Properties

Label 210.3.v.b.37.1
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.1
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.b.193.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.95862 + 0.641960i) q^{5} -2.44949 q^{6} +(2.95853 - 6.34406i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.95862 + 0.641960i) q^{5} -2.44949 q^{6} +(2.95853 - 6.34406i) q^{7} +(2.00000 - 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-6.53862 + 2.69191i) q^{10} +(-9.98405 - 17.2929i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(-13.3742 + 13.3742i) q^{13} +(1.71935 - 9.74904i) q^{14} +(8.58371 + 1.14887i) q^{15} +(2.00000 - 3.46410i) q^{16} +(5.85604 - 21.8551i) q^{17} +(4.09808 + 1.09808i) q^{18} +(-14.8761 - 8.58869i) q^{19} +(-7.94662 + 6.07052i) q^{20} +(-7.79369 + 9.28754i) q^{21} +(-19.9681 - 19.9681i) q^{22} +(-5.43036 - 20.2664i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(24.1758 - 6.36646i) q^{25} +(-13.3742 + 23.1648i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-1.21973 - 13.9468i) q^{28} +23.1996i q^{29} +(12.1461 - 1.57247i) q^{30} +(27.7400 + 48.0470i) q^{31} +(1.46410 - 5.46410i) q^{32} +(8.95145 + 33.4073i) q^{33} -31.9980i q^{34} +(-10.5976 + 33.3570i) q^{35} +6.00000 q^{36} +(22.2866 - 5.97166i) q^{37} +(-23.4647 - 6.28736i) q^{38} +(28.3710 - 16.3800i) q^{39} +(-8.63332 + 11.2012i) q^{40} -21.6302 q^{41} +(-7.24690 + 15.5397i) q^{42} +(14.6809 - 14.6809i) q^{43} +(-34.5858 - 19.9681i) q^{44} +(-13.8458 - 5.77007i) q^{45} +(-14.8360 - 25.6967i) q^{46} +(73.1609 - 19.6034i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-31.4942 - 37.5382i) q^{49} +(30.6944 - 17.5457i) q^{50} +(-19.5947 + 33.9390i) q^{51} +(-9.79062 + 36.5391i) q^{52} +(4.01743 + 1.07647i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(60.6084 + 79.3394i) q^{55} +(-6.77105 - 18.6052i) q^{56} +(21.0379 + 21.0379i) q^{57} +(8.49165 + 31.6913i) q^{58} +(-26.7900 + 15.4672i) q^{59} +(16.0163 - 6.59381i) q^{60} +(-1.75837 + 3.04558i) q^{61} +(55.4799 + 55.4799i) q^{62} +(17.2026 - 12.0445i) q^{63} -8.00000i q^{64} +(57.7320 - 74.9034i) q^{65} +(24.4558 + 42.3587i) q^{66} +(0.764309 - 2.85244i) q^{67} +(-11.7121 - 43.7101i) q^{68} +36.3407i q^{69} +(-2.26709 + 49.4455i) q^{70} -11.8938 q^{71} +(8.19615 - 2.19615i) q^{72} +(21.0889 + 5.65075i) q^{73} +(28.2582 - 16.3149i) q^{74} +(-43.3009 - 0.186402i) q^{75} -34.3548 q^{76} +(-139.245 + 12.1778i) q^{77} +(32.7600 - 32.7600i) q^{78} +(65.5559 + 37.8487i) q^{79} +(-7.69342 + 18.4611i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-29.5474 + 7.91720i) q^{82} +(28.2864 - 28.2864i) q^{83} +(-4.21152 + 23.8802i) q^{84} +(-15.0078 + 112.130i) q^{85} +(14.6809 - 25.4281i) q^{86} +(10.4001 - 38.8137i) q^{87} +(-54.5539 - 14.6177i) q^{88} +(-124.644 - 71.9632i) q^{89} +(-21.0257 - 2.81414i) q^{90} +(45.2788 + 124.415i) q^{91} +(-29.6720 - 29.6720i) q^{92} +(-24.8710 - 92.8197i) q^{93} +(92.7643 - 53.5575i) q^{94} +(79.2783 + 33.0382i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(56.0616 + 56.0616i) q^{97} +(-56.7618 - 39.7505i) q^{98} -59.9043i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −4.95862 + 0.641960i −0.991724 + 0.128392i
\(6\) −2.44949 −0.408248
\(7\) 2.95853 6.34406i 0.422648 0.906294i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −6.53862 + 2.69191i −0.653862 + 0.269191i
\(11\) −9.98405 17.2929i −0.907641 1.57208i −0.817333 0.576166i \(-0.804548\pi\)
−0.0903080 0.995914i \(-0.528785\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) −13.3742 + 13.3742i −1.02879 + 1.02879i −0.0292138 + 0.999573i \(0.509300\pi\)
−0.999573 + 0.0292138i \(0.990700\pi\)
\(14\) 1.71935 9.74904i 0.122810 0.696360i
\(15\) 8.58371 + 1.14887i 0.572247 + 0.0765912i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 5.85604 21.8551i 0.344473 1.28559i −0.548753 0.835984i \(-0.684897\pi\)
0.893227 0.449607i \(-0.148436\pi\)
\(18\) 4.09808 + 1.09808i 0.227671 + 0.0610042i
\(19\) −14.8761 8.58869i −0.782950 0.452037i 0.0545246 0.998512i \(-0.482636\pi\)
−0.837475 + 0.546476i \(0.815969\pi\)
\(20\) −7.94662 + 6.07052i −0.397331 + 0.303526i
\(21\) −7.79369 + 9.28754i −0.371128 + 0.442264i
\(22\) −19.9681 19.9681i −0.907641 0.907641i
\(23\) −5.43036 20.2664i −0.236103 0.881147i −0.977649 0.210245i \(-0.932574\pi\)
0.741546 0.670902i \(-0.234093\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 24.1758 6.36646i 0.967031 0.254659i
\(26\) −13.3742 + 23.1648i −0.514394 + 0.890956i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −1.21973 13.9468i −0.0435617 0.498099i
\(29\) 23.1996i 0.799987i 0.916518 + 0.399994i \(0.130988\pi\)
−0.916518 + 0.399994i \(0.869012\pi\)
\(30\) 12.1461 1.57247i 0.404869 0.0524158i
\(31\) 27.7400 + 48.0470i 0.894837 + 1.54990i 0.834006 + 0.551756i \(0.186042\pi\)
0.0608318 + 0.998148i \(0.480625\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 8.95145 + 33.4073i 0.271256 + 1.01234i
\(34\) 31.9980i 0.941118i
\(35\) −10.5976 + 33.3570i −0.302789 + 0.953058i
\(36\) 6.00000 0.166667
\(37\) 22.2866 5.97166i 0.602339 0.161396i 0.0552528 0.998472i \(-0.482404\pi\)
0.547087 + 0.837076i \(0.315737\pi\)
\(38\) −23.4647 6.28736i −0.617493 0.165457i
\(39\) 28.3710 16.3800i 0.727462 0.420001i
\(40\) −8.63332 + 11.2012i −0.215833 + 0.280029i
\(41\) −21.6302 −0.527565 −0.263783 0.964582i \(-0.584970\pi\)
−0.263783 + 0.964582i \(0.584970\pi\)
\(42\) −7.24690 + 15.5397i −0.172545 + 0.369993i
\(43\) 14.6809 14.6809i 0.341417 0.341417i −0.515483 0.856900i \(-0.672387\pi\)
0.856900 + 0.515483i \(0.172387\pi\)
\(44\) −34.5858 19.9681i −0.786040 0.453820i
\(45\) −13.8458 5.77007i −0.307685 0.128224i
\(46\) −14.8360 25.6967i −0.322522 0.558625i
\(47\) 73.1609 19.6034i 1.55662 0.417094i 0.625025 0.780604i \(-0.285089\pi\)
0.931590 + 0.363511i \(0.118422\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −31.4942 37.5382i −0.642738 0.766086i
