Properties

Label 210.3.v.b.193.1
Level 210
Weight 3
Character 210.193
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.1
Character \(\chi\) \(=\) 210.193
Dual form 210.3.v.b.37.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.95862 - 0.641960i) q^{5} -2.44949 q^{6} +(2.95853 + 6.34406i) q^{7} +(2.00000 + 2.00000i) q^{8} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.95862 - 0.641960i) q^{5} -2.44949 q^{6} +(2.95853 + 6.34406i) q^{7} +(2.00000 + 2.00000i) q^{8} +(2.59808 - 1.50000i) q^{9} +(-6.53862 - 2.69191i) q^{10} +(-9.98405 + 17.2929i) q^{11} +(-3.34607 - 0.896575i) q^{12} +(-13.3742 - 13.3742i) q^{13} +(1.71935 + 9.74904i) q^{14} +(8.58371 - 1.14887i) q^{15} +(2.00000 + 3.46410i) q^{16} +(5.85604 + 21.8551i) q^{17} +(4.09808 - 1.09808i) q^{18} +(-14.8761 + 8.58869i) q^{19} +(-7.94662 - 6.07052i) q^{20} +(-7.79369 - 9.28754i) q^{21} +(-19.9681 + 19.9681i) q^{22} +(-5.43036 + 20.2664i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(24.1758 + 6.36646i) q^{25} +(-13.3742 - 23.1648i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(-1.21973 + 13.9468i) q^{28} -23.1996i q^{29} +(12.1461 + 1.57247i) q^{30} +(27.7400 - 48.0470i) q^{31} +(1.46410 + 5.46410i) q^{32} +(8.95145 - 33.4073i) q^{33} +31.9980i q^{34} +(-10.5976 - 33.3570i) q^{35} +6.00000 q^{36} +(22.2866 + 5.97166i) q^{37} +(-23.4647 + 6.28736i) q^{38} +(28.3710 + 16.3800i) q^{39} +(-8.63332 - 11.2012i) q^{40} -21.6302 q^{41} +(-7.24690 - 15.5397i) q^{42} +(14.6809 + 14.6809i) q^{43} +(-34.5858 + 19.9681i) q^{44} +(-13.8458 + 5.77007i) q^{45} +(-14.8360 + 25.6967i) q^{46} +(73.1609 + 19.6034i) q^{47} +(-4.89898 - 4.89898i) q^{48} +(-31.4942 + 37.5382i) q^{49} +(30.6944 + 17.5457i) q^{50} +(-19.5947 - 33.9390i) q^{51} +(-9.79062 - 36.5391i) q^{52} +(4.01743 - 1.07647i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(60.6084 - 79.3394i) q^{55} +(-6.77105 + 18.6052i) q^{56} +(21.0379 - 21.0379i) q^{57} +(8.49165 - 31.6913i) q^{58} +(-26.7900 - 15.4672i) q^{59} +(16.0163 + 6.59381i) q^{60} +(-1.75837 - 3.04558i) q^{61} +(55.4799 - 55.4799i) q^{62} +(17.2026 + 12.0445i) q^{63} +8.00000i q^{64} +(57.7320 + 74.9034i) q^{65} +(24.4558 - 42.3587i) q^{66} +(0.764309 + 2.85244i) q^{67} +(-11.7121 + 43.7101i) q^{68} -36.3407i q^{69} +(-2.26709 - 49.4455i) q^{70} -11.8938 q^{71} +(8.19615 + 2.19615i) q^{72} +(21.0889 - 5.65075i) q^{73} +(28.2582 + 16.3149i) q^{74} +(-43.3009 + 0.186402i) q^{75} -34.3548 q^{76} +(-139.245 - 12.1778i) q^{77} +(32.7600 + 32.7600i) q^{78} +(65.5559 - 37.8487i) q^{79} +(-7.69342 - 18.4611i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-29.5474 - 7.91720i) q^{82} +(28.2864 + 28.2864i) q^{83} +(-4.21152 - 23.8802i) q^{84} +(-15.0078 - 112.130i) q^{85} +(14.6809 + 25.4281i) q^{86} +(10.4001 + 38.8137i) q^{87} +(-54.5539 + 14.6177i) q^{88} +(-124.644 + 71.9632i) q^{89} +(-21.0257 + 2.81414i) q^{90} +(45.2788 - 124.415i) q^{91} +(-29.6720 + 29.6720i) q^{92} +(-24.8710 + 92.8197i) q^{93} +(92.7643 + 53.5575i) q^{94} +(79.2783 - 33.0382i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(56.0616 - 56.0616i) q^{97} +(-56.7618 + 39.7505i) q^{98} +59.9043i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −1.67303 + 0.448288i −0.557678 + 0.149429i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −4.95862 0.641960i −0.991724 0.128392i
\(6\) −2.44949 −0.408248
\(7\) 2.95853 + 6.34406i 0.422648 + 0.906294i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 2.59808 1.50000i 0.288675 0.166667i
\(10\) −6.53862 2.69191i −0.653862 0.269191i
\(11\) −9.98405 + 17.2929i −0.907641 + 1.57208i −0.0903080 + 0.995914i \(0.528785\pi\)
−0.817333 + 0.576166i \(0.804548\pi\)
\(12\) −3.34607 0.896575i −0.278839 0.0747146i
\(13\) −13.3742 13.3742i −1.02879 1.02879i −0.999573 0.0292138i \(-0.990700\pi\)
−0.0292138 0.999573i \(-0.509300\pi\)
\(14\) 1.71935 + 9.74904i 0.122810 + 0.696360i
\(15\) 8.58371 1.14887i 0.572247 0.0765912i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 5.85604 + 21.8551i 0.344473 + 1.28559i 0.893227 + 0.449607i \(0.148436\pi\)
−0.548753 + 0.835984i \(0.684897\pi\)
\(18\) 4.09808 1.09808i 0.227671 0.0610042i
\(19\) −14.8761 + 8.58869i −0.782950 + 0.452037i −0.837475 0.546476i \(-0.815969\pi\)
0.0545246 + 0.998512i \(0.482636\pi\)
\(20\) −7.94662 6.07052i −0.397331 0.303526i
\(21\) −7.79369 9.28754i −0.371128 0.442264i
\(22\) −19.9681 + 19.9681i −0.907641 + 0.907641i
\(23\) −5.43036 + 20.2664i −0.236103 + 0.881147i 0.741546 + 0.670902i \(0.234093\pi\)
−0.977649 + 0.210245i \(0.932574\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 24.1758 + 6.36646i 0.967031 + 0.254659i
\(26\) −13.3742 23.1648i −0.514394 0.890956i
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) −1.21973 + 13.9468i −0.0435617 + 0.498099i
\(29\) 23.1996i 0.799987i −0.916518 0.399994i \(-0.869012\pi\)
0.916518 0.399994i \(-0.130988\pi\)
\(30\) 12.1461 + 1.57247i 0.404869 + 0.0524158i
\(31\) 27.7400 48.0470i 0.894837 1.54990i 0.0608318 0.998148i \(-0.480625\pi\)
0.834006 0.551756i \(-0.186042\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 8.95145 33.4073i 0.271256 1.01234i
\(34\) 31.9980i 0.941118i
\(35\) −10.5976 33.3570i −0.302789 0.953058i
\(36\) 6.00000 0.166667
