Properties

Label 210.3.v.b.37.4
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.4
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.4

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(3.95091 - 3.06436i) q^{5} -2.44949 q^{6} +(3.71395 + 5.93351i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(3.95091 - 3.06436i) q^{5} -2.44949 q^{6} +(3.71395 + 5.93351i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(4.27541 - 5.63213i) q^{10} +(-3.58312 - 6.20615i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(7.28383 - 7.28383i) q^{13} +(7.24516 + 6.74593i) q^{14} +(-7.98372 + 3.35564i) q^{15} +(2.00000 - 3.46410i) q^{16} +(4.87353 - 18.1882i) q^{17} +(4.09808 + 1.09808i) q^{18} +(7.65544 + 4.41987i) q^{19} +(3.77881 - 9.25854i) q^{20} +(-3.55363 - 11.5919i) q^{21} +(-7.16624 - 7.16624i) q^{22} +(-0.107714 - 0.401994i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(6.21935 - 24.2140i) q^{25} +(7.28383 - 12.6160i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(12.3663 + 6.56320i) q^{28} +27.7751i q^{29} +(-9.67771 + 7.50613i) q^{30} +(12.5266 + 21.6967i) q^{31} +(1.46410 - 5.46410i) q^{32} +(3.21254 + 11.9894i) q^{33} -26.6294i q^{34} +(32.8559 + 12.0619i) q^{35} +6.00000 q^{36} +(-51.5702 + 13.8182i) q^{37} +(12.0753 + 3.23557i) q^{38} +(-15.4513 + 8.92083i) q^{39} +(1.77309 - 14.0305i) q^{40} +46.7769 q^{41} +(-9.09728 - 14.5341i) q^{42} +(-37.3270 + 37.3270i) q^{43} +(-12.4123 - 7.16624i) q^{44} +(14.8613 - 2.03509i) q^{45} +(-0.294280 - 0.509708i) q^{46} +(-31.0816 + 8.32828i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-21.4132 + 44.0735i) q^{49} +(-0.367156 - 35.3534i) q^{50} +(-16.3071 + 28.2448i) q^{51} +(5.33213 - 19.8998i) q^{52} +(-68.8397 - 18.4455i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(-33.1745 - 13.5399i) q^{55} +(19.2949 + 4.43914i) q^{56} +(-10.8264 - 10.8264i) q^{57} +(10.1664 + 37.9414i) q^{58} +(-35.2552 + 20.3546i) q^{59} +(-10.4726 + 13.7958i) q^{60} +(3.30356 - 5.72193i) q^{61} +(25.0531 + 25.0531i) q^{62} +(0.748846 + 20.9866i) q^{63} -8.00000i q^{64} +(6.45744 - 51.0980i) q^{65} +(8.77682 + 15.2019i) q^{66} +(-34.4848 + 128.699i) q^{67} +(-9.74705 - 36.3765i) q^{68} +0.720836i q^{69} +(49.2970 + 4.45075i) q^{70} +129.870 q^{71} +(8.19615 - 2.19615i) q^{72} +(-7.85719 - 2.10533i) q^{73} +(-65.3884 + 37.7520i) q^{74} +(-21.2600 + 37.7228i) q^{75} +17.6795 q^{76} +(23.5168 - 44.3098i) q^{77} +(-17.8417 + 17.8417i) q^{78} +(-59.9499 - 34.6121i) q^{79} +(-2.71345 - 19.8151i) q^{80} +(4.50000 + 7.79423i) q^{81} +(63.8984 - 17.1215i) q^{82} +(57.0471 - 57.0471i) q^{83} +(-17.7470 - 16.5241i) q^{84} +(-36.4805 - 86.7944i) q^{85} +(-37.3270 + 64.6523i) q^{86} +(12.4512 - 46.4686i) q^{87} +(-19.5785 - 5.24605i) q^{88} +(114.055 + 65.8494i) q^{89} +(19.5560 - 8.21960i) q^{90} +(70.2705 + 16.1670i) q^{91} +(-0.588560 - 0.588560i) q^{92} +(-11.2310 - 41.9147i) q^{93} +(-39.4099 + 22.7533i) q^{94} +(43.7901 - 5.99655i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(-46.0520 - 46.0520i) q^{97} +(-13.1189 + 68.0433i) q^{98} -21.4987i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 3.95091 3.06436i 0.790182 0.612873i
\(6\) −2.44949 −0.408248
\(7\) 3.71395 + 5.93351i 0.530564 + 0.847645i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 4.27541 5.63213i 0.427541 0.563213i
\(11\) −3.58312 6.20615i −0.325738 0.564195i 0.655923 0.754828i \(-0.272280\pi\)
−0.981662 + 0.190632i \(0.938946\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) 7.28383 7.28383i 0.560295 0.560295i −0.369097 0.929391i \(-0.620333\pi\)
0.929391 + 0.369097i \(0.120333\pi\)
\(14\) 7.24516 + 6.74593i 0.517512 + 0.481852i
\(15\) −7.98372 + 3.35564i −0.532248 + 0.223709i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 4.87353 18.1882i 0.286678 1.06990i −0.660926 0.750451i \(-0.729836\pi\)
0.947604 0.319446i \(-0.103497\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) 7.65544 + 4.41987i 0.402918 + 0.232625i 0.687742 0.725955i \(-0.258602\pi\)
−0.284824 + 0.958580i \(0.591935\pi\)
\(20\) 3.77881 9.25854i 0.188941 0.462927i
\(21\) −3.55363 11.5919i −0.169221 0.551994i
\(22\) −7.16624 7.16624i −0.325738 0.325738i
\(23\) −0.107714 0.401994i −0.00468322 0.0174780i 0.963545 0.267547i \(-0.0862132\pi\)
−0.968228 + 0.250069i \(0.919547\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 6.21935 24.2140i 0.248774 0.968562i
\(26\) 7.28383 12.6160i 0.280147 0.485229i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 12.3663 + 6.56320i 0.441652 + 0.234400i
\(29\) 27.7751i 0.957761i 0.877880 + 0.478880i \(0.158957\pi\)
−0.877880 + 0.478880i \(0.841043\pi\)
\(30\) −9.67771 + 7.50613i −0.322590 + 0.250204i
\(31\) 12.5266 + 21.6967i 0.404083 + 0.699892i 0.994214 0.107415i \(-0.0342574\pi\)
−0.590131 + 0.807307i \(0.700924\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 3.21254 + 11.9894i 0.0973497 + 0.363314i
\(34\) 26.6294i 0.783219i
\(35\) 32.8559 + 12.0619i 0.938740 + 0.344625i
\(36\) 6.00000 0.166667
\(37\) −51.5702 + 13.8182i −1.39379 + 0.373464i −0.876110 0.482111i \(-0.839870\pi\)
−0.517678 + 0.855575i \(0.673204\pi\)
\(38\) 12.0753 + 3.23557i 0.317771 + 0.0851466i
\(39\) −15.4513 + 8.92083i −0.396188 + 0.228739i
\(40\) 1.77309 14.0305i 0.0443273 0.350764i
\(41\) 46.7769 1.14090 0.570450 0.821333i \(-0.306769\pi\)
0.570450 + 0.821333i \(0.306769\pi\)
\(42\) −9.09728 14.5341i −0.216602 0.346050i
\(43\) −37.3270 + 37.3270i −0.868070 + 0.868070i −0.992259 0.124189i \(-0.960367\pi\)
0.124189 + 0.992259i \(0.460367\pi\)
\(44\) −12.4123 7.16624i −0.282098 0.162869i
\(45\) 14.8613 2.03509i 0.330251 0.0452242i
\(46\) −0.294280 0.509708i −0.00639739 0.0110806i
\(47\) −31.0816 + 8.32828i −0.661310 + 0.177198i −0.573837 0.818969i \(-0.694546\pi\)
−0.0874729 + 0.996167i \(0.527879\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −21.4132 + 44.0735i −0.437004 + 0.899460i
\(50\) −0.367156 35.3534i −0.00734313 0.707069i
