Properties

Label 210.3.v.b.37.2
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.2
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.19534 + 2.72013i) q^{5} -2.44949 q^{6} +(-1.84650 + 6.75207i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.19534 + 2.72013i) q^{5} -2.44949 q^{6} +(-1.84650 + 6.75207i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-4.73531 + 5.25136i) q^{10} +(7.12207 + 12.3358i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(-2.75603 + 2.75603i) q^{13} +(-0.0509352 + 9.89936i) q^{14} +(8.23835 - 2.67014i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-6.41754 + 23.9506i) q^{17} +(4.09808 + 1.09808i) q^{18} +(0.277055 + 0.159958i) q^{19} +(-4.54642 + 8.90674i) q^{20} +(6.11612 - 10.4687i) q^{21} +(14.2441 + 14.2441i) q^{22} +(-3.64915 - 13.6188i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(10.2018 - 22.8237i) q^{25} +(-2.75603 + 4.77358i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(3.55384 + 13.5414i) q^{28} +24.2642i q^{29} +(10.2765 - 6.66292i) q^{30} +(-7.62013 - 13.1985i) q^{31} +(1.46410 - 5.46410i) q^{32} +(-6.38548 - 23.8309i) q^{33} +35.0661i q^{34} +(-10.6198 - 33.3500i) q^{35} +6.00000 q^{36} +(-2.28156 + 0.611341i) q^{37} +(0.437012 + 0.117097i) q^{38} +(5.84642 - 3.37543i) q^{39} +(-2.95044 + 13.8309i) q^{40} +29.0794 q^{41} +(4.52298 - 16.5391i) q^{42} +(-11.7409 + 11.7409i) q^{43} +(24.6716 + 14.2441i) q^{44} +(-14.9800 + 0.774077i) q^{45} +(-9.96966 - 17.2680i) q^{46} +(-81.7602 + 21.9076i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-42.1809 - 24.9354i) q^{49} +(5.58190 - 34.9119i) q^{50} +(21.4735 - 37.1932i) q^{51} +(-2.01755 + 7.52961i) q^{52} +(72.6184 + 19.4580i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(-63.4344 - 32.3800i) q^{55} +(9.81114 + 17.1971i) q^{56} +(-0.391815 - 0.391815i) q^{57} +(8.88133 + 33.1456i) q^{58} +(31.7156 - 18.3110i) q^{59} +(11.5991 - 12.8632i) q^{60} +(54.2209 - 93.9134i) q^{61} +(-15.2403 - 15.2403i) q^{62} +(-14.9254 + 14.7726i) q^{63} -8.00000i q^{64} +(4.06575 - 19.0592i) q^{65} +(-17.4454 - 30.2164i) q^{66} +(17.6966 - 66.0445i) q^{67} +(12.8351 + 47.9012i) q^{68} +24.4206i q^{69} +(-26.7138 - 41.6698i) q^{70} -20.3365 q^{71} +(8.19615 - 2.19615i) q^{72} +(56.5866 + 15.1623i) q^{73} +(-2.89290 + 1.67022i) q^{74} +(-27.2996 + 33.6115i) q^{75} +0.639831 q^{76} +(-96.4430 + 25.3107i) q^{77} +(6.75087 - 6.75087i) q^{78} +(44.5901 + 25.7441i) q^{79} +(1.03210 + 19.9734i) q^{80} +(4.50000 + 7.79423i) q^{81} +(39.7232 - 10.6438i) q^{82} +(-82.8590 + 82.8590i) q^{83} +(0.124765 - 24.2484i) q^{84} +(-38.2248 - 117.937i) q^{85} +(-11.7409 + 20.3359i) q^{86} +(10.8774 - 40.5949i) q^{87} +(38.9157 + 10.4274i) q^{88} +(95.6273 + 55.2104i) q^{89} +(-20.1797 + 6.54047i) q^{90} +(-13.5199 - 23.6979i) q^{91} +(-19.9393 - 19.9393i) q^{92} +(6.83202 + 25.4975i) q^{93} +(-103.668 + 59.8526i) q^{94} +(-1.59744 + 0.0825463i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(68.2928 + 68.2928i) q^{97} +(-66.7471 - 18.6231i) q^{98} +42.7324i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −4.19534 + 2.72013i −0.839069 + 0.544025i
\(6\) −2.44949 −0.408248
\(7\) −1.84650 + 6.75207i −0.263786 + 0.964581i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −4.73531 + 5.25136i −0.473531 + 0.525136i
\(11\) 7.12207 + 12.3358i 0.647461 + 1.12144i 0.983727 + 0.179669i \(0.0575025\pi\)
−0.336266 + 0.941767i \(0.609164\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) −2.75603 + 2.75603i −0.212002 + 0.212002i −0.805118 0.593115i \(-0.797898\pi\)
0.593115 + 0.805118i \(0.297898\pi\)
\(14\) −0.0509352 + 9.89936i −0.00363823 + 0.707097i
\(15\) 8.23835 2.67014i 0.549223 0.178009i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −6.41754 + 23.9506i −0.377502 + 1.40886i 0.472152 + 0.881517i \(0.343477\pi\)
−0.849654 + 0.527341i \(0.823189\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) 0.277055 + 0.159958i 0.0145818 + 0.00841882i 0.507273 0.861785i \(-0.330654\pi\)
−0.492691 + 0.870204i \(0.663987\pi\)
\(20\) −4.54642 + 8.90674i −0.227321 + 0.445337i
\(21\) 6.11612 10.4687i 0.291244 0.498508i
\(22\) 14.2441 + 14.2441i 0.647461 + 0.647461i
\(23\) −3.64915 13.6188i −0.158659 0.592122i −0.998764 0.0496991i \(-0.984174\pi\)
0.840106 0.542423i \(-0.182493\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 10.2018 22.8237i 0.408073 0.912949i
\(26\) −2.75603 + 4.77358i −0.106001 + 0.183599i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 3.55384 + 13.5414i 0.126923 + 0.483622i
\(29\) 24.2642i 0.836698i 0.908286 + 0.418349i \(0.137391\pi\)
−0.908286 + 0.418349i \(0.862609\pi\)
\(30\) 10.2765 6.66292i 0.342548 0.222097i
\(31\) −7.62013 13.1985i −0.245811 0.425757i 0.716549 0.697537i \(-0.245721\pi\)
−0.962359 + 0.271781i \(0.912387\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) −6.38548 23.8309i −0.193499 0.722149i
\(34\) 35.0661i 1.03136i
\(35\) −10.6198 33.3500i −0.303422 0.952856i
\(36\) 6.00000 0.166667
\(37\) −2.28156 + 0.611341i −0.0616637 + 0.0165227i −0.289519 0.957172i \(-0.593495\pi\)
0.227855 + 0.973695i \(0.426829\pi\)
\(38\) 0.437012 + 0.117097i 0.0115003 + 0.00308150i
\(39\) 5.84642 3.37543i 0.149908 0.0865496i
\(40\) −2.95044 + 13.8309i −0.0737610 + 0.345774i
\(41\) 29.0794 0.709254 0.354627 0.935008i \(-0.384608\pi\)
0.354627 + 0.935008i \(0.384608\pi\)
\(42\) 4.52298 16.5391i 0.107690 0.393789i
\(43\) −11.7409 + 11.7409i −0.273045 + 0.273045i −0.830325 0.557280i \(-0.811845\pi\)
0.557280 + 0.830325i \(0.311845\pi\)
\(44\) 24.6716 + 14.2441i 0.560718 + 0.323731i
\(45\) −14.9800 + 0.774077i −0.332889 + 0.0172017i
\(46\) −9.96966 17.2680i −0.216732 0.375390i
\(47\) −81.7602 + 21.9076i −1.73958 + 0.466119i −0.982353 0.187035i \(-0.940112\pi\)
−0.757225 + 0.653154i \(0.773445\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −42.1809 24.9354i −0.860834 0.508885i
\(50\) 5.58190 34.9119i 0.111638 0.698238i