\(50\) 30.6944 17.5457i 0.613889 0.350914i
\(51\) −19.5947 + 33.9390i −0.384210 + 0.665471i
\(52\) −9.79062 + 36.5391i −0.188281 + 0.702675i
\(53\) 4.01743 + 1.07647i 0.0758005 + 0.0203107i 0.296520 0.955027i \(-0.404174\pi\)
−0.220719 + 0.975337i \(0.570841\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) 60.6084 + 79.3394i 1.10197 + 1.44253i
\(56\) −6.77105 18.6052i −0.120912 0.332235i
\(57\) 21.0379 + 21.0379i 0.369086 + 0.369086i
\(58\) 8.49165 + 31.6913i 0.146408 + 0.546401i
\(59\) −26.7900 + 15.4672i −0.454069 + 0.262157i −0.709547 0.704658i \(-0.751100\pi\)
0.255478 + 0.966815i \(0.417767\pi\)
\(60\) 16.0163 6.59381i 0.266938 0.109897i
\(61\) −1.75837 + 3.04558i −0.0288257 + 0.0499275i −0.880078 0.474828i \(-0.842510\pi\)
0.851253 + 0.524756i \(0.175843\pi\)
\(62\) 55.4799 + 55.4799i 0.894837 + 0.894837i
\(63\) 17.2026 12.0445i 0.273057 0.191183i
\(64\) 8.00000i 0.125000i
\(65\) 57.7320 74.9034i 0.888184 1.15236i
\(66\) 24.4558 + 42.3587i 0.370543 + 0.641799i
\(67\) 0.764309 2.85244i 0.0114076 0.0425737i −0.959987 0.280043i \(-0.909651\pi\)
0.971395 + 0.237469i \(0.0763179\pi\)
\(68\) −11.7121 43.7101i −0.172237 0.642796i
\(69\) 36.3407i 0.526676i
\(70\) −2.26709 + 49.4455i −0.0323870 + 0.706365i
\(71\) −11.8938 −0.167518 −0.0837592 0.996486i \(-0.526693\pi\)
−0.0837592 + 0.996486i \(0.526693\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) 21.0889 + 5.65075i 0.288889 + 0.0774075i 0.400353 0.916361i \(-0.368887\pi\)
−0.111464 + 0.993768i \(0.535554\pi\)
\(74\) 28.2582 16.3149i 0.381868 0.220472i
\(75\) −43.3009 0.186402i −0.577345 0.00248536i
\(76\) −34.3548 −0.452037
\(77\) −139.245 + 12.1778i −1.80838 + 0.158153i
\(78\) 32.7600 32.7600i 0.420001 0.420001i
\(79\) 65.5559 + 37.8487i 0.829821 + 0.479097i 0.853791 0.520615i \(-0.174297\pi\)
−0.0239704 + 0.999713i \(0.507631\pi\)
\(80\) −7.69342 + 18.4611i −0.0961678 + 0.230763i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −29.5474 + 7.91720i −0.360334 + 0.0965512i
\(83\) 28.2864 28.2864i 0.340800 0.340800i −0.515868 0.856668i \(-0.672531\pi\)
0.856668 + 0.515868i \(0.172531\pi\)
\(84\) −4.21152 + 23.8802i −0.0501372 + 0.284288i
\(85\) −15.0078 + 112.130i −0.176563 + 1.31918i
\(86\) 14.6809 25.4281i 0.170709 0.295676i
\(87\) 10.4001 38.8137i 0.119541 0.446135i
\(88\) −54.5539 14.6177i −0.619930 0.166110i
\(89\) −124.644 71.9632i −1.40049 0.808575i −0.406050 0.913851i \(-0.633094\pi\)
−0.994443 + 0.105276i \(0.966427\pi\)
\(90\) −21.0257 2.81414i −0.233619 0.0312682i
\(91\) 45.2788 + 124.415i 0.497569 + 1.36720i
\(92\) −29.6720 29.6720i −0.322522 0.322522i
\(93\) −24.8710 92.8197i −0.267430 0.998061i
\(94\) 92.7643 53.5575i 0.986855 0.569761i
\(95\) 79.2783 + 33.0382i 0.834508 + 0.347771i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) 56.0616 + 56.0616i 0.577954 + 0.577954i 0.934339 0.356385i \(-0.115991\pi\)
−0.356385 + 0.934339i \(0.615991\pi\)
\(98\) −56.7618 39.7505i −0.579202 0.405617i
\(99\) 59.9043i 0.605094i
\(100\) 35.5072 35.2028i 0.355072 0.352028i
\(101\) −56.4634 97.7974i −0.559043 0.968291i −0.997577 0.0695765i \(-0.977835\pi\)
0.438533 0.898715i \(-0.355498\pi\)
\(102\) −14.3443 + 53.5337i −0.140631 + 0.524840i
\(103\) −50.9322 190.082i −0.494488 1.84545i −0.532881 0.846190i \(-0.678891\pi\)
0.0383934 0.999263i \(-0.487776\pi\)
\(104\) 53.4969i 0.514394i
\(105\) 32.6837 51.0566i 0.311273 0.486253i
\(106\) 5.88192 0.0554898
\(107\) 157.308 42.1506i 1.47017 0.393931i 0.567181 0.823593i \(-0.308034\pi\)
0.902990 + 0.429662i \(0.141367\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) 50.7768 29.3160i 0.465843 0.268954i −0.248655 0.968592i \(-0.579989\pi\)
0.714498 + 0.699638i \(0.246655\pi\)
\(110\) 111.833 + 86.1954i 1.01666 + 0.783595i
\(111\) −39.9632 −0.360028
\(112\) −16.0594 22.9368i −0.143387 0.204793i
\(113\) −69.9728 + 69.9728i −0.619229 + 0.619229i −0.945334 0.326105i \(-0.894264\pi\)
0.326105 + 0.945334i \(0.394264\pi\)
\(114\) 36.4387 + 21.0379i 0.319638 + 0.184543i
\(115\) 39.9373 + 97.0071i 0.347281 + 0.843540i
\(116\) 23.1996 + 40.1829i 0.199997 + 0.346405i
\(117\) −54.8086 + 14.6859i −0.468450 + 0.125521i
\(118\) −30.9345 + 30.9345i −0.262157 + 0.262157i
\(119\) −121.324 101.810i −1.01953 0.855546i
\(120\) 19.4652 14.8697i 0.162210 0.123914i
\(121\) −138.862 + 240.517i −1.14762 + 1.98774i
\(122\) −1.28721 + 4.80395i −0.0105509 + 0.0393766i
\(123\) 36.1880 + 9.69654i 0.294211 + 0.0788337i
\(124\) 96.0940 + 55.4799i 0.774952 + 0.447419i
\(125\) −115.791 + 47.0887i −0.926331 + 0.376710i
\(126\) 19.0906 22.7497i 0.151512 0.180553i
\(127\) −43.1314 43.1314i −0.339617 0.339617i 0.516606 0.856223i \(-0.327195\pi\)
−0.856223 + 0.516606i \(0.827195\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) −31.1430 + 17.9804i −0.241418 + 0.139383i
\(130\) 51.4468 123.451i 0.395745 0.949626i
\(131\) −29.3082 + 50.7632i −0.223727 + 0.387506i −0.955937 0.293573i \(-0.905156\pi\)
0.732210 + 0.681079i \(0.238489\pi\)
\(132\) 48.9116 + 48.9116i 0.370543 + 0.370543i
\(133\) −98.4985 + 68.9646i −0.740590 + 0.518531i
\(134\) 4.17626i 0.0311661i
\(135\) 20.5778 + 15.8604i 0.152428 + 0.117485i
\(136\) −31.9980 55.4222i −0.235280 0.407516i
\(137\) 20.8036 77.6400i 0.151851 0.566716i −0.847503 0.530790i \(-0.821895\pi\)
0.999354 0.0359258i \(-0.0114380\pi\)
\(138\) 13.3016 + 49.6423i 0.0963885 + 0.359727i
\(139\) 15.1273i 0.108830i −0.998518 0.0544149i \(-0.982671\pi\)
0.998518 0.0544149i \(-0.0173294\pi\)
\(140\) 15.0014 + 68.3737i 0.107153 + 0.488383i
\(141\) −131.189 −0.930416
\(142\) −16.2472 + 4.35343i −0.114417 + 0.0306580i
\(143\) 364.808 + 97.7500i 2.55110 + 0.683566i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) −14.8932 115.038i −0.102712 0.793366i
\(146\) 30.8763 0.211481
\(147\) 35.8628 + 76.9211i 0.243965 + 0.523273i
\(148\) 32.6298 32.6298i 0.220472 0.220472i
\(149\) 28.5019 + 16.4556i 0.191288 + 0.110440i 0.592585 0.805508i \(-0.298107\pi\)
