) 250.216 144.462i 1.39785 0.807050i 0.403685 0.914898i \(-0.367729\pi\)
0.994167 + 0.107848i \(0.0343959\pi\)
\(180\) −23.9625 18.0499i −0.133125 0.100277i
\(181\) 119.317 0.659212 0.329606 0.944119i \(-0.393084\pi\)
0.329606 + 0.944119i \(0.393084\pi\)
\(182\) 37.1648 231.034i 0.204202 1.26942i
\(183\) 50.0272 50.0272i 0.273372 0.273372i
\(184\) −13.7415 7.93366i −0.0746821 0.0431177i
\(185\) 256.174 + 103.444i 1.38472 + 0.559157i
\(186\) 1.79248 + 3.10467i 0.00963700 + 0.0166918i
\(187\) −46.3495 + 12.4193i −0.247858 + 0.0664134i
\(188\) 38.4935 38.4935i 0.204752 0.204752i
\(189\) 33.1926 + 14.8745i 0.175622 + 0.0787012i
\(190\) 67.8933 + 86.8652i 0.357333 + 0.457185i
\(191\) 63.4019 109.815i 0.331947 0.574950i −0.650946 0.759124i \(-0.725628\pi\)
0.982894 + 0.184174i \(0.0589610\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) −277.185 74.2715i −1.43619 0.384827i −0.544994 0.838440i \(-0.683468\pi\)
−0.891199 + 0.453613i \(0.850135\pi\)
\(194\) −114.872 66.3214i −0.592123 0.341863i
\(195\) −203.190 24.9092i −1.04200 0.127739i
\(196\) 30.7339 93.0561i 0.156805 0.474776i
\(197\) 3.41904 + 3.41904i 0.0173555 + 0.0173555i 0.715731 0.698376i \(-0.246094\pi\)
−0.698376 + 0.715731i \(0.746094\pi\)
\(198\) 3.49868 + 13.0573i 0.0176701 + 0.0659458i
\(199\) −190.157 + 109.787i −0.955563 + 0.551694i −0.894805 0.446458i \(-0.852685\pi\)
−0.0607582 + 0.998153i \(0.519352\pi\)
\(200\) 61.8580 + 34.2576i 0.309290 + 0.171288i
\(201\) −53.0240 + 91.8402i −0.263801 + 0.456917i
\(202\) −180.311 180.311i −0.892627 0.892627i
\(203\) 118.332 + 310.506i 0.582914 + 1.52958i
\(204\) 52.1698i 0.255734i
\(205\) 108.926 + 82.0487i 0.531344 + 0.400237i
\(206\) 56.1540 + 97.2616i 0.272592 + 0.472144i
\(207\) 4.35588 16.2564i 0.0210429 0.0785332i
\(208\) −24.4719 91.3302i −0.117653 0.439087i
\(209\) 49.6782i 0.237695i
\(210\) −82.3582 23.8144i −0.392182 0.113402i
\(211\) −210.755 −0.998840 −0.499420 0.866360i \(-0.666453\pi\)
−0.499420 + 0.866360i \(0.666453\pi\)
\(212\) 66.6041 17.8465i 0.314170 0.0841816i
\(213\) −171.435 45.9358i −0.804858 0.215661i
\(214\) −73.9818 + 42.7134i −0.345709 + 0.199595i
\(215\) 118.131 16.6252i 0.549447 0.0773267i
\(216\) 14.6969 0.0680414
\(217\) 7.94617 + 6.46654i 0.0366183 + 0.0297997i
\(218\) 14.3092 14.3092i 0.0656385 0.0656385i
\(219\) 45.9125 + 26.5076i 0.209646 + 0.121039i
\(220\) −12.4551 29.3267i −0.0566139 0.133303i
\(221\) 177.996 + 308.298i 0.805410 + 1.39501i
\(222\) −130.733 + 35.0298i −0.588887 + 0.157792i
\(223\) −306.751 + 306.751i −1.37557 + 1.37557i −0.523607 + 0.851960i \(0.675414\pi\)
−0.851960 + 0.523607i \(0.824586\pi\)
\(224\) −4.04392 39.3909i −0.0180532 0.175852i
\(225\) −18.1163 + 72.7791i −0.0805170 + 0.323463i
\(226\) 66.0293 114.366i 0.292165 0.506044i
\(227\) 4.81575 17.9726i 0.0212147 0.0791745i −0.954507 0.298189i \(-0.903617\pi\)
0.975722 + 0.219014i \(0.0702841\pi\)
\(228\) −52.1708 13.9791i −0.228820 0.0613120i
\(229\) −53.2936 30.7691i −0.232723 0.134363i 0.379104 0.925354i \(-0.376232\pi\)
−0.611828 + 0.790991i \(0.709565\pi\)
\(230\) −4.82683 + 39.3736i −0.0209862 + 0.171189i
\(231\) 22.6309 + 31.3076i 0.0979691 + 0.135531i
\(232\) 94.9398 + 94.9398i 0.409223 + 0.409223i
\(233\) −64.8020 241.844i −0.278120 1.03796i −0.953722 0.300691i \(-0.902783\pi\)
0.675602 0.737267i \(-0.263884\pi\)
\(234\) 86.8515 50.1438i 0.371160 0.214290i
\(235\) −126.195 50.9579i −0.536999 0.216842i
\(236\) −53.4827 + 92.6348i −0.226622 + 0.392520i
\(237\) 142.894 + 142.894i 0.602927 + 0.602927i
\(238\) 53.0917 + 139.314i 0.223074 + 0.585353i
\(239\) 19.0275i 0.0796128i 0.999207 + 0.0398064i \(0.0126741\pi\)
−0.999207 + 0.0398064i \(0.987326\pi\)
\(240\) −34.3030 + 4.82765i −0.142929 + 0.0201152i
\(241\) 148.159 + 256.620i 0.614769 + 1.06481i 0.990425 + 0.138052i \(0.0440841\pi\)
−0.375656 + 0.926759i \(0.622583\pi\)
\(242\) 40.5732 151.421i 0.167658 0.625708i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 81.6940i 0.334812i
\(245\) −244.164 + 20.2197i −0.996589 + 0.0825295i
\(246\) −66.8073 −0.271575
\(247\) −355.998 + 95.3894i −1.44129 + 0.386192i
\(248\) 3.99851 + 1.07140i 0.0161230 + 0.00432015i
\(249\) −158.902 + 91.7423i −0.638162 + 0.368443i