\(51\) 21.4735 37.1932i 0.421049 0.729279i
\(52\) −2.01755 + 7.52961i −0.0387991 + 0.144800i
\(53\) 72.6184 + 19.4580i 1.37016 + 0.367133i 0.867536 0.497374i \(-0.165702\pi\)
0.502622 + 0.864507i \(0.332369\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) −63.4344 32.3800i −1.15335 0.588727i
\(56\) 9.81114 + 17.1971i 0.175199 + 0.307092i
\(57\) −0.391815 0.391815i −0.00687394 0.00687394i
\(58\) 8.88133 + 33.1456i 0.153126 + 0.571475i
\(59\) 31.7156 18.3110i 0.537553 0.310356i −0.206534 0.978439i \(-0.566218\pi\)
0.744087 + 0.668083i \(0.232885\pi\)
\(60\) 11.5991 12.8632i 0.193318 0.214386i
\(61\) 54.2209 93.9134i 0.888867 1.53956i 0.0476513 0.998864i \(-0.484826\pi\)
0.841216 0.540699i \(-0.181840\pi\)
\(62\) −15.2403 15.2403i −0.245811 0.245811i
\(63\) −14.9254 + 14.7726i −0.236912 + 0.234486i
\(64\) 8.00000i 0.125000i
\(65\) 4.06575 19.0592i 0.0625500 0.293219i
\(66\) −17.4454 30.2164i −0.264325 0.457824i
\(67\) 17.6966 66.0445i 0.264128 0.985739i −0.698654 0.715460i \(-0.746217\pi\)
0.962782 0.270279i \(-0.0871160\pi\)
\(68\) 12.8351 + 47.9012i 0.188751 + 0.704429i
\(69\) 24.4206i 0.353921i
\(70\) −26.7138 41.6698i −0.381626 0.595283i
\(71\) −20.3365 −0.286429 −0.143215 0.989692i \(-0.545744\pi\)
−0.143215 + 0.989692i \(0.545744\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) 56.5866 + 15.1623i 0.775159 + 0.207703i 0.624649 0.780905i \(-0.285242\pi\)
0.150510 + 0.988609i \(0.451909\pi\)
\(74\) −2.89290 + 1.67022i −0.0390932 + 0.0225705i
\(75\) −27.2996 + 33.6115i −0.363995 + 0.448153i
\(76\) 0.639831 0.00841882
\(77\) −96.4430 + 25.3107i −1.25251 + 0.328710i
\(78\) 6.75087 6.75087i 0.0865496 0.0865496i
\(79\) 44.5901 + 25.7441i 0.564431 + 0.325874i 0.754922 0.655815i \(-0.227675\pi\)
−0.190491 + 0.981689i \(0.561008\pi\)
\(80\) 1.03210 + 19.9734i 0.0129013 + 0.249667i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 39.7232 10.6438i 0.484429 0.129802i
\(83\) −82.8590 + 82.8590i −0.998301 + 0.998301i −0.999999 0.00169722i \(-0.999460\pi\)
0.00169722 + 0.999999i \(0.499460\pi\)
\(84\) 0.124765 24.2484i 0.00148530 0.288671i
\(85\) −38.2248 117.937i −0.449704 1.38750i
\(86\) −11.7409 + 20.3359i −0.136522 + 0.236464i
\(87\) 10.8774 40.5949i 0.125027 0.466608i
\(88\) 38.9157 + 10.4274i 0.442224 + 0.118494i
\(89\) 95.6273 + 55.2104i 1.07446 + 0.620342i 0.929398 0.369080i \(-0.120327\pi\)
0.145066 + 0.989422i \(0.453660\pi\)
\(90\) −20.1797 + 6.54047i −0.224219 + 0.0726719i
\(91\) −13.5199 23.6979i −0.148570 0.260417i
\(92\) −19.9393 19.9393i −0.216732 0.216732i
\(93\) 6.83202 + 25.4975i 0.0734626 + 0.274166i
\(94\) −103.668 + 59.8526i −1.10285 + 0.636730i
\(95\) −1.59744 + 0.0825463i −0.0168152 + 0.000868909i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) 68.2928 + 68.2928i 0.704050 + 0.704050i 0.965277 0.261228i \(-0.0841273\pi\)
−0.261228 + 0.965277i \(0.584127\pi\)
\(98\) −66.7471 18.6231i −0.681093 0.190031i
\(99\) 42.7324i 0.431641i
\(100\) −5.15364 49.7337i −0.0515364 0.497337i
\(101\) 49.9666 + 86.5447i 0.494719 + 0.856878i 0.999981 0.00608738i \(-0.00193769\pi\)
−0.505263 + 0.862966i \(0.668604\pi\)
\(102\) 15.7197 58.6667i 0.154115 0.575164i
\(103\) −28.9847 108.172i −0.281405 1.05022i −0.951427 0.307875i \(-0.900382\pi\)
0.670022 0.742341i \(-0.266285\pi\)
\(104\) 11.0241i 0.106001i
\(105\) 2.81685 + 60.5563i 0.0268272 + 0.576727i
\(106\) 106.321 1.00303
\(107\) 107.570 28.8233i 1.00533 0.269377i 0.281652 0.959517i \(-0.409118\pi\)
0.723676 + 0.690140i \(0.242451\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) 65.8933 38.0435i 0.604526 0.349023i −0.166294 0.986076i \(-0.553180\pi\)
0.770820 + 0.637053i \(0.219847\pi\)
\(110\) −98.5050 21.0132i −0.895500 0.191029i
\(111\) 4.09118 0.0368574
\(112\) 19.6969 + 19.9006i 0.175865 + 0.177684i
\(113\) −76.5867 + 76.5867i −0.677759 + 0.677759i −0.959493 0.281734i \(-0.909090\pi\)
0.281734 + 0.959493i \(0.409090\pi\)
\(114\) −0.678643 0.391815i −0.00595301 0.00343697i
\(115\) 52.3543 + 47.2094i 0.455255 + 0.410517i
\(116\) 24.2642 + 42.0269i 0.209174 + 0.362301i
\(117\) −11.2944 + 3.02633i −0.0965335 + 0.0258661i
\(118\) 36.6220 36.6220i 0.310356 0.310356i
\(119\) −149.866 87.5564i −1.25938 0.735768i
\(120\) 11.1364 21.8170i 0.0928035 0.181808i
\(121\) −40.9478 + 70.9237i −0.338412 + 0.586146i
\(122\) 39.6925 148.134i 0.325348 1.21422i
\(123\) −48.6508 13.0359i −0.395535 0.105983i
\(124\) −26.3969 15.2403i −0.212878 0.122905i
\(125\) 19.2832 + 123.504i 0.154266 + 0.988029i
\(126\) −14.9814 + 25.6429i −0.118900 + 0.203515i
\(127\) −85.3727 85.3727i −0.672226 0.672226i 0.286003 0.958229i \(-0.407673\pi\)
−0.958229 + 0.286003i \(0.907673\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 24.9063 14.3796i 0.193072 0.111470i
\(130\) −1.42225 27.5236i −0.0109404 0.211720i
\(131\) 109.573 189.787i 0.836438 1.44875i −0.0564154 0.998407i \(-0.517967\pi\)
0.892854 0.450347i \(-0.148700\pi\)
\(132\) −34.8909 34.8909i −0.264325 0.264325i
\(133\) −1.59163 + 1.57533i −0.0119671 + 0.0118446i
\(134\) 96.6959i 0.721611i
\(135\) 25.4091 + 5.42030i 0.188215 + 0.0401504i
\(136\) 35.0661 + 60.7362i 0.257839 + 0.446590i
\(137\) −53.4994 + 199.663i −0.390507 + 1.45739i 0.438794 + 0.898588i \(0.355406\pi\)
−0.829300 + 0.558803i \(0.811261\pi\)
\(138\) 8.93855 + 33.3591i 0.0647721 + 0.241733i
\(139\) 217.562i 1.56519i 0.622529 + 0.782597i \(0.286105\pi\)
−0.622529 + 0.782597i \(0.713895\pi\)
\(140\) −51.7440 47.1441i −0.369600 0.336743i
\(141\) 146.608 1.03978
\(142\) −27.7802 + 7.44367i −0.195635 + 0.0524202i
\(143\) −53.6265 14.3692i −0.375010 0.100484i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) −66.0018 101.797i −0.455185 0.702047i
\(146\) 82.8485 0.567456
\(147\) 59.3918 + 60.6269i 0.404026 + 0.412428i
\(148\) −3.34043 + 3.34043i −0.0225705 + 0.0225705i
\(149\) 202.765 + 117.066i 1.36084 + 0.785680i 0.989735 0.142913i \(-0.0456468\pi\)
0.371102 + 0.928592i \(0.378980\pi\)