−0.401297 + 0.915948i \(0.631441\pi\)
\(150\) −59.2183 + 15.5946i −0.394789 + 0.103964i
\(151\) −142.183 246.269i −0.941611 1.63092i −0.762399 0.647107i \(-0.775979\pi\)
−0.179211 0.983811i \(-0.557355\pi\)
\(152\) −46.9295 + 12.5747i −0.308747 + 0.0827284i
\(153\) 47.9970 47.9970i 0.313706 0.313706i
\(154\) −185.755 + 67.6025i −1.20620 + 0.438977i
\(155\) −168.396 220.439i −1.08643 1.42219i
\(156\) 32.7600 56.7421i 0.210000 0.363731i
\(157\) 45.7477 170.733i 0.291387 1.08747i −0.652658 0.757652i \(-0.726346\pi\)
0.944045 0.329817i \(-0.106987\pi\)
\(158\) 103.405 + 27.7072i 0.654459 + 0.175362i
\(159\) −6.23872 3.60193i −0.0392372 0.0226536i
\(160\) −3.75219 + 28.0343i −0.0234512 + 0.175214i
\(161\) −144.637 25.5083i −0.898366 0.158436i
\(162\) 9.00000 + 9.00000i 0.0555556 + 0.0555556i
\(163\) 19.4477 + 72.5798i 0.119311 + 0.445275i 0.999573 0.0292129i \(-0.00930008\pi\)
−0.880262 + 0.474487i \(0.842633\pi\)
\(164\) −37.4646 + 21.6302i −0.228443 + 0.131891i
\(165\) −65.8329 159.907i −0.398988 0.969136i
\(166\) 28.2864 48.9935i 0.170400 0.295141i
\(167\) 115.501 + 115.501i 0.691625 + 0.691625i 0.962589 0.270964i \(-0.0873426\pi\)
−0.270964 + 0.962589i \(0.587343\pi\)
\(168\) 2.98771 + 34.1625i 0.0177840 + 0.203348i
\(169\) 188.740i 1.11681i
\(170\) 20.5414 + 158.666i 0.120832 + 0.933329i
\(171\) −25.7661 44.6282i −0.150679 0.260983i
\(172\) 10.7472 40.1091i 0.0624837 0.233192i
\(173\) −51.8207 193.397i −0.299541 1.11790i −0.937543 0.347869i \(-0.886905\pi\)
0.638002 0.770035i \(-0.279761\pi\)
\(174\) 56.8272i 0.326593i
\(175\) 31.1356 172.208i 0.177918 0.984045i
\(176\) −79.8724 −0.453820
\(177\) 51.7544 13.8675i 0.292398 0.0783477i
\(178\) −196.607 52.6807i −1.10453 0.295959i
\(179\) −103.999 + 60.0438i −0.580999 + 0.335440i −0.761530 0.648129i \(-0.775552\pi\)
0.180531 + 0.983569i \(0.442218\pi\)
\(180\) −29.7517 + 3.85176i −0.165287 + 0.0213987i
\(181\) 217.830 1.20348 0.601741 0.798691i \(-0.294474\pi\)
0.601741 + 0.798691i \(0.294474\pi\)
\(182\) 107.391 + 153.381i 0.590061 + 0.842752i
\(183\) 4.30710 4.30710i 0.0235361 0.0235361i
\(184\) −51.3935 29.6720i −0.279312 0.161261i
\(185\) −106.677 + 43.9183i −0.576632 + 0.237396i
\(186\) −67.9487 117.691i −0.365316 0.632746i
\(187\) −436.404 + 116.934i −2.33371 + 0.625316i
\(188\) 107.115 107.115i 0.569761 0.569761i
\(189\) −34.1799 + 12.4392i −0.180846 + 0.0658159i
\(190\) 120.389 + 16.1132i 0.633626 + 0.0848063i
\(191\) −56.1666 + 97.2834i −0.294066 + 0.509337i −0.974767 0.223224i \(-0.928342\pi\)
0.680701 + 0.732561i \(0.261675\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) −5.59533 1.49926i −0.0289913 0.00776820i 0.244294 0.969701i \(-0.421444\pi\)
−0.273286 + 0.961933i \(0.588110\pi\)
\(194\) 97.1015 + 56.0616i 0.500523 + 0.288977i
\(195\) −130.166 + 99.4353i −0.667517 + 0.509925i
\(196\) −92.0877 33.5240i −0.469835 0.171041i
\(197\) −40.3068 40.3068i −0.204603 0.204603i 0.597366 0.801969i \(-0.296214\pi\)
−0.801969 + 0.597366i \(0.796214\pi\)
\(198\) −21.9265 81.8308i −0.110740 0.413287i
\(199\) −85.5804 + 49.4099i −0.430052 + 0.248291i −0.699369 0.714761i \(-0.746536\pi\)
0.269317 + 0.963052i \(0.413202\pi\)
\(200\) 35.6186 61.0845i 0.178093 0.305422i
\(201\) −2.55743 + 4.42960i −0.0127235 + 0.0220378i
\(202\) −112.927 112.927i −0.559043 0.559043i
\(203\) 147.180 + 68.6369i 0.725024 + 0.338113i
\(204\) 78.3788i 0.384210i
\(205\) 107.256 13.8857i 0.523199 0.0677351i
\(206\) −139.149 241.014i −0.675483 1.16997i
\(207\) 16.2911 60.7991i 0.0787009 0.293716i
\(208\) 19.5812 + 73.0782i 0.0941405 + 0.351337i
\(209\) 343.000i 1.64115i
\(210\) 25.9587 81.7077i 0.123613 0.389084i
\(211\) 344.348 1.63198 0.815991 0.578064i \(-0.196192\pi\)
0.815991 + 0.578064i \(0.196192\pi\)
\(212\) 8.03485 2.15293i 0.0379003 0.0101553i
\(213\) 19.8987 + 5.33185i 0.0934212 + 0.0250321i
\(214\) 199.459 115.158i 0.932051 0.538120i
\(215\) −63.3726 + 82.2217i −0.294756 + 0.382427i
\(216\) −14.6969 −0.0680414
\(217\) 386.883 33.8352i 1.78287 0.155922i
\(218\) 58.6321 58.6321i 0.268954 0.268954i
\(219\) −32.7492 18.9078i −0.149540 0.0863369i
\(220\) 184.316 + 76.8115i 0.837801 + 0.349143i
\(221\) 213.974 + 370.615i 0.968210 + 1.67699i
\(222\) −54.5907 + 14.6275i −0.245904 + 0.0658898i
\(223\) 34.8821 34.8821i 0.156422 0.156422i −0.624557 0.780979i \(-0.714721\pi\)
0.780979 + 0.624557i \(0.214721\pi\)
\(224\) −30.3330 25.4541i −0.135415 0.113634i
\(225\) 72.3602 + 19.7231i 0.321601 + 0.0876582i
\(226\) −69.9728 + 121.197i −0.309614 + 0.536268i
\(227\) 44.6847 166.766i 0.196849 0.734651i −0.794931 0.606699i \(-0.792493\pi\)
0.991780 0.127951i \(-0.0408402\pi\)
\(228\) 57.4767 + 15.4008i 0.252091 + 0.0675475i
\(229\) −18.1914 10.5028i −0.0794382 0.0458637i 0.459755 0.888046i \(-0.347937\pi\)
−0.539193 + 0.842182i \(0.681271\pi\)
\(230\) 90.0624 + 117.896i 0.391576 + 0.512592i
\(231\) 238.421 + 42.0480i 1.03213 + 0.182026i
\(232\) 46.3993 + 46.3993i 0.199997 + 0.199997i
\(233\) 51.8914 + 193.661i 0.222710 + 0.831164i 0.983309 + 0.181943i \(0.0582385\pi\)
−0.760599 + 0.649221i \(0.775095\pi\)
\(234\) −69.4945 + 40.1227i −0.296985 + 0.171465i
\(235\) −350.192 + 144.172i −1.49018 + 0.613499i
\(236\) −30.9345 + 53.5801i −0.131078 + 0.227034i
\(237\) −92.7100 92.7100i −0.391181 0.391181i
\(238\) −202.997 94.6672i −0.852930 0.397761i
\(239\) 282.776i 1.18316i 0.806245 + 0.591581i \(0.201496\pi\)
−0.806245 + 0.591581i \(0.798504\pi\)
\(240\) 21.1472 27.4371i 0.0881134 0.114321i
\(241\) 45.5745 + 78.9374i 0.189106 + 0.327541i 0.944952 0.327208i \(-0.106108\pi\)
−0.755846 + 0.654749i \(0.772774\pi\)
\(242\) −101.654 + 379.379i −0.420059 + 1.56768i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 7.03346i 0.0288257i
\(245\) 180.265 + 165.920i 0.735777 + 0.677223i
\(246\) 52.9829 0.215378
\(247\) 313.823 84.0886i 1.27054 0.340440i
\(248\) 151.574 + 40.6141i 0.611185 + 0.163767i
\(249\) −60.0045 + 34.6436i −0.240982 + 0.139131i