\(250\) 18.3774 175.819i 0.0735097 0.703275i
\(251\) −431.580 −1.71944 −0.859721 0.510763i \(-0.829363\pi\)
−0.859721 + 0.510763i \(0.829363\pi\)
\(252\) 39.2466 14.9566i 0.155741 0.0593517i
\(253\) 12.6391 12.6391i 0.0499569 0.0499569i
\(254\) 260.078 + 150.156i 1.02393 + 0.591166i
\(255\) 120.047 50.9839i 0.470772 0.199937i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 298.635 80.0190i 1.16200 0.311358i 0.374238 0.927333i \(-0.377904\pi\)
0.787766 + 0.615975i \(0.211238\pi\)
\(258\) −41.3251 + 41.3251i −0.160175 + 0.160175i
\(259\) −313.460 + 226.587i −1.21027 + 0.874851i
\(260\) −186.242 + 145.566i −0.716316 + 0.559868i
\(261\) −71.2048 + 123.330i −0.272815 + 0.472530i
\(262\) 86.7005 323.571i 0.330918 1.23500i
\(263\) 247.577 + 66.3382i 0.941359 + 0.252236i 0.696692 0.717371i \(-0.254655\pi\)
0.244667 + 0.969607i \(0.421321\pi\)
\(264\) 13.5179 + 7.80455i 0.0512041 + 0.0295627i
\(265\) −106.156 135.820i −0.400589 0.512529i
\(266\) −153.543 + 15.7629i −0.577229 + 0.0592590i
\(267\) 129.823 + 129.823i 0.486229 + 0.486229i
\(268\) 31.6933 + 118.281i 0.118259 + 0.441348i
\(269\) −165.231 + 95.3963i −0.614242 + 0.354633i −0.774624 0.632422i \(-0.782061\pi\)
0.160382 + 0.987055i \(0.448728\pi\)
\(270\) −14.3628 33.8188i −0.0531957 0.125255i
\(271\) −86.4705 + 149.771i −0.319080 + 0.552662i −0.980296 0.197533i \(-0.936707\pi\)
0.661217 + 0.750195i \(0.270040\pi\)
\(272\) 42.5965 + 42.5965i 0.156605 + 0.156605i
\(273\) 180.898 222.290i 0.662631 0.814249i
\(274\) 151.585i 0.553230i
\(275\) −55.3110 + 57.3200i −0.201131 + 0.208436i
\(276\) −9.71671 16.8298i −0.0352055 0.0609777i
\(277\) 118.482 442.182i 0.427734 1.59633i −0.330145 0.943930i \(-0.607097\pi\)
0.757879 0.652395i \(-0.226236\pi\)
\(278\) −95.1481 355.097i −0.342259 1.27733i
\(279\) 4.39067i 0.0157372i
\(280\) −86.6896 + 47.8009i −0.309606 + 0.170717i
\(281\) −268.170 −0.954340 −0.477170 0.878811i \(-0.658337\pi\)
−0.477170 + 0.878811i \(0.658337\pi\)
\(282\) 64.4008 17.2561i 0.228372 0.0611920i
\(283\) −135.179 36.2210i −0.477663 0.127989i 0.0119513 0.999929i \(-0.496196\pi\)
−0.489614 + 0.871939i \(0.662862\pi\)
\(284\) −177.482 + 102.469i −0.624938 + 0.360808i
\(285\) 18.8178 + 133.710i 0.0660275 + 0.469159i
\(286\) 106.512 0.372419
\(287\) −178.402 + 67.9878i −0.621610 + 0.236891i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) 53.8601 + 31.0962i 0.186367 + 0.107599i
\(290\) 125.682 311.245i 0.433386 1.07326i
\(291\) −81.2267 140.689i −0.279130 0.483467i
\(292\) 59.1307 15.8440i 0.202503 0.0542604i
\(293\) 98.0721 98.0721i 0.334717 0.334717i −0.519657 0.854375i \(-0.673940\pi\)
0.854375 + 0.519657i \(0.173940\pi\)
\(294\) 89.5831 79.8803i 0.304705 0.271702i
\(295\) 265.427 + 32.5388i 0.899751 + 0.110301i
\(296\) −78.1413 + 135.345i −0.263991 + 0.457246i
\(297\) −4.28499 + 15.9918i −0.0144276 + 0.0538445i
\(298\) −41.6279 11.1542i −0.139691 0.0374301i
\(299\) −114.842 66.3039i −0.384086 0.221752i
\(300\) 44.6320 + 74.2158i 0.148773 + 0.247386i
\(301\) −68.2990 + 152.410i −0.226907 + 0.506344i
\(302\) 93.0401 + 93.0401i 0.308080 + 0.308080i
\(303\) −80.8311 301.666i −0.266769 0.995596i
\(304\) −54.0112 + 31.1834i −0.177669 + 0.102577i
\(305\) −187.984 + 79.8369i −0.616341 + 0.261760i
\(306\) −31.9474 + 55.3345i −0.104403 + 0.180832i
\(307\) 256.782 + 256.782i 0.836422 + 0.836422i 0.988386 0.151964i \(-0.0485598\pi\)
−0.151964 + 0.988386i \(0.548560\pi\)
\(308\) 44.0405 + 7.08449i 0.142989 + 0.0230016i
\(309\) 137.549i 0.445141i
\(310\) −1.44225 10.2479i −0.00465241 0.0330578i
\(311\) 103.111 + 178.593i 0.331545 + 0.574253i 0.982815 0.184593i \(-0.0590968\pi\)
−0.651270 + 0.758846i \(0.725763\pi\)
\(312\) 29.9718 111.856i 0.0960634 0.358513i
\(313\) 130.454 + 486.861i 0.416786 + 1.55547i 0.781231 + 0.624242i \(0.214592\pi\)
−0.364445 + 0.931225i \(0.618741\pi\)
\(314\) 63.3717i 0.201821i
\(315\) −72.7708 75.6929i −0.231018 0.240295i
\(316\) 233.344 0.738431
\(317\) −191.431 + 51.2938i −0.603884 + 0.161810i −0.547791 0.836615i \(-0.684531\pi\)
−0.0560930 + 0.998426i \(0.517864\pi\)
\(318\) 81.5730 + 21.8574i 0.256519 + 0.0687340i
\(319\) −130.985 + 75.6241i −0.410611 + 0.237066i
\(320\) −24.0665 + 31.9500i −0.0752078 + 0.0998438i
\(321\) −104.626 −0.325938