\(37\) 22.2866 + 5.97166i 0.602339 + 0.161396i 0.547087 0.837076i \(-0.315737\pi\)
0.0552528 + 0.998472i \(0.482404\pi\)
\(38\) −23.4647 + 6.28736i −0.617493 + 0.165457i
\(39\) 28.3710 + 16.3800i 0.727462 + 0.420001i
\(40\) −8.63332 11.2012i −0.215833 0.280029i
\(41\) −21.6302 −0.527565 −0.263783 0.964582i \(-0.584970\pi\)
−0.263783 + 0.964582i \(0.584970\pi\)
\(42\) −7.24690 15.5397i −0.172545 0.369993i
\(43\) 14.6809 + 14.6809i 0.341417 + 0.341417i 0.856900 0.515483i \(-0.172387\pi\)
−0.515483 + 0.856900i \(0.672387\pi\)
\(44\) −34.5858 + 19.9681i −0.786040 + 0.453820i
\(45\) −13.8458 + 5.77007i −0.307685 + 0.128224i
\(46\) −14.8360 + 25.6967i −0.322522 + 0.558625i
\(47\) 73.1609 + 19.6034i 1.55662 + 0.417094i 0.931590 0.363511i \(-0.118422\pi\)
0.625025 + 0.780604i \(0.285089\pi\)
\(48\) −4.89898 4.89898i −0.102062 0.102062i
\(49\) −31.4942 + 37.5382i −0.642738 + 0.766086i
\(50\) 30.6944 + 17.5457i 0.613889 + 0.350914i
\(51\) −19.5947 33.9390i −0.384210 0.665471i
\(52\) −9.79062 36.5391i −0.188281 0.702675i
\(53\) 4.01743 1.07647i 0.0758005 0.0203107i −0.220719 0.975337i \(-0.570841\pi\)
0.296520 + 0.955027i \(0.404174\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) 60.6084 79.3394i 1.10197 1.44253i
\(56\) −6.77105 + 18.6052i −0.120912 + 0.332235i
\(57\) 21.0379 21.0379i 0.369086 0.369086i
\(58\) 8.49165 31.6913i 0.146408 0.546401i
\(59\) −26.7900 15.4672i −0.454069 0.262157i 0.255478 0.966815i \(-0.417767\pi\)
−0.709547 + 0.704658i \(0.751100\pi\)
\(60\) 16.0163 + 6.59381i 0.266938 + 0.109897i
\(61\) −1.75837 3.04558i −0.0288257 0.0499275i 0.851253 0.524756i \(-0.175843\pi\)
−0.880078 + 0.474828i \(0.842510\pi\)
\(62\) 55.4799 55.4799i 0.894837 0.894837i
\(63\) 17.2026 + 12.0445i 0.273057 + 0.191183i
\(64\) 8.00000i 0.125000i
\(65\) 57.7320 + 74.9034i 0.888184 + 1.15236i
\(66\) 24.4558 42.3587i 0.370543 0.641799i
\(67\) 0.764309 + 2.85244i 0.0114076 + 0.0425737i 0.971395 0.237469i \(-0.0763179\pi\)
−0.959987 + 0.280043i \(0.909651\pi\)
\(68\) −11.7121 + 43.7101i −0.172237 + 0.642796i
\(69\) 36.3407i 0.526676i
\(70\) −2.26709 49.4455i −0.0323870 0.706365i
\(71\) −11.8938 −0.167518 −0.0837592 0.996486i \(-0.526693\pi\)
−0.0837592 + 0.996486i \(0.526693\pi\)
\(72\) 8.19615 + 2.19615i 0.113835 + 0.0305021i
\(73\) 21.0889 5.65075i 0.288889 0.0774075i −0.111464 0.993768i \(-0.535554\pi\)
0.400353 + 0.916361i \(0.368887\pi\)
\(74\) 28.2582 + 16.3149i 0.381868 + 0.220472i
\(75\) −43.3009 + 0.186402i −0.577345 + 0.00248536i
\(76\) −34.3548 −0.452037
\(77\) −139.245 12.1778i −1.80838 0.158153i
\(78\) 32.7600 + 32.7600i 0.420001 + 0.420001i
\(79\) 65.5559 37.8487i 0.829821 0.479097i −0.0239704 0.999713i \(-0.507631\pi\)
0.853791 + 0.520615i \(0.174297\pi\)
\(80\) −7.69342 18.4611i −0.0961678 0.230763i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −29.5474 7.91720i −0.360334 0.0965512i
\(83\) 28.2864 + 28.2864i 0.340800 + 0.340800i 0.856668 0.515868i \(-0.172531\pi\)
−0.515868 + 0.856668i \(0.672531\pi\)
\(84\) −4.21152 23.8802i −0.0501372 0.284288i
\(85\) −15.0078 112.130i −0.176563 1.31918i
\(86\) 14.6809 + 25.4281i 0.170709 + 0.295676i
\(87\) 10.4001 + 38.8137i 0.119541 + 0.446135i
\(88\) −54.5539 + 14.6177i −0.619930 + 0.166110i
\(89\) −124.644 + 71.9632i −1.40049 + 0.808575i −0.994443 0.105276i \(-0.966427\pi\)
−0.406050 + 0.913851i \(0.633094\pi\)
\(90\) −21.0257 + 2.81414i −0.233619 + 0.0312682i
\(91\) 45.2788 124.415i 0.497569 1.36720i
\(92\) −29.6720 + 29.6720i −0.322522 + 0.322522i
\(93\) −24.8710 + 92.8197i −0.267430 + 0.998061i
\(94\) 92.7643 + 53.5575i 0.986855 + 0.569761i
\(95\) 79.2783 33.0382i 0.834508 0.347771i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) 56.0616 56.0616i 0.577954 0.577954i −0.356385 0.934339i \(-0.615991\pi\)
0.934339 + 0.356385i \(0.115991\pi\)
\(98\) −56.7618 + 39.7505i −0.579202 + 0.405617i
\(99\) 59.9043i 0.605094i
\(100\) 35.5072 + 35.2028i 0.355072 + 0.352028i
\(101\) −56.4634 + 97.7974i −0.559043 + 0.968291i 0.438533 + 0.898715i \(0.355498\pi\)
−0.997577 + 0.0695765i \(0.977835\pi\)
\(102\) −14.3443 53.5337i −0.140631 0.524840i
\(103\) −50.9322 + 190.082i −0.494488 + 1.84545i 0.0383934 + 0.999263i \(0.487776\pi\)
−0.532881 + 0.846190i \(0.678891\pi\)
\(104\) 53.4969i 0.514394i
\(105\) 32.6837 + 51.0566i 0.311273 + 0.486253i
\(106\) 5.88192 0.0554898
\(107\) 157.308 + 42.1506i 1.47017 + 0.393931i 0.902990 0.429662i \(-0.141367\pi\)
0.567181 + 0.823593i \(0.308034\pi\)
\(108\) −10.0382 + 2.68973i −0.0929463 + 0.0249049i
\(109\) 50.7768 + 29.3160i 0.465843 + 0.268954i 0.714498 0.699638i \(-0.246655\pi\)
−0.248655 + 0.968592i \(0.579989\pi\)
\(110\) 111.833 86.1954i 1.01666 0.783595i
\(111\) −39.9632 −0.360028
\(112\) −16.0594 + 22.9368i −0.143387 + 0.204793i
\(113\) −69.9728 69.9728i −0.619229 0.619229i 0.326105 0.945334i \(-0.394264\pi\)
−0.945334 + 0.326105i \(0.894264\pi\)
\(114\) 36.4387 21.0379i 0.319638 0.184543i
\(115\) 39.9373 97.0071i 0.347281 0.843540i
\(116\) 23.1996 40.1829i 0.199997 0.346405i
\(117\) −54.8086 14.6859i −0.468450 0.125521i
\(118\) −30.9345 30.9345i −0.262157 0.262157i
\(119\) −121.324 + 101.810i −1.01953 + 0.855546i
\(120\) 19.4652 + 14.8697i 0.162210 + 0.123914i
\(121\) −138.862 240.517i −1.14762 1.98774i