\(150\) −24.9893 + 55.9065i −0.166595 + 0.372710i
\(151\) −113.664 196.871i −0.752739 1.30378i −0.946490 0.322732i \(-0.895399\pi\)
0.193751 0.981051i \(-0.437935\pi\)
\(152\) 0.874025 0.234194i 0.00575016 0.00154075i
\(153\) −52.5991 + 52.5991i −0.343785 + 0.343785i
\(154\) −122.479 + 69.8757i −0.795320 + 0.453738i
\(155\) 67.8705 + 34.6443i 0.437874 + 0.223512i
\(156\) 6.75087 11.6928i 0.0432748 0.0749541i
\(157\) −27.9400 + 104.273i −0.177962 + 0.664162i 0.818066 + 0.575124i \(0.195046\pi\)
−0.996028 + 0.0890386i \(0.971621\pi\)
\(158\) 70.3341 + 18.8460i 0.445153 + 0.119278i
\(159\) −112.770 65.1078i −0.709246 0.409483i
\(160\) 8.72063 + 26.9063i 0.0545039 + 0.168165i
\(161\) 98.6933 + 0.507807i 0.613002 + 0.00315408i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 78.0535 + 291.300i 0.478856 + 1.78711i 0.606263 + 0.795264i \(0.292668\pi\)
−0.127407 + 0.991850i \(0.540666\pi\)
\(164\) 50.3670 29.0794i 0.307116 0.177313i
\(165\) 91.6124 + 82.6096i 0.555226 + 0.500664i
\(166\) −82.8590 + 143.516i −0.499151 + 0.864554i
\(167\) 55.7819 + 55.7819i 0.334023 + 0.334023i 0.854112 0.520089i \(-0.174101\pi\)
−0.520089 + 0.854112i \(0.674101\pi\)
\(168\) −8.70509 33.1696i −0.0518160 0.197438i
\(169\) 153.809i 0.910110i
\(170\) −95.3842 147.114i −0.561083 0.865378i
\(171\) 0.479873 + 0.831164i 0.00280627 + 0.00486061i
\(172\) −8.59496 + 32.0768i −0.0499707 + 0.186493i
\(173\) −54.2505 202.465i −0.313587 1.17032i −0.925298 0.379240i \(-0.876185\pi\)
0.611712 0.791081i \(-0.290481\pi\)
\(174\) 59.4350i 0.341581i
\(175\) 135.270 + 111.027i 0.772970 + 0.634443i
\(176\) 56.9766 0.323731
\(177\) −61.2699 + 16.4172i −0.346158 + 0.0927526i
\(178\) 150.838 + 40.4168i 0.847403 + 0.227061i
\(179\) 130.023 75.0691i 0.726388 0.419380i −0.0907112 0.995877i \(-0.528914\pi\)
0.817099 + 0.576497i \(0.195581\pi\)
\(180\) −25.1721 + 16.3208i −0.139845 + 0.0906709i
\(181\) 147.164 0.813063 0.406532 0.913637i \(-0.366738\pi\)
0.406532 + 0.913637i \(0.366738\pi\)
\(182\) −27.1426 27.4233i −0.149135 0.150678i
\(183\) −132.814 + 132.814i −0.725757 + 0.725757i
\(184\) −34.5359 19.9393i −0.187695 0.108366i
\(185\) 7.90899 8.77091i 0.0427513 0.0474103i
\(186\) 18.6654 + 32.3295i 0.100352 + 0.173814i
\(187\) −341.156 + 91.4124i −1.82436 + 0.488836i
\(188\) −119.705 + 119.705i −0.636730 + 0.636730i
\(189\) 31.5932 18.0242i 0.167160 0.0953662i
\(190\) −2.15194 + 0.697466i −0.0113260 + 0.00367087i
\(191\) −112.126 + 194.209i −0.587049 + 1.01680i 0.407567 + 0.913175i \(0.366377\pi\)
−0.994617 + 0.103624i \(0.966956\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) 15.7967 + 4.23272i 0.0818483 + 0.0219312i 0.299511 0.954093i \(-0.403177\pi\)
−0.217663 + 0.976024i \(0.569843\pi\)
\(194\) 118.287 + 68.2928i 0.609725 + 0.352025i
\(195\) −15.3462 + 30.0641i −0.0786982 + 0.154175i
\(196\) −97.9948 1.00845i −0.499974 0.00514517i
\(197\) −199.522 199.522i −1.01280 1.01280i −0.999917 0.0128826i \(-0.995899\pi\)
−0.0128826 0.999917i \(-0.504101\pi\)
\(198\) 15.6412 + 58.3736i 0.0789957 + 0.294816i
\(199\) 37.1474 21.4471i 0.186670 0.107774i −0.403753 0.914868i \(-0.632294\pi\)
0.590423 + 0.807094i \(0.298961\pi\)
\(200\) −25.2438 66.0511i −0.126219 0.330256i
\(201\) −59.2139 + 102.561i −0.294596 + 0.510256i
\(202\) 99.9332 + 99.9332i 0.494719 + 0.494719i
\(203\) −163.834 44.8039i −0.807063 0.220709i
\(204\) 85.8940i 0.421049i
\(205\) −121.998 + 79.0996i −0.595113 + 0.385852i
\(206\) −79.1876 137.157i −0.384406 0.665811i
\(207\) 10.9474 40.8564i 0.0528862 0.197374i
\(208\) 4.03511 + 15.0592i 0.0193996 + 0.0724001i
\(209\) 4.55692i 0.0218034i
\(210\) 26.0130 + 81.6904i 0.123872 + 0.389002i
\(211\) 107.346 0.508747 0.254373 0.967106i \(-0.418131\pi\)
0.254373 + 0.967106i \(0.418131\pi\)
\(212\) 145.237 38.9161i 0.685079 0.183566i
\(213\) 34.0236 + 9.11660i 0.159735 + 0.0428009i
\(214\) 136.393 78.7467i 0.637352 0.367975i
\(215\) 17.3204 81.1941i 0.0805602 0.377647i
\(216\) −14.6969 −0.0680414
\(217\) 103.187 27.0807i 0.475518 0.124796i
\(218\) 76.0871 76.0871i 0.349023 0.349023i
\(219\) −87.8741 50.7342i −0.401252 0.231663i
\(220\) −142.252 + 7.35071i −0.646598 + 0.0334123i
\(221\) −48.3216 83.6955i −0.218650 0.378712i
\(222\) 5.58865 1.49747i 0.0251741 0.00674538i
\(223\) 152.586 152.586i 0.684241 0.684241i −0.276712 0.960953i \(-0.589245\pi\)
0.960953 + 0.276712i \(0.0892448\pi\)
\(224\) 34.1905 + 19.9752i 0.152636 + 0.0891749i
\(225\) 60.7407 43.9950i 0.269959 0.195533i
\(226\) −76.5867 + 132.652i −0.338879 + 0.586956i
\(227\) 83.4520 311.447i 0.367630 1.37201i −0.496190 0.868214i \(-0.665268\pi\)
0.863820 0.503800i \(-0.168065\pi\)
\(228\) −1.07046 0.286828i −0.00469499 0.00125802i
\(229\) −80.3357 46.3818i −0.350811 0.202541i 0.314232 0.949346i \(-0.398253\pi\)
−0.665042 + 0.746806i \(0.731587\pi\)
\(230\) 88.7971 + 45.3263i 0.386075 + 0.197071i
\(231\) 172.699 + 0.888587i 0.747614 + 0.00384670i
\(232\) 48.5285 + 48.5285i 0.209174 + 0.209174i
\(233\) −98.3603 367.086i −0.422147 1.57547i −0.770075 0.637953i \(-0.779781\pi\)
0.347928 0.937521i \(-0.386885\pi\)
\(234\) −14.3208 + 8.26809i −0.0611998 + 0.0353337i
\(235\) 283.421 314.308i 1.20605 1.33748i
\(236\) 36.6220 63.4312i 0.155178 0.268776i
\(237\) −63.0599 63.0599i −0.266075 0.266075i
\(238\) −236.769 64.7495i −0.994826 0.272057i
\(239\) 196.297i 0.821327i −0.911787 0.410664i \(-0.865297\pi\)
0.911787 0.410664i \(-0.134703\pi\)
\(240\) 7.22707 33.8787i 0.0301128 0.141161i
\(241\) −188.179 325.936i −0.780826 1.35243i −0.931461 0.363841i \(-0.881465\pi\)
0.150635 0.988589i \(-0.451868\pi\)
\(242\) −29.9759 + 111.872i −0.123867 + 0.462279i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 216.884i 0.888867i
\(245\) 244.791 10.1248i 0.999146 0.0413258i
\(246\) −71.2297 −0.289552
\(247\) −1.20442 + 0.322723i −0.00487619 + 0.00130657i
\(248\) −41.6372 11.1566i −0.167892 0.0449865i
\(249\) 175.771 101.481i 0.705906 0.407555i