\(51\) −16.3071 + 28.2448i −0.319748 + 0.553819i
\(52\) 5.33213 19.8998i 0.102541 0.382688i
\(53\) −68.8397 18.4455i −1.29886 0.348029i −0.457842 0.889033i \(-0.651378\pi\)
−0.841020 + 0.541004i \(0.818044\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) −33.1745 13.5399i −0.603172 0.246181i
\(56\) 19.2949 + 4.43914i 0.344552 + 0.0792703i
\(57\) −10.8264 10.8264i −0.189937 0.189937i
\(58\) 10.1664 + 37.9414i 0.175282 + 0.654163i
\(59\) −35.2552 + 20.3546i −0.597546 + 0.344993i −0.768075 0.640359i \(-0.778785\pi\)
0.170530 + 0.985353i \(0.445452\pi\)
\(60\) −10.4726 + 13.7958i −0.174543 + 0.229931i
\(61\) 3.30356 5.72193i 0.0541567 0.0938021i −0.837676 0.546167i \(-0.816086\pi\)
0.891833 + 0.452365i \(0.149420\pi\)
\(62\) 25.0531 + 25.0531i 0.404083 + 0.404083i
\(63\) 0.748846 + 20.9866i 0.0118864 + 0.333121i
\(64\) 8.00000i 0.125000i
\(65\) 6.45744 51.0980i 0.0993453 0.786124i
\(66\) 8.77682 + 15.2019i 0.132982 + 0.230332i
\(67\) −34.4848 + 128.699i −0.514699 + 1.92088i −0.154566 + 0.987982i \(0.549398\pi\)
−0.360133 + 0.932901i \(0.617269\pi\)
\(68\) −9.74705 36.3765i −0.143339 0.534948i
\(69\) 0.720836i 0.0104469i
\(70\) 49.2970 + 4.45075i 0.704242 + 0.0635821i
\(71\) 129.870 1.82915 0.914576 0.404414i \(-0.132525\pi\)
0.914576 + 0.404414i \(0.132525\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) −7.85719 2.10533i −0.107633 0.0288401i 0.204601 0.978846i \(-0.434410\pi\)
−0.312233 + 0.950005i \(0.601077\pi\)
\(74\) −65.3884 + 37.7520i −0.883626 + 0.510162i
\(75\) −21.2600 + 37.7228i −0.283467 + 0.502971i
\(76\) 17.6795 0.232625
\(77\) 23.5168 44.3098i 0.305412 0.575452i
\(78\) −17.8417 + 17.8417i −0.228739 + 0.228739i
\(79\) −59.9499 34.6121i −0.758860 0.438128i 0.0700264 0.997545i \(-0.477692\pi\)
−0.828886 + 0.559417i \(0.811025\pi\)
\(80\) −2.71345 19.8151i −0.0339181 0.247688i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 63.8984 17.1215i 0.779249 0.208799i
\(83\) 57.0471 57.0471i 0.687314 0.687314i −0.274323 0.961638i \(-0.588454\pi\)
0.961638 + 0.274323i \(0.0884538\pi\)
\(84\) −17.7470 16.5241i −0.211273 0.196715i
\(85\) −36.4805 86.7944i −0.429183 1.02111i
\(86\) −37.3270 + 64.6523i −0.434035 + 0.751771i
\(87\) 12.4512 46.4686i 0.143117 0.534122i
\(88\) −19.5785 5.24605i −0.222483 0.0596143i
\(89\) 114.055 + 65.8494i 1.28151 + 0.739881i 0.977125 0.212667i \(-0.0682151\pi\)
0.304387 + 0.952548i \(0.401548\pi\)
\(90\) 19.5560 8.21960i 0.217289 0.0913288i
\(91\) 70.2705 + 16.1670i 0.772203 + 0.177659i
\(92\) −0.588560 0.588560i −0.00639739 0.00639739i
\(93\) −11.2310 41.9147i −0.120764 0.450696i
\(94\) −39.4099 + 22.7533i −0.419254 + 0.242056i
\(95\) 43.7901 5.99655i 0.460948 0.0631216i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) −46.0520 46.0520i −0.474763 0.474763i 0.428689 0.903452i \(-0.358976\pi\)
−0.903452 + 0.428689i \(0.858976\pi\)
\(98\) −13.1189 + 68.0433i −0.133867 + 0.694320i
\(99\) 21.4987i 0.217159i
\(100\) −13.4418 48.1593i −0.134418 0.481593i
\(101\) −34.0993 59.0617i −0.337617 0.584769i 0.646367 0.763027i \(-0.276287\pi\)
−0.983984 + 0.178257i \(0.942954\pi\)
\(102\) −11.9377 + 44.5519i −0.117036 + 0.436784i
\(103\) 35.9466 + 134.155i 0.348996 + 1.30247i 0.887874 + 0.460087i \(0.152182\pi\)
−0.538877 + 0.842384i \(0.681151\pi\)
\(104\) 29.1353i 0.280147i
\(105\) −49.5618 34.9088i −0.472017 0.332465i
\(106\) −100.788 −0.950833
\(107\) −41.1642 + 11.0299i −0.384712 + 0.103083i −0.445991 0.895037i \(-0.647149\pi\)
0.0612792 + 0.998121i \(0.480482\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) −149.701 + 86.4300i −1.37341 + 0.792936i −0.991355 0.131205i \(-0.958115\pi\)
−0.382050 + 0.924141i \(0.624782\pi\)
\(110\) −50.2731 6.35320i −0.457029 0.0577563i
\(111\) 92.4731 0.833091
\(112\) 27.9822 0.998461i 0.249841 0.00891483i
\(113\) −2.87483 + 2.87483i −0.0254409 + 0.0254409i −0.719713 0.694272i \(-0.755727\pi\)
0.694272 + 0.719713i \(0.255727\pi\)
\(114\) −18.7519 10.8264i −0.164491 0.0949687i
\(115\) −1.65742 1.25817i −0.0144124 0.0109406i
\(116\) 27.7751 + 48.1078i 0.239440 + 0.414723i
\(117\) 29.8497 7.99820i 0.255126 0.0683607i
\(118\) −40.7092 + 40.7092i −0.344993 + 0.344993i
\(119\) 126.020 38.6331i 1.05899 0.324648i
\(120\) −9.25616 + 22.6787i −0.0771347 + 0.188989i
\(121\) 34.8225 60.3143i 0.287789 0.498465i
\(122\) 2.41837 9.02549i 0.0198227 0.0739794i
\(123\) −78.2592 20.9695i −0.636254 0.170484i
\(124\) 43.3933 + 25.0531i 0.349946 + 0.202041i
\(125\) −49.6285 114.726i −0.397028 0.917806i
\(126\) 8.70459 + 28.3942i 0.0690840 + 0.225351i
\(127\) −17.1629 17.1629i −0.135141 0.135141i 0.636300 0.771441i \(-0.280464\pi\)
−0.771441 + 0.636300i \(0.780464\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 79.1826 45.7161i 0.613818 0.354388i
\(130\) −9.88215 72.1648i −0.0760165 0.555114i
\(131\) −63.5362 + 110.048i −0.485010 + 0.840061i −0.999852 0.0172239i \(-0.994517\pi\)
0.514842 + 0.857285i \(0.327851\pi\)
\(132\) 17.5536 + 17.5536i 0.132982 + 0.132982i
\(133\) 2.20653 + 61.8389i 0.0165905 + 0.464954i
\(134\) 188.429i 1.40618i
\(135\) −25.7758 3.25737i −0.190932 0.0241287i
\(136\) −26.6294 46.1236i −0.195805 0.339144i
\(137\) 24.3746 90.9671i 0.177917 0.663994i −0.818120 0.575048i \(-0.804983\pi\)
0.996036 0.0889460i \(-0.0283498\pi\)
\(138\) 0.263844 + 0.984680i 0.00191191 + 0.00713536i
\(139\) 91.9640i 0.661612i −0.943699 0.330806i \(-0.892679\pi\)
0.943699 0.330806i \(-0.107321\pi\)
\(140\) 68.9700 11.9641i 0.492643 0.0854579i
\(141\) 55.7340 0.395276
\(142\) 177.405 47.5356i 1.24933 0.334758i
\(143\) −71.3034 19.1057i −0.498625 0.133606i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 85.1129 + 109.737i 0.586986 + 0.756805i
\(146\) −11.5037 −0.0787926
\(147\) 55.5826 64.1372i 0.378113 0.436307i
\(148\) −75.5040 + 75.5040i −0.510162 + 0.510162i
\(149\) 45.8944 + 26.4971i 0.308016 + 0.177833i 0.646038 0.763305i \(-0.276425\pi\)