\(122\) −1.28721 4.80395i −0.0105509 0.0393766i
\(123\) 36.1880 9.69654i 0.294211 0.0788337i
\(124\) 96.0940 55.4799i 0.774952 0.447419i
\(125\) −115.791 47.0887i −0.926331 0.376710i
\(126\) 19.0906 + 22.7497i 0.151512 + 0.180553i
\(127\) −43.1314 + 43.1314i −0.339617 + 0.339617i −0.856223 0.516606i \(-0.827195\pi\)
0.516606 + 0.856223i \(0.327195\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −31.1430 17.9804i −0.241418 0.139383i
\(130\) 51.4468 + 123.451i 0.395745 + 0.949626i
\(131\) −29.3082 50.7632i −0.223727 0.387506i 0.732210 0.681079i \(-0.238489\pi\)
−0.955937 + 0.293573i \(0.905156\pi\)
\(132\) 48.9116 48.9116i 0.370543 0.370543i
\(133\) −98.4985 68.9646i −0.740590 0.518531i
\(134\) 4.17626i 0.0311661i
\(135\) 20.5778 15.8604i 0.152428 0.117485i
\(136\) −31.9980 + 55.4222i −0.235280 + 0.407516i
\(137\) 20.8036 + 77.6400i 0.151851 + 0.566716i 0.999354 + 0.0359258i \(0.0114380\pi\)
−0.847503 + 0.530790i \(0.821895\pi\)
\(138\) 13.3016 49.6423i 0.0963885 0.359727i
\(139\) 15.1273i 0.108830i 0.998518 + 0.0544149i \(0.0173294\pi\)
−0.998518 + 0.0544149i \(0.982671\pi\)
\(140\) 15.0014 68.3737i 0.107153 0.488383i
\(141\) −131.189 −0.930416
\(142\) −16.2472 4.35343i −0.114417 0.0306580i
\(143\) 364.808 97.7500i 2.55110 0.683566i
\(144\) 10.3923 + 6.00000i 0.0721688 + 0.0416667i
\(145\) −14.8932 + 115.038i −0.102712 + 0.793366i
\(146\) 30.8763 0.211481
\(147\) 35.8628 76.9211i 0.243965 0.523273i
\(148\) 32.6298 + 32.6298i 0.220472 + 0.220472i
\(149\) 28.5019 16.4556i 0.191288 0.110440i −0.401297 0.915948i \(-0.631441\pi\)
0.592585 + 0.805508i \(0.298107\pi\)
\(150\) −59.2183 15.5946i −0.394789 0.103964i
\(151\) −142.183 + 246.269i −0.941611 + 1.63092i −0.179211 + 0.983811i \(0.557355\pi\)
−0.762399 + 0.647107i \(0.775979\pi\)
\(152\) −46.9295 12.5747i −0.308747 0.0827284i
\(153\) 47.9970 + 47.9970i 0.313706 + 0.313706i
\(154\) −185.755 67.6025i −1.20620 0.438977i
\(155\) −168.396 + 220.439i −1.08643 + 1.42219i
\(156\) 32.7600 + 56.7421i 0.210000 + 0.363731i
\(157\) 45.7477 + 170.733i 0.291387 + 1.08747i 0.944045 + 0.329817i \(0.106987\pi\)
−0.652658 + 0.757652i \(0.726346\pi\)
\(158\) 103.405 27.7072i 0.654459 0.175362i
\(159\) −6.23872 + 3.60193i −0.0392372 + 0.0226536i
\(160\) −3.75219 28.0343i −0.0234512 0.175214i
\(161\) −144.637 + 25.5083i −0.898366 + 0.158436i
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) 19.4477 72.5798i 0.119311 0.445275i −0.880262 0.474487i \(-0.842633\pi\)
0.999573 + 0.0292129i \(0.00930008\pi\)
\(164\) −37.4646 21.6302i −0.228443 0.131891i
\(165\) −65.8329 + 159.907i −0.398988 + 0.969136i
\(166\) 28.2864 + 48.9935i 0.170400 + 0.295141i
\(167\) 115.501 115.501i 0.691625 0.691625i −0.270964 0.962589i \(-0.587343\pi\)
0.962589 + 0.270964i \(0.0873426\pi\)
\(168\) 2.98771 34.1625i 0.0177840 0.203348i
\(169\) 188.740i 1.11681i
\(170\) 20.5414 158.666i 0.120832 0.933329i
\(171\) −25.7661 + 44.6282i −0.150679 + 0.260983i
\(172\) 10.7472 + 40.1091i 0.0624837 + 0.233192i
\(173\) −51.8207 + 193.397i −0.299541 + 1.11790i 0.638002 + 0.770035i \(0.279761\pi\)
−0.937543 + 0.347869i \(0.886905\pi\)
\(174\) 56.8272i 0.326593i
\(175\) 31.1356 + 172.208i 0.177918 + 0.984045i
\(176\) −79.8724 −0.453820
\(177\) 51.7544 + 13.8675i 0.292398 + 0.0783477i
\(178\) −196.607 + 52.6807i −1.10453 + 0.295959i
\(179\) −103.999 60.0438i −0.580999 0.335440i 0.180531 0.983569i \(-0.442218\pi\)
−0.761530 + 0.648129i \(0.775552\pi\)
\(180\) −29.7517 3.85176i −0.165287 0.0213987i
\(181\) 217.830 1.20348 0.601741 0.798691i \(-0.294474\pi\)
0.601741 + 0.798691i \(0.294474\pi\)
\(182\) 107.391 153.381i 0.590061 0.842752i
\(183\) 4.30710 + 4.30710i 0.0235361 + 0.0235361i
\(184\) −51.3935 + 29.6720i −0.279312 + 0.161261i
\(185\) −106.677 43.9183i −0.576632 0.237396i
\(186\) −67.9487 + 117.691i −0.365316 + 0.632746i
\(187\) −436.404 116.934i −2.33371 0.625316i
\(188\) 107.115 + 107.115i 0.569761 + 0.569761i
\(189\) −34.1799 12.4392i −0.180846 0.0658159i
\(190\) 120.389 16.1132i 0.633626 0.0848063i
\(191\) −56.1666 97.2834i −0.294066 0.509337i 0.680701 0.732561i \(-0.261675\pi\)
−0.974767 + 0.223224i \(0.928342\pi\)
\(192\) −3.58630 13.3843i −0.0186787 0.0697097i
\(193\) −5.59533 + 1.49926i −0.0289913 + 0.00776820i −0.273286 0.961933i \(-0.588110\pi\)
0.244294 + 0.969701i \(0.421444\pi\)
\(194\) 97.1015 56.0616i 0.500523 0.288977i
\(195\) −130.166 99.4353i −0.667517 0.509925i
\(196\) −92.0877 + 33.5240i −0.469835 + 0.171041i
\(197\) −40.3068 + 40.3068i −0.204603 + 0.204603i −0.801969 0.597366i \(-0.796214\pi\)
0.597366 + 0.801969i \(0.296214\pi\)
\(198\) −21.9265 + 81.8308i −0.110740 + 0.413287i
\(199\) −85.5804 49.4099i −0.430052 0.248291i 0.269317 0.963052i \(-0.413202\pi\)
−0.699369 + 0.714761i \(0.746536\pi\)
\(200\) 35.6186 + 61.0845i 0.178093 + 0.305422i
\(201\) −2.55743 4.42960i −0.0127235 0.0220378i
\(202\) −112.927 + 112.927i −0.559043 + 0.559043i
\(203\) 147.180 68.6369i 0.725024 0.338113i
\(204\) 78.3788i 0.384210i
\(205\) 107.256 + 13.8857i 0.523199 + 0.0677351i
\(206\) −139.149 + 241.014i −0.675483 + 1.16997i
\(207\) 16.2911 + 60.7991i 0.0787009 + 0.293716i
\(208\) 19.5812 73.0782i 0.0941405 0.351337i
\(209\) 343.000i 1.64115i
\(210\) 25.9587 + 81.7077i 0.123613 + 0.389084i