\(250\) 71.5468 + 161.651i 0.286187 + 0.646604i
\(251\) −193.073 −0.769215 −0.384607 0.923080i \(-0.625663\pi\)
−0.384607 + 0.923080i \(0.625663\pi\)
\(252\) −11.0790 + 40.5124i −0.0439643 + 0.160764i
\(253\) 142.009 142.009i 0.561301 0.561301i
\(254\) −147.870 85.3727i −0.582164 0.336113i
\(255\) 11.0814 + 214.449i 0.0434566 + 0.840976i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 208.500 55.8673i 0.811283 0.217383i 0.170751 0.985314i \(-0.445381\pi\)
0.640532 + 0.767932i \(0.278714\pi\)
\(258\) 28.7593 28.7593i 0.111470 0.111470i
\(259\) 0.0850728 16.5341i 0.000328466 0.0638381i
\(260\) −12.0172 37.0773i −0.0462198 0.142605i
\(261\) −36.3964 + 63.0403i −0.139450 + 0.241534i
\(262\) 80.2133 299.360i 0.306158 1.14260i
\(263\) −433.000 116.022i −1.64639 0.441148i −0.687790 0.725910i \(-0.741419\pi\)
−0.958599 + 0.284761i \(0.908086\pi\)
\(264\) −60.4328 34.8909i −0.228912 0.132162i
\(265\) −357.587 + 115.898i −1.34939 + 0.437351i
\(266\) −1.59759 + 2.73452i −0.00600598 + 0.0102801i
\(267\) −135.237 135.237i −0.506507 0.506507i
\(268\) −35.3931 132.089i −0.132064 0.492869i
\(269\) 93.0558 53.7258i 0.345932 0.199724i −0.316960 0.948439i \(-0.602662\pi\)
0.662892 + 0.748715i \(0.269329\pi\)
\(270\) 36.6934 1.89609i 0.135901 0.00702257i
\(271\) −98.0395 + 169.809i −0.361769 + 0.626603i −0.988252 0.152833i \(-0.951160\pi\)
0.626483 + 0.779435i \(0.284494\pi\)
\(272\) 70.1322 + 70.1322i 0.257839 + 0.257839i
\(273\) 11.9957 + 45.7082i 0.0439405 + 0.167429i
\(274\) 292.326i 1.06688i
\(275\) 354.207 36.7046i 1.28803 0.133471i
\(276\) 24.4206 + 42.2977i 0.0884803 + 0.153252i
\(277\) −96.4285 + 359.876i −0.348117 + 1.29919i 0.540810 + 0.841145i \(0.318118\pi\)
−0.888928 + 0.458048i \(0.848549\pi\)
\(278\) 79.6332 + 297.195i 0.286450 + 1.06905i
\(279\) 45.7208i 0.163874i
\(280\) −87.9395 45.4604i −0.314070 0.162358i
\(281\) −256.628 −0.913268 −0.456634 0.889655i \(-0.650945\pi\)
−0.456634 + 0.889655i \(0.650945\pi\)
\(282\) 200.271 53.6624i 0.710180 0.190292i
\(283\) 401.426 + 107.562i 1.41846 + 0.380076i 0.884939 0.465707i \(-0.154200\pi\)
0.533526 + 0.845784i \(0.320867\pi\)
\(284\) −35.2238 + 20.3365i −0.124028 + 0.0716074i
\(285\) 2.70958 + 0.578012i 0.00950731 + 0.00202811i
\(286\) −78.5146 −0.274526
\(287\) −53.6951 + 196.346i −0.187091 + 0.684133i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) −282.164 162.908i −0.976347 0.563694i
\(290\) −127.420 114.899i −0.439380 0.396203i
\(291\) −83.6413 144.871i −0.287427 0.497838i
\(292\) 113.173 30.3247i 0.387579 0.103852i
\(293\) 236.224 236.224i 0.806226 0.806226i −0.177834 0.984060i \(-0.556909\pi\)
0.984060 + 0.177834i \(0.0569091\pi\)
\(294\) 103.322 + 61.0789i 0.351434 + 0.207752i
\(295\) −83.2497 + 163.092i −0.282202 + 0.552853i
\(296\) −3.34043 + 5.78580i −0.0112852 + 0.0195466i
\(297\) 19.1564 71.4928i 0.0644998 0.240716i
\(298\) 319.831 + 85.6984i 1.07326 + 0.287579i
\(299\) 47.5910 + 27.4767i 0.159167 + 0.0918952i
\(300\) −13.6728 + 85.5164i −0.0455760 + 0.285055i
\(301\) −57.5960 100.955i −0.191349 0.335399i
\(302\) −227.327 227.327i −0.752739 0.752739i
\(303\) −44.7988 167.192i −0.147851 0.551787i
\(304\) 1.10822 0.639831i 0.00364546 0.00210471i
\(305\) 27.9808 + 541.487i 0.0917402 + 1.77537i
\(306\) −52.5991 + 91.1044i −0.171893 + 0.297727i
\(307\) −106.527 106.527i −0.346995 0.346995i 0.511994 0.858989i \(-0.328907\pi\)
−0.858989 + 0.511994i \(0.828907\pi\)
\(308\) −141.733 + 140.282i −0.460174 + 0.455462i
\(309\) 193.969i 0.627732i
\(310\) 105.394 + 22.4827i 0.339979 + 0.0725249i
\(311\) −102.511 177.554i −0.329617 0.570914i 0.652819 0.757514i \(-0.273586\pi\)
−0.982436 + 0.186601i \(0.940253\pi\)
\(312\) 4.94198 18.4437i 0.0158397 0.0591145i
\(313\) −62.5250 233.347i −0.199760 0.745516i −0.990983 0.133988i \(-0.957222\pi\)
0.791223 0.611528i \(-0.209445\pi\)
\(314\) 152.667i 0.486201i
\(315\) 22.4340 102.575i 0.0712189 0.325636i
\(316\) 102.976 0.325874
\(317\) 225.154 60.3297i 0.710263 0.190315i 0.114440 0.993430i \(-0.463493\pi\)
0.595823 + 0.803116i \(0.296826\pi\)
\(318\) −177.878 47.6623i −0.559365 0.149881i
\(319\) −299.319 + 172.812i −0.938303 + 0.541729i
\(320\) 21.7610 + 33.5628i 0.0680031 + 0.104884i
\(321\) −192.889 −0.600901
\(322\) 135.003 35.4306i 0.419265 0.110033i
\(323\) −5.60909 + 5.60909i −0.0173656 + 0.0173656i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 34.7863 + 91.0194i 0.107035 + 0.280060i
\(326\) 213.246 + 369.353i 0.654129 + 1.13299i
\(327\) −127.296 + 34.1089i −0.389285 + 0.104309i
\(328\) 58.1588 58.1588i 0.177313 0.177313i
\(329\) 3.04861 592.503i 0.00926628 1.80092i
\(330\) 155.382 + 79.3144i 0.470855 + 0.240347i
\(331\) −182.812 + 316.640i −0.552303 + 0.956617i 0.445805 + 0.895130i \(0.352917\pi\)
−0.998108 + 0.0614865i \(0.980416\pi\)
\(332\) −60.6570 + 226.375i −0.182702 + 0.681852i
\(333\) −6.84467 1.83402i −0.0205546 0.00550758i
\(334\) 96.6171 + 55.7819i 0.289273 + 0.167012i
\(335\) 105.406 + 325.216i 0.314645 + 0.970795i
\(336\) −24.0323 42.1242i −0.0715247 0.125370i
\(337\) 392.860 + 392.860i 1.16576 + 1.16576i 0.983194 + 0.182562i \(0.0584389\pi\)
0.182562 + 0.983194i \(0.441561\pi\)
\(338\) 56.2979 + 210.106i 0.166562 + 0.621617i
\(339\) 162.465 93.7992i 0.479248 0.276694i
\(340\) −184.145 166.049i −0.541602 0.488379i
\(341\) 108.542 188.001i 0.318306 0.551322i
\(342\) 0.959746 + 0.959746i 0.00280627 + 0.00280627i
\(343\) 246.252 238.765i 0.717937 0.696108i
\(344\) 46.9637i 0.136522i
\(345\) −66.4270 102.453i −0.192542 0.296964i
\(346\) −148.215 256.716i −0.428367 0.741954i
\(347\) −73.5268 + 274.406i −0.211893 + 0.790795i 0.775344 + 0.631539i \(0.217576\pi\)
−0.987237 + 0.159256i \(0.949090\pi\)
\(348\) −21.7547 81.1897i −0.0625136 0.233304i
\(349\) 345.311i 0.989429i 0.869055 + 0.494715i \(0.164727\pi\)
−0.869055 + 0.494715i \(0.835273\pi\)
\(350\) 225.421 + 102.154i 0.644059 + 0.291869i
\(351\) 20.2526 0.0576997
\(352\) 77.8315 20.8549i 0.221112 0.0592468i