\(322\) −43.0747 35.0539i −0.133772 0.108863i
\(323\) 166.038 166.038i 0.514049 0.514049i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 516.966 + 286.301i 1.59066 + 0.880925i
\(326\) 97.3388 + 168.596i 0.298585 + 0.517165i
\(327\) 23.9398 6.41464i 0.0732103 0.0196166i
\(328\) −54.5480 + 54.5480i −0.166305 + 0.166305i
\(329\) 154.415 111.620i 0.469345 0.339269i
\(330\) 4.74827 38.7328i 0.0143887 0.117372i
\(331\) 40.5455 70.2269i 0.122494 0.212166i −0.798257 0.602317i \(-0.794244\pi\)
0.920751 + 0.390152i \(0.127577\pi\)
\(332\) −54.8359 + 204.650i −0.165168 + 0.616417i
\(333\) −160.115 42.9026i −0.480825 0.128837i
\(334\) −76.7687 44.3224i −0.229846 0.132702i
\(335\) 241.201 188.521i 0.720003 0.562750i
\(336\) 19.8327 44.2568i 0.0590259 0.131717i
\(337\) −440.171 440.171i −1.30614 1.30614i −0.924175 0.381969i \(-0.875246\pi\)
−0.381969 0.924175i \(-0.624754\pi\)
\(338\) −142.660 532.415i −0.422071 1.57519i
\(339\) 140.069 80.8690i 0.413184 0.238552i
\(340\) 56.3896 139.646i 0.165852 0.410723i
\(341\) −2.33159 + 4.03843i −0.00683750 + 0.0118429i
\(342\) −46.7751 46.7751i −0.136769 0.136769i
\(343\) 157.931 304.478i 0.460439 0.887691i
\(344\) 67.4835i 0.196173i
\(345\) −29.2309 + 38.8061i −0.0847272 + 0.112482i
\(346\) −78.3581 135.720i −0.226468 0.392255i
\(347\) 17.4397 65.0860i 0.0502586 0.187568i −0.936233 0.351380i \(-0.885712\pi\)
0.986492 + 0.163812i \(0.0523792\pi\)
\(348\) 42.5603 + 158.837i 0.122300 + 0.456429i
\(349\) 28.9513i 0.0829550i −0.999139 0.0414775i \(-0.986794\pi\)
0.999139 0.0414775i \(-0.0132065\pi\)
\(350\) 194.712 + 152.765i 0.556321 + 0.436471i
\(351\) 122.827 0.349933
\(352\) 17.4097 4.66491i 0.0494593 0.0132526i
\(353\) −620.833 166.352i −1.75873 0.471251i −0.772279 0.635284i \(-0.780883\pi\)
−0.986455 + 0.164032i \(0.947550\pi\)
\(354\) −113.454 + 65.5027i −0.320492 + 0.185036i
\(355\) 409.238 + 308.260i 1.15278 + 0.868338i
\(356\) 212.000 0.595506
\(357\) −28.9999 + 180.277i −0.0812322 + 0.504977i
\(358\) 288.924 288.924i 0.807050 0.807050i
\(359\) 61.7189 + 35.6334i 0.171919 + 0.0992575i 0.583490 0.812120i \(-0.301687\pi\)
−0.411571 + 0.911378i \(0.635020\pi\)
\(360\) −39.3401 15.8857i −0.109278 0.0441269i
\(361\) −58.9494 102.103i −0.163295 0.282835i
\(362\) 162.991 43.6732i 0.450250 0.120644i
\(363\) 135.761 135.761i 0.373997 0.373997i
\(364\) −33.7962 329.202i −0.0928467 0.904400i
\(365\) −94.2449 120.580i −0.258205 0.330357i
\(366\) 50.0272 86.6496i 0.136686 0.236747i
\(367\) −60.6537 + 226.363i −0.165269 + 0.616792i 0.832737 + 0.553669i \(0.186773\pi\)
−0.998006 + 0.0631229i \(0.979894\pi\)
\(368\) −21.6752 5.80784i −0.0588999 0.0157822i
\(369\) −70.8599 40.9110i −0.192032 0.110870i
\(370\) 387.804 + 47.5411i 1.04812 + 0.128489i
\(371\) 240.076 24.6465i 0.647105 0.0664325i
\(372\) 3.58497 + 3.58497i 0.00963700 + 0.00963700i
\(373\) −25.3228 94.5060i −0.0678895 0.253367i 0.923638 0.383267i \(-0.125201\pi\)
−0.991527 + 0.129900i \(0.958534\pi\)
\(374\) −58.7688 + 33.9302i −0.157136 + 0.0907224i
\(375\) 127.159 175.230i 0.339090 0.467281i
\(376\) 38.4935 66.6726i 0.102376 0.177321i
\(377\) 793.439 + 793.439i 2.10461 + 2.10461i
\(378\) 50.7864 + 8.16965i 0.134356 + 0.0216128i
\(379\) 415.479i 1.09625i −0.836396 0.548126i \(-0.815342\pi\)
0.836396 0.548126i \(-0.184658\pi\)
\(380\) 124.539 + 93.8094i 0.327734 + 0.246867i
\(381\) 183.903 + 318.529i 0.482685 + 0.836034i
\(382\) 46.4134 173.217i 0.121501 0.453449i
\(383\) −68.1859 254.473i −0.178031 0.664421i −0.996015 0.0891805i \(-0.971575\pi\)
0.817984 0.575240i \(-0.195091\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −26.7374 108.264i −0.0694479 0.281205i
\(386\) −405.827 −1.05137
\(387\) −69.1382 + 18.5255i −0.178652 + 0.0478695i
\(388\) −181.193 48.5506i −0.466993 0.125130i
\(389\) 100.478 58.0113i 0.258299 0.149129i −0.365259 0.930906i \(-0.619020\pi\)
0.623559 + 0.781777i \(0.285686\pi\)
\(390\) −286.680 + 40.3461i −0.735077 + 0.103452i
\(391\) 84.4865 0.216078
\(392\) 7.92236 138.366i 0.0202101 0.352975i
\(393\) 290.105 290.105i 0.738182 0.738182i
\(394\) 5.92194 + 3.41904i 0.0150303 + 0.00867776i
\(395\) −228.040 536.943i −0.577316 1.35935i
\(396\) 9.55858 + 16.5559i 0.0241378 + 0.0418079i