\(211\) 344.348 1.63198 0.815991 0.578064i \(-0.196192\pi\)
0.815991 + 0.578064i \(0.196192\pi\)
\(212\) 8.03485 + 2.15293i 0.0379003 + 0.0101553i
\(213\) 19.8987 5.33185i 0.0934212 0.0250321i
\(214\) 199.459 + 115.158i 0.932051 + 0.538120i
\(215\) −63.3726 82.2217i −0.294756 0.382427i
\(216\) −14.6969 −0.0680414
\(217\) 386.883 + 33.8352i 1.78287 + 0.155922i
\(218\) 58.6321 + 58.6321i 0.268954 + 0.268954i
\(219\) −32.7492 + 18.9078i −0.149540 + 0.0863369i
\(220\) 184.316 76.8115i 0.837801 0.349143i
\(221\) 213.974 370.615i 0.968210 1.67699i
\(222\) −54.5907 14.6275i −0.245904 0.0658898i
\(223\) 34.8821 + 34.8821i 0.156422 + 0.156422i 0.780979 0.624557i \(-0.214721\pi\)
−0.624557 + 0.780979i \(0.714721\pi\)
\(224\) −30.3330 + 25.4541i −0.135415 + 0.113634i
\(225\) 72.3602 19.7231i 0.321601 0.0876582i
\(226\) −69.9728 121.197i −0.309614 0.536268i
\(227\) 44.6847 + 166.766i 0.196849 + 0.734651i 0.991780 + 0.127951i \(0.0408402\pi\)
−0.794931 + 0.606699i \(0.792493\pi\)
\(228\) 57.4767 15.4008i 0.252091 0.0675475i
\(229\) −18.1914 + 10.5028i −0.0794382 + 0.0458637i −0.539193 0.842182i \(-0.681271\pi\)
0.459755 + 0.888046i \(0.347937\pi\)
\(230\) 90.0624 117.896i 0.391576 0.512592i
\(231\) 238.421 42.0480i 1.03213 0.182026i
\(232\) 46.3993 46.3993i 0.199997 0.199997i
\(233\) 51.8914 193.661i 0.222710 0.831164i −0.760599 0.649221i \(-0.775095\pi\)
0.983309 0.181943i \(-0.0582385\pi\)
\(234\) −69.4945 40.1227i −0.296985 0.171465i
\(235\) −350.192 144.172i −1.49018 0.613499i
\(236\) −30.9345 53.5801i −0.131078 0.227034i
\(237\) −92.7100 + 92.7100i −0.391181 + 0.391181i
\(238\) −202.997 + 94.6672i −0.852930 + 0.397761i
\(239\) 282.776i 1.18316i −0.806245 0.591581i \(-0.798504\pi\)
0.806245 0.591581i \(-0.201496\pi\)
\(240\) 21.1472 + 27.4371i 0.0881134 + 0.114321i
\(241\) 45.5745 78.9374i 0.189106 0.327541i −0.755846 0.654749i \(-0.772774\pi\)
0.944952 + 0.327208i \(0.106108\pi\)
\(242\) −101.654 379.379i −0.420059 1.56768i
\(243\) −4.03459 + 15.0573i −0.0166032 + 0.0619642i
\(244\) 7.03346i 0.0288257i
\(245\) 180.265 165.920i 0.735777 0.677223i
\(246\) 52.9829 0.215378
\(247\) 313.823 + 84.0886i 1.27054 + 0.340440i
\(248\) 151.574 40.6141i 0.611185 0.163767i
\(249\) −60.0045 34.6436i −0.240982 0.139131i
\(250\) −140.938 106.707i −0.563753 0.426828i
\(251\) 278.796 1.11074 0.555371 0.831603i \(-0.312576\pi\)
0.555371 + 0.831603i \(0.312576\pi\)
\(252\) 17.7512 + 38.0643i 0.0704413 + 0.151049i
\(253\) −296.247 296.247i −1.17094 1.17094i
\(254\) −74.7058 + 43.1314i −0.294117 + 0.169809i
\(255\) 75.3752 + 180.870i 0.295589 + 0.709293i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 93.6352 + 25.0895i 0.364339 + 0.0976244i 0.436344 0.899780i \(-0.356273\pi\)
−0.0720049 + 0.997404i \(0.522940\pi\)
\(258\) −35.9608 35.9608i −0.139383 0.139383i
\(259\) 28.0509 + 159.055i 0.108305 + 0.614110i
\(260\) 25.0913 + 187.468i 0.0965050 + 0.721033i
\(261\) −34.7994 60.2744i −0.133331 0.230936i
\(262\) −21.4551 80.0714i −0.0818896 0.305616i
\(263\) 201.551 54.0055i 0.766354 0.205344i 0.145594 0.989344i \(-0.453491\pi\)
0.620760 + 0.784000i \(0.286824\pi\)
\(264\) 84.7175 48.9116i 0.320899 0.185271i
\(265\) −20.6119 + 2.75876i −0.0777809 + 0.0104104i
\(266\) −109.309 130.260i −0.410935 0.489701i
\(267\) 176.273 176.273i 0.660199 0.660199i
\(268\) −1.52862 + 5.70488i −0.00570380 + 0.0212869i
\(269\) 177.916 + 102.720i 0.661397 + 0.381858i 0.792809 0.609470i \(-0.208618\pi\)
−0.131412 + 0.991328i \(0.541951\pi\)
\(270\) 33.9152 14.1337i 0.125612 0.0523471i
\(271\) −55.2715 95.7331i −0.203954 0.353259i 0.745845 0.666120i \(-0.232046\pi\)
−0.949799 + 0.312861i \(0.898713\pi\)
\(272\) −63.9960 + 63.9960i −0.235280 + 0.235280i
\(273\) −19.9792 + 228.448i −0.0731837 + 0.836807i
\(274\) 113.673i 0.414865i
\(275\) −351.467 + 354.506i −1.27806 + 1.28911i
\(276\) 36.3407 62.9439i 0.131669 0.228058i
\(277\) 18.2366 + 68.0599i 0.0658361 + 0.245704i 0.991000 0.133865i \(-0.0427390\pi\)
−0.925163 + 0.379569i \(0.876072\pi\)
\(278\) −5.53699 + 20.6643i −0.0199172 + 0.0743321i
\(279\) 166.440i 0.596558i
\(280\) 45.5188 87.9093i 0.162567 0.313962i
\(281\) 172.628 0.614336 0.307168 0.951655i \(-0.400619\pi\)
0.307168 + 0.951655i \(0.400619\pi\)
\(282\) −179.207 48.0184i −0.635486 0.170278i
\(283\) −27.2132 + 7.29175i −0.0961597 + 0.0257659i −0.306578 0.951846i \(-0.599184\pi\)
0.210418 + 0.977611i \(0.432517\pi\)
\(284\) −20.6007 11.8938i −0.0725376 0.0418796i
\(285\) −117.824 + 90.8135i −0.413419 + 0.318644i
\(286\) 534.116 1.86754
\(287\) −63.9936 137.223i −0.222974 0.478129i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) −193.069 + 111.468i −0.668058 + 0.385703i
\(290\) −62.4514 + 151.694i −0.215350 + 0.523082i
\(291\) −68.6611 + 118.925i −0.235949 + 0.408675i
\(292\) 42.1778 + 11.3015i 0.144444 + 0.0387038i
\(293\) −78.8568 78.8568i −0.269136 0.269136i 0.559616 0.828752i \(-0.310949\pi\)
−0.828752 + 0.559616i \(0.810949\pi\)
\(294\) 77.1446 91.9495i 0.262397 0.312753i
\(295\) 122.912 + 93.8943i 0.416652 + 0.318286i
\(296\) 32.6298 + 56.5164i 0.110236 + 0.190934i
\(297\) −26.8544 100.222i −0.0904187 0.337447i
\(298\) 44.9575 12.0463i 0.150864 0.0404239i
\(299\) 343.674 198.420i 1.14941 0.663613i