−0.338022 + 0.941138i \(0.609758\pi\)
\(150\) −15.2342 + 59.3120i −0.101562 + 0.395414i
\(151\) −12.0722 20.9097i −0.0799483 0.138475i 0.823279 0.567637i \(-0.192142\pi\)
−0.903227 + 0.429162i \(0.858809\pi\)
\(152\) 24.1506 6.47114i 0.158886 0.0425733i
\(153\) 39.9442 39.9442i 0.261073 0.261073i
\(154\) 15.9060 69.1361i 0.103285 0.448935i
\(155\) 115.978 + 47.3355i 0.748244 + 0.305391i
\(156\) −17.8417 + 30.9027i −0.114370 + 0.198094i
\(157\) 45.2960 169.047i 0.288510 1.07673i −0.657727 0.753257i \(-0.728482\pi\)
0.946236 0.323476i \(-0.104852\pi\)
\(158\) −94.5620 25.3378i −0.598494 0.160366i
\(159\) 106.902 + 61.7200i 0.672340 + 0.388176i
\(160\) −10.9595 26.0747i −0.0684966 0.162967i
\(161\) 1.98519 2.13211i 0.0123304 0.0132429i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) −64.5303 240.830i −0.395891 1.47749i −0.820257 0.571995i \(-0.806170\pi\)
0.424366 0.905491i \(-0.360497\pi\)
\(164\) 81.0199 46.7769i 0.494024 0.285225i
\(165\) 49.4322 + 37.5245i 0.299589 + 0.227421i
\(166\) 57.0471 98.8085i 0.343657 0.595232i
\(167\) −186.515 186.515i −1.11686 1.11686i −0.992200 0.124657i \(-0.960217\pi\)
−0.124657 0.992200i \(-0.539783\pi\)
\(168\) −30.2910 16.0765i −0.180304 0.0956934i
\(169\) 62.8917i 0.372140i
\(170\) −81.6023 105.210i −0.480013 0.618885i
\(171\) 13.2596 + 22.9663i 0.0775416 + 0.134306i
\(172\) −27.3253 + 101.979i −0.158868 + 0.592903i
\(173\) −36.3047 135.491i −0.209854 0.783185i −0.987915 0.154997i \(-0.950463\pi\)
0.778061 0.628189i \(-0.216203\pi\)
\(174\) 68.0347i 0.391004i
\(175\) 166.773 53.0270i 0.952987 0.303012i
\(176\) −28.6650 −0.162869
\(177\) 68.1078 18.2494i 0.384790 0.103104i
\(178\) 179.904 + 48.2051i 1.01070 + 0.270815i
\(179\) 191.781 110.725i 1.07140 0.618573i 0.142836 0.989746i \(-0.454378\pi\)
0.928564 + 0.371173i \(0.121044\pi\)
\(180\) 23.7055 18.3862i 0.131697 0.102145i
\(181\) 149.607 0.826556 0.413278 0.910605i \(-0.364384\pi\)
0.413278 + 0.910605i \(0.364384\pi\)
\(182\) 101.909 3.63631i 0.559938 0.0199797i
\(183\) −8.09203 + 8.09203i −0.0442187 + 0.0442187i
\(184\) −1.01942 0.588560i −0.00554030 0.00319870i
\(185\) −161.405 + 212.624i −0.872460 + 1.14932i
\(186\) −30.6837 53.1457i −0.164966 0.285730i
\(187\) −130.341 + 34.9249i −0.697013 + 0.186764i
\(188\) −45.5066 + 45.5066i −0.242056 + 0.242056i
\(189\) 8.15521 35.4470i 0.0431493 0.187550i
\(190\) 57.6234 24.2197i 0.303281 0.127472i
\(191\) −142.890 + 247.493i −0.748116 + 1.29578i 0.200608 + 0.979672i \(0.435708\pi\)
−0.948725 + 0.316104i \(0.897625\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) 228.339 + 61.1833i 1.18310 + 0.317012i 0.796157 0.605090i \(-0.206863\pi\)
0.386947 + 0.922102i \(0.373529\pi\)
\(194\) −79.7644 46.0520i −0.411157 0.237382i
\(195\) −33.7101 + 82.5939i −0.172873 + 0.423558i
\(196\) 6.98478 + 97.7508i 0.0356366 + 0.498728i
\(197\) −72.1108 72.1108i −0.366045 0.366045i 0.499988 0.866032i \(-0.333338\pi\)
−0.866032 + 0.499988i \(0.833338\pi\)
\(198\) −7.86908 29.3678i −0.0397428 0.148322i
\(199\) −248.372 + 143.398i −1.24810 + 0.720592i −0.970731 0.240171i \(-0.922797\pi\)
−0.277371 + 0.960763i \(0.589463\pi\)
\(200\) −35.9894 60.8668i −0.179947 0.304334i
\(201\) 115.389 199.859i 0.574072 0.994322i
\(202\) −68.1986 68.1986i −0.337617 0.337617i
\(203\) −164.804 + 103.155i −0.811841 + 0.508153i
\(204\) 65.2286i 0.319748i
\(205\) 184.811 143.341i 0.901518 0.699226i
\(206\) 98.2080 + 170.101i 0.476738 + 0.825734i
\(207\) 0.323142 1.20598i 0.00156107 0.00582600i
\(208\) −10.6643 39.7996i −0.0512705 0.191344i
\(209\) 63.3478i 0.303099i
\(210\) −80.4802 29.5455i −0.383239 0.140693i
\(211\) 293.048 1.38885 0.694427 0.719563i \(-0.255658\pi\)
0.694427 + 0.719563i \(0.255658\pi\)
\(212\) −137.679 + 36.8911i −0.649431 + 0.174015i
\(213\) −217.276 58.2190i −1.02008 0.273329i
\(214\) −52.1941 + 30.1343i −0.243897 + 0.140814i
\(215\) −33.0921 + 261.859i −0.153917 + 1.21795i
\(216\) −14.6969 −0.0680414
\(217\) −82.2144 + 154.907i −0.378868 + 0.713856i
\(218\) −172.860 + 172.860i −0.792936 + 0.792936i
\(219\) 12.2015 + 7.04456i 0.0557148 + 0.0321670i
\(220\) −70.9998 + 9.72262i −0.322726 + 0.0441937i
\(221\) −96.9822 167.978i −0.438833 0.760082i
\(222\) 126.321 33.8475i 0.569012 0.152466i
\(223\) 166.941 166.941i 0.748615 0.748615i −0.225604 0.974219i \(-0.572436\pi\)
0.974219 + 0.225604i \(0.0724356\pi\)
\(224\) 37.8589 11.6061i 0.169013 0.0518130i
\(225\) 52.4794 53.5809i 0.233242 0.238137i
\(226\) −2.87483 + 4.97934i −0.0127205 + 0.0220325i
\(227\) −78.8916 + 294.427i −0.347540 + 1.29704i 0.542076 + 0.840329i \(0.317638\pi\)
−0.889617 + 0.456708i \(0.849028\pi\)
\(228\) −29.5784 7.92550i −0.129730 0.0347610i
\(229\) 194.928 + 112.542i 0.851213 + 0.491448i 0.861060 0.508503i \(-0.169801\pi\)
−0.00984691 + 0.999952i \(0.503134\pi\)
\(230\) −2.72460 1.11203i −0.0118461 0.00483491i
\(231\) −59.2078 + 63.5895i −0.256311 + 0.275279i
\(232\) 55.5501 + 55.5501i 0.239440 + 0.239440i
\(233\) −26.2312 97.8963i −0.112580 0.420156i 0.886514 0.462702i \(-0.153120\pi\)
−0.999095 + 0.0425458i \(0.986453\pi\)
\(234\) 37.8479 21.8515i 0.161743 0.0933824i
\(235\) −97.2796 + 128.150i −0.413956 + 0.545317i
\(236\) −40.7092 + 70.5104i −0.172497 + 0.298773i
\(237\) 84.7820 + 84.7820i 0.357730 + 0.357730i
\(238\) 158.006 98.9003i 0.663892 0.415548i
\(239\) 191.422i 0.800927i 0.916313 + 0.400464i \(0.131151\pi\)
−0.916313 + 0.400464i \(0.868849\pi\)
\(240\) −4.34317 + 34.3677i −0.0180965 + 0.143199i
\(241\) −134.250 232.528i −0.557054 0.964846i −0.997741 0.0671848i \(-0.978598\pi\)
0.440687 0.897661i \(-0.354735\pi\)
\(242\) 25.4918 95.1368i 0.105338 0.393127i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 13.2142i 0.0541567i
\(245\) 50.4557 + 239.748i 0.205942 + 0.978564i
\(246\) −114.579 −0.465770
\(247\) 87.9545 23.5673i 0.356091 0.0954144i
\(248\) 68.4465 + 18.3402i 0.275994 + 0.0739523i
\(249\) −121.015 + 69.8681i −0.486005 + 0.280595i