\(353\) 570.810 + 152.948i 1.61703 + 0.433281i 0.950126 0.311867i \(-0.100954\pi\)
0.666900 + 0.745148i \(0.267621\pi\)
\(354\) −77.6871 + 44.8527i −0.219455 + 0.126702i
\(355\) 85.3186 55.3178i 0.240334 0.155825i
\(356\) 220.842 0.620342
\(357\) 211.480 + 213.668i 0.592382 + 0.598509i
\(358\) 150.138 150.138i 0.419380 0.419380i
\(359\) −358.501 206.981i −0.998611 0.576549i −0.0907742 0.995871i \(-0.528934\pi\)
−0.907837 + 0.419323i \(0.862267\pi\)
\(360\) −28.4119 + 31.5082i −0.0789219 + 0.0875227i
\(361\) −180.449 312.547i −0.499858 0.865780i
\(362\) 201.030 53.8659i 0.555332 0.148801i
\(363\) 100.301 100.301i 0.276312 0.276312i
\(364\) −47.1151 27.5261i −0.129437 0.0756211i
\(365\) −278.644 + 90.3115i −0.763408 + 0.247429i
\(366\) −132.814 + 230.040i −0.362879 + 0.628524i
\(367\) −110.300 + 411.646i −0.300545 + 1.12165i 0.636167 + 0.771551i \(0.280519\pi\)
−0.936713 + 0.350099i \(0.886148\pi\)
\(368\) −54.4752 14.5966i −0.148030 0.0396647i
\(369\) 75.5505 + 43.6191i 0.204744 + 0.118209i
\(370\) 7.59351 14.8762i 0.0205230 0.0402059i
\(371\) −265.472 + 454.395i −0.715557 + 1.22478i
\(372\) 37.3309 + 37.3309i 0.100352 + 0.100352i
\(373\) −41.7458 155.797i −0.111919 0.417687i 0.887119 0.461541i \(-0.152703\pi\)
−0.999038 + 0.0438534i \(0.986037\pi\)
\(374\) −432.568 + 249.743i −1.15660 + 0.667763i
\(375\) 23.1038 215.270i 0.0616100 0.574054i
\(376\) −119.705 + 207.336i −0.318365 + 0.551424i
\(377\) −66.8730 66.8730i −0.177382 0.177382i
\(378\) 36.5597 36.1854i 0.0967189 0.0957287i
\(379\) 230.272i 0.607577i −0.952740 0.303788i \(-0.901748\pi\)
0.952740 0.303788i \(-0.0982516\pi\)
\(380\) −2.68431 + 1.74042i −0.00706397 + 0.00458005i
\(381\) 104.560 + 181.103i 0.274435 + 0.475335i
\(382\) −82.0822 + 306.335i −0.214875 + 0.801924i
\(383\) 37.6089 + 140.358i 0.0981956 + 0.366471i 0.997485 0.0708839i \(-0.0225820\pi\)
−0.899289 + 0.437355i \(0.855915\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 335.763 368.524i 0.872113 0.957206i
\(386\) 23.1280 0.0599171
\(387\) −48.1152 + 12.8924i −0.124329 + 0.0333138i
\(388\) 186.579 + 49.9938i 0.480875 + 0.128850i
\(389\) −414.884 + 239.533i −1.06654 + 0.615767i −0.927234 0.374483i \(-0.877820\pi\)
−0.139306 + 0.990249i \(0.544487\pi\)
\(390\) −9.95901 + 46.6854i −0.0255359 + 0.119706i
\(391\) 349.597 0.894110
\(392\) −134.233 + 34.4910i −0.342430 + 0.0879873i
\(393\) −268.399 + 268.399i −0.682949 + 0.682949i
\(394\) −345.581 199.522i −0.877110 0.506400i
\(395\) −257.098 + 13.2853i −0.650880 + 0.0336336i
\(396\) 42.7324 + 74.0147i 0.107910 + 0.186906i
\(397\) 8.52545 2.28439i 0.0214747 0.00575412i −0.248066 0.968743i \(-0.579795\pi\)
0.269540 + 0.962989i \(0.413128\pi\)
\(398\) 42.8941 42.8941i 0.107774 0.107774i
\(399\) 3.36904 1.92207i 0.00844372 0.00481723i
\(400\) −58.6600 80.9876i −0.146650 0.202469i
\(401\) −396.991 + 687.608i −0.990002 + 1.71473i −0.372847 + 0.927893i \(0.621618\pi\)
−0.617155 + 0.786841i \(0.711715\pi\)
\(402\) −43.3476 + 161.775i −0.107830 + 0.402426i
\(403\) 57.3766 + 15.3740i 0.142374 + 0.0381489i
\(404\) 173.089 + 99.9332i 0.428439 + 0.247359i
\(405\) −40.0803 20.4589i −0.0989638 0.0505158i
\(406\) −240.201 1.23590i −0.591627 0.00304410i
\(407\) −23.7908 23.7908i −0.0584540 0.0584540i
\(408\) −31.4394 117.333i −0.0770573 0.287582i
\(409\) −521.846 + 301.288i −1.27591 + 0.736645i −0.976093 0.217352i \(-0.930258\pi\)
−0.299814 + 0.953998i \(0.596925\pi\)
\(410\) −137.700 + 152.707i −0.335854 + 0.372455i
\(411\) 179.013 310.059i 0.435554 0.754401i
\(412\) −158.375 158.375i −0.384406 0.384406i
\(413\) 65.0744 + 247.957i 0.157565 + 0.600381i
\(414\) 59.8179i 0.144488i
\(415\) 122.235 573.009i 0.294543 1.38074i
\(416\) 11.0241 + 19.0943i 0.0265003 + 0.0458998i
\(417\) 97.5303 363.988i 0.233886 0.872873i
\(418\) 1.66795 + 6.22487i 0.00399031 + 0.0148920i
\(419\) 341.414i 0.814831i −0.913243 0.407415i \(-0.866430\pi\)
0.913243 0.407415i \(-0.133570\pi\)
\(420\) 65.4352 + 102.070i 0.155798 + 0.243023i
\(421\) 94.3393 0.224084 0.112042 0.993703i \(-0.464261\pi\)
0.112042 + 0.993703i \(0.464261\pi\)
\(422\) 146.637 39.2912i 0.347481 0.0931071i
\(423\) −245.281 65.7227i −0.579859 0.155373i
\(424\) 184.153 106.321i 0.434323 0.250756i
\(425\) 481.171 + 390.812i 1.13217 + 0.919558i
\(426\) 49.8140 0.116934
\(427\) 533.991 + 539.514i 1.25056 + 1.26350i
\(428\) 157.493 157.493i 0.367975 0.367975i
\(429\) 83.2773 + 48.0802i 0.194120 + 0.112075i
\(430\) −6.05892 117.253i −0.0140905 0.272681i
\(431\) 149.099 + 258.247i 0.345937 + 0.599181i 0.985524 0.169538i \(-0.0542276\pi\)
−0.639586 + 0.768719i \(0.720894\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) 466.639 466.639i 1.07769 1.07769i 0.0809720 0.996716i \(-0.474198\pi\)
0.996716 0.0809720i \(-0.0258024\pi\)
\(434\) 131.044 74.7622i 0.301946 0.172263i
\(435\) 64.7889 + 199.897i 0.148940 + 0.459534i
\(436\) 76.0871 131.787i 0.174512 0.302263i
\(437\) 1.16742 4.35686i 0.00267144 0.00996994i
\(438\) −138.608 37.1400i −0.316457 0.0847945i
\(439\) 66.2436 + 38.2457i 0.150897 + 0.0871201i 0.573547 0.819173i \(-0.305567\pi\)
−0.422651 + 0.906293i \(0.638900\pi\)
\(440\) −191.629 + 62.1090i −0.435520 + 0.141157i
\(441\) −72.1861 128.055i −0.163687 0.290375i
\(442\) −96.6432 96.6432i −0.218650 0.218650i
\(443\) 54.6666 + 204.019i 0.123401 + 0.460538i 0.999778 0.0210878i \(-0.00671296\pi\)
−0.876377 + 0.481626i \(0.840046\pi\)
\(444\) 7.08612 4.09118i 0.0159597 0.00921436i
\(445\) −551.369 + 28.4914i −1.23903 + 0.0640256i
\(446\) 152.586 264.286i 0.342120 0.592570i
\(447\) −286.753 286.753i −0.641505 0.641505i
\(448\) 54.0166 + 14.7720i 0.120573 + 0.0329732i
\(449\) 400.930i 0.892940i 0.894799 + 0.446470i \(0.147319\pi\)
−0.894799 + 0.446470i \(0.852681\pi\)
\(450\) 66.8701 82.3310i 0.148600 0.182958i
\(451\) 207.106 + 358.718i 0.459214 + 0.795383i
\(452\) −56.0654 + 209.239i −0.124038 + 0.462918i
\(453\) 101.908 + 380.326i 0.224963 + 0.839572i