\(250\) −140.938 + 106.707i −0.563753 + 0.426828i
\(251\) 278.796 1.11074 0.555371 0.831603i \(-0.312576\pi\)
0.555371 + 0.831603i \(0.312576\pi\)
\(252\) 17.7512 38.0643i 0.0704413 0.151049i
\(253\) −296.247 + 296.247i −1.17094 + 1.17094i
\(254\) −74.7058 43.1314i −0.294117 0.169809i
\(255\) 75.3752 180.870i 0.295589 0.709293i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 93.6352 25.0895i 0.364339 0.0976244i −0.0720049 0.997404i \(-0.522940\pi\)
0.436344 + 0.899780i \(0.356273\pi\)
\(258\) −35.9608 + 35.9608i −0.139383 + 0.139383i
\(259\) 28.0509 159.055i 0.108305 0.614110i
\(260\) 25.0913 187.468i 0.0965050 0.721033i
\(261\) −34.7994 + 60.2744i −0.133331 + 0.230936i
\(262\) −21.4551 + 80.0714i −0.0818896 + 0.305616i
\(263\) 201.551 + 54.0055i 0.766354 + 0.205344i 0.620760 0.784000i \(-0.286824\pi\)
0.145594 + 0.989344i \(0.453491\pi\)
\(264\) 84.7175 + 48.9116i 0.320899 + 0.185271i
\(265\) −20.6119 2.75876i −0.0777809 0.0104104i
\(266\) −109.309 + 130.260i −0.410935 + 0.489701i
\(267\) 176.273 + 176.273i 0.660199 + 0.660199i
\(268\) −1.52862 5.70488i −0.00570380 0.0212869i
\(269\) 177.916 102.720i 0.661397 0.381858i −0.131412 0.991328i \(-0.541951\pi\)
0.792809 + 0.609470i \(0.208618\pi\)
\(270\) 33.9152 + 14.1337i 0.125612 + 0.0523471i
\(271\) −55.2715 + 95.7331i −0.203954 + 0.353259i −0.949799 0.312861i \(-0.898713\pi\)
0.745845 + 0.666120i \(0.232046\pi\)
\(272\) −63.9960 63.9960i −0.235280 0.235280i
\(273\) −19.9792 228.448i −0.0731837 0.836807i
\(274\) 113.673i 0.414865i
\(275\) −351.467 354.506i −1.27806 1.28911i
\(276\) 36.3407 + 62.9439i 0.131669 + 0.228058i
\(277\) 18.2366 68.0599i 0.0658361 0.245704i −0.925163 0.379569i \(-0.876072\pi\)
0.991000 + 0.133865i \(0.0427390\pi\)
\(278\) −5.53699 20.6643i −0.0199172 0.0743321i
\(279\) 166.440i 0.596558i
\(280\) 45.5188 + 87.9093i 0.162567 + 0.313962i
\(281\) 172.628 0.614336 0.307168 0.951655i \(-0.400619\pi\)
0.307168 + 0.951655i \(0.400619\pi\)
\(282\) −179.207 + 48.0184i −0.635486 + 0.170278i
\(283\) −27.2132 7.29175i −0.0961597 0.0257659i 0.210418 0.977611i \(-0.432517\pi\)
−0.306578 + 0.951846i \(0.599184\pi\)
\(284\) −20.6007 + 11.8938i −0.0725376 + 0.0418796i
\(285\) −117.824 90.8135i −0.413419 0.318644i
\(286\) 534.116 1.86754
\(287\) −63.9936 + 137.223i −0.222974 + 0.478129i
\(288\) 12.0000 12.0000i 0.0416667 0.0416667i
\(289\) −193.069 111.468i −0.668058 0.385703i
\(290\) −62.4514 151.694i −0.215350 0.523082i
\(291\) −68.6611 118.925i −0.235949 0.408675i
\(292\) 42.1778 11.3015i 0.144444 0.0387038i
\(293\) −78.8568 + 78.8568i −0.269136 + 0.269136i −0.828752 0.559616i \(-0.810949\pi\)
0.559616 + 0.828752i \(0.310949\pi\)
\(294\) 77.1446 + 91.9495i 0.262397 + 0.312753i
\(295\) 122.912 93.8943i 0.416652 0.318286i
\(296\) 32.6298 56.5164i 0.110236 0.190934i
\(297\) −26.8544 + 100.222i −0.0904187 + 0.337447i
\(298\) 44.9575 + 12.0463i 0.150864 + 0.0404239i
\(299\) 343.674 + 198.420i 1.14941 + 0.663613i
\(300\) −75.1857 + 42.9780i −0.250619 + 0.143260i
\(301\) −49.7027 136.571i −0.165125 0.453724i
\(302\) −284.366 284.366i −0.941611 0.941611i
\(303\) 50.6237 + 188.930i 0.167075 + 0.623532i
\(304\) −59.5042 + 34.3548i −0.195738 + 0.113009i
\(305\) 6.76393 16.2307i 0.0221768 0.0532153i
\(306\) 47.9970 83.1333i 0.156853 0.271677i
\(307\) 21.8398 + 21.8398i 0.0711395 + 0.0711395i 0.741781 0.670642i \(-0.233981\pi\)
−0.670642 + 0.741781i \(0.733981\pi\)
\(308\) −229.002 + 160.338i −0.743513 + 0.520577i
\(309\) 340.845i 1.10306i
\(310\) −310.720 239.488i −1.00232 0.772541i
\(311\) −85.0972 147.393i −0.273624 0.473931i 0.696163 0.717884i \(-0.254889\pi\)
−0.969787 + 0.243953i \(0.921556\pi\)
\(312\) 23.9820 89.5021i 0.0768654 0.286866i
\(313\) 101.548 + 378.982i 0.324434 + 1.21080i 0.914880 + 0.403727i \(0.132285\pi\)
−0.590446 + 0.807077i \(0.701048\pi\)
\(314\) 249.970i 0.796083i
\(315\) −77.5689 + 70.7677i −0.246251 + 0.224659i
\(316\) 151.395 0.479097
\(317\) −137.832 + 36.9318i −0.434800 + 0.116504i −0.469578 0.882891i \(-0.655594\pi\)
0.0347786 + 0.999395i \(0.488927\pi\)
\(318\) −9.84065 2.63679i −0.0309454 0.00829180i
\(319\) 401.188 231.626i 1.25764 0.726101i
\(320\) 5.13568 + 39.6689i 0.0160490 + 0.123965i
\(321\) −282.078 −0.878746
\(322\) −206.914 + 18.0959i −0.642592 + 0.0561984i
\(323\) −274.821 + 274.821i −0.850840 + 0.850840i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) −238.186 + 408.479i −0.732880 + 1.25686i
\(326\) 53.1321 + 92.0274i 0.162982 + 0.282293i
\(327\) −98.0933 + 26.2840i −0.299980 + 0.0803793i
\(328\) −43.2604 + 43.2604i −0.131891 + 0.131891i
\(329\) 92.0839 522.135i 0.279890 1.58704i
\(330\) −148.460 194.341i −0.449878 0.588912i
\(331\) −11.5185 + 19.9506i −0.0347990 + 0.0602736i −0.882900 0.469560i \(-0.844412\pi\)
0.848101 + 0.529834i \(0.177746\pi\)
\(332\) 20.7071 77.2798i 0.0623707 0.232771i
\(333\) 66.8597 + 17.9150i 0.200780 + 0.0537988i
\(334\) 200.054 + 115.501i 0.598965 + 0.345812i
\(335\) −1.95877 + 14.6348i −0.00584706 + 0.0436860i
\(336\) 16.5856 + 45.5732i 0.0493619 + 0.135635i
\(337\) −438.660 438.660i −1.30166 1.30166i −0.927271 0.374391i \(-0.877852\pi\)
−0.374391 0.927271i \(-0.622148\pi\)
\(338\) −69.0837 257.824i −0.204390 0.762792i
\(339\) 148.435 85.6989i 0.437861 0.252799i
\(340\) 86.1359 + 209.223i 0.253341 + 0.615362i
\(341\) 553.914 959.408i 1.62438 2.81351i
\(342\) −51.5322 51.5322i −0.150679 0.150679i
\(343\) −331.321 + 88.7426i −0.965951 + 0.258725i
\(344\) 58.7238i 0.170709i
\(345\) −23.3292 180.200i −0.0676210 0.522317i
\(346\) −141.577 245.218i −0.409181 0.708723i
\(347\) −118.344 + 441.664i −0.341048 + 1.27281i 0.556114 + 0.831106i \(0.312292\pi\)
−0.897162 + 0.441702i \(0.854375\pi\)
\(348\) −20.8002 77.6275i −0.0597707 0.223067i
\(349\) 70.3408i 0.201549i −0.994909 0.100775i \(-0.967868\pi\)
0.994909 0.100775i \(-0.0321321\pi\)
\(350\) −20.5004 246.637i −0.0585726 0.704677i
\(351\) 98.2801 0.280000