\(250\) −109.786 138.553i −0.439145 0.554212i
\(251\) −314.645 −1.25357 −0.626784 0.779193i \(-0.715629\pi\)
−0.626784 + 0.779193i \(0.715629\pi\)
\(252\) 22.2837 + 35.6011i 0.0884273 + 0.141274i
\(253\) −2.10888 + 2.10888i −0.00833550 + 0.00833550i
\(254\) −29.7271 17.1629i −0.117036 0.0675706i
\(255\) 22.1243 + 161.564i 0.0867619 + 0.633583i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −360.739 + 96.6597i −1.40365 + 0.376108i −0.879655 0.475612i \(-0.842227\pi\)
−0.523998 + 0.851720i \(0.675560\pi\)
\(258\) 91.4321 91.4321i 0.354388 0.354388i
\(259\) −273.519 254.672i −1.05606 0.983291i
\(260\) −39.9134 94.9618i −0.153513 0.365238i
\(261\) −41.6626 + 72.1617i −0.159627 + 0.276482i
\(262\) −46.5118 + 173.584i −0.177526 + 0.662535i
\(263\) −24.9311 6.68028i −0.0947952 0.0254003i 0.211110 0.977462i \(-0.432292\pi\)
−0.305905 + 0.952062i \(0.598959\pi\)
\(264\) 30.4038 + 17.5536i 0.115166 + 0.0664911i
\(265\) −328.503 + 138.073i −1.23963 + 0.521031i
\(266\) 25.6488 + 83.6658i 0.0964240 + 0.314533i
\(267\) −161.297 161.297i −0.604110 0.604110i
\(268\) 68.9697 + 257.398i 0.257350 + 0.960442i
\(269\) −189.173 + 109.219i −0.703246 + 0.406020i −0.808555 0.588420i \(-0.799750\pi\)
0.105309 + 0.994440i \(0.466417\pi\)
\(270\) −36.4026 + 4.98492i −0.134825 + 0.0184627i
\(271\) 14.9730 25.9340i 0.0552510 0.0956975i −0.837077 0.547085i \(-0.815737\pi\)
0.892328 + 0.451387i \(0.149071\pi\)
\(272\) −53.2589 53.2589i −0.195805 0.195805i
\(273\) −110.317 58.5492i −0.404093 0.214466i
\(274\) 133.185i 0.486077i
\(275\) −172.561 + 48.1636i −0.627493 + 0.175140i
\(276\) 0.720836 + 1.24852i 0.00261172 + 0.00452364i
\(277\) −137.756 + 514.112i −0.497314 + 1.85600i 0.0193511 + 0.999813i \(0.493840\pi\)
−0.516665 + 0.856188i \(0.672827\pi\)
\(278\) −33.6612 125.625i −0.121083 0.451889i
\(279\) 75.1594i 0.269389i
\(280\) 89.8356 41.5880i 0.320841 0.148529i
\(281\) 69.2961 0.246605 0.123303 0.992369i \(-0.460651\pi\)
0.123303 + 0.992369i \(0.460651\pi\)
\(282\) 76.1340 20.4000i 0.269979 0.0723406i
\(283\) 338.641 + 90.7385i 1.19661 + 0.320631i 0.801495 0.598001i \(-0.204038\pi\)
0.395115 + 0.918632i \(0.370705\pi\)
\(284\) 224.941 129.870i 0.792046 0.457288i
\(285\) −75.9504 9.59812i −0.266493 0.0336776i
\(286\) −104.395 −0.365019
\(287\) 173.727 + 277.551i 0.605320 + 0.967078i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) −56.7798 32.7818i −0.196470 0.113432i
\(290\) 156.433 + 118.750i 0.539424 + 0.409482i
\(291\) 56.4020 + 97.6911i 0.193821 + 0.335708i
\(292\) −15.7144 + 4.21066i −0.0538164 + 0.0144201i
\(293\) 371.421 371.421i 1.26765 1.26765i 0.320351 0.947299i \(-0.396199\pi\)
0.947299 0.320351i \(-0.103801\pi\)
\(294\) 52.4514 107.958i 0.178406 0.367203i
\(295\) −76.9162 + 188.454i −0.260733 + 0.638827i
\(296\) −75.5040 + 130.777i −0.255081 + 0.441813i
\(297\) −9.63762 + 35.9681i −0.0324499 + 0.121105i
\(298\) 72.3915 + 19.3972i 0.242924 + 0.0650914i
\(299\) −3.71263 2.14349i −0.0124168 0.00716885i
\(300\) 0.899346 + 86.5979i 0.00299782 + 0.288660i
\(301\) −360.111 82.8498i −1.19638 0.275249i
\(302\) −24.1444 24.1444i −0.0799483 0.0799483i
\(303\) 30.5726 + 114.098i 0.100900 + 0.376563i
\(304\) 30.6218 17.6795i 0.100730 0.0581562i
\(305\) −4.48202 32.7301i −0.0146951 0.107312i
\(306\) 39.9442 69.1853i 0.130536 0.226096i
\(307\) −76.4698 76.4698i −0.249087 0.249087i 0.571509 0.820596i \(-0.306358\pi\)
−0.820596 + 0.571509i \(0.806358\pi\)
\(308\) −3.57761 100.264i −0.0116156 0.325531i
\(309\) 240.559i 0.778509i
\(310\) 175.755 + 22.2107i 0.566950 + 0.0716476i
\(311\) −104.711 181.364i −0.336690 0.583164i 0.647118 0.762390i \(-0.275974\pi\)
−0.983808 + 0.179226i \(0.942641\pi\)
\(312\) −13.0610 + 48.7443i −0.0418622 + 0.156232i
\(313\) 76.3577 + 284.971i 0.243954 + 0.910450i 0.973906 + 0.226952i \(0.0728759\pi\)
−0.729952 + 0.683499i \(0.760457\pi\)
\(314\) 247.502i 0.788223i
\(315\) 67.2693 + 80.6216i 0.213553 + 0.255942i
\(316\) −138.448 −0.438128
\(317\) 602.418 161.418i 1.90037 0.509204i 0.903655 0.428262i \(-0.140874\pi\)
0.996719 0.0809415i \(-0.0257927\pi\)
\(318\) 168.622 + 45.1822i 0.530258 + 0.142082i
\(319\) 172.376 99.5215i 0.540364 0.311979i
\(320\) −24.5149 31.6073i −0.0766091 0.0987727i
\(321\) 73.8135 0.229949
\(322\) 1.93142 3.63914i 0.00599820 0.0113017i
\(323\) 117.699 117.699i 0.364392 0.364392i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) −131.070 221.672i −0.403293 0.682067i
\(326\) −176.300 305.361i −0.540797 0.936689i
\(327\) 289.201 77.4911i 0.884405 0.236976i
\(328\) 93.5538 93.5538i 0.285225 0.285225i
\(329\) −164.851 153.492i −0.501068 0.466542i
\(330\) 81.2606 + 33.1659i 0.246244 + 0.100503i
\(331\) 79.4501 137.612i 0.240031 0.415745i −0.720692 0.693255i \(-0.756176\pi\)
0.960723 + 0.277510i \(0.0895092\pi\)
\(332\) 41.7614 155.856i 0.125787 0.469445i
\(333\) −154.711 41.4546i −0.464596 0.124488i
\(334\) −323.054 186.515i −0.967226 0.558428i
\(335\) 258.135 + 614.153i 0.770551 + 1.83329i
\(336\) −47.2627 10.8736i −0.140663 0.0323620i
\(337\) −39.4387 39.4387i −0.117029 0.117029i 0.646167 0.763196i \(-0.276371\pi\)
−0.763196 + 0.646167i \(0.776371\pi\)
\(338\) 23.0199 + 85.9116i 0.0681064 + 0.254176i
\(339\) 6.09843 3.52093i 0.0179895 0.0103862i
\(340\) −149.981 113.852i −0.441119 0.334858i
\(341\) 89.7685 155.484i 0.263251 0.455963i
\(342\) 26.5192 + 26.5192i 0.0775416 + 0.0775416i
\(343\) −341.038 + 36.6312i −0.994281 + 0.106797i
\(344\) 149.308i 0.434035i
\(345\) 2.20890 + 2.84796i 0.00640262 + 0.00825495i
\(346\) −99.1863 171.796i −0.286666 0.496520i
\(347\) 75.8074 282.917i 0.218465 0.815323i −0.766453 0.642301i \(-0.777980\pi\)
0.984918 0.173023i \(-0.0553533\pi\)
\(348\) −24.9024 92.9372i −0.0715587 0.267061i
\(349\) 475.392i 1.36216i 0.732211 + 0.681078i \(0.238489\pi\)
−0.732211 + 0.681078i \(0.761511\pi\)
\(350\) 208.407 133.479i 0.595447 0.381369i
\(351\) −53.5250 −0.152493
\(352\) −39.1571 + 10.4921i −0.111242 + 0.0298071i