\(397\) 516.094 138.287i 1.29998 0.348330i 0.458540 0.888674i \(-0.348373\pi\)
0.841444 + 0.540344i \(0.181706\pi\)
\(398\) −219.574 + 219.574i −0.551694 + 0.551694i
\(399\) −172.510 77.3064i −0.432355 0.193750i
\(400\) 97.0388 + 24.1551i 0.242597 + 0.0603878i
\(401\) 222.706 385.738i 0.555376 0.961939i −0.442498 0.896769i \(-0.645908\pi\)
0.997874 0.0651700i \(-0.0207590\pi\)
\(402\) −38.8163 + 144.864i −0.0965578 + 0.360359i
\(403\) 33.4167 + 8.95398i 0.0829199 + 0.0222183i
\(404\) −312.307 180.311i −0.773038 0.446314i
\(405\) 5.47559 44.6656i 0.0135200 0.110285i
\(406\) 275.297 + 380.846i 0.678071 + 0.938045i
\(407\) −124.487 124.487i −0.305864 0.305864i
\(408\) 19.0955 + 71.2653i 0.0468027 + 0.174670i
\(409\) 244.715 141.286i 0.598326 0.345444i −0.170057 0.985434i \(-0.554395\pi\)
0.768383 + 0.639991i \(0.221062\pi\)
\(410\) 178.827 + 72.2110i 0.436163 + 0.176124i
\(411\) −92.8266 + 160.780i −0.225855 + 0.391193i
\(412\) 112.308 + 112.308i 0.272592 + 0.272592i
\(413\) −236.307 + 290.377i −0.572172 + 0.703092i
\(414\) 23.8010i 0.0574903i
\(415\) 524.505 73.8166i 1.26387 0.177871i
\(416\) −66.8583 115.802i −0.160717 0.278370i
\(417\) 116.532 434.904i 0.279453 1.04293i
\(418\) −18.1835 67.8616i −0.0435011 0.162348i
\(419\) 128.452i 0.306567i 0.988182 + 0.153283i \(0.0489848\pi\)
−0.988182 + 0.153283i \(0.951015\pi\)
\(420\) −121.220 2.38583i −0.288619 0.00568054i
\(421\) −432.680 −1.02774 −0.513872 0.857867i \(-0.671789\pi\)
−0.513872 + 0.857867i \(0.671789\pi\)
\(422\) −287.897 + 77.1418i −0.682220 + 0.182800i
\(423\) 78.8746 + 21.1344i 0.186465 + 0.0499631i
\(424\) 84.4506 48.7576i 0.199176 0.114994i
\(425\) −376.443 + 6.71475i −0.885749 + 0.0157994i
\(426\) −250.998 −0.589197
\(427\) 45.4116 282.300i 0.106350 0.661124i
\(428\) −85.4268 + 85.4268i −0.199595 + 0.199595i
\(429\) 112.973 + 65.2249i 0.263340 + 0.152039i
\(430\) 155.285 65.9495i 0.361127 0.153371i
\(431\) 204.635 + 354.438i 0.474791 + 0.822362i 0.999583 0.0288683i \(-0.00919033\pi\)
−0.524792 + 0.851230i \(0.675857\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) 74.6999 74.6999i 0.172517 0.172517i −0.615567 0.788084i \(-0.711073\pi\)
0.788084 + 0.615567i \(0.211073\pi\)
\(434\) 13.2216 + 5.92496i 0.0304645 + 0.0136520i
\(435\) 323.904 253.161i 0.744606 0.581979i
\(436\) 14.3092 24.7843i 0.0328193 0.0568446i
\(437\) −22.6385 + 84.4882i −0.0518044 + 0.193337i
\(438\) 72.4201 + 19.4049i 0.165343 + 0.0443034i
\(439\) −348.826 201.395i −0.794592 0.458758i 0.0469848 0.998896i \(-0.485039\pi\)
−0.841577 + 0.540138i \(0.818372\pi\)
\(440\) −27.7482 35.5021i −0.0630642 0.0806867i
\(441\) 143.934 29.8676i 0.326380 0.0677269i
\(442\) 355.991 + 355.991i 0.805410 + 0.805410i
\(443\) −26.5380 99.0413i −0.0599053 0.223569i 0.929483 0.368865i \(-0.120253\pi\)
−0.989388 + 0.145295i \(0.953587\pi\)
\(444\) −165.763 + 95.7032i −0.373340 + 0.215548i
\(445\) −207.181 487.829i −0.465575 1.09624i
\(446\) −306.751 + 531.309i −0.687784 + 1.19128i
\(447\) −37.3226 37.3226i −0.0834957 0.0834957i
\(448\) −19.9422 52.3289i −0.0445138 0.116805i
\(449\) 435.242i 0.969359i 0.874692 + 0.484680i \(0.161064\pi\)
−0.874692 + 0.484680i \(0.838936\pi\)
\(450\) 1.89163 + 106.049i 0.00420363 + 0.235665i
\(451\) −43.4501 75.2578i −0.0963417 0.166869i
\(452\) 48.3368 180.395i 0.106940 0.399105i
\(453\) 41.7087 + 155.659i 0.0920723 + 0.343618i
\(454\) 26.3137i 0.0579598i
\(455\) −724.490 + 399.486i −1.59229 + 0.877991i
\(456\) −76.3834 −0.167508
\(457\) −119.433 + 32.0021i −0.261342 + 0.0700264i −0.387111 0.922033i \(-0.626527\pi\)
0.125769 + 0.992060i \(0.459860\pi\)
\(458\) −84.0627 22.5245i −0.183543 0.0491802i
\(459\) −67.7706 + 39.1274i −0.147648 + 0.0852448i
\(460\) 7.81815 + 55.5520i 0.0169960 + 0.120765i
\(461\) 721.106 1.56422 0.782110 0.623140i \(-0.214143\pi\)
0.782110 + 0.623140i \(0.214143\pi\)
\(462\) 42.3737 + 34.4834i 0.0917179 + 0.0746395i
\(463\) −190.901 + 190.901i −0.412313 + 0.412313i −0.882544 0.470231i \(-0.844171\pi\)
0.470231 + 0.882544i \(0.344171\pi\)
\(464\) 164.440 + 94.9398i 0.354398 + 0.204612i
\(465\) 4.74581 11.7527i 0.0102060 0.0252747i
\(466\) −177.042 306.646i −0.379919 0.658039i
\(467\) 166.657 44.6556i 0.356867 0.0956222i −0.0759313 0.997113i \(-0.524193\pi\)