\(352\) −109.108 + 29.2353i −0.309965 + 0.0830549i
\(353\) −161.135 43.1761i −0.456474 0.122312i 0.0232531 0.999730i \(-0.492598\pi\)
−0.479727 + 0.877418i \(0.659264\pi\)
\(354\) 65.6219 37.8868i 0.185373 0.107025i
\(355\) 58.9768 7.63534i 0.166132 0.0215080i
\(356\) −287.853 −0.808575
\(357\) 157.340 + 224.720i 0.440727 + 0.629467i
\(358\) −120.088 + 120.088i −0.335440 + 0.335440i
\(359\) 446.981 + 258.064i 1.24507 + 0.718842i 0.970122 0.242616i \(-0.0780056\pi\)
0.274949 + 0.961459i \(0.411339\pi\)
\(360\) −39.2317 + 16.1515i −0.108977 + 0.0448652i
\(361\) −32.9687 57.1034i −0.0913260 0.158181i
\(362\) 297.562 79.7314i 0.821994 0.220253i
\(363\) 340.142 340.142i 0.937031 0.937031i
\(364\) 202.840 + 170.214i 0.557253 + 0.467622i
\(365\) −108.199 14.4817i −0.296436 0.0396759i
\(366\) 4.30710 7.46012i 0.0117680 0.0203828i
\(367\) 130.270 486.174i 0.354959 1.32472i −0.525577 0.850746i \(-0.676151\pi\)
0.880536 0.473979i \(-0.157183\pi\)
\(368\) −81.0655 21.7214i −0.220287 0.0590256i
\(369\) −56.1969 32.4453i −0.152295 0.0879276i
\(370\) −129.648 + 99.0399i −0.350401 + 0.267676i
\(371\) 18.7149 22.3020i 0.0504444 0.0601133i
\(372\) −135.897 135.897i −0.365316 0.365316i
\(373\) 99.5820 + 371.645i 0.266976 + 0.996368i 0.961030 + 0.276445i \(0.0891563\pi\)
−0.694054 + 0.719923i \(0.744177\pi\)
\(374\) −553.338 + 319.470i −1.47951 + 0.854197i
\(375\) 214.832 26.8731i 0.572886 0.0716616i
\(376\) 107.115 185.529i 0.284880 0.493427i
\(377\) −310.277 310.277i −0.823016 0.823016i
\(378\) −42.1376 + 29.5030i −0.111475 + 0.0780502i
\(379\) 352.609i 0.930366i 0.885214 + 0.465183i \(0.154012\pi\)
−0.885214 + 0.465183i \(0.845988\pi\)
\(380\) 170.352 22.0544i 0.448295 0.0580378i
\(381\) 52.8250 + 91.4955i 0.138648 + 0.240146i
\(382\) −41.1168 + 153.450i −0.107636 + 0.401701i
\(383\) 15.6711 + 58.4854i 0.0409167 + 0.152703i 0.983362 0.181658i \(-0.0581462\pi\)
−0.942445 + 0.334361i \(0.891480\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 682.646 149.775i 1.77311 0.389026i
\(386\) −8.19212 −0.0212231
\(387\) 60.1636 16.1208i 0.155462 0.0416558i
\(388\) 153.163 + 41.0399i 0.394750 + 0.105773i
\(389\) −623.238 + 359.827i −1.60215 + 0.925004i −0.611099 + 0.791554i \(0.709272\pi\)
−0.991056 + 0.133450i \(0.957395\pi\)
\(390\) −141.414 + 183.475i −0.362600 + 0.470449i
\(391\) −474.723 −1.21413
\(392\) −138.065 12.0882i −0.352206 0.0308371i
\(393\) 71.7901 71.7901i 0.182672 0.182672i
\(394\) −69.8135 40.3068i −0.177192 0.102302i
\(395\) −349.364 145.593i −0.884465 0.368590i
\(396\) −59.9043 103.757i −0.151273 0.262013i
\(397\) 93.8233 25.1399i 0.236331 0.0633246i −0.138710 0.990333i \(-0.544295\pi\)
0.375040 + 0.927008i \(0.377629\pi\)
\(398\) −98.8197 + 98.8197i −0.248291 + 0.248291i
\(399\) 195.707 71.2244i 0.490494 0.178507i
\(400\) 26.2975 96.4803i 0.0657437 0.241201i
\(401\) −74.7359 + 129.446i −0.186374 + 0.322809i −0.944039 0.329835i \(-0.893007\pi\)
0.757665 + 0.652644i \(0.226340\pi\)
\(402\) −1.87217 + 6.98702i −0.00465713 + 0.0173807i
\(403\) −1013.59 271.591i −2.51512 0.673924i
\(404\) −195.595 112.927i −0.484146 0.279522i
\(405\) −27.3174 35.7598i −0.0674503 0.0882958i
\(406\) 226.174 + 39.8882i 0.557079 + 0.0982468i
\(407\) −325.777 325.777i −0.800436 0.800436i
\(408\) 28.6886 + 107.067i 0.0703153 + 0.262420i
\(409\) 316.278 182.603i 0.773295 0.446462i −0.0607535 0.998153i \(-0.519350\pi\)
0.834049 + 0.551690i \(0.186017\pi\)
\(410\) 141.432 58.2266i 0.344955 0.142016i
\(411\) −69.6102 + 120.568i −0.169368 + 0.293354i
\(412\) −278.299 278.299i −0.675483 0.675483i
\(413\) 18.8658 + 215.718i 0.0456799 + 0.522320i
\(414\) 89.0161i 0.215015i
\(415\) −122.103 + 158.420i −0.294223 + 0.381735i
\(416\) 53.4969 + 92.6594i 0.128598 + 0.222739i
\(417\) −6.78140 + 25.3085i −0.0162624 + 0.0606919i
\(418\) 125.547 + 468.546i 0.300351 + 1.12092i
\(419\) 373.960i 0.892507i −0.894907 0.446254i \(-0.852758\pi\)
0.894907 0.446254i \(-0.147242\pi\)
\(420\) 5.55321 121.116i 0.0132219 0.288372i
\(421\) 414.109 0.983631 0.491816 0.870699i \(-0.336333\pi\)
0.491816 + 0.870699i \(0.336333\pi\)
\(422\) 470.389 126.040i 1.11467 0.298674i
\(423\) 219.483 + 58.8102i 0.518872 + 0.139031i
\(424\) 10.1878 5.88192i 0.0240278 0.0138725i
\(425\) 2.43500 565.645i 0.00572941 1.33093i
\(426\) 29.1338 0.0683891
\(427\) 14.1191 + 20.1656i 0.0330659 + 0.0472263i
\(428\) 230.315 230.315i 0.538120 0.538120i
\(429\) −566.515 327.078i −1.32055 0.762419i
\(430\) −56.4733 + 135.513i −0.131333 + 0.315146i
\(431\) −258.753 448.173i −0.600355 1.03985i −0.992767 0.120056i \(-0.961693\pi\)
0.392412 0.919789i \(-0.371641\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) −28.4380 + 28.4380i −0.0656767 + 0.0656767i −0.739182 0.673506i \(-0.764788\pi\)
0.673506 + 0.739182i \(0.264788\pi\)
\(434\) 516.107 187.829i 1.18919 0.432785i
\(435\) −26.6533 + 199.139i −0.0612720 + 0.457791i
\(436\) 58.6321 101.554i 0.134477 0.232921i
\(437\) −93.2794 + 348.123i −0.213454 + 0.796621i
\(438\) −51.6570 13.8415i −0.117938 0.0316015i
\(439\) −241.933 139.680i −0.551100 0.318178i 0.198466 0.980108i \(-0.436404\pi\)
−0.749565 + 0.661930i \(0.769738\pi\)
\(440\) 279.896 + 37.4620i 0.636126 + 0.0851410i
\(441\) −25.5169 144.768i −0.0578614 0.328273i
\(442\) 427.949 + 427.949i 0.968210 + 0.968210i
\(443\) −152.194 567.996i −0.343553 1.28216i −0.894293 0.447482i \(-0.852321\pi\)
0.550740 0.834677i \(-0.314346\pi\)
\(444\) −69.2182 + 39.9632i −0.155897 + 0.0900071i
\(445\) 664.259 + 276.821i 1.49272 + 0.622071i
\(446\) 34.8821 60.4175i 0.0782109 0.135465i
\(447\) −40.3078 40.3078i −0.0901739 0.0901739i
\(448\) −50.7525 23.6683i −0.113287 0.0528310i
\(449\) 515.916i 1.14903i 0.818493 + 0.574517i \(0.194810\pi\)
−0.818493 + 0.574517i \(0.805190\pi\)
\(450\) 106.065 + 0.456591i 0.235700 + 0.00101465i
\(451\) 215.957 + 374.048i 0.478840 + 0.829375i
\(452\) −51.2237 + 191.169i −0.113327 + 0.422941i