\(300\) −75.1857 42.9780i −0.250619 0.143260i
\(301\) −49.7027 + 136.571i −0.165125 + 0.453724i
\(302\) −284.366 + 284.366i −0.941611 + 0.941611i
\(303\) 50.6237 188.930i 0.167075 0.623532i
\(304\) −59.5042 34.3548i −0.195738 0.113009i
\(305\) 6.76393 + 16.2307i 0.0221768 + 0.0532153i
\(306\) 47.9970 + 83.1333i 0.156853 + 0.271677i
\(307\) 21.8398 21.8398i 0.0711395 0.0711395i −0.670642 0.741781i \(-0.733981\pi\)
0.741781 + 0.670642i \(0.233981\pi\)
\(308\) −229.002 160.338i −0.743513 0.520577i
\(309\) 340.845i 1.10306i
\(310\) −310.720 + 239.488i −1.00232 + 0.772541i
\(311\) −85.0972 + 147.393i −0.273624 + 0.473931i −0.969787 0.243953i \(-0.921556\pi\)
0.696163 + 0.717884i \(0.254889\pi\)
\(312\) 23.9820 + 89.5021i 0.0768654 + 0.286866i
\(313\) 101.548 378.982i 0.324434 1.21080i −0.590446 0.807077i \(-0.701048\pi\)
0.914880 0.403727i \(-0.132285\pi\)
\(314\) 249.970i 0.796083i
\(315\) −77.5689 70.7677i −0.246251 0.224659i
\(316\) 151.395 0.479097
\(317\) −137.832 36.9318i −0.434800 0.116504i 0.0347786 0.999395i \(-0.488927\pi\)
−0.469578 + 0.882891i \(0.655594\pi\)
\(318\) −9.84065 + 2.63679i −0.0309454 + 0.00829180i
\(319\) 401.188 + 231.626i 1.25764 + 0.726101i
\(320\) 5.13568 39.6689i 0.0160490 0.123965i
\(321\) −282.078 −0.878746
\(322\) −206.914 18.0959i −0.642592 0.0561984i
\(323\) −274.821 274.821i −0.850840 0.850840i
\(324\) 15.5885 9.00000i 0.0481125 0.0277778i
\(325\) −238.186 408.479i −0.732880 1.25686i
\(326\) 53.1321 92.0274i 0.162982 0.282293i
\(327\) −98.0933 26.2840i −0.299980 0.0803793i
\(328\) −43.2604 43.2604i −0.131891 0.131891i
\(329\) 92.0839 + 522.135i 0.279890 + 1.58704i
\(330\) −148.460 + 194.341i −0.449878 + 0.588912i
\(331\) −11.5185 19.9506i −0.0347990 0.0602736i 0.848101 0.529834i \(-0.177746\pi\)
−0.882900 + 0.469560i \(0.844412\pi\)
\(332\) 20.7071 + 77.2798i 0.0623707 + 0.232771i
\(333\) 66.8597 17.9150i 0.200780 0.0537988i
\(334\) 200.054 115.501i 0.598965 0.345812i
\(335\) −1.95877 14.6348i −0.00584706 0.0436860i
\(336\) 16.5856 45.5732i 0.0493619 0.135635i
\(337\) −438.660 + 438.660i −1.30166 + 1.30166i −0.374391 + 0.927271i \(0.622148\pi\)
−0.927271 + 0.374391i \(0.877852\pi\)
\(338\) −69.0837 + 257.824i −0.204390 + 0.762792i
\(339\) 148.435 + 85.6989i 0.437861 + 0.252799i
\(340\) 86.1359 209.223i 0.253341 0.615362i
\(341\) 553.914 + 959.408i 1.62438 + 2.81351i
\(342\) −51.5322 + 51.5322i −0.150679 + 0.150679i
\(343\) −331.321 88.7426i −0.965951 0.258725i
\(344\) 58.7238i 0.170709i
\(345\) −23.3292 + 180.200i −0.0676210 + 0.522317i
\(346\) −141.577 + 245.218i −0.409181 + 0.708723i
\(347\) −118.344 441.664i −0.341048 1.27281i −0.897162 0.441702i \(-0.854375\pi\)
0.556114 0.831106i \(-0.312292\pi\)
\(348\) −20.8002 + 77.6275i −0.0597707 + 0.223067i
\(349\) 70.3408i 0.201549i 0.994909 + 0.100775i \(0.0321321\pi\)
−0.994909 + 0.100775i \(0.967868\pi\)
\(350\) −20.5004 + 246.637i −0.0585726 + 0.704677i
\(351\) 98.2801 0.280000
\(352\) −109.108 29.2353i −0.309965 0.0830549i
\(353\) −161.135 + 43.1761i −0.456474 + 0.122312i −0.479727 0.877418i \(-0.659264\pi\)
0.0232531 + 0.999730i \(0.492598\pi\)
\(354\) 65.6219 + 37.8868i 0.185373 + 0.107025i
\(355\) 58.9768 + 7.63534i 0.166132 + 0.0215080i
\(356\) −287.853 −0.808575
\(357\) 157.340 224.720i 0.440727 0.629467i
\(358\) −120.088 120.088i −0.335440 0.335440i
\(359\) 446.981 258.064i 1.24507 0.718842i 0.274949 0.961459i \(-0.411339\pi\)
0.970122 + 0.242616i \(0.0780056\pi\)
\(360\) −39.2317 16.1515i −0.108977 0.0448652i
\(361\) −32.9687 + 57.1034i −0.0913260 + 0.158181i
\(362\) 297.562 + 79.7314i 0.821994 + 0.220253i
\(363\) 340.142 + 340.142i 0.937031 + 0.937031i
\(364\) 202.840 170.214i 0.557253 0.467622i
\(365\) −108.199 + 14.4817i −0.296436 + 0.0396759i
\(366\) 4.30710 + 7.46012i 0.0117680 + 0.0203828i
\(367\) 130.270 + 486.174i 0.354959 + 1.32472i 0.880536 + 0.473979i \(0.157183\pi\)
−0.525577 + 0.850746i \(0.676151\pi\)
\(368\) −81.0655 + 21.7214i −0.220287 + 0.0590256i
\(369\) −56.1969 + 32.4453i −0.152295 + 0.0879276i
\(370\) −129.648 99.0399i −0.350401 0.267676i
\(371\) 18.7149 + 22.3020i 0.0504444 + 0.0601133i
\(372\) −135.897 + 135.897i −0.365316 + 0.365316i
\(373\) 99.5820 371.645i 0.266976 0.996368i −0.694054 0.719923i \(-0.744177\pi\)
0.961030 0.276445i \(-0.0891563\pi\)
\(374\) −553.338 319.470i −1.47951 0.854197i
\(375\) 214.832 + 26.8731i 0.572886 + 0.0716616i
\(376\) 107.115 + 185.529i 0.284880 + 0.493427i
\(377\) −310.277 + 310.277i −0.823016 + 0.823016i
\(378\) −42.1376 29.5030i −0.111475 0.0780502i
\(379\) 352.609i 0.930366i −0.885214 0.465183i \(-0.845988\pi\)
0.885214 0.465183i \(-0.154012\pi\)
\(380\) 170.352 + 22.0544i 0.448295 + 0.0580378i
\(381\) 52.8250 91.4955i 0.138648 0.240146i
\(382\) −41.1168 153.450i −0.107636 0.401701i
\(383\) 15.6711 58.4854i 0.0409167 0.152703i −0.942445 0.334361i \(-0.891480\pi\)
0.983362 + 0.181658i \(0.0581462\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 682.646 + 149.775i 1.77311 + 0.389026i
\(386\) −8.19212 −0.0212231
\(387\) 60.1636 + 16.1208i 0.155462 + 0.0416558i
\(388\) 153.163 41.0399i 0.394750 0.105773i
\(389\) −623.238 359.827i −1.60215 0.925004i −0.991056 0.133450i \(-0.957395\pi\)
−0.611099 0.791554i \(-0.709272\pi\)