\(353\) 556.098 + 149.006i 1.57535 + 0.422114i 0.937482 0.348033i \(-0.113150\pi\)
0.637867 + 0.770147i \(0.279817\pi\)
\(354\) 86.3573 49.8584i 0.243947 0.140843i
\(355\) 513.104 397.968i 1.44536 1.12104i
\(356\) 263.398 0.739881
\(357\) −228.155 + 8.14102i −0.639089 + 0.0228040i
\(358\) 221.449 221.449i 0.618573 0.618573i
\(359\) −38.5401 22.2511i −0.107354 0.0619808i 0.445362 0.895351i \(-0.353075\pi\)
−0.552716 + 0.833370i \(0.686408\pi\)
\(360\) 25.6524 33.7928i 0.0712568 0.0938689i
\(361\) −141.429 244.963i −0.391771 0.678568i
\(362\) 204.366 54.7598i 0.564548 0.151270i
\(363\) −85.2973 + 85.2973i −0.234979 + 0.234979i
\(364\) 137.879 42.2685i 0.378788 0.116122i
\(365\) −37.4945 + 15.7593i −0.102725 + 0.0431762i
\(366\) −8.09203 + 14.0158i −0.0221094 + 0.0382945i
\(367\) 96.2112 359.065i 0.262156 0.978379i −0.701812 0.712362i \(-0.747625\pi\)
0.963968 0.266017i \(-0.0857078\pi\)
\(368\) −1.60798 0.430856i −0.00436950 0.00117080i
\(369\) 121.530 + 70.1653i 0.329349 + 0.190150i
\(370\) −142.658 + 349.528i −0.385561 + 0.944671i
\(371\) −146.220 476.967i −0.394124 1.28563i
\(372\) −61.3674 61.3674i −0.164966 0.164966i
\(373\) 164.380 + 613.473i 0.440696 + 1.64470i 0.727057 + 0.686577i \(0.240888\pi\)
−0.286361 + 0.958122i \(0.592446\pi\)
\(374\) −165.266 + 95.4165i −0.441889 + 0.255124i
\(375\) 31.5999 + 214.188i 0.0842665 + 0.571168i
\(376\) −45.5066 + 78.8197i −0.121028 + 0.209627i
\(377\) 202.309 + 202.309i 0.536628 + 0.536628i
\(378\) −1.83429 51.4066i −0.00485262 0.135996i
\(379\) 203.740i 0.537573i −0.963200 0.268787i \(-0.913377\pi\)
0.963200 0.268787i \(-0.0866226\pi\)
\(380\) 69.8500 54.1764i 0.183816 0.142569i
\(381\) 21.0202 + 36.4081i 0.0551711 + 0.0955592i
\(382\) −104.603 + 390.383i −0.273830 + 1.02195i
\(383\) 36.0986 + 134.722i 0.0942522 + 0.351754i 0.996905 0.0786154i \(-0.0250499\pi\)
−0.902653 + 0.430370i \(0.858383\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −42.8688 247.128i −0.111348 0.641891i
\(386\) 334.312 0.866093
\(387\) −152.969 + 40.9879i −0.395269 + 0.105912i
\(388\) −125.816 33.7124i −0.324269 0.0868877i
\(389\) 477.792 275.853i 1.22826 0.709134i 0.261592 0.965179i \(-0.415753\pi\)
0.966665 + 0.256044i \(0.0824193\pi\)
\(390\) −15.8174 + 125.164i −0.0405575 + 0.320934i
\(391\) −7.83651 −0.0200422
\(392\) 45.3207 + 130.973i 0.115614 + 0.334116i
\(393\) 155.631 155.631i 0.396009 0.396009i
\(394\) −124.900 72.1108i −0.317004 0.183022i
\(395\) −342.921 + 46.9591i −0.868154 + 0.118884i
\(396\) −21.4987 37.2369i −0.0542897 0.0940326i
\(397\) −435.093 + 116.583i −1.09595 + 0.293660i −0.761115 0.648617i \(-0.775348\pi\)
−0.334837 + 0.942276i \(0.608681\pi\)
\(398\) −286.796 + 286.796i −0.720592 + 0.720592i
\(399\) 24.0300 104.448i 0.0602256 0.261773i
\(400\) −71.4412 69.9726i −0.178603 0.174931i
\(401\) −228.287 + 395.405i −0.569295 + 0.986048i 0.427340 + 0.904091i \(0.359451\pi\)
−0.996636 + 0.0819577i \(0.973883\pi\)
\(402\) 84.4703 315.247i 0.210125 0.784197i
\(403\) 249.276 + 66.7933i 0.618551 + 0.165740i
\(404\) −118.123 68.1986i −0.292385 0.168808i
\(405\) 41.6634 + 17.0046i 0.102873 + 0.0419868i
\(406\) −187.369 + 201.235i −0.461499 + 0.495652i
\(407\) 270.540 + 270.540i 0.664717 + 0.664717i
\(408\) 23.8753 + 89.1039i 0.0585179 + 0.218392i
\(409\) 502.237 289.967i 1.22796 0.708965i 0.261361 0.965241i \(-0.415829\pi\)
0.966604 + 0.256276i \(0.0824955\pi\)
\(410\) 199.990 263.454i 0.487781 0.642570i
\(411\) −81.5589 + 141.264i −0.198440 + 0.343708i
\(412\) 196.416 + 196.416i 0.476738 + 0.476738i
\(413\) −251.710 133.591i −0.609468 0.323466i
\(414\) 1.76568i 0.00426493i
\(415\) 50.5748 400.201i 0.121867 0.964340i
\(416\) −29.1353 50.4638i −0.0700368 0.121307i
\(417\) −41.2263 + 153.859i −0.0988641 + 0.368966i
\(418\) −23.1869 86.5347i −0.0554710 0.207021i
\(419\) 466.412i 1.11315i −0.830796 0.556577i \(-0.812114\pi\)
0.830796 0.556577i \(-0.187886\pi\)
\(420\) −120.752 10.9021i −0.287506 0.0259573i
\(421\) −8.56578 −0.0203463 −0.0101731 0.999948i \(-0.503238\pi\)
−0.0101731 + 0.999948i \(0.503238\pi\)
\(422\) 400.311 107.263i 0.948605 0.254178i
\(423\) −93.2447 24.9849i −0.220437 0.0590658i
\(424\) −174.570 + 100.788i −0.411723 + 0.237708i
\(425\) −410.101 231.127i −0.964943 0.543828i
\(426\) −318.115 −0.746748
\(427\) 46.2204 1.64924i 0.108244 0.00386238i
\(428\) −60.2685 + 60.2685i −0.140814 + 0.140814i
\(429\) 110.728 + 63.9289i 0.258107 + 0.149018i
\(430\) 50.6425 + 369.819i 0.117773 + 0.860044i
\(431\) −70.0856 121.392i −0.162612 0.281652i 0.773193 0.634171i \(-0.218658\pi\)
−0.935805 + 0.352519i \(0.885325\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) 20.7110 20.7110i 0.0478314 0.0478314i −0.682787 0.730618i \(-0.739232\pi\)
0.730618 + 0.682787i \(0.239232\pi\)
\(434\) −55.6071 + 241.699i −0.128127 + 0.556911i
\(435\) −93.2030 221.748i −0.214260 0.509766i
\(436\) −172.860 + 299.402i −0.396468 + 0.686703i
\(437\) 0.952164 3.55352i 0.00217887 0.00813164i
\(438\) 19.2461 + 5.15698i 0.0439409 + 0.0117739i
\(439\) 262.272 + 151.423i 0.597430 + 0.344926i 0.768030 0.640414i \(-0.221237\pi\)
−0.170600 + 0.985340i \(0.554571\pi\)
\(440\) −93.4288 + 39.2691i −0.212338 + 0.0892479i
\(441\) −121.743 + 82.3866i −0.276062 + 0.186818i
\(442\) −193.964 193.964i −0.438833 0.438833i
\(443\) −149.400 557.570i −0.337247 1.25862i −0.901413 0.432961i \(-0.857469\pi\)
0.564166 0.825661i \(-0.309198\pi\)
\(444\) 160.168 92.4731i 0.360739 0.208273i
\(445\) 652.406 89.3395i 1.46608 0.200763i
\(446\) 166.941 289.151i 0.374307 0.648320i
\(447\) −64.9044 64.9044i −0.145200 0.145200i
\(448\) 47.4681 29.7116i 0.105956 0.0663205i
\(449\) 31.4156i 0.0699679i −0.999388 0.0349840i \(-0.988862\pi\)
0.999388 0.0349840i \(-0.0111380\pi\)
\(450\) 52.0762 92.4016i 0.115725 0.205337i
\(451\) −167.607 290.304i −0.371635 0.643690i
\(452\) −2.10452 + 7.85417i −0.00465601 + 0.0173765i
\(453\) 10.8236 + 40.3943i 0.0238932 + 0.0891707i