0.432798 + 0.901491i \(0.357526\pi\)
\(468\) 100.288 100.288i 0.214290 0.214290i
\(469\) 43.7693 + 426.347i 0.0933246 + 0.909055i
\(470\) −191.037 23.4194i −0.406462 0.0498284i
\(471\) −38.8071 + 67.2159i −0.0823930 + 0.142709i
\(472\) −39.1521 + 146.118i −0.0829493 + 0.309571i
\(473\) −73.4292 19.6753i −0.155241 0.0415968i
\(474\) 247.499 + 142.894i 0.522150 + 0.301463i
\(475\) 94.1548 378.250i 0.198221 0.796316i
\(476\) 123.517 + 170.874i 0.259490 + 0.358978i
\(477\) 73.1364 + 73.1364i 0.153326 + 0.153326i
\(478\) 6.96454 + 25.9920i 0.0145702 + 0.0543766i
\(479\) −330.041 + 190.549i −0.689021 + 0.397806i −0.803245 0.595649i \(-0.796895\pi\)
0.114224 + 0.993455i \(0.463562\pi\)
\(480\) −45.0917 + 19.1505i −0.0939410 + 0.0398968i
\(481\) −653.050 + 1131.12i −1.35769 + 2.35159i
\(482\) 296.319 + 296.319i 0.614769 + 0.614769i
\(483\) −24.2216 63.5581i −0.0501481 0.131590i
\(484\) 221.696i 0.458050i
\(485\) 65.3557 + 464.386i 0.134754 + 0.957498i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) −62.6089 + 233.660i −0.128560 + 0.479794i −0.999942 0.0108128i \(-0.996558\pi\)
0.871381 + 0.490607i \(0.163225\pi\)
\(488\) −29.9021 111.596i −0.0612748 0.228681i
\(489\) 238.430i 0.487588i
\(490\) −326.134 + 116.991i −0.665579 + 0.238757i
\(491\) −899.374 −1.83172 −0.915860 0.401498i \(-0.868490\pi\)
−0.915860 + 0.401498i \(0.868490\pi\)
\(492\) −91.2605 + 24.4532i −0.185489 + 0.0497016i
\(493\) −690.543 185.030i −1.40070 0.375315i
\(494\) −451.388 + 260.609i −0.913740 + 0.527548i
\(495\) 28.7552 38.1746i 0.0580913 0.0771204i
\(496\) 5.85422 0.0118029
\(497\) −670.264 + 255.433i −1.34862 + 0.513950i
\(498\) −183.485 + 183.485i −0.368443 + 0.368443i
\(499\) −128.915 74.4290i −0.258346 0.149156i 0.365234 0.930916i \(-0.380989\pi\)
−0.623580 + 0.781760i \(0.714322\pi\)
\(500\) −39.2502 246.900i −0.0785003 0.493799i
\(501\) −54.2837 94.0221i −0.108351 0.187669i
\(502\) −589.549 + 157.969i −1.17440 + 0.314680i
\(503\) 306.658 306.658i 0.609658 0.609658i −0.333199 0.942857i \(-0.608128\pi\)
0.942857 + 0.333199i \(0.108128\pi\)
\(504\) 48.1374 34.7964i 0.0955107 0.0690405i
\(505\) −109.701 + 894.854i −0.217229 + 1.77199i
\(506\) 12.6391 21.8915i 0.0249784 0.0432639i
\(507\) 174.722 652.072i 0.344620 1.28614i
\(508\) 410.234 + 109.922i 0.807547 + 0.216382i
\(509\) −1.24200 0.717067i −0.00244007 0.00140878i 0.498779 0.866729i \(-0.333782\pi\)
−0.501220 + 0.865320i \(0.667115\pi\)
\(510\) 145.325 113.585i 0.284952 0.222717i
\(511\) 213.138 21.8810i 0.417100 0.0428199i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −20.9687 78.2563i −0.0408747 0.152546i
\(514\) 378.654 218.616i 0.736681 0.425323i
\(515\) 148.674 368.184i 0.288688 0.714921i
\(516\) −41.3251 + 71.5771i −0.0800873 + 0.138715i
\(517\) 61.3238 + 61.3238i 0.118615 + 0.118615i
\(518\) −345.258 + 424.257i −0.666521 + 0.819030i
\(519\) 191.937i 0.369821i
\(520\) −201.131 + 267.016i −0.386790 + 0.513492i
\(521\) −457.957 793.205i −0.878996 1.52247i −0.852444 0.522819i \(-0.824880\pi\)
−0.0265527 0.999647i \(-0.508453\pi\)
\(522\) −52.1255 + 194.535i −0.0998574 + 0.372673i
\(523\) −10.5365 39.3228i −0.0201463 0.0751870i 0.955121 0.296216i \(-0.0957250\pi\)
−0.975267 + 0.221029i \(0.929058\pi\)
\(524\) 473.740i 0.904084i
\(525\) 112.974 + 281.268i 0.215189 + 0.535749i
\(526\) 362.478 0.689123
\(527\) −21.2903 + 5.70472i −0.0403991 + 0.0108249i
\(528\) 21.3224 + 5.71333i 0.0403834 + 0.0108207i
\(529\) 430.872 248.764i 0.814503 0.470254i
\(530\) −194.726 146.678i −0.367407 0.276751i
\(531\) −160.448 −0.302162
\(532\) −203.974 + 77.7331i −0.383410 + 0.146115i
\(533\) −455.873 + 455.873i −0.855297 + 0.855297i
\(534\) 224.860 + 129.823i 0.421087 + 0.243114i
\(535\) 280.058 + 113.089i 0.523474 + 0.211381i
\(536\) 86.5878 + 149.974i 0.161544 + 0.279803i
\(537\) 483.379 129.521i 0.900148 0.241194i
\(538\) −190.793 + 190.793i −0.354633 + 0.354633i
\(539\) 148.247 + 48.9620i 0.275041 + 0.0908386i
\(540\) −31.9985 40.9401i −0.0592565 0.0758150i
\(541\) 301.769 522.680i 0.557799 0.966137i −0.439881 0.898056i \(-0.644979\pi\)
0.997680 0.0680803i \(-0.0216874\pi\)
\(542\) −63.3008 + 236.242i −0.116791 + 0.435871i
\(543\) 199.622 + 53.4885i 0.367628 + 0.0985055i