\(390\) −141.414 183.475i −0.362600 0.470449i
\(391\) −474.723 −1.21413
\(392\) −138.065 + 12.0882i −0.352206 + 0.0308371i
\(393\) 71.7901 + 71.7901i 0.182672 + 0.182672i
\(394\) −69.8135 + 40.3068i −0.177192 + 0.102302i
\(395\) −349.364 + 145.593i −0.884465 + 0.368590i
\(396\) −59.9043 + 103.757i −0.151273 + 0.262013i
\(397\) 93.8233 + 25.1399i 0.236331 + 0.0633246i 0.375040 0.927008i \(-0.377629\pi\)
−0.138710 + 0.990333i \(0.544295\pi\)
\(398\) −98.8197 98.8197i −0.248291 0.248291i
\(399\) 195.707 + 71.2244i 0.490494 + 0.178507i
\(400\) 26.2975 + 96.4803i 0.0657437 + 0.241201i
\(401\) −74.7359 129.446i −0.186374 0.322809i 0.757665 0.652644i \(-0.226340\pi\)
−0.944039 + 0.329835i \(0.893007\pi\)
\(402\) −1.87217 6.98702i −0.00465713 0.0173807i
\(403\) −1013.59 + 271.591i −2.51512 + 0.673924i
\(404\) −195.595 + 112.927i −0.484146 + 0.279522i
\(405\) −27.3174 + 35.7598i −0.0674503 + 0.0882958i
\(406\) 226.174 39.8882i 0.557079 0.0982468i
\(407\) −325.777 + 325.777i −0.800436 + 0.800436i
\(408\) 28.6886 107.067i 0.0703153 0.262420i
\(409\) 316.278 + 182.603i 0.773295 + 0.446462i 0.834049 0.551690i \(-0.186017\pi\)
−0.0607535 + 0.998153i \(0.519350\pi\)
\(410\) 141.432 + 58.2266i 0.344955 + 0.142016i
\(411\) −69.6102 120.568i −0.169368 0.293354i
\(412\) −278.299 + 278.299i −0.675483 + 0.675483i
\(413\) 18.8658 215.718i 0.0456799 0.522320i
\(414\) 89.0161i 0.215015i
\(415\) −122.103 158.420i −0.294223 0.381735i
\(416\) 53.4969 92.6594i 0.128598 0.222739i
\(417\) −6.78140 25.3085i −0.0162624 0.0606919i
\(418\) 125.547 468.546i 0.300351 1.12092i
\(419\) 373.960i 0.892507i 0.894907 + 0.446254i \(0.147242\pi\)
−0.894907 + 0.446254i \(0.852758\pi\)
\(420\) 5.55321 + 121.116i 0.0132219 + 0.288372i
\(421\) 414.109 0.983631 0.491816 0.870699i \(-0.336333\pi\)
0.491816 + 0.870699i \(0.336333\pi\)
\(422\) 470.389 + 126.040i 1.11467 + 0.298674i
\(423\) 219.483 58.8102i 0.518872 0.139031i
\(424\) 10.1878 + 5.88192i 0.0240278 + 0.0138725i
\(425\) 2.43500 + 565.645i 0.00572941 + 1.33093i
\(426\) 29.1338 0.0683891
\(427\) 14.1191 20.1656i 0.0330659 0.0472263i
\(428\) 230.315 + 230.315i 0.538120 + 0.538120i
\(429\) −566.515 + 327.078i −1.32055 + 0.762419i
\(430\) −56.4733 135.513i −0.131333 0.315146i
\(431\) −258.753 + 448.173i −0.600355 + 1.03985i 0.392412 + 0.919789i \(0.371641\pi\)
−0.992767 + 0.120056i \(0.961693\pi\)
\(432\) −20.0764 5.37945i −0.0464731 0.0124524i
\(433\) −28.4380 28.4380i −0.0656767 0.0656767i 0.673506 0.739182i \(-0.264788\pi\)
−0.739182 + 0.673506i \(0.764788\pi\)
\(434\) 516.107 + 187.829i 1.18919 + 0.432785i
\(435\) −26.6533 199.139i −0.0612720 0.457791i
\(436\) 58.6321 + 101.554i 0.134477 + 0.232921i
\(437\) −93.2794 348.123i −0.213454 0.796621i
\(438\) −51.6570 + 13.8415i −0.117938 + 0.0316015i
\(439\) −241.933 + 139.680i −0.551100 + 0.318178i −0.749565 0.661930i \(-0.769738\pi\)
0.198466 + 0.980108i \(0.436404\pi\)
\(440\) 279.896 37.4620i 0.636126 0.0851410i
\(441\) −25.5169 + 144.768i −0.0578614 + 0.328273i
\(442\) 427.949 427.949i 0.968210 0.968210i
\(443\) −152.194 + 567.996i −0.343553 + 1.28216i 0.550740 + 0.834677i \(0.314346\pi\)
−0.894293 + 0.447482i \(0.852321\pi\)
\(444\) −69.2182 39.9632i −0.155897 0.0900071i
\(445\) 664.259 276.821i 1.49272 0.622071i
\(446\) 34.8821 + 60.4175i 0.0782109 + 0.135465i
\(447\) −40.3078 + 40.3078i −0.0901739 + 0.0901739i
\(448\) −50.7525 + 23.6683i −0.113287 + 0.0528310i
\(449\) 515.916i 1.14903i −0.818493 0.574517i \(-0.805190\pi\)
0.818493 0.574517i \(-0.194810\pi\)
\(450\) 106.065 0.456591i 0.235700 0.00101465i
\(451\) 215.957 374.048i 0.478840 0.829375i
\(452\) −51.2237 191.169i −0.113327 0.422941i
\(453\) 127.478 475.754i 0.281408 1.05023i
\(454\) 244.162i 0.537802i
\(455\) −304.390 + 587.859i −0.668988 + 1.29200i
\(456\) 84.1517 0.184543
\(457\) −281.008 75.2958i −0.614896 0.164761i −0.0620898 0.998071i \(-0.519777\pi\)
−0.552807 + 0.833310i \(0.686443\pi\)
\(458\) −28.6941 + 7.68857i −0.0626510 + 0.0167873i
\(459\) −101.817 58.7841i −0.221824 0.128070i
\(460\) 166.181 128.084i 0.361262 0.278444i
\(461\) 431.271 0.935511 0.467756 0.883858i \(-0.345063\pi\)
0.467756 + 0.883858i \(0.345063\pi\)
\(462\) 341.080 + 29.8294i 0.738268 + 0.0645659i
\(463\) 81.4930 + 81.4930i 0.176011 + 0.176011i 0.789614 0.613603i \(-0.210281\pi\)
−0.613603 + 0.789614i \(0.710281\pi\)
\(464\) 80.3659 46.3993i 0.173202 0.0999984i
\(465\) 182.912 444.291i 0.393359 0.955465i
\(466\) 141.770 245.553i 0.304227 0.526937i
\(467\) −213.017 57.0779i −0.456140 0.122222i 0.0234309 0.999725i \(-0.492541\pi\)
−0.479571 + 0.877503i \(0.659208\pi\)
\(468\) −80.2454 80.2454i −0.171465 0.171465i
\(469\) −15.8348 + 13.2879i −0.0337629 + 0.0283323i
\(470\) −425.601 325.122i −0.905534 0.691749i
\(471\) −153.075 265.133i −0.324999 0.562916i
\(472\) −22.6456 84.5146i −0.0479780 0.179056i
\(473\) −400.451 + 107.301i −0.846619 + 0.226851i
\(474\) −160.578 + 92.7100i −0.338773 + 0.195591i
\(475\) −414.320 + 112.930i −0.872252 + 0.237748i
\(476\) −311.950 + 55.0157i −0.655357 + 0.115579i
\(477\) 8.82288 8.82288i 0.0184966 0.0184966i
\(478\) 103.503 386.279i 0.216534 0.808115i
\(479\) 322.538 + 186.218i 0.673357 + 0.388763i 0.797348 0.603520i \(-0.206236\pi\)
−0.123990 + 0.992283i \(0.539569\pi\)