\(454\) 431.072i 0.949497i
\(455\) 327.174 151.460i 0.719063 0.332879i
\(456\) −43.3057 −0.0949687
\(457\) 274.333 73.5073i 0.600291 0.160848i 0.0541389 0.998533i \(-0.482759\pi\)
0.546152 + 0.837686i \(0.316092\pi\)
\(458\) 307.469 + 82.3862i 0.671331 + 0.179882i
\(459\) −84.7344 + 48.9214i −0.184606 + 0.106583i
\(460\) −4.12891 0.521785i −0.00897589 0.00113432i
\(461\) −8.38183 −0.0181818 −0.00909092 0.999959i \(-0.502894\pi\)
−0.00909092 + 0.999959i \(0.502894\pi\)
\(462\) −57.6040 + 108.536i −0.124684 + 0.234927i
\(463\) −59.5826 + 59.5826i −0.128688 + 0.128688i −0.768517 0.639829i \(-0.779005\pi\)
0.639829 + 0.768517i \(0.279005\pi\)
\(464\) 96.2157 + 55.5501i 0.207361 + 0.119720i
\(465\) −172.815 131.185i −0.371644 0.282119i
\(466\) −71.6651 124.128i −0.153788 0.266368i
\(467\) −473.750 + 126.941i −1.01445 + 0.271822i −0.727489 0.686119i \(-0.759313\pi\)
−0.286964 + 0.957941i \(0.592646\pi\)
\(468\) 43.7030 43.7030i 0.0933824 0.0933824i
\(469\) −891.713 + 273.366i −1.90131 + 0.582869i
\(470\) −85.9804 + 210.662i −0.182937 + 0.448218i
\(471\) −151.563 + 262.516i −0.321791 + 0.557358i
\(472\) −29.8012 + 111.220i −0.0631381 + 0.235635i
\(473\) 365.404 + 97.9098i 0.772525 + 0.206997i
\(474\) 146.847 + 84.7820i 0.309803 + 0.178865i
\(475\) 154.635 157.880i 0.325547 0.332380i
\(476\) 179.640 192.935i 0.377396 0.405325i
\(477\) −151.182 151.182i −0.316944 0.316944i
\(478\) 70.0652 + 261.487i 0.146580 + 0.547044i
\(479\) 395.262 228.205i 0.825183 0.476419i −0.0270178 0.999635i \(-0.508601\pi\)
0.852200 + 0.523216i \(0.175268\pi\)
\(480\) 6.64657 + 48.5368i 0.0138470 + 0.101118i
\(481\) −274.979 + 476.278i −0.571682 + 0.990182i
\(482\) −268.500 268.500i −0.557054 0.557054i
\(483\) −4.27709 + 2.67715i −0.00885526 + 0.00554275i
\(484\) 139.290i 0.287789i
\(485\) −323.067 40.8272i −0.666118 0.0841798i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) −0.190899 + 0.712445i −0.000391990 + 0.00146293i −0.966122 0.258088i \(-0.916908\pi\)
0.965730 + 0.259550i \(0.0835744\pi\)
\(488\) −4.83674 18.0510i −0.00991136 0.0369897i
\(489\) 431.845i 0.883119i
\(490\) 156.678 + 309.034i 0.319750 + 0.630682i
\(491\) 335.358 0.683010 0.341505 0.939880i \(-0.389063\pi\)
0.341505 + 0.939880i \(0.389063\pi\)
\(492\) −156.518 + 41.9390i −0.318127 + 0.0852419i
\(493\) 505.180 + 135.363i 1.02471 + 0.274569i
\(494\) 111.522 64.3872i 0.225753 0.130338i
\(495\) −65.8799 84.9395i −0.133091 0.171595i
\(496\) 100.213 0.202041
\(497\) 482.329 + 770.584i 0.970482 + 1.55047i
\(498\) −139.736 + 139.736i −0.280595 + 0.280595i
\(499\) −530.603 306.344i −1.06333 0.613915i −0.136980 0.990574i \(-0.543740\pi\)
−0.926352 + 0.376658i \(0.877073\pi\)
\(500\) −200.685 149.082i −0.401370 0.298165i
\(501\) 228.433 + 395.658i 0.455955 + 0.789737i
\(502\) −429.814 + 115.168i −0.856202 + 0.229419i
\(503\) −377.103 + 377.103i −0.749707 + 0.749707i −0.974424 0.224717i \(-0.927854\pi\)
0.224717 + 0.974424i \(0.427854\pi\)
\(504\) 43.4710 + 40.4756i 0.0862519 + 0.0803087i
\(505\) −315.710 128.855i −0.625168 0.255158i
\(506\) −2.10888 + 3.65269i −0.00416775 + 0.00721876i
\(507\) 28.1936 105.220i 0.0556086 0.207534i
\(508\) −46.8900 12.5641i −0.0923031 0.0247325i
\(509\) −683.042 394.355i −1.34193 0.774764i −0.354840 0.934927i \(-0.615465\pi\)
−0.987091 + 0.160163i \(0.948798\pi\)
\(510\) 89.3587 + 212.602i 0.175213 + 0.416866i
\(511\) −16.6892 54.4398i −0.0326599 0.106536i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −11.8882 44.3675i −0.0231740 0.0864864i
\(514\) −457.398 + 264.079i −0.889880 + 0.513773i
\(515\) 553.120 + 419.879i 1.07402 + 0.815299i
\(516\) 91.4321 158.365i 0.177194 0.306909i
\(517\) 163.056 + 163.056i 0.315388 + 0.315388i
\(518\) −466.851 247.774i −0.901257 0.478328i
\(519\) 242.956i 0.468123i
\(520\) −89.2812 115.111i −0.171695 0.221367i
\(521\) −5.25649 9.10450i −0.0100892 0.0174750i 0.860937 0.508712i \(-0.169878\pi\)
−0.871026 + 0.491237i \(0.836545\pi\)
\(522\) −30.4991 + 113.824i −0.0584275 + 0.218054i
\(523\) −180.122 672.226i −0.344402 1.28533i −0.893309 0.449444i \(-0.851622\pi\)
0.548906 0.835884i \(-0.315044\pi\)
\(524\) 254.145i 0.485010i
\(525\) −302.788 + 13.9538i −0.576738 + 0.0265786i
\(526\) −36.5017 −0.0693949
\(527\) 455.673 122.097i 0.864654 0.231683i
\(528\) 47.9574 + 12.8502i 0.0908285 + 0.0243374i
\(529\) 457.977 264.413i 0.865742 0.499836i
\(530\) −398.205 + 308.852i −0.751331 + 0.582740i
\(531\) −122.128 −0.229995
\(532\) 65.6607 + 104.902i 0.123422 + 0.197183i
\(533\) 340.715 340.715i 0.639240 0.639240i
\(534\) −279.375 161.297i −0.523175 0.302055i
\(535\) −128.836 + 169.720i −0.240815 + 0.317234i
\(536\) 188.429 + 326.368i 0.351546 + 0.608896i
\(537\) −370.492 + 99.2729i −0.689928 + 0.184866i
\(538\) −218.439 + 218.439i −0.406020 + 0.406020i
\(539\) 350.253 25.0273i 0.649820 0.0464329i
\(540\) −47.9023 + 20.1338i −0.0887079 + 0.0372848i
\(541\) −370.192 + 641.191i −0.684273 + 1.18520i 0.289392 + 0.957211i \(0.406547\pi\)
−0.973665 + 0.227985i \(0.926786\pi\)
\(542\) 10.9610 40.9070i 0.0202233 0.0754742i
\(543\) −250.297 67.0668i −0.460951 0.123512i
\(544\) −92.2471 53.2589i −0.169572 0.0979024i
\(545\) −326.603 + 800.216i −0.599271 + 1.46829i
\(546\) −172.127 39.6008i −0.315251 0.0725289i
\(547\) −452.053 452.053i −0.826421 0.826421i 0.160598 0.987020i \(-0.448658\pi\)
−0.987020 + 0.160598i \(0.948658\pi\)
\(548\) −48.7491 181.934i −0.0889583 0.331997i
\(549\) 17.1658 9.91067i 0.0312674 0.0180522i
\(550\) −218.093 + 128.954i −0.396533 + 0.234462i
\(551\) −122.762 + 212.630i −0.222799 + 0.385899i
\(552\) 1.44167 + 1.44167i 0.00261172 + 0.00261172i
\(553\) −17.2794 484.261i −0.0312467 0.875698i
\(554\) 752.712i 1.35869i
\(555\) 365.353 283.371i 0.658293 0.510579i
\(556\) −91.9640 159.286i −0.165403 0.286486i
\(557\) 116.113 433.341i 0.208462 0.777991i −0.779904 0.625899i \(-0.784732\pi\)
0.988366 0.152092i \(-0.0486011\pi\)