\(544\) 73.7793 + 42.5965i 0.135624 + 0.0783024i
\(545\) −71.0144 8.70569i −0.130302 0.0159737i
\(546\) 165.748 369.867i 0.303567 0.677412i
\(547\) −518.562 518.562i −0.948010 0.948010i 0.0507035 0.998714i \(-0.483854\pi\)
−0.998714 + 0.0507035i \(0.983854\pi\)
\(548\) 55.4840 + 207.069i 0.101248 + 0.377863i
\(549\) 106.124 61.2705i 0.193304 0.111604i
\(550\) −54.5756 + 98.5459i −0.0992284 + 0.179174i
\(551\) 370.068 640.977i 0.671630 1.16330i
\(552\) −19.4334 19.4334i −0.0352055 0.0352055i
\(553\) 806.339 + 129.710i 1.45812 + 0.234557i
\(554\) 647.400i 1.16859i
\(555\) 382.215 + 287.905i 0.688675 + 0.518748i
\(556\) −259.949 450.245i −0.467535 0.809794i
\(557\) 223.927 835.705i 0.402023 1.50037i −0.407459 0.913223i \(-0.633585\pi\)
0.809482 0.587145i \(-0.199748\pi\)
\(558\) 1.60710 + 5.99776i 0.00288010 + 0.0107487i
\(559\) 563.980i 1.00891i
\(560\) −100.924 + 97.0278i −0.180221 + 0.173264i
\(561\) −83.1116 −0.148149
\(562\) −366.326 + 98.1569i −0.651826 + 0.174656i
\(563\) 514.289 + 137.803i 0.913480 + 0.244766i 0.684796 0.728734i \(-0.259891\pi\)
0.228684 + 0.973501i \(0.426558\pi\)
\(564\) 81.6570 47.1447i 0.144782 0.0835898i
\(565\) −462.341 + 65.0679i −0.818303 + 0.115164i
\(566\) −197.915 −0.349673
\(567\) 48.8642 + 39.7654i 0.0861803 + 0.0701330i
\(568\) −204.939 + 204.939i −0.360808 + 0.360808i
\(569\) 758.601 + 437.979i 1.33322 + 0.769734i 0.985792 0.167973i \(-0.0537221\pi\)
0.347427 + 0.937707i \(0.387055\pi\)
\(570\) 74.6470 + 175.764i 0.130960 + 0.308358i
\(571\) 92.9859 + 161.056i 0.162847 + 0.282060i 0.935889 0.352296i \(-0.114599\pi\)
−0.773041 + 0.634356i \(0.781266\pi\)
\(572\) 145.498 38.9860i 0.254367 0.0681574i
\(573\) 155.302 155.302i 0.271034 0.271034i
\(574\) −218.816 + 158.173i −0.381213 + 0.275562i
\(575\) 120.189 72.2793i 0.209024 0.125703i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 10.2000 38.0669i 0.0176776 0.0659739i −0.956524 0.291655i \(-0.905794\pi\)
0.974201 + 0.225681i \(0.0724607\pi\)
\(578\) 84.9563 + 22.7640i 0.146983 + 0.0393840i
\(579\) −430.445 248.517i −0.743428 0.429218i
\(580\) 57.7612 471.171i 0.0995883 0.812365i
\(581\) −303.250 + 676.703i −0.521944 + 1.16472i
\(582\) −162.453 162.453i −0.279130 0.279130i
\(583\) 28.4312 + 106.107i 0.0487671 + 0.182001i
\(584\) 74.9748 43.2867i 0.128381 0.0741211i
\(585\) −328.777 132.761i −0.562012 0.226943i
\(586\) 98.0721 169.866i 0.167359 0.289874i
\(587\) −269.361 269.361i −0.458878 0.458878i 0.439409 0.898287i \(-0.355188\pi\)
−0.898287 + 0.439409i \(0.855188\pi\)
\(588\) 93.1346 141.908i 0.158392 0.241340i
\(589\) 22.8193i 0.0387425i
\(590\) 374.489 52.7040i 0.634728 0.0893289i
\(591\) 4.18745 + 7.25287i 0.00708536 + 0.0122722i
\(592\) −57.2034 + 213.486i −0.0966274 + 0.360618i
\(593\) 156.351 + 583.511i 0.263661 + 0.983998i 0.963065 + 0.269270i \(0.0867825\pi\)
−0.699403 + 0.714727i \(0.746551\pi\)
\(594\) 23.4136i 0.0394169i
\(595\) 272.484 451.212i 0.457956 0.758339i
\(596\) −60.9475 −0.102261
\(597\) −367.355 + 98.4325i −0.615335 + 0.164879i
\(598\) −181.146 48.5378i −0.302919 0.0811670i
\(599\) 373.767 215.794i 0.623985 0.360258i −0.154434 0.988003i \(-0.549355\pi\)
0.778419 + 0.627745i \(0.216022\pi\)
\(600\) 88.1333 + 85.0443i 0.146889 + 0.141740i
\(601\) 473.060 0.787121 0.393560 0.919299i \(-0.371243\pi\)
0.393560 + 0.919299i \(0.371243\pi\)
\(602\) −37.5124 + 233.194i −0.0623129 + 0.387366i
\(603\) −129.882 + 129.882i −0.215393 + 0.215393i
\(604\) 161.150 + 93.0401i 0.266805 + 0.154040i
\(605\) −510.140 + 216.657i −0.843207 + 0.358110i
\(606\) −220.835 382.497i −0.364414 0.631183i
\(607\) −1105.49 + 296.215i −1.82124 + 0.487999i −0.996941 0.0781609i \(-0.975095\pi\)
−0.824296 + 0.566160i \(0.808429\pi\)
\(608\) −62.3668 + 62.3668i −0.102577 + 0.102577i
\(609\) 58.7768 + 572.533i 0.0965137 + 0.940119i
\(610\) −227.569 + 177.866i −0.373063 + 0.291584i
\(611\) 321.701 557.203i 0.526516 0.911952i
\(612\) −23.3871 + 87.2818i −0.0382142 + 0.142617i
\(613\) 138.022 + 36.9829i 0.225158 + 0.0603310i 0.369634 0.929177i \(-0.379483\pi\)
−0.144476 + 0.989508i \(0.546150\pi\)
\(614\) 444.759 + 256.782i 0.724363 + 0.418211i
\(615\) 145.455 + 186.100i 0.236512 + 0.302602i
\(616\) 62.7536 6.44235i 0.101873 0.0104584i