\(454\) 455.990i 1.00438i
\(455\) 121.182 + 62.6451i 0.266334 + 0.137681i
\(456\) −1.56726 −0.00343697
\(457\) 707.134 189.476i 1.54734 0.414608i 0.618711 0.785619i \(-0.287655\pi\)
0.928629 + 0.371011i \(0.120989\pi\)
\(458\) −126.717 33.9538i −0.276676 0.0741350i
\(459\) 111.580 64.4205i 0.243093 0.140350i
\(460\) 137.890 + 29.4149i 0.299760 + 0.0639453i
\(461\) −457.122 −0.991589 −0.495794 0.868440i \(-0.665123\pi\)
−0.495794 + 0.868440i \(0.665123\pi\)
\(462\) 236.236 61.9983i 0.511334 0.134195i
\(463\) −409.466 + 409.466i −0.884376 + 0.884376i −0.993976 0.109600i \(-0.965043\pi\)
0.109600 + 0.993976i \(0.465043\pi\)
\(464\) 84.0538 + 48.5285i 0.181150 + 0.104587i
\(465\) −98.0190 88.3867i −0.210793 0.190079i
\(466\) −268.725 465.446i −0.576664 0.998811i
\(467\) 140.174 37.5596i 0.300159 0.0804275i −0.105596 0.994409i \(-0.533675\pi\)
0.405756 + 0.913982i \(0.367008\pi\)
\(468\) −16.5362 + 16.5362i −0.0353337 + 0.0353337i
\(469\) 413.260 + 241.440i 0.881152 + 0.514796i
\(470\) 272.115 533.092i 0.578969 1.13424i
\(471\) 93.4891 161.928i 0.198491 0.343796i
\(472\) 26.8092 100.053i 0.0567992 0.211977i
\(473\) −228.453 61.2139i −0.482988 0.129416i
\(474\) −109.223 63.0599i −0.230428 0.133038i
\(475\) 6.47730 4.69156i 0.0136364 0.00987697i
\(476\) −347.132 1.78610i −0.729269 0.00375231i
\(477\) 159.481 + 159.481i 0.334342 + 0.334342i
\(478\) −71.8498 268.147i −0.150313 0.560977i
\(479\) 128.423 74.1449i 0.268106 0.154791i −0.359921 0.932983i \(-0.617196\pi\)
0.628027 + 0.778192i \(0.283863\pi\)
\(480\) −2.52812 48.9245i −0.00526692 0.101926i
\(481\) 4.60316 7.97291i 0.00956999 0.0165757i
\(482\) −376.358 376.358i −0.780826 0.780826i
\(483\) −164.889 45.0926i −0.341386 0.0933593i
\(484\) 163.791i 0.338412i
\(485\) −472.277 100.747i −0.973767 0.207725i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) 86.4990 322.819i 0.177616 0.662872i −0.818475 0.574542i \(-0.805180\pi\)
0.996091 0.0883300i \(-0.0281530\pi\)
\(488\) −79.3849 296.269i −0.162674 0.607108i
\(489\) 522.344i 1.06819i
\(490\) 330.684 103.430i 0.674866 0.211082i
\(491\) 241.966 0.492801 0.246401 0.969168i \(-0.420752\pi\)
0.246401 + 0.969168i \(0.420752\pi\)
\(492\) −97.3016 + 26.0719i −0.197767 + 0.0529916i
\(493\) −581.143 155.717i −1.17879 0.315855i
\(494\) −1.52714 + 0.881696i −0.00309138 + 0.00178481i
\(495\) −116.238 179.277i −0.234823 0.362176i
\(496\) −60.9610 −0.122905
\(497\) 37.5513 137.313i 0.0755559 0.276284i
\(498\) 202.962 202.962i 0.407555 0.407555i
\(499\) 578.512 + 334.004i 1.15934 + 0.669346i 0.951146 0.308741i \(-0.0999076\pi\)
0.208196 + 0.978087i \(0.433241\pi\)
\(500\) 156.903 + 194.631i 0.313806 + 0.389263i
\(501\) −68.3186 118.331i −0.136364 0.236190i
\(502\) −263.742 + 70.6696i −0.525383 + 0.140776i
\(503\) 457.165 457.165i 0.908876 0.908876i −0.0873055 0.996182i \(-0.527826\pi\)
0.996182 + 0.0873055i \(0.0278256\pi\)
\(504\) −0.305611 + 59.3962i −0.000606372 + 0.117850i
\(505\) −445.040 227.169i −0.881267 0.449840i
\(506\) 142.009 245.967i 0.280651 0.486101i
\(507\) 68.9505 257.327i 0.135997 0.507548i
\(508\) −233.242 62.4971i −0.459139 0.123026i
\(509\) 438.332 + 253.071i 0.861164 + 0.497193i 0.864402 0.502802i \(-0.167697\pi\)
−0.00323811 + 0.999995i \(0.501031\pi\)
\(510\) 93.6313 + 288.887i 0.183591 + 0.566444i
\(511\) −206.864 + 354.079i −0.404822 + 0.692915i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −0.430242 1.60569i −0.000838679 0.00312999i
\(514\) 264.367 152.632i 0.514333 0.296950i
\(515\) 415.843 + 374.978i 0.807462 + 0.728113i
\(516\) 28.7593 49.8125i 0.0557351 0.0965359i
\(517\) −852.549 852.549i −1.64903 1.64903i
\(518\) −5.93568 22.6171i −0.0114588 0.0436624i
\(519\) 363.051i 0.699521i
\(520\) −29.9870 46.2500i −0.0576673 0.0889423i
\(521\) 63.4901 + 109.968i 0.121862 + 0.211071i 0.920502 0.390738i \(-0.127780\pi\)
−0.798640 + 0.601809i \(0.794447\pi\)
\(522\) −26.6440 + 99.4367i −0.0510421 + 0.190492i
\(523\) 99.9181 + 372.899i 0.191048 + 0.713001i 0.993255 + 0.115954i \(0.0369925\pi\)
−0.802207 + 0.597046i \(0.796341\pi\)
\(524\) 438.294i 0.836438i
\(525\) −176.538 246.392i −0.336264 0.469319i
\(526\) −633.956 −1.20524
\(527\) 365.013 97.8050i 0.692625 0.185588i
\(528\) −95.3237 25.5419i −0.180537 0.0483748i
\(529\) 285.972 165.106i 0.540590 0.312110i
\(530\) −446.052 + 289.206i −0.841607 + 0.545671i
\(531\) 109.866 0.206904
\(532\) −1.18145 + 4.32018i −0.00222076 + 0.00812064i
\(533\) −80.1437 + 80.1437i −0.150363 + 0.150363i
\(534\) −234.238 135.237i −0.438648 0.253254i
\(535\) −372.890 + 413.528i −0.696991 + 0.772949i
\(536\) −96.6959 167.482i −0.180403 0.312467i
\(537\) −251.186 + 67.3051i −0.467758 + 0.125335i
\(538\) 107.452 107.452i 0.199724 0.199724i
\(539\) 7.18227 697.926i 0.0133252 1.29485i
\(540\) 49.4301 16.0208i 0.0915372 0.0296682i
\(541\) −85.0505 + 147.312i −0.157210 + 0.272295i −0.933861 0.357635i \(-0.883583\pi\)
0.776652 + 0.629930i \(0.216917\pi\)
\(542\) −71.7699 + 267.849i −0.132417 + 0.494186i
\(543\) −246.211 65.9720i −0.453427 0.121495i
\(544\) 121.472 + 70.1322i 0.223295 + 0.128919i
\(545\) −172.962 + 338.844i −0.317362 + 0.621732i
\(546\) 33.1169 + 58.0478i 0.0606536 + 0.106315i
\(547\) 6.88719 + 6.88719i 0.0125908 + 0.0125908i 0.713374 0.700783i \(-0.247166\pi\)
−0.700783 + 0.713374i \(0.747166\pi\)
\(548\) 106.999 + 399.325i 0.195253 + 0.728695i
\(549\) 281.740 162.663i 0.513188 0.296289i
\(550\) 470.421 179.788i 0.855311 0.326887i
\(551\) −3.88125 + 6.72252i −0.00704401 + 0.0122006i
\(552\) 48.8411 + 48.8411i 0.0884803 + 0.0884803i
\(553\) −256.161 + 253.539i −0.463221 + 0.458479i
\(554\) 526.895i 0.951075i
\(555\) −17.1639 + 11.1285i −0.0309259 + 0.0200514i
\(556\) 217.562 + 376.828i 0.391298 + 0.677749i
\(557\) 59.4417 221.839i 0.106718 0.398276i −0.891817 0.452397i \(-0.850569\pi\)
0.998534 + 0.0541213i \(0.0172358\pi\)
\(558\) −16.7350 62.4558i −0.0299910 0.111928i
\(559\) 64.7167i 0.115772i