\(453\) 127.478 + 475.754i 0.281408 + 1.05023i
\(454\) 244.162i 0.537802i
\(455\) −304.390 587.859i −0.668988 1.29200i
\(456\) 84.1517 0.184543
\(457\) −281.008 + 75.2958i −0.614896 + 0.164761i −0.552807 0.833310i \(-0.686443\pi\)
−0.0620898 + 0.998071i \(0.519777\pi\)
\(458\) −28.6941 7.68857i −0.0626510 0.0167873i
\(459\) −101.817 + 58.7841i −0.221824 + 0.128070i
\(460\) 166.181 + 128.084i 0.361262 + 0.278444i
\(461\) 431.271 0.935511 0.467756 0.883858i \(-0.345063\pi\)
0.467756 + 0.883858i \(0.345063\pi\)
\(462\) 341.080 29.8294i 0.738268 0.0645659i
\(463\) 81.4930 81.4930i 0.176011 0.176011i −0.613603 0.789614i \(-0.710281\pi\)
0.789614 + 0.613603i \(0.210281\pi\)
\(464\) 80.3659 + 46.3993i 0.173202 + 0.0999984i
\(465\) 182.912 + 444.291i 0.393359 + 0.955465i
\(466\) 141.770 + 245.553i 0.304227 + 0.526937i
\(467\) −213.017 + 57.0779i −0.456140 + 0.122222i −0.479571 0.877503i \(-0.659208\pi\)
0.0234309 + 0.999725i \(0.492541\pi\)
\(468\) −80.2454 + 80.2454i −0.171465 + 0.171465i
\(469\) −15.8348 13.2879i −0.0337629 0.0283323i
\(470\) −425.601 + 325.122i −0.905534 + 0.691749i
\(471\) −153.075 + 265.133i −0.324999 + 0.562916i
\(472\) −22.6456 + 84.5146i −0.0479780 + 0.179056i
\(473\) −400.451 107.301i −0.846619 0.226851i
\(474\) −160.578 92.7100i −0.338773 0.195591i
\(475\) −414.320 112.930i −0.872252 0.237748i
\(476\) −311.950 55.0157i −0.655357 0.115579i
\(477\) 8.82288 + 8.82288i 0.0184966 + 0.0184966i
\(478\) 103.503 + 386.279i 0.216534 + 0.808115i
\(479\) 322.538 186.218i 0.673357 0.388763i −0.123990 0.992283i \(-0.539569\pi\)
0.797348 + 0.603520i \(0.206236\pi\)
\(480\) 18.8450 45.2202i 0.0392603 0.0942088i
\(481\) −218.199 + 377.932i −0.453636 + 0.785721i
\(482\) 91.1491 + 91.1491i 0.189106 + 0.189106i
\(483\) 230.547 + 107.515i 0.477324 + 0.222599i
\(484\) 555.450i 1.14762i
\(485\) −313.977 241.999i −0.647376 0.498966i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) −95.0398 + 354.693i −0.195154 + 0.728323i 0.797073 + 0.603882i \(0.206380\pi\)
−0.992227 + 0.124441i \(0.960286\pi\)
\(488\) 2.57443 + 9.60789i 0.00527546 + 0.0196883i
\(489\) 130.146i 0.266148i
\(490\) 306.978 + 160.669i 0.626486 + 0.327896i
\(491\) 8.71393 0.0177473 0.00887366 0.999961i \(-0.497175\pi\)
0.00887366 + 0.999961i \(0.497175\pi\)
\(492\) 72.3760 19.3931i 0.147106 0.0394168i
\(493\) 507.029 + 135.858i 1.02846 + 0.275574i
\(494\) 397.912 229.734i 0.805489 0.465049i
\(495\) 38.4561 + 297.042i 0.0776892 + 0.600086i
\(496\) 221.920 0.447419
\(497\) −35.1882 + 75.4550i −0.0708013 + 0.151821i
\(498\) −69.2872 + 69.2872i −0.139131 + 0.139131i
\(499\) −233.352 134.726i −0.467640 0.269992i 0.247611 0.968860i \(-0.420354\pi\)
−0.715251 + 0.698867i \(0.753688\pi\)
\(500\) −153.468 + 197.351i −0.306936 + 0.394703i
\(501\) −141.460 245.015i −0.282355 0.489053i
\(502\) 380.843 102.047i 0.758651 0.203280i
\(503\) 308.184 308.184i 0.612693 0.612693i −0.330954 0.943647i \(-0.607371\pi\)
0.943647 + 0.330954i \(0.107371\pi\)
\(504\) 10.3161 58.4943i 0.0204684 0.116060i
\(505\) 342.762 + 448.693i 0.678737 + 0.888501i
\(506\) −296.247 + 513.115i −0.585468 + 1.01406i
\(507\) −84.6099 + 315.768i −0.166883 + 0.622817i
\(508\) −117.837 31.5744i −0.231963 0.0621543i
\(509\) 568.117 + 328.003i 1.11614 + 0.644406i 0.940414 0.340032i \(-0.110438\pi\)
0.175730 + 0.984438i \(0.443771\pi\)
\(510\) 36.7615 274.662i 0.0720814 0.538552i
\(511\) 98.2409 117.071i 0.192252 0.229102i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 23.1012 + 86.2150i 0.0450317 + 0.168060i
\(514\) 118.725 68.5457i 0.230982 0.133357i
\(515\) 374.578 + 909.846i 0.727336 + 1.76669i
\(516\) −35.9608 + 62.2860i −0.0696915 + 0.120709i
\(517\) −1069.44 1069.44i −2.06855 2.06855i
\(518\) −19.8997 227.540i −0.0384164 0.439266i
\(519\) 346.791i 0.668190i
\(520\) −34.3429 265.271i −0.0660440 0.510136i
\(521\) 91.8665 + 159.117i 0.176327 + 0.305408i 0.940620 0.339462i \(-0.110245\pi\)
−0.764293 + 0.644870i \(0.776912\pi\)
\(522\) −25.4750 + 95.0738i −0.0488026 + 0.182134i
\(523\) −213.259 795.892i −0.407760 1.52178i −0.798908 0.601454i \(-0.794588\pi\)
0.391147 0.920328i \(-0.372078\pi\)
\(524\) 117.233i 0.223727i
\(525\) −129.290 + 274.152i −0.246266 + 0.522194i
\(526\) 295.091 0.561010
\(527\) 1212.52 324.893i 2.30079 0.616495i
\(528\) 133.629 + 35.8058i 0.253085 + 0.0678140i
\(529\) 76.8901 44.3925i 0.145350 0.0839179i
\(530\) −29.1662 + 3.77596i −0.0550306 + 0.00712445i
\(531\) −92.8034 −0.174771
\(532\) −101.640 + 217.949i −0.191052 + 0.409678i
\(533\) 289.287 289.287i 0.542752 0.542752i
\(534\) 305.314 + 176.273i 0.571749 + 0.330099i
\(535\) −752.973 + 309.994i −1.40743 + 0.579429i
\(536\) −4.17626 7.23350i −0.00779154 0.0134953i
\(537\) 200.910 53.8338i 0.374135 0.100249i
\(538\) 205.439 205.439i 0.381858 0.381858i
\(539\) −334.705 + 919.408i −0.620974 + 1.70577i
\(540\) 51.5023 + 6.89321i 0.0953746 + 0.0127652i
\(541\) 190.462 329.891i 0.352056 0.609779i −0.634553 0.772879i \(-0.718816\pi\)
0.986610 + 0.163100i \(0.0521493\pi\)
\(542\) −40.4616 + 151.005i −0.0746524 + 0.278606i
\(543\) −364.437 97.6506i −0.671155 0.179835i
\(544\) −110.844 63.9960i −0.203758 0.117640i
\(545\) −232.963 + 177.964i −0.427456 + 0.326539i
\(546\) −110.910 304.753i −0.203132 0.558156i
\(547\) 231.815 + 231.815i 0.423794 + 0.423794i 0.886508 0.462714i \(-0.153124\pi\)
−0.462714 + 0.886508i \(0.653124\pi\)
\(548\) −41.6072 155.280i −0.0759255 0.283358i
\(549\) −9.13674 + 5.27510i −0.0166425 + 0.00960856i
\(550\) −609.870 355.618i −1.10886 0.646578i
\(551\) 199.254 345.119i 0.361623 0.626350i
\(552\) 72.6814 + 72.6814i 0.131669 + 0.131669i
\(553\) 434.064 303.914i 0.784925 0.549572i
\(554\) 99.6466i 0.179867i
\(555\) 198.162 25.6547i 0.357049 0.0462247i
\(556\) −15.1273 26.2013i −0.0272075 0.0471247i
\(557\) −255.272 + 952.690i −0.458299 + 1.71039i 0.219906 + 0.975521i \(0.429425\pi\)
−0.678204 + 0.734873i \(0.737242\pi\)
\(558\) 60.9212 + 227.361i 0.109178 + 0.407457i