\(558\) 27.5103 + 102.670i 0.0493015 + 0.183996i
\(559\) 543.767i 0.972750i
\(560\) 107.495 89.6924i 0.191956 0.160165i
\(561\) 233.722 0.416616
\(562\) 94.6602 25.3641i 0.168435 0.0451319i
\(563\) −473.720 126.933i −0.841422 0.225458i −0.187731 0.982220i \(-0.560113\pi\)
−0.653690 + 0.756762i \(0.726780\pi\)
\(564\) 96.5341 55.7340i 0.171160 0.0988191i
\(565\) −2.54866 + 20.1677i −0.00451091 + 0.0356950i
\(566\) 495.805 0.875980
\(567\) −29.5344 + 55.6482i −0.0520889 + 0.0981449i
\(568\) 259.740 259.740i 0.457288 0.457288i
\(569\) −489.271 282.480i −0.859878 0.496451i 0.00409346 0.999992i \(-0.498697\pi\)
−0.863971 + 0.503541i \(0.832030\pi\)
\(570\) −107.263 + 14.6885i −0.188181 + 0.0257693i
\(571\) −54.3972 94.2188i −0.0952666 0.165007i 0.814453 0.580229i \(-0.197037\pi\)
−0.909720 + 0.415223i \(0.863704\pi\)
\(572\) −142.607 + 38.2114i −0.249313 + 0.0668031i
\(573\) 350.008 350.008i 0.610834 0.610834i
\(574\) 338.906 + 315.554i 0.590429 + 0.549745i
\(575\) −10.4038 + 0.108047i −0.0180936 + 0.000187907i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −94.6298 + 353.163i −0.164003 + 0.612068i 0.834162 + 0.551519i \(0.185952\pi\)
−0.998165 + 0.0605486i \(0.980715\pi\)
\(578\) −89.5616 23.9980i −0.154951 0.0415190i
\(579\) −354.591 204.723i −0.612420 0.353581i
\(580\) 257.157 + 104.957i 0.443373 + 0.180960i
\(581\) 550.360 + 126.620i 0.947263 + 0.217934i
\(582\) 112.804 + 112.804i 0.193821 + 0.193821i
\(583\) 132.185 + 493.322i 0.226733 + 0.846178i
\(584\) −19.9250 + 11.5037i −0.0341182 + 0.0196982i
\(585\) 93.4240 123.070i 0.159699 0.210377i
\(586\) 371.421 643.321i 0.633825 1.09782i
\(587\) −488.112 488.112i −0.831537 0.831537i 0.156190 0.987727i \(-0.450079\pi\)
−0.987727 + 0.156190i \(0.950079\pi\)
\(588\) 32.1347 166.671i 0.0546509 0.283455i
\(589\) 221.463i 0.375999i
\(590\) −36.0905 + 285.586i −0.0611704 + 0.484044i
\(591\) 88.3173 + 152.970i 0.149437 + 0.258833i
\(592\) −55.2727 + 206.281i −0.0933661 + 0.348447i
\(593\) −54.6805 204.070i −0.0922099 0.344132i 0.904372 0.426745i \(-0.140340\pi\)
−0.996582 + 0.0826135i \(0.973673\pi\)
\(594\) 52.6609i 0.0886547i
\(595\) 379.509 538.808i 0.637830 0.905559i
\(596\) 105.988 0.177833
\(597\) 479.818 128.567i 0.803716 0.215355i
\(598\) −5.85611 1.56914i −0.00979283 0.00262398i
\(599\) 245.514 141.748i 0.409874 0.236641i −0.280862 0.959748i \(-0.590620\pi\)
0.690735 + 0.723108i \(0.257287\pi\)
\(600\) 32.9255 + 117.966i 0.0548759 + 0.196610i
\(601\) 685.441 1.14050 0.570251 0.821471i \(-0.306846\pi\)
0.570251 + 0.821471i \(0.306846\pi\)
\(602\) −522.246 + 18.6348i −0.867518 + 0.0309548i
\(603\) −282.643 + 282.643i −0.468728 + 0.468728i
\(604\) −41.8193 24.1444i −0.0692373 0.0399741i
\(605\) −47.2445 345.005i −0.0780901 0.570256i
\(606\) 83.5259 + 144.671i 0.137831 + 0.238731i
\(607\) 997.957 267.402i 1.64408 0.440530i 0.686134 0.727475i \(-0.259306\pi\)
0.957947 + 0.286945i \(0.0926396\pi\)
\(608\) 35.3590 35.3590i 0.0581562 0.0581562i
\(609\) 321.965 98.7024i 0.528679 0.162073i
\(610\) −18.1026 43.0696i −0.0296764 0.0706060i
\(611\) −165.731 + 287.055i −0.271246 + 0.469811i
\(612\) 29.2412 109.129i 0.0477797 0.178316i
\(613\) −604.447 161.961i −0.986048 0.264211i −0.270458 0.962732i \(-0.587175\pi\)
−0.715589 + 0.698521i \(0.753842\pi\)
\(614\) −132.450 76.4698i −0.215716 0.124544i
\(615\) −373.453 + 156.966i −0.607241 + 0.255230i
\(616\) −41.5861 135.653i −0.0675099 0.220216i
\(617\) 230.449 + 230.449i 0.373498 + 0.373498i 0.868750 0.495251i \(-0.164924\pi\)
−0.495251 + 0.868750i \(0.664924\pi\)
\(618\) −88.0508 328.610i −0.142477 0.531732i
\(619\) 459.874 265.509i 0.742931 0.428931i −0.0802030 0.996779i \(-0.525557\pi\)
0.823134 + 0.567847i \(0.192224\pi\)
\(620\) 248.215 33.9902i 0.400347 0.0548229i
\(621\) −1.08125 + 1.87279i −0.00174115 + 0.00301576i
\(622\) −209.421 209.421i −0.336690 0.336690i
\(623\) 32.8740 + 921.305i 0.0527673 + 1.47882i
\(624\) 71.3667i 0.114370i
\(625\) −547.639 301.191i −0.876223 0.481906i
\(626\) 208.613 + 361.329i 0.333248 + 0.577202i
\(627\) −28.3980 + 105.983i −0.0452919 + 0.169032i
\(628\) −90.5920 338.094i −0.144255 0.538366i
\(629\) 1005.31i 1.59827i
\(630\) 121.401 + 85.5088i 0.192700 + 0.135728i
\(631\) 545.090 0.863852 0.431926 0.901909i \(-0.357834\pi\)
0.431926 + 0.901909i \(0.357834\pi\)
\(632\) −189.124 + 50.6756i −0.299247 + 0.0801830i
\(633\) −490.279 131.370i −0.774533 0.207535i
\(634\) 763.836 441.001i 1.20479 0.695585i
\(635\) −120.403 15.2157i −0.189610 0.0239617i
\(636\) 246.880 0.388176
\(637\) 165.054 + 476.994i 0.259111 + 0.748813i
\(638\) 199.043 199.043i 0.311979 0.311979i
\(639\) 337.412 + 194.805i 0.528031 + 0.304859i
\(640\) −45.0570 34.2033i −0.0704016 0.0534426i
\(641\) −377.578 653.985i −0.589046 1.02026i −0.994358 0.106079i \(-0.966170\pi\)
0.405312 0.914179i \(-0.367163\pi\)
\(642\) 100.831 27.0176i 0.157058 0.0420835i
\(643\) −222.457 + 222.457i −0.345967 + 0.345967i −0.858605 0.512638i \(-0.828668\pi\)
0.512638 + 0.858605i \(0.328668\pi\)
\(644\) 1.30635 5.67811i 0.00202849 0.00881694i
\(645\) 172.752 423.264i 0.267833 0.656223i
\(646\) 117.699 203.860i 0.182196 0.315573i
\(647\) 103.822 387.467i 0.160466 0.598867i −0.838109 0.545503i \(-0.816339\pi\)
0.998575 0.0533647i \(-0.0169946\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) 252.647 + 145.866i 0.389287 + 0.224755i
\(650\) −260.183 254.834i −0.400281 0.392052i
\(651\) 206.990 222.308i 0.317957 0.341488i
\(652\) −352.600 352.600i −0.540797 0.540797i
\(653\) 233.236 + 870.447i 0.357175 + 1.33300i 0.877725 + 0.479165i \(0.159061\pi\)
−0.520549 + 0.853832i \(0.674273\pi\)
\(654\) 366.692 211.709i 0.560691 0.323715i
\(655\) 86.2012 + 629.488i 0.131605 + 0.961050i
\(656\) 93.5538 162.040i 0.142612 0.247012i
\(657\) −17.2556 17.2556i −0.0262642 0.0262642i
\(658\) −281.373 149.334i −0.427619 0.226952i
\(659\) 996.771i 1.51255i −0.654253 0.756275i \(-0.727017\pi\)