\(617\) 341.819 + 341.819i 0.554002 + 0.554002i 0.927593 0.373591i \(-0.121874\pi\)
−0.373591 + 0.927593i \(0.621874\pi\)
\(618\) 50.3463 + 187.895i 0.0814665 + 0.304037i
\(619\) −260.991 + 150.683i −0.421633 + 0.243430i −0.695776 0.718259i \(-0.744939\pi\)
0.274143 + 0.961689i \(0.411606\pi\)
\(620\) −5.72114 13.4710i −0.00922765 0.0217274i
\(621\) 14.5751 25.2448i 0.0234703 0.0406518i
\(622\) 206.221 + 206.221i 0.331545 + 0.331545i
\(623\) 732.583 + 117.846i 1.17590 + 0.189158i
\(624\) 163.769i 0.262450i
\(625\) −529.777 + 331.605i −0.847643 + 0.530567i
\(626\) 356.407 + 617.315i 0.569340 + 0.986127i
\(627\) 22.2701 83.1132i 0.0355185 0.132557i
\(628\) 23.1957 + 86.5674i 0.0369358 + 0.137846i
\(629\) 832.137i 1.32295i
\(630\) −127.112 76.7624i −0.201766 0.121845i
\(631\) 866.914 1.37387 0.686937 0.726717i \(-0.258955\pi\)
0.686937 + 0.726717i \(0.258955\pi\)
\(632\) 318.754 85.4099i 0.504358 0.135142i
\(633\) −352.600 94.4790i −0.557031 0.149256i
\(634\) −242.725 + 140.137i −0.382847 + 0.221037i
\(635\) −147.970 1051.40i −0.233023 1.65575i
\(636\) 119.431 0.187785
\(637\) 66.2094 1156.37i 0.103939 1.81533i
\(638\) −151.248 + 151.248i −0.237066 + 0.237066i
\(639\) −266.223 153.704i −0.416625 0.240539i
\(640\) −21.1809 + 52.4535i −0.0330952 + 0.0819586i
\(641\) 263.616 + 456.597i 0.411258 + 0.712319i 0.995028 0.0996000i \(-0.0317563\pi\)
−0.583770 + 0.811919i \(0.698423\pi\)
\(642\) −142.922 + 38.2958i −0.222620 + 0.0596508i
\(643\) −831.612 + 831.612i −1.29333 + 1.29333i −0.360617 + 0.932714i \(0.617434\pi\)
−0.932714 + 0.360617i \(0.882566\pi\)
\(644\) −71.6717 32.1181i −0.111292 0.0498729i
\(645\) 205.090 + 25.1421i 0.317969 + 0.0389800i
\(646\) 166.038 287.586i 0.257025 0.445180i
\(647\) −21.6675 + 80.8644i −0.0334893 + 0.124984i −0.980647 0.195785i \(-0.937275\pi\)
0.947158 + 0.320769i \(0.103941\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) −147.576 85.2032i −0.227390 0.131284i
\(650\) 810.982 + 201.871i 1.24766 + 0.310571i
\(651\) 10.3953 + 14.3809i 0.0159682 + 0.0220905i
\(652\) 194.678 + 194.678i 0.298585 + 0.298585i
\(653\) −87.9837 328.360i −0.134738 0.502848i −0.999999 0.00152651i \(-0.999514\pi\)
0.865261 0.501321i \(-0.167153\pi\)
\(654\) 30.3544 17.5251i 0.0464134 0.0267968i
\(655\) −1090.11 + 462.971i −1.66429 + 0.706826i
\(656\) −54.5480 + 94.4799i −0.0831524 + 0.144024i
\(657\) 64.9301 + 64.9301i 0.0988281 + 0.0988281i
\(658\) 170.079 208.995i 0.258478 0.317621i
\(659\) 286.236i 0.434349i −0.976133 0.217174i \(-0.930316\pi\)
0.976133 0.217174i \(-0.0696840\pi\)
\(660\) −7.69092 54.6479i −0.0116529 0.0827999i
\(661\) −287.474 497.920i −0.434908 0.753283i 0.562380 0.826879i \(-0.309886\pi\)
−0.997288 + 0.0735962i \(0.976552\pi\)
\(662\) 29.6814 110.772i 0.0448359 0.167330i
\(663\) 159.587 + 595.585i 0.240704 + 0.898318i
\(664\) 299.629i 0.451249i
\(665\) 378.207 + 393.393i 0.568732 + 0.591569i
\(666\) −234.424 −0.351988
\(667\) 257.229 68.9244i 0.385651 0.103335i
\(668\) −121.091 32.4463i −0.181274 0.0485723i
\(669\) −650.718 + 375.692i −0.972673 + 0.561573i
\(670\) 260.483 345.810i 0.388781 0.516135i
\(671\) 130.146 0.193959
\(672\) 10.8929 67.7152i 0.0162096 0.100767i
\(673\) 95.3384 95.3384i 0.141662 0.141662i −0.632719 0.774381i \(-0.718061\pi\)
0.774381 + 0.632719i \(0.218061\pi\)
\(674\) −762.398 440.171i −1.13115 0.653072i
\(675\) −62.9352 + 113.640i −0.0932373 + 0.168356i
\(676\) −389.755 675.075i −0.576560 0.998632i
\(677\) −252.409 + 67.6328i −0.372835 + 0.0999008i −0.440371 0.897816i \(-0.645153\pi\)
0.0675358 + 0.997717i \(0.478486\pi\)
\(678\) 161.738 161.738i 0.238552 0.238552i
\(679\) −599.139 268.491i −0.882385 0.395421i
\(680\) 25.9156 211.400i 0.0381112 0.310882i
\(681\) 16.1138 27.9099i 0.0236620 0.0409837i
\(682\) −1.70684 + 6.37001i −0.00250270 + 0.00934019i
\(683\) 737.678 + 197.660i 1.08005 + 0.289400i 0.754618 0.656164i \(-0.227822\pi\)
0.325437 + 0.945564i \(0.394489\pi\)
\(684\) −81.0169 46.7751i −0.118446 0.0683847i
\(685\) 422.259 330.035i 0.616437 0.481803i
\(686\) 104.291 473.731i 0.152027 0.690571i
\(687\) −75.3686 75.3686i −0.109707 0.109707i
\(688\) 24.7007 + 92.1842i 0.0359022 + 0.133989i
\(689\) 705.778 407.481i 1.02435 0.591410i