\(559\) 392.693i 0.702491i
\(560\) 94.3569 + 103.425i 0.168494 + 0.184688i
\(561\) 782.538 1.39490
\(562\) 235.815 63.1864i 0.419599 0.112431i
\(563\) −24.4993 6.56455i −0.0435155 0.0116600i 0.236996 0.971511i \(-0.423837\pi\)
−0.280511 + 0.959851i \(0.590504\pi\)
\(564\) −227.225 + 131.189i −0.402882 + 0.232604i
\(565\) 302.049 391.888i 0.534600 0.693608i
\(566\) −39.8429 −0.0703938
\(567\) 62.7604 5.48877i 0.110689 0.00968037i
\(568\) −23.7876 + 23.7876i −0.0418796 + 0.0418796i
\(569\) −731.187 422.151i −1.28504 0.741917i −0.307273 0.951621i \(-0.599417\pi\)
−0.977765 + 0.209704i \(0.932750\pi\)
\(570\) −194.191 80.9268i −0.340686 0.141977i
\(571\) −442.183 765.884i −0.774402 1.34130i −0.935130 0.354304i \(-0.884718\pi\)
0.160728 0.986999i \(-0.448616\pi\)
\(572\) 729.616 195.500i 1.27555 0.341783i
\(573\) 137.579 137.579i 0.240104 0.240104i
\(574\) −37.1898 + 210.874i −0.0647905 + 0.367376i
\(575\) −260.308 455.383i −0.452710 0.791971i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −202.316 + 755.053i −0.350634 + 1.30858i 0.535257 + 0.844689i \(0.320215\pi\)
−0.885891 + 0.463894i \(0.846452\pi\)
\(578\) −304.537 81.6004i −0.526881 0.141177i
\(579\) 8.68906 + 5.01663i 0.0150070 + 0.00866430i
\(580\) −140.834 184.359i −0.242817 0.317860i
\(581\) −95.7642 263.137i −0.164827 0.452903i
\(582\) −137.322 137.322i −0.235949 0.235949i
\(583\) −21.4950 80.2204i −0.0368696 0.137599i
\(584\) 53.4793 30.8763i 0.0915741 0.0528703i
\(585\) 262.347 108.007i 0.448457 0.184627i
\(586\) −78.8568 + 136.584i −0.134568 + 0.233078i
\(587\) −198.669 198.669i −0.338449 0.338449i 0.517334 0.855783i \(-0.326924\pi\)
−0.855783 + 0.517334i \(0.826924\pi\)
\(588\) 139.037 + 97.3685i 0.236458 + 0.165593i
\(589\) 953.000i 1.61800i
\(590\) 133.534 173.251i 0.226328 0.293646i
\(591\) 49.3656 + 85.5037i 0.0835289 + 0.144676i
\(592\) 23.8867 89.1462i 0.0403491 0.150585i
\(593\) 162.343 + 605.873i 0.273766 + 1.02171i 0.956664 + 0.291194i \(0.0940526\pi\)
−0.682898 + 0.730514i \(0.739281\pi\)
\(594\) 146.735i 0.247029i
\(595\) 666.959 + 426.951i 1.12094 + 0.717565i
\(596\) 65.8223 0.110440
\(597\) 165.329 44.2997i 0.276932 0.0742038i
\(598\) 542.094 + 145.254i 0.906512 + 0.242899i
\(599\) 335.297 193.584i 0.559762 0.323179i −0.193288 0.981142i \(-0.561915\pi\)
0.753050 + 0.657963i \(0.228582\pi\)
\(600\) −86.9745 + 86.2289i −0.144958 + 0.143715i
\(601\) 267.104 0.444433 0.222217 0.974997i \(-0.428671\pi\)
0.222217 + 0.974997i \(0.428671\pi\)
\(602\) −117.884 168.367i −0.195820 0.279679i
\(603\) 6.26439 6.26439i 0.0103887 0.0103887i
\(604\) −492.537 284.366i −0.815459 0.470805i
\(605\) 534.164 1281.77i 0.882915 2.11864i
\(606\) 138.306 + 239.554i 0.228228 + 0.395303i
\(607\) −335.219 + 89.8215i −0.552255 + 0.147976i −0.524146 0.851629i \(-0.675615\pi\)
−0.0281090 + 0.999605i \(0.508949\pi\)
\(608\) −68.7096 + 68.7096i −0.113009 + 0.113009i
\(609\) −215.468 180.811i −0.353805 0.296898i
\(610\) 3.29886 24.6473i 0.00540797 0.0404054i
\(611\) −716.291 + 1240.65i −1.17233 + 2.03053i
\(612\) 35.1363 131.130i 0.0574122 0.214265i
\(613\) 399.843 + 107.138i 0.652272 + 0.174776i 0.569756 0.821814i \(-0.307038\pi\)
0.0825161 + 0.996590i \(0.473704\pi\)
\(614\) 37.8277 + 21.8398i 0.0616086 + 0.0355698i
\(615\) −185.667 24.8502i −0.301898 0.0404069i
\(616\) −254.135 + 302.846i −0.412556 + 0.491633i
\(617\) 637.339 + 637.339i 1.03297 + 1.03297i 0.999438 + 0.0335273i \(0.0106741\pi\)
0.0335273 + 0.999438i \(0.489326\pi\)
\(618\) 124.758 + 465.603i 0.201874 + 0.753403i
\(619\) −956.137 + 552.026i −1.54465 + 0.891803i −0.546113 + 0.837712i \(0.683893\pi\)
−0.998536 + 0.0540914i \(0.982774\pi\)
\(620\) −512.109 213.415i −0.825983 0.344218i
\(621\) −54.5110 + 94.4158i −0.0877794 + 0.152038i
\(622\) −170.194 170.194i −0.273624 0.273624i
\(623\) −825.302 + 577.842i −1.32472 + 0.927516i
\(624\) 131.040i 0.210000i
\(625\) 543.936 307.828i 0.870298 0.492525i
\(626\) 277.434 + 480.529i 0.443185 + 0.767619i
\(627\) 153.763 573.850i 0.245235 0.915231i
\(628\) −91.4954 341.465i −0.145693 0.543735i
\(629\) 522.044i 0.829959i
\(630\) −80.0584 + 125.063i −0.127077 + 0.198512i
\(631\) −1130.27 −1.79124 −0.895618 0.444824i \(-0.853266\pi\)
−0.895618 + 0.444824i \(0.853266\pi\)
\(632\) 206.809 55.4143i 0.327230 0.0876809i
\(633\) −576.106 154.367i −0.910120 0.243866i
\(634\) −174.763 + 100.900i −0.275652 + 0.159148i
\(635\) 241.561 + 186.184i 0.380411 + 0.293202i
\(636\) −14.4077 −0.0226536
\(637\) 923.255 + 80.8349i 1.44938 + 0.126899i
\(638\) 463.252 463.252i 0.726101 0.726101i
\(639\) −30.9010 17.8407i −0.0483584 0.0279197i
\(640\) 21.5353 + 52.3090i 0.0336489 + 0.0817328i
\(641\) 251.753 + 436.050i 0.392751 + 0.680265i 0.992811 0.119690i \(-0.0381901\pi\)
−0.600060 + 0.799955i \(0.704857\pi\)
\(642\) −385.325 + 103.248i −0.600195 + 0.160822i
\(643\) 363.947 363.947i 0.566015 0.566015i −0.364995 0.931010i \(-0.618929\pi\)
0.931010 + 0.364995i \(0.118929\pi\)
\(644\) −276.027 + 100.455i −0.428613 + 0.155987i
\(645\) 142.883 109.151i 0.221525 0.169226i
\(646\) −274.821 + 476.004i −0.425420 + 0.736849i
\(647\) −3.62332 + 13.5224i −0.00560018 + 0.0209002i −0.968669 0.248354i \(-0.920110\pi\)
0.963069 + 0.269254i \(0.0867771\pi\)
\(648\) 24.5885 + 6.58846i 0.0379452 + 0.0101674i
\(649\) 534.946 + 308.851i 0.824262 + 0.475888i
\(650\) −175.854 + 645.175i −0.270545 + 0.992576i
\(651\) −662.435 116.827i −1.01757 0.179458i
\(652\) 106.264 + 106.264i 0.162982 + 0.162982i
\(653\) 221.348 + 826.082i 0.338971 + 1.26506i 0.899500 + 0.436921i \(0.143931\pi\)
−0.560529 + 0.828135i \(0.689402\pi\)
\(654\) −124.377 + 71.8093i −0.190179 + 0.109800i
\(655\) 112.740 270.530i 0.172122 0.413023i
\(656\) −43.2604 + 74.9291i −0.0659457 + 0.114221i
\(657\) 46.3144 + 46.3144i 0.0704938 + 0.0704938i
\(658\) −65.3255 746.954i −0.0992789 1.13519i
\(659\) 254.644i 0.386410i −0.981158 0.193205i \(-0.938112\pi\)