\(560\) −136.767 29.9119i −0.244227 0.0534142i
\(561\) 611.743 1.09045
\(562\) −350.561 + 93.9325i −0.623774 + 0.167140i
\(563\) 355.000 + 95.1221i 0.630551 + 0.168956i 0.559920 0.828547i \(-0.310832\pi\)
0.0706314 + 0.997502i \(0.477499\pi\)
\(564\) 253.933 146.608i 0.450236 0.259944i
\(565\) 112.982 529.633i 0.199968 0.937404i
\(566\) 587.728 1.03839
\(567\) −60.9364 + 15.9923i −0.107472 + 0.0282051i
\(568\) −40.6730 + 40.6730i −0.0716074 + 0.0716074i
\(569\) −528.553 305.160i −0.928916 0.536310i −0.0424473 0.999099i \(-0.513515\pi\)
−0.886468 + 0.462789i \(0.846849\pi\)
\(570\) 3.91293 0.202196i 0.00686478 0.000354730i
\(571\) −52.9782 91.7610i −0.0927815 0.160702i 0.815899 0.578194i \(-0.196242\pi\)
−0.908681 + 0.417492i \(0.862909\pi\)
\(572\) −107.253 + 28.7383i −0.187505 + 0.0502418i
\(573\) 274.653 274.653i 0.479324 0.479324i
\(574\) −1.48117 + 287.868i −0.00258043 + 0.501512i
\(575\) −348.060 55.6496i −0.605322 0.0967819i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −21.3154 + 79.5502i −0.0369418 + 0.137869i −0.981934 0.189225i \(-0.939403\pi\)
0.944992 + 0.327093i \(0.106069\pi\)
\(578\) −445.072 119.257i −0.770021 0.206326i
\(579\) −24.5309 14.1629i −0.0423678 0.0244610i
\(580\) −216.115 110.316i −0.372613 0.190199i
\(581\) −406.471 712.469i −0.699605 1.22628i
\(582\) −167.283 167.283i −0.287427 0.287427i
\(583\) 277.163 + 1034.39i 0.475408 + 1.77425i
\(584\) 143.498 82.8485i 0.245716 0.141864i
\(585\) 39.1520 43.4187i 0.0669265 0.0742201i
\(586\) 236.224 409.153i 0.403113 0.698212i
\(587\) 81.9493 + 81.9493i 0.139607 + 0.139607i 0.773456 0.633849i \(-0.218526\pi\)
−0.633849 + 0.773456i \(0.718526\pi\)
\(588\) 163.496 + 45.6170i 0.278055 + 0.0775800i
\(589\) 4.87559i 0.00827775i
\(590\) −54.0255 + 253.259i −0.0915687 + 0.429252i
\(591\) 244.363 + 423.249i 0.413474 + 0.716157i
\(592\) −2.44537 + 9.12623i −0.00413068 + 0.0154159i
\(593\) −104.733 390.869i −0.176616 0.659139i −0.996271 0.0862815i \(-0.972502\pi\)
0.819655 0.572857i \(-0.194165\pi\)
\(594\) 104.673i 0.176217i
\(595\) 866.904 40.3252i 1.45698 0.0677734i
\(596\) 468.265 0.785680
\(597\) −71.7633 + 19.2289i −0.120206 + 0.0322092i
\(598\) 75.0677 + 20.1143i 0.125531 + 0.0336360i
\(599\) −688.462 + 397.484i −1.14935 + 0.663579i −0.948729 0.316090i \(-0.897630\pi\)
−0.200623 + 0.979669i \(0.564297\pi\)
\(600\) 12.6238 + 121.822i 0.0210396 + 0.203037i
\(601\) −225.975 −0.375999 −0.187999 0.982169i \(-0.560200\pi\)
−0.187999 + 0.982169i \(0.560200\pi\)
\(602\) −115.630 116.826i −0.192076 0.194063i
\(603\) 145.044 145.044i 0.240537 0.240537i
\(604\) −393.742 227.327i −0.651891 0.376370i
\(605\) −21.1312 408.933i −0.0349276 0.675922i
\(606\) −122.393 211.990i −0.201968 0.349819i
\(607\) −769.756 + 206.256i −1.26813 + 0.339795i −0.829315 0.558781i \(-0.811269\pi\)
−0.438817 + 0.898576i \(0.644602\pi\)
\(608\) 1.27966 1.27966i 0.00210471 0.00210471i
\(609\) 254.014 + 148.403i 0.417101 + 0.243683i
\(610\) 236.420 + 729.443i 0.387574 + 1.19581i
\(611\) 164.956 285.711i 0.269976 0.467613i
\(612\) −38.5052 + 143.704i −0.0629171 + 0.234810i
\(613\) −283.367 75.9279i −0.462262 0.123863i 0.0201690 0.999797i \(-0.493580\pi\)
−0.482431 + 0.875934i \(0.660246\pi\)
\(614\) −184.511 106.527i −0.300506 0.173497i
\(615\) 239.566 77.6460i 0.389539 0.126254i
\(616\) −142.265 + 243.507i −0.230949 + 0.395304i
\(617\) −20.6583 20.6583i −0.0334818 0.0334818i 0.690168 0.723649i \(-0.257537\pi\)
−0.723649 + 0.690168i \(0.757537\pi\)
\(618\) 70.9977 + 264.967i 0.114883 + 0.428749i
\(619\) −61.3713 + 35.4327i −0.0991458 + 0.0572419i −0.548753 0.835984i \(-0.684897\pi\)
0.449607 + 0.893226i \(0.351564\pi\)
\(620\) 152.200 7.86475i 0.245483 0.0126851i
\(621\) −36.6309 + 63.4465i −0.0589869 + 0.102168i
\(622\) −205.022 205.022i −0.329617 0.329617i
\(623\) −549.360 + 543.736i −0.881798 + 0.872771i
\(624\) 27.0035i 0.0432748i
\(625\) −416.845 465.688i −0.666952 0.745100i
\(626\) −170.822 295.872i −0.272878 0.472638i
\(627\) 2.04281 7.62387i 0.00325807 0.0121593i
\(628\) 55.8800 + 208.547i 0.0889809 + 0.332081i
\(629\) 58.5679i 0.0931128i
\(630\) −6.89986 148.332i −0.0109522 0.235448i
\(631\) 711.319 1.12729 0.563644 0.826017i \(-0.309399\pi\)
0.563644 + 0.826017i \(0.309399\pi\)
\(632\) 140.668 37.6919i 0.222576 0.0596392i
\(633\) −179.593 48.1217i −0.283717 0.0760216i
\(634\) 285.483 164.824i 0.450289 0.259974i
\(635\) 590.392 + 125.943i 0.929751 + 0.198336i
\(636\) −260.431 −0.409483
\(637\) 184.974 47.5291i 0.290384 0.0746140i
\(638\) −345.623 + 345.623i −0.541729 + 0.541729i
\(639\) −52.8357 30.5047i −0.0826851 0.0477382i
\(640\) 42.0109 + 37.8825i 0.0656420 + 0.0591914i
\(641\) −75.2839 130.395i −0.117448 0.203425i 0.801308 0.598252i \(-0.204138\pi\)
−0.918755 + 0.394827i \(0.870805\pi\)
\(642\) −263.492 + 70.6024i −0.410423 + 0.109973i
\(643\) −569.798 + 569.798i −0.886155 + 0.886155i −0.994151 0.107996i \(-0.965557\pi\)
0.107996 + 0.994151i \(0.465557\pi\)
\(644\) 171.450 97.8137i 0.266226 0.151885i
\(645\) −65.3760 + 128.076i −0.101358 + 0.198567i
\(646\) −5.60909 + 9.71523i −0.00868280 + 0.0150390i
\(647\) 99.5449 371.507i 0.153856 0.574199i −0.845345 0.534222i \(-0.820605\pi\)
0.999201 0.0399772i \(-0.0127285\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) 451.762 + 260.825i 0.696089 + 0.401887i
\(650\) 80.8344 + 111.602i 0.124361 + 0.171696i
\(651\) −184.776 0.950728i −0.283834 0.00146041i
\(652\) 426.492 + 426.492i 0.654129 + 0.654129i
\(653\) 23.7561 + 88.6589i 0.0363799 + 0.135772i 0.981727 0.190293i \(-0.0609439\pi\)
−0.945347 + 0.326065i \(0.894277\pi\)
\(654\) −161.405 + 93.1873i −0.246797 + 0.142488i
\(655\) 56.5455 + 1094.27i 0.0863290 + 1.67065i
\(656\) 58.1588 100.734i 0.0886567 0.153558i
\(657\) 124.273 + 124.273i 0.189152 + 0.189152i
\(658\) −212.707 810.490i −0.323262 1.23175i
\(659\) 478.694i 0.726395i −0.931712 0.363197i \(-0.881685\pi\)
0.931712 0.363197i \(-0.118315\pi\)