\(480\) 18.8450 + 45.2202i 0.0392603 + 0.0942088i
\(481\) −218.199 377.932i −0.453636 0.785721i
\(482\) 91.1491 91.1491i 0.189106 0.189106i
\(483\) 230.547 107.515i 0.477324 0.222599i
\(484\) 555.450i 1.14762i
\(485\) −313.977 + 241.999i −0.647376 + 0.498966i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) −95.0398 354.693i −0.195154 0.728323i −0.992227 0.124441i \(-0.960286\pi\)
0.797073 0.603882i \(-0.206380\pi\)
\(488\) 2.57443 9.60789i 0.00527546 0.0196883i
\(489\) 130.146i 0.266148i
\(490\) 306.978 160.669i 0.626486 0.327896i
\(491\) 8.71393 0.0177473 0.00887366 0.999961i \(-0.497175\pi\)
0.00887366 + 0.999961i \(0.497175\pi\)
\(492\) 72.3760 + 19.3931i 0.147106 + 0.0394168i
\(493\) 507.029 135.858i 1.02846 0.275574i
\(494\) 397.912 + 229.734i 0.805489 + 0.465049i
\(495\) 38.4561 297.042i 0.0776892 0.600086i
\(496\) 221.920 0.447419
\(497\) −35.1882 75.4550i −0.0708013 0.151821i
\(498\) −69.2872 69.2872i −0.139131 0.139131i
\(499\) −233.352 + 134.726i −0.467640 + 0.269992i −0.715251 0.698867i \(-0.753688\pi\)
0.247611 + 0.968860i \(0.420354\pi\)
\(500\) −153.468 197.351i −0.306936 0.394703i
\(501\) −141.460 + 245.015i −0.282355 + 0.489053i
\(502\) 380.843 + 102.047i 0.758651 + 0.203280i
\(503\) 308.184 + 308.184i 0.612693 + 0.612693i 0.943647 0.330954i \(-0.107371\pi\)
−0.330954 + 0.943647i \(0.607371\pi\)
\(504\) 10.3161 + 58.4943i 0.0204684 + 0.116060i
\(505\) 342.762 448.693i 0.678737 0.888501i
\(506\) −296.247 513.115i −0.585468 1.01406i
\(507\) −84.6099 315.768i −0.166883 0.622817i
\(508\) −117.837 + 31.5744i −0.231963 + 0.0621543i
\(509\) 568.117 328.003i 1.11614 0.644406i 0.175730 0.984438i \(-0.443771\pi\)
0.940414 + 0.340032i \(0.110438\pi\)
\(510\) 36.7615 + 274.662i 0.0720814 + 0.538552i
\(511\) 98.2409 + 117.071i 0.192252 + 0.229102i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 23.1012 86.2150i 0.0450317 0.168060i
\(514\) 118.725 + 68.5457i 0.230982 + 0.133357i
\(515\) 374.578 909.846i 0.727336 1.76669i
\(516\) −35.9608 62.2860i −0.0696915 0.120709i
\(517\) −1069.44 + 1069.44i −2.06855 + 2.06855i
\(518\) −19.8997 + 227.540i −0.0384164 + 0.439266i
\(519\) 346.791i 0.668190i
\(520\) −34.3429 + 265.271i −0.0660440 + 0.510136i
\(521\) 91.8665 159.117i 0.176327 0.305408i −0.764293 0.644870i \(-0.776912\pi\)
0.940620 + 0.339462i \(0.110245\pi\)
\(522\) −25.4750 95.0738i −0.0488026 0.182134i
\(523\) −213.259 + 795.892i −0.407760 + 1.52178i 0.391147 + 0.920328i \(0.372078\pi\)
−0.798908 + 0.601454i \(0.794588\pi\)
\(524\) 117.233i 0.223727i
\(525\) −129.290 274.152i −0.246266 0.522194i
\(526\) 295.091 0.561010
\(527\) 1212.52 + 324.893i 2.30079 + 0.616495i
\(528\) 133.629 35.8058i 0.253085 0.0678140i
\(529\) 76.8901 + 44.3925i 0.145350 + 0.0839179i
\(530\) −29.1662 3.77596i −0.0550306 0.00712445i
\(531\) −92.8034 −0.174771
\(532\) −101.640 217.949i −0.191052 0.409678i
\(533\) 289.287 + 289.287i 0.542752 + 0.542752i
\(534\) 305.314 176.273i 0.571749 0.330099i
\(535\) −752.973 309.994i −1.40743 0.579429i
\(536\) −4.17626 + 7.23350i −0.00779154 + 0.0134953i
\(537\) 200.910 + 53.8338i 0.374135 + 0.100249i
\(538\) 205.439 + 205.439i 0.381858 + 0.381858i
\(539\) −334.705 919.408i −0.620974 1.70577i
\(540\) 51.5023 6.89321i 0.0953746 0.0127652i
\(541\) 190.462 + 329.891i 0.352056 + 0.609779i 0.986610 0.163100i \(-0.0521493\pi\)
−0.634553 + 0.772879i \(0.718816\pi\)
\(542\) −40.4616 151.005i −0.0746524 0.278606i
\(543\) −364.437 + 97.6506i −0.671155 + 0.179835i
\(544\) −110.844 + 63.9960i −0.203758 + 0.117640i
\(545\) −232.963 177.964i −0.427456 0.326539i
\(546\) −110.910 + 304.753i −0.203132 + 0.558156i
\(547\) 231.815 231.815i 0.423794 0.423794i −0.462714 0.886508i \(-0.653124\pi\)
0.886508 + 0.462714i \(0.153124\pi\)
\(548\) −41.6072 + 155.280i −0.0759255 + 0.283358i
\(549\) −9.13674 5.27510i −0.0166425 0.00960856i
\(550\) −609.870 + 355.618i −1.10886 + 0.646578i
\(551\) 199.254 + 345.119i 0.361623 + 0.626350i
\(552\) 72.6814 72.6814i 0.131669 0.131669i
\(553\) 434.064 + 303.914i 0.784925 + 0.549572i
\(554\) 99.6466i 0.179867i
\(555\) 198.162 + 25.6547i 0.357049 + 0.0462247i
\(556\) −15.1273 + 26.2013i −0.0272075 + 0.0471247i
\(557\) −255.272 952.690i −0.458299 1.71039i −0.678204 0.734873i \(-0.737242\pi\)
0.219906 0.975521i \(-0.429425\pi\)
\(558\) 60.9212 227.361i 0.109178 0.407457i
\(559\) 392.693i 0.702491i
\(560\) 94.3569 103.425i 0.168494 0.184688i
\(561\) 782.538 1.39490
\(562\) 235.815 + 63.1864i 0.419599 + 0.112431i
\(563\) −24.4993 + 6.56455i −0.0435155 + 0.0116600i −0.280511 0.959851i \(-0.590504\pi\)
0.236996 + 0.971511i \(0.423837\pi\)
\(564\) −227.225 131.189i −0.402882 0.232604i
\(565\) 302.049 + 391.888i 0.534600 + 0.693608i
\(566\) −39.8429 −0.0703938
\(567\) 62.7604 + 5.48877i 0.110689 + 0.00968037i
\(568\) −23.7876 23.7876i −0.0418796 0.0418796i
\(569\) −731.187 + 422.151i −1.28504 + 0.741917i −0.977765 0.209704i \(-0.932750\pi\)
−0.307273 + 0.951621i \(0.599417\pi\)
\(570\) −194.191 + 80.9268i −0.340686 + 0.141977i
\(571\) −442.183 + 765.884i −0.774402 + 1.34130i 0.160728 + 0.986999i \(0.448616\pi\)
−0.935130 + 0.354304i \(0.884718\pi\)
\(572\) 729.616 + 195.500i 1.27555 + 0.341783i
\(573\) 137.579 + 137.579i 0.240104 + 0.240104i