0.981158 0.193205i \(-0.0618882\pi\)
\(660\) −273.933 211.135i −0.415051 0.319901i
\(661\) 2.28118 + 3.95112i 0.00345111 + 0.00597749i 0.867746 0.497008i \(-0.165568\pi\)
−0.864295 + 0.502986i \(0.832235\pi\)
\(662\) −8.43210 + 31.4690i −0.0127373 + 0.0475363i
\(663\) −191.844 715.972i −0.289358 1.07990i
\(664\) 113.146i 0.170400i
\(665\) 444.144 405.201i 0.667885 0.609325i
\(666\) 97.8893 0.146981
\(667\) 470.172 125.982i 0.704906 0.188879i
\(668\) 315.556 + 84.5529i 0.472389 + 0.126576i
\(669\) −73.9961 + 42.7216i −0.110607 + 0.0638590i
\(670\) 2.68099 + 20.7085i 0.00400148 + 0.0309082i
\(671\) 70.2224 0.104653
\(672\) 39.3373 + 56.1834i 0.0585377 + 0.0836063i
\(673\) 183.435 183.435i 0.272563 0.272563i −0.557568 0.830131i \(-0.688265\pi\)
0.830131 + 0.557568i \(0.188265\pi\)
\(674\) −759.782 438.660i −1.12727 0.650831i
\(675\) −112.219 65.4356i −0.166251 0.0969416i
\(676\) −188.740 326.907i −0.279201 0.483591i
\(677\) −1033.53 + 276.933i −1.52663 + 0.409059i −0.921917 0.387386i \(-0.873378\pi\)
−0.604711 + 0.796445i \(0.706711\pi\)
\(678\) 171.398 171.398i 0.252799 0.252799i
\(679\) 521.518 189.798i 0.768068 0.279526i
\(680\) 194.245 + 254.276i 0.285654 + 0.373935i
\(681\) −149.518 + 258.973i −0.219557 + 0.380283i
\(682\) 405.493 1513.32i 0.594565 2.21895i
\(683\) 314.257 + 84.2049i 0.460113 + 0.123287i 0.481427 0.876486i \(-0.340118\pi\)
−0.0213146 + 0.999773i \(0.506785\pi\)
\(684\) −89.2563 51.5322i −0.130492 0.0753394i
\(685\) −53.3153 + 398.342i −0.0778325 + 0.581522i
\(686\) −420.111 + 242.497i −0.612407 + 0.353494i
\(687\) 25.7265 + 25.7265i 0.0374475 + 0.0374475i
\(688\) −21.4944 80.2182i −0.0312418 0.116596i
\(689\) −68.1269 + 39.3331i −0.0988780 + 0.0570872i
\(690\) −97.8259 237.618i −0.141777 0.344374i
\(691\) −391.517 + 678.127i −0.566595 + 0.981371i 0.430304 + 0.902684i \(0.358406\pi\)
−0.996899 + 0.0786873i \(0.974927\pi\)
\(692\) −283.153 283.153i −0.409181 0.409181i
\(693\) −380.036 177.229i −0.548393 0.255742i
\(694\) 646.642i 0.931760i
\(695\) 9.71114 + 75.0107i 0.0139729 + 0.107929i
\(696\) −56.8272 98.4277i −0.0816483 0.141419i
\(697\) −126.667 + 472.729i −0.181732 + 0.678233i
\(698\) −25.7465 96.0873i −0.0368861 0.137661i
\(699\) 347.264i 0.496801i
\(700\) −118.279 329.409i −0.168971 0.470584i
\(701\) −451.488 −0.644063 −0.322031 0.946729i \(-0.604366\pi\)
−0.322031 + 0.946729i \(0.604366\pi\)
\(702\) 134.253 35.9730i 0.191244 0.0512436i
\(703\) −382.825 102.578i −0.544559 0.145914i
\(704\) −138.343 + 79.8724i −0.196510 + 0.113455i
\(705\) 650.514 84.2178i 0.922715 0.119458i
\(706\) −235.918 −0.334162
\(707\) −787.481 + 68.8699i −1.11384 + 0.0974114i
\(708\) 75.7737 75.7737i 0.107025 0.107025i
\(709\) 389.602 + 224.937i 0.549509 + 0.317259i 0.748924 0.662656i \(-0.230571\pi\)
−0.199415 + 0.979915i \(0.563904\pi\)
\(710\) 77.7691 32.0171i 0.109534 0.0450945i
\(711\) 113.546 + 196.668i 0.159699 + 0.276607i
\(712\) −393.214 + 105.361i −0.552267 + 0.147979i
\(713\) 823.101 823.101i 1.15442 1.15442i
\(714\) 297.183 + 249.383i 0.416223 + 0.349275i
\(715\) −1871.69 250.513i −2.61775 0.350368i
\(716\) −120.088 + 207.998i −0.167720 + 0.290500i
\(717\) 126.765 473.093i 0.176799 0.659823i
\(718\) 705.045 + 188.916i 0.981957 + 0.263115i
\(719\) 825.620 + 476.672i 1.14829 + 0.662965i 0.948470 0.316868i \(-0.102631\pi\)
0.199820 + 0.979833i \(0.435964\pi\)
\(720\) −47.6797 + 36.4231i −0.0662218 + 0.0505877i
\(721\) −1356.57 239.246i −1.88152 0.331825i
\(722\) −65.9374 65.9374i −0.0913260 0.0913260i
\(723\) −40.8610 152.495i −0.0565159 0.210920i
\(724\) 377.293 217.830i 0.521123 0.300871i
\(725\) 147.700 + 560.869i 0.203724 + 0.773612i
\(726\) 340.142 589.143i 0.468515 0.811492i
\(727\) 438.595 + 438.595i 0.603295 + 0.603295i 0.941185 0.337890i \(-0.109713\pi\)
−0.337890 + 0.941185i \(0.609713\pi\)
\(728\) 339.388 + 158.272i 0.466192 + 0.217407i
\(729\) 27.0000i 0.0370370i
\(730\) −153.104 + 19.8213i −0.209731 + 0.0271525i
\(731\) −234.881 406.825i −0.321314 0.556532i
\(732\) 3.15302 11.7672i 0.00430740 0.0160754i
\(733\) −196.927 734.941i −0.268659 1.00265i −0.959973 0.280093i \(-0.909635\pi\)
0.691314 0.722554i \(-0.257032\pi\)
\(734\) 711.808i 0.969766i
\(735\) −227.210 358.400i −0.309130 0.487619i
\(736\) −118.688 −0.161261
\(737\) −56.9578 + 15.2618i −0.0772833 + 0.0207080i
\(738\) −88.6421 23.7516i −0.120111 0.0321837i
\(739\) −557.758 + 322.022i −0.754747 + 0.435754i −0.827407 0.561603i \(-0.810185\pi\)
0.0726593 + 0.997357i \(0.476851\pi\)
\(740\) −140.852 + 182.746i −0.190340 + 0.246954i
\(741\) −562.732 −0.759422
\(742\) 17.4019 37.3153i 0.0234527 0.0502901i
\(743\) −166.104 + 166.104i −0.223558 + 0.223558i −0.809995 0.586437i \(-0.800530\pi\)
0.586437 + 0.809995i \(0.300530\pi\)
\(744\) −235.381 135.897i −0.316373 0.182658i
\(745\) −151.894 63.2998i −0.203884 0.0849662i
\(746\) 272.063 + 471.227i 0.364696 + 0.631672i
\(747\) 115.920 31.0606i 0.155180 0.0415805i
\(748\) −638.939 + 638.939i −0.854197 + 0.854197i
\(749\) 197.996 1122.68i 0.264347 1.49890i
\(750\) 283.630 115.343i 0.378173 0.153791i
\(751\) 560.910 971.525i 0.746884 1.29364i −0.202425 0.979298i \(-0.564882\pi\)
0.949309 0.314344i \(-0.101785\pi\)
\(752\) 78.4136 292.644i 0.104273 0.389154i
\(753\) −466.435 124.981i −0.619436 0.165977i
\(754\) −537.416 310.277i −0.712753 0.411508i
\(755\) 863.127 + 1129.88i 1.14321 + 1.49652i
\(756\) −46.7621 + 55.7253i −0.0618547 + 0.0737106i
\(757\) 646.859 + 646.859i 0.854504 + 0.854504i 0.990684 0.136180i \(-0.0434827\pi\)
−0.136180 + 0.990684i \(0.543483\pi\)
\(758\) 129.064 + 481.673i 0.170269 + 0.635452i
\(759\) 628.435 362.827i 0.827977 0.478033i
\(760\) 224.633 92.4801i 0.295570 0.121684i
\(761\) 273.840 474.305i 0.359842 0.623265i −0.628092 0.778139i \(-0.716164\pi\)
0.987934 + 0.154874i \(0.0494971\pi\)
\(762\) 105.650 + 105.650i 0.138648 + 0.138648i
\(763\) −35.7575 408.864i −0.0468644 0.535863i
\(764\) 224.666i