\(690\) −25.7261 + 63.7094i −0.0372842 + 0.0923325i
\(691\) 103.948 180.043i 0.150431 0.260555i −0.780955 0.624588i \(-0.785267\pi\)
0.931386 + 0.364033i \(0.118600\pi\)
\(692\) −156.716 156.716i −0.226468 0.226468i
\(693\) 23.8274 + 62.5237i 0.0343829 + 0.0902218i
\(694\) 95.2925i 0.137309i
\(695\) −782.009 + 1038.17i −1.12519 + 1.49377i
\(696\) 116.277 + 201.398i 0.167065 + 0.289364i
\(697\) 106.310 396.754i 0.152525 0.569231i
\(698\) −10.5969 39.5482i −0.0151818 0.0566593i
\(699\) 433.663i 0.620405i
\(700\) 321.898 + 137.411i 0.459854 + 0.196302i
\(701\) 1201.88 1.71453 0.857263 0.514879i \(-0.172163\pi\)
0.857263 + 0.514879i \(0.172163\pi\)
\(702\) 167.784 44.9577i 0.239009 0.0640423i
\(703\) 832.153 + 222.975i 1.18372 + 0.317176i
\(704\) 22.0746 12.7448i 0.0313560 0.0181034i
\(705\) −188.284 141.826i −0.267070 0.201171i
\(706\) −908.963 −1.28748
\(707\) −978.971 796.681i −1.38468 1.12685i
\(708\) −131.005 + 131.005i −0.185036 + 0.185036i
\(709\) 284.619 + 164.325i 0.401437 + 0.231770i 0.687104 0.726559i \(-0.258882\pi\)
−0.285667 + 0.958329i \(0.592215\pi\)
\(710\) 671.860 + 271.300i 0.946282 + 0.382112i
\(711\) 175.008 + 303.123i 0.246144 + 0.426333i
\(712\) 289.598 77.5975i 0.406738 0.108985i
\(713\) 5.80568 5.80568i 0.00814261 0.00814261i
\(714\) 26.3713 + 256.877i 0.0369346 + 0.359772i
\(715\) −231.900 296.702i −0.324336 0.414967i
\(716\) 288.924 500.431i 0.403525 0.698926i
\(717\) −8.52978 + 31.8336i −0.0118965 + 0.0443983i
\(718\) 97.3523 + 26.0855i 0.135588 + 0.0363308i
\(719\) 18.0139 + 10.4003i 0.0250540 + 0.0144650i 0.512475 0.858702i \(-0.328729\pi\)
−0.487421 + 0.873167i \(0.662062\pi\)
\(720\) −59.5542 7.30078i −0.0827141 0.0101400i
\(721\) 325.660 + 450.518i 0.451678 + 0.624851i
\(722\) −117.899 117.899i −0.163295 0.163295i
\(723\) 132.836 + 495.751i 0.183729 + 0.685686i
\(724\) 206.664 119.317i 0.285447 0.164803i
\(725\) −1140.65 + 327.548i −1.57331 + 0.451790i
\(726\) 135.761 235.144i 0.186998 0.323890i
\(727\) 869.829 + 869.829i 1.19646 + 1.19646i 0.975218 + 0.221245i \(0.0710121\pi\)
0.221245 + 0.975218i \(0.428988\pi\)
\(728\) −166.663 437.328i −0.228932 0.600725i
\(729\) 27.0000i 0.0370370i
\(730\) −172.876 130.220i −0.236817 0.178383i
\(731\) −179.660 311.180i −0.245773 0.425691i
\(732\) 36.6224 136.677i 0.0500306 0.186717i
\(733\) −239.922 895.402i −0.327315 1.22156i −0.911964 0.410271i \(-0.865434\pi\)
0.584648 0.811287i \(-0.301233\pi\)
\(734\) 331.418i 0.451523i
\(735\) −417.559 75.6276i −0.568107 0.102895i
\(736\) −31.7346 −0.0431177
\(737\) −188.433 + 50.4906i −0.255676 + 0.0685082i
\(738\) −111.771 29.9489i −0.151451 0.0405812i
\(739\) −2.96458 + 1.71160i −0.00401160 + 0.00231610i −0.502004 0.864865i \(-0.667404\pi\)
0.497993 + 0.867181i \(0.334071\pi\)
\(740\) 547.151 77.0036i 0.739393 0.104059i
\(741\) −638.359 −0.861483
\(742\) 318.928 121.542i 0.429823 0.163803i
\(743\) −72.5388 + 72.5388i −0.0976296 + 0.0976296i −0.754235 0.656605i \(-0.771992\pi\)
0.656605 + 0.754235i \(0.271992\pi\)
\(744\) 6.20934 + 3.58497i 0.00834589 + 0.00481850i
\(745\) 59.5620 + 140.245i 0.0799490 + 0.188248i
\(746\) −69.1832 119.829i −0.0927388 0.160628i
\(747\) −306.976 + 82.2539i −0.410945 + 0.110112i
\(748\) −67.8603 + 67.8603i −0.0907224 + 0.0907224i
\(749\) −342.685 + 247.712i −0.457524 + 0.330724i
\(750\) 109.563 285.912i 0.146085 0.381216i
\(751\) 625.085 1082.68i 0.832336 1.44165i −0.0638447 0.997960i \(-0.520336\pi\)
0.896181 0.443689i \(-0.146330\pi\)
\(752\) 28.1792 105.166i 0.0374723 0.139849i
\(753\) −722.048 193.472i −0.958895 0.256935i
\(754\) 1374.28 + 793.439i 1.82265 + 1.05231i
\(755\) 56.6055 461.744i 0.0749741 0.611581i
\(756\) 72.3658 7.42915i 0.0957219 0.00982692i
\(757\) 477.258 + 477.258i 0.630460 + 0.630460i 0.948183 0.317723i \(-0.102918\pi\)
−0.317723 + 0.948183i \(0.602918\pi\)
\(758\) −152.076 567.555i −0.200628 0.748754i
\(759\) 26.8116 15.4797i 0.0353248 0.0203948i
\(760\) 204.460 + 82.5617i 0.269026 + 0.108634i
\(761\) 291.071 504.150i 0.382485 0.662483i −0.608932 0.793222i \(-0.708402\pi\)
0.991417 + 0.130739i \(0.0417351\pi\)
\(762\) 367.806 + 367.806i 0.482685 + 0.482685i
\(763\) 63.2234 77.6898i 0.0828617 0.101821i
\(764\) 253.608i 0.331947i