0.654253 0.756275i \(-0.272983\pi\)
\(660\) 123.144 + 15.5621i 0.186581 + 0.0235789i
\(661\) 582.202 + 1008.40i 0.880789 + 1.52557i 0.850465 + 0.526031i \(0.176321\pi\)
0.0303238 + 0.999540i \(0.490346\pi\)
\(662\) 58.1615 217.062i 0.0878573 0.327888i
\(663\) 86.9518 + 324.509i 0.131149 + 0.489455i
\(664\) 228.188i 0.343657i
\(665\) 198.215 + 237.558i 0.298067 + 0.357230i
\(666\) −226.512 −0.340108
\(667\) 11.1654 2.99176i 0.0167397 0.00448540i
\(668\) −509.569 136.539i −0.762827 0.204399i
\(669\) −354.136 + 204.460i −0.529351 + 0.305621i
\(670\) 577.414 + 744.464i 0.861812 + 1.11114i
\(671\) −47.3482 −0.0705636
\(672\) −68.5421 + 2.44572i −0.101997 + 0.00363946i
\(673\) −419.133 + 419.133i −0.622783 + 0.622783i −0.946242 0.323459i \(-0.895154\pi\)
0.323459 + 0.946242i \(0.395154\pi\)
\(674\) −68.3098 39.4387i −0.101350 0.0585144i
\(675\) −111.819 + 66.1167i −0.165658 + 0.0979506i
\(676\) 62.8917 + 108.932i 0.0930350 + 0.161141i
\(677\) −704.503 + 188.771i −1.04062 + 0.278834i −0.738372 0.674393i \(-0.764405\pi\)
−0.302252 + 0.953228i \(0.597739\pi\)
\(678\) 7.04185 7.04185i 0.0103862 0.0103862i
\(679\) 102.216 444.285i 0.150538 0.654323i
\(680\) −246.550 100.628i −0.362573 0.147982i
\(681\) 263.976 457.221i 0.387631 0.671396i
\(682\) 65.7151 245.252i 0.0963564 0.359607i
\(683\) −1033.71 276.981i −1.51348 0.405535i −0.595890 0.803066i \(-0.703200\pi\)
−0.917589 + 0.397531i \(0.869867\pi\)
\(684\) 45.9327 + 26.5192i 0.0671530 + 0.0387708i
\(685\) −182.455 434.095i −0.266357 0.633716i
\(686\) −452.459 + 174.868i −0.659561 + 0.254909i
\(687\) −275.670 275.670i −0.401266 0.401266i
\(688\) 54.6505 + 203.959i 0.0794339 + 0.296451i
\(689\) −635.771 + 367.062i −0.922744 + 0.532747i
\(690\) 4.05984 + 3.08187i 0.00588383 + 0.00446647i
\(691\) 490.628 849.792i 0.710026 1.22980i −0.254821 0.966988i \(-0.582017\pi\)
0.964847 0.262812i \(-0.0846500\pi\)
\(692\) −198.373 198.373i −0.286666 0.286666i
\(693\) 127.563 79.8452i 0.184074 0.115217i
\(694\) 414.220i 0.596858i
\(695\) −281.811 363.341i −0.405484 0.522793i
\(696\) −68.0347 117.840i −0.0977511 0.169310i
\(697\) 227.968 850.790i 0.327071 1.22064i
\(698\) 174.006 + 649.398i 0.249292 + 0.930370i
\(699\) 175.543i 0.251134i
\(700\) 235.832 258.618i 0.336903 0.369455i
\(701\) −940.348 −1.34144 −0.670719 0.741711i \(-0.734014\pi\)
−0.670719 + 0.741711i \(0.734014\pi\)
\(702\) −73.1165 + 19.5915i −0.104155 + 0.0279081i
\(703\) −455.867 122.149i −0.648460 0.173754i
\(704\) −49.6492 + 28.6650i −0.0705244 + 0.0407173i
\(705\) 220.200 170.789i 0.312340 0.242254i
\(706\) 814.184 1.15324
\(707\) 223.801 421.681i 0.316550 0.596437i
\(708\) 99.7168 99.7168i 0.140843 0.140843i
\(709\) 364.698 + 210.559i 0.514384 + 0.296980i 0.734634 0.678464i \(-0.237354\pi\)
−0.220250 + 0.975443i \(0.570687\pi\)
\(710\) 555.246 731.444i 0.782037 1.03020i
\(711\) −103.836 179.850i −0.146043 0.252953i
\(712\) 359.808 96.4102i 0.505348 0.135408i
\(713\) 7.37264 7.37264i 0.0103403 0.0103403i
\(714\) −308.685 + 94.6313i −0.432332 + 0.132537i
\(715\) −340.260 + 143.015i −0.475888 + 0.200020i
\(716\) 221.449 383.561i 0.309286 0.535700i
\(717\) 85.8120 320.255i 0.119682 0.446659i
\(718\) −60.7912 16.2889i −0.0846674 0.0226865i
\(719\) 331.576 + 191.436i 0.461163 + 0.266253i 0.712533 0.701638i \(-0.247548\pi\)
−0.251370 + 0.967891i \(0.580881\pi\)
\(720\) 22.6729 55.5512i 0.0314901 0.0771545i
\(721\) −662.504 + 711.533i −0.918869 + 0.986869i
\(722\) −282.859 282.859i −0.391771 0.391771i
\(723\) 120.365 + 449.209i 0.166480 + 0.621313i
\(724\) 259.126 149.607i 0.357909 0.206639i
\(725\) 672.547 + 172.743i 0.927650 + 0.238266i
\(726\) −85.2973 + 147.739i −0.117489 + 0.203498i
\(727\) −666.033 666.033i −0.916139 0.916139i 0.0806067 0.996746i \(-0.474314\pi\)
−0.996746 + 0.0806067i \(0.974314\pi\)
\(728\) 172.875 108.207i 0.237465 0.148636i
\(729\) 27.0000i 0.0370370i
\(730\) −45.4502 + 35.2516i −0.0622605 + 0.0482899i
\(731\) 496.999 + 860.827i 0.679889 + 1.17760i
\(732\) −5.92378 + 22.1078i −0.00809259 + 0.0302020i
\(733\) 8.24999 + 30.7894i 0.0112551 + 0.0420046i 0.971325 0.237756i \(-0.0764117\pi\)
−0.960070 + 0.279760i \(0.909745\pi\)
\(734\) 525.708i 0.716223i
\(735\) 23.0621 423.725i 0.0313771 0.576497i
\(736\) −2.35424 −0.00319870
\(737\) 922.290 247.127i 1.25141 0.335314i
\(738\) 191.695 + 51.3646i 0.259750 + 0.0695997i
\(739\) −770.669 + 444.946i −1.04285 + 0.602092i −0.920640 0.390412i \(-0.872333\pi\)
−0.122214 + 0.992504i \(0.538999\pi\)
\(740\) −66.9377 + 529.681i −0.0904563 + 0.715785i
\(741\) −157.716 −0.212842
\(742\) −374.322 598.029i −0.504478 0.805969i
\(743\) −380.855 + 380.855i −0.512591 + 0.512591i −0.915319 0.402729i \(-0.868062\pi\)
0.402729 + 0.915319i \(0.368062\pi\)
\(744\) −106.291 61.3674i −0.142865 0.0824831i
\(745\) 262.521 35.9493i 0.352377 0.0482541i
\(746\) 449.093 + 777.852i 0.602002 + 1.04270i
\(747\) 233.783 62.6421i 0.312963 0.0838582i
\(748\) −190.833 + 190.833i −0.255124 + 0.255124i
\(749\) −218.328 203.284i −0.291492 0.271407i
\(750\) 121.565 + 281.020i 0.162086 + 0.374693i
\(751\) −62.9757 + 109.077i −0.0838558 + 0.145242i −0.904903 0.425618i \(-0.860057\pi\)
0.821047 + 0.570860i \(0.193390\pi\)
\(752\) −33.3131 + 124.326i −0.0442994 + 0.165328i
\(753\) 526.412 + 141.052i 0.699086 + 0.187320i
\(754\) 350.409 + 202.309i 0.464734 + 0.268314i
\(755\) −111.771 45.6185i −0.148041 0.0604219i
\(756\) −21.3218 69.5513i −0.0282034 0.0919991i
\(757\) 896.465 + 896.465i 1.18423 + 1.18423i 0.978637 + 0.205597i \(0.0659135\pi\)
0.205597 + 0.978637i \(0.434087\pi\)
\(758\) −74.5741 278.314i −0.0983827 0.367169i
\(759\) 4.47362 2.58284i 0.00589409 0.00340296i
\(760\) 75.5870 99.5732i 0.0994566 0.131017i
\(761\) 292.491 506.610i 0.384351 0.665716i −0.607328 0.794451i \(-0.707759\pi\)
0.991679 + 0.128736i \(0.0410918\pi\)
\(762\) 42.0404 + 42.0404i 0.0551711 + 0.0551711i
\(763\) −1068.82 567.258i −1.40081 0.743457i