\(660\) 241.287 + 51.4717i 0.365586 + 0.0779874i
\(661\) 28.9020 + 50.0598i 0.0437247 + 0.0757334i 0.887060 0.461655i \(-0.152744\pi\)
−0.843335 + 0.537389i \(0.819411\pi\)
\(662\) −133.828 + 499.452i −0.202157 + 0.754460i
\(663\) 43.3240 + 161.687i 0.0653453 + 0.243872i
\(664\) 331.436i 0.499151i
\(665\) 2.39232 10.9385i 0.00359748 0.0164488i
\(666\) −10.0213 −0.0150470
\(667\) 330.450 88.5438i 0.495427 0.132749i
\(668\) 152.399 + 40.8352i 0.228142 + 0.0611305i
\(669\) −323.683 + 186.879i −0.483831 + 0.279340i
\(670\) 263.025 + 405.672i 0.392574 + 0.605481i
\(671\) 1544.66 2.30203
\(672\) −48.2473 48.7463i −0.0717965 0.0725392i
\(673\) 351.482 351.482i 0.522261 0.522261i −0.395993 0.918254i \(-0.629599\pi\)
0.918254 + 0.395993i \(0.129599\pi\)
\(674\) 680.453 + 392.860i 1.00957 + 0.582878i
\(675\) −121.344 + 46.3758i −0.179768 + 0.0687049i
\(676\) 153.809 + 266.404i 0.227528 + 0.394089i
\(677\) 660.882 177.083i 0.976192 0.261570i 0.264752 0.964317i \(-0.414710\pi\)
0.711440 + 0.702747i \(0.248043\pi\)
\(678\) 187.598 187.598i 0.276694 0.276694i
\(679\) −587.220 + 335.015i −0.864831 + 0.493395i
\(680\) −312.325 159.425i −0.459301 0.234449i
\(681\) −279.236 + 483.651i −0.410038 + 0.710207i
\(682\) 79.4584 296.543i 0.116508 0.434814i
\(683\) −413.953 110.918i −0.606080 0.162399i −0.0572882 0.998358i \(-0.518245\pi\)
−0.548792 + 0.835959i \(0.684912\pi\)
\(684\) 1.66233 + 0.959746i 0.00243030 + 0.00140314i
\(685\) −318.659 983.178i −0.465195 1.43530i
\(686\) 248.993 416.294i 0.362963 0.606842i
\(687\) 113.612 + 113.612i 0.165374 + 0.165374i
\(688\) 17.1899 + 64.1536i 0.0249853 + 0.0932466i
\(689\) −253.765 + 146.511i −0.368310 + 0.212644i
\(690\) −128.241 115.639i −0.185857 0.167593i
\(691\) 118.514 205.272i 0.171510 0.297065i −0.767438 0.641124i \(-0.778469\pi\)
0.938948 + 0.344059i \(0.111802\pi\)
\(692\) −296.430 296.430i −0.428367 0.428367i
\(693\) −288.532 78.9054i −0.416353 0.113861i
\(694\) 401.758i 0.578902i
\(695\) −591.796 912.747i −0.851505 1.31331i
\(696\) −59.4350 102.944i −0.0853951 0.147909i
\(697\) −186.618 + 696.469i −0.267745 + 0.999238i
\(698\) 126.393 + 471.703i 0.181078 + 0.675793i
\(699\) 658.240i 0.941688i
\(700\) 345.322 + 57.0355i 0.493316 + 0.0814793i
\(701\) 179.002 0.255352 0.127676 0.991816i \(-0.459248\pi\)
0.127676 + 0.991816i \(0.459248\pi\)
\(702\) 27.6656 7.41297i 0.0394096 0.0105598i
\(703\) −0.729905 0.195577i −0.00103827 0.000278204i
\(704\) 98.6863 56.9766i 0.140179 0.0809326i
\(705\) −615.073 + 398.793i −0.872443 + 0.565664i
\(706\) 835.724 1.18374
\(707\) −676.619 + 177.573i −0.957029 + 0.251165i
\(708\) −89.7053 + 89.7053i −0.126702 + 0.126702i
\(709\) −614.815 354.963i −0.867158 0.500654i −0.000754991 1.00000i \(-0.500240\pi\)
−0.866403 + 0.499346i \(0.833574\pi\)
\(710\) 96.2996 106.794i 0.135633 0.150414i
\(711\) 77.2322 + 133.770i 0.108625 + 0.188144i
\(712\) 301.675 80.8337i 0.423701 0.113530i
\(713\) −151.940 + 151.940i −0.213100 + 0.213100i
\(714\) 367.095 + 214.468i 0.514139 + 0.300376i
\(715\) 264.067 85.5871i 0.369325 0.119702i
\(716\) 150.138 260.047i 0.209690 0.363194i
\(717\) −87.9976 + 328.412i −0.122730 + 0.458036i
\(718\) −565.482 151.521i −0.787580 0.211031i
\(719\) −281.298 162.407i −0.391235 0.225880i 0.291460 0.956583i \(-0.405859\pi\)
−0.682695 + 0.730703i \(0.739192\pi\)
\(720\) −27.2785 + 53.4404i −0.0378869 + 0.0742228i
\(721\) 783.907 + 4.03344i 1.08725 + 0.00559423i
\(722\) −360.898 360.898i −0.499858 0.499858i
\(723\) 168.717 + 629.660i 0.233357 + 0.870898i
\(724\) 254.896 147.164i 0.352067 0.203266i
\(725\) 553.800 + 247.540i 0.763863 + 0.341434i
\(726\) 100.301 173.727i 0.138156 0.239293i
\(727\) 32.6420 + 32.6420i 0.0448996 + 0.0448996i 0.729200 0.684301i \(-0.239892\pi\)
−0.684301 + 0.729200i \(0.739892\pi\)
\(728\) −74.4356 20.3560i −0.102247 0.0279616i
\(729\) 27.0000i 0.0370370i
\(730\) −347.578 + 225.358i −0.476134 + 0.308710i
\(731\) −205.854 356.550i −0.281606 0.487757i
\(732\) −97.2263 + 362.853i −0.132823 + 0.495701i
\(733\) −70.6890 263.815i −0.0964379 0.359911i 0.900796 0.434243i \(-0.142984\pi\)
−0.997234 + 0.0743321i \(0.976318\pi\)
\(734\) 602.691i 0.821105i
\(735\) −414.082 92.7975i −0.563376 0.126255i
\(736\) −79.7573 −0.108366
\(737\) 940.747 252.072i 1.27645 0.342025i
\(738\) 119.170 + 31.9314i 0.161476 + 0.0432675i
\(739\) 852.048 491.930i 1.15297 0.665670i 0.203364 0.979103i \(-0.434813\pi\)
0.949610 + 0.313434i \(0.101479\pi\)
\(740\) 4.92787 23.1007i 0.00665928 0.0312171i
\(741\) 2.15971 0.00291458
\(742\) −196.321 + 717.885i −0.264584 + 0.967499i
\(743\) 121.603 121.603i 0.163664 0.163664i −0.620524 0.784188i \(-0.713080\pi\)
0.784188 + 0.620524i \(0.213080\pi\)
\(744\) 64.6590 + 37.3309i 0.0869072 + 0.0501759i
\(745\) −1169.10 + 60.4122i −1.56927 + 0.0810902i
\(746\) −114.052 197.543i −0.152884 0.264803i
\(747\) −339.563 + 90.9855i −0.454568 + 0.121801i
\(748\) −499.486 + 499.486i −0.667763 + 0.667763i
\(749\) −4.01098 + 779.542i −0.00535512 + 1.04078i
\(750\) −47.2340 302.521i −0.0629787 0.403361i
\(751\) 340.967 590.571i 0.454017 0.786380i −0.544614 0.838687i \(-0.683324\pi\)
0.998631 + 0.0523066i \(0.0166573\pi\)
\(752\) −87.6303 + 327.041i −0.116530 + 0.434895i
\(753\) 323.017 + 86.5522i 0.428974 + 0.114943i
\(754\) −115.827 66.8730i −0.153617 0.0886909i
\(755\) 1012.37 + 516.763i 1.34089 + 0.684455i
\(756\) 36.6967 62.8120i 0.0485407 0.0830847i
\(757\) −734.889 734.889i −0.970792 0.970792i 0.0287938 0.999585i \(-0.490833\pi\)
−0.999585 + 0.0287938i \(0.990833\pi\)
\(758\) −84.2852 314.557i −0.111194 0.414983i
\(759\) −301.247 + 173.925i −0.396900 + 0.229150i
\(760\) −3.02980 + 3.35998i −0.00398658 + 0.00442103i
\(761\) −62.7638 + 108.710i −0.0824755 + 0.142852i −0.904313 0.426871i \(-0.859616\pi\)
0.821837 + 0.569722i \(0.192949\pi\)
\(762\) 209.119 + 209.119i 0.274435 + 0.274435i
\(763\) 135.201 + 515.164i 0.177196 + 0.675182i
\(764\) 448.506i