\(574\) −37.1898 210.874i −0.0647905 0.367376i
\(575\) −260.308 + 455.383i −0.452710 + 0.791971i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −202.316 755.053i −0.350634 1.30858i −0.885891 0.463894i \(-0.846452\pi\)
0.535257 0.844689i \(-0.320215\pi\)
\(578\) −304.537 + 81.6004i −0.526881 + 0.141177i
\(579\) 8.68906 5.01663i 0.0150070 0.00866430i
\(580\) −140.834 + 184.359i −0.242817 + 0.317860i
\(581\) −95.7642 + 263.137i −0.164827 + 0.452903i
\(582\) −137.322 + 137.322i −0.235949 + 0.235949i
\(583\) −21.4950 + 80.2204i −0.0368696 + 0.137599i
\(584\) 53.4793 + 30.8763i 0.0915741 + 0.0528703i
\(585\) 262.347 + 108.007i 0.448457 + 0.184627i
\(586\) −78.8568 136.584i −0.134568 0.233078i
\(587\) −198.669 + 198.669i −0.338449 + 0.338449i −0.855783 0.517334i \(-0.826924\pi\)
0.517334 + 0.855783i \(0.326924\pi\)
\(588\) 139.037 97.3685i 0.236458 0.165593i
\(589\) 953.000i 1.61800i
\(590\) 133.534 + 173.251i 0.226328 + 0.293646i
\(591\) 49.3656 85.5037i 0.0835289 0.144676i
\(592\) 23.8867 + 89.1462i 0.0403491 + 0.150585i
\(593\) 162.343 605.873i 0.273766 1.02171i −0.682898 0.730514i \(-0.739281\pi\)
0.956664 0.291194i \(-0.0940526\pi\)
\(594\) 146.735i 0.247029i
\(595\) 666.959 426.951i 1.12094 0.717565i
\(596\) 65.8223 0.110440
\(597\) 165.329 + 44.2997i 0.276932 + 0.0742038i
\(598\) 542.094 145.254i 0.906512 0.242899i
\(599\) 335.297 + 193.584i 0.559762 + 0.323179i 0.753050 0.657963i \(-0.228582\pi\)
−0.193288 + 0.981142i \(0.561915\pi\)
\(600\) −86.9745 86.2289i −0.144958 0.143715i
\(601\) 267.104 0.444433 0.222217 0.974997i \(-0.428671\pi\)
0.222217 + 0.974997i \(0.428671\pi\)
\(602\) −117.884 + 168.367i −0.195820 + 0.279679i
\(603\) 6.26439 + 6.26439i 0.0103887 + 0.0103887i
\(604\) −492.537 + 284.366i −0.815459 + 0.470805i
\(605\) 534.164 + 1281.77i 0.882915 + 2.11864i
\(606\) 138.306 239.554i 0.228228 0.395303i
\(607\) −335.219 89.8215i −0.552255 0.147976i −0.0281090 0.999605i \(-0.508949\pi\)
−0.524146 + 0.851629i \(0.675615\pi\)
\(608\) −68.7096 68.7096i −0.113009 0.113009i
\(609\) −215.468 + 180.811i −0.353805 + 0.296898i
\(610\) 3.29886 + 24.6473i 0.00540797 + 0.0404054i
\(611\) −716.291 1240.65i −1.17233 2.03053i
\(612\) 35.1363 + 131.130i 0.0574122 + 0.214265i
\(613\) 399.843 107.138i 0.652272 0.174776i 0.0825161 0.996590i \(-0.473704\pi\)
0.569756 + 0.821814i \(0.307038\pi\)
\(614\) 37.8277 21.8398i 0.0616086 0.0355698i
\(615\) −185.667 + 24.8502i −0.301898 + 0.0404069i
\(616\) −254.135 302.846i −0.412556 0.491633i
\(617\) 637.339 637.339i 1.03297 1.03297i 0.0335273 0.999438i \(-0.489326\pi\)
0.999438 0.0335273i \(-0.0106741\pi\)
\(618\) 124.758 465.603i 0.201874 0.753403i
\(619\) −956.137 552.026i −1.54465 0.891803i −0.998536 0.0540914i \(-0.982774\pi\)
−0.546113 0.837712i \(-0.683893\pi\)
\(620\) −512.109 + 213.415i −0.825983 + 0.344218i
\(621\) −54.5110 94.4158i −0.0877794 0.152038i
\(622\) −170.194 + 170.194i −0.273624 + 0.273624i
\(623\) −825.302 577.842i −1.32472 0.927516i
\(624\) 131.040i 0.210000i
\(625\) 543.936 + 307.828i 0.870298 + 0.492525i
\(626\) 277.434 480.529i 0.443185 0.767619i
\(627\) 153.763 + 573.850i 0.245235 + 0.915231i
\(628\) −91.4954 + 341.465i −0.145693 + 0.543735i
\(629\) 522.044i 0.829959i
\(630\) −80.0584 125.063i −0.127077 0.198512i
\(631\) −1130.27 −1.79124 −0.895618 0.444824i \(-0.853266\pi\)
−0.895618 + 0.444824i \(0.853266\pi\)
\(632\) 206.809 + 55.4143i 0.327230 + 0.0876809i
\(633\) −576.106 + 154.367i −0.910120 + 0.243866i
\(634\) −174.763 100.900i −0.275652 0.159148i
\(635\) 241.561 186.184i 0.380411 0.293202i
\(636\) −14.4077 −0.0226536
\(637\) 923.255 80.8349i 1.44938 0.126899i
\(638\) 463.252 + 463.252i 0.726101 + 0.726101i
\(639\) −30.9010 + 17.8407i −0.0483584 + 0.0279197i
\(640\) 21.5353 52.3090i 0.0336489 0.0817328i
\(641\) 251.753 436.050i 0.392751 0.680265i −0.600060 0.799955i \(-0.704857\pi\)
0.992811 + 0.119690i \(0.0381901\pi\)
\(642\) −385.325 103.248i −0.600195 0.160822i
\(643\) 363.947 + 363.947i 0.566015 + 0.566015i 0.931010 0.364995i \(-0.118929\pi\)
−0.364995 + 0.931010i \(0.618929\pi\)
\(644\) −276.027 100.455i −0.428613 0.155987i
\(645\) 142.883 + 109.151i 0.221525 + 0.169226i
\(646\) −274.821 476.004i −0.425420 0.736849i
\(647\) −3.62332 13.5224i −0.00560018 0.0209002i 0.963069 0.269254i \(-0.0867771\pi\)
−0.968669 + 0.248354i \(0.920110\pi\)
\(648\) 24.5885 6.58846i 0.0379452 0.0101674i
\(649\) 534.946 308.851i 0.824262 0.475888i
\(650\) −175.854 645.175i −0.270545 0.992576i
\(651\) −662.435 + 116.827i −1.01757 + 0.179458i
\(652\) 106.264 106.264i 0.162982 0.162982i
\(653\) 221.348 826.082i 0.338971 1.26506i −0.560529 0.828135i \(-0.689402\pi\)
0.899500 0.436921i \(-0.143931\pi\)
\(654\) −124.377 71.8093i −0.190179 0.109800i
\(655\) 112.740 + 270.530i 0.172122 + 0.413023i
\(656\) −43.2604 74.9291i −0.0659457 0.114221i
\(657\) 46.3144 46.3144i 0.0704938 0.0704938i
\(658\) −65.3255 + 746.954i −0.0992789 + 1.13519i
\(659\) 254.644i 0.386410i 0.981158 + 0.193205i \(0.0618882\pi\)
−0.981158 + 0.193205i \(0.938112\pi\)
\(660\) −273.933 + 211.135i −0.415051 + 0.319901i
\(661\) 2.28118 3.95112i 0.00345111 0.00597749i −0.864295 0.502986i \(-0.832235\pi\)
0.867746 + 0.497008i \(0.165568\pi\)
\(662\) −8.43210 31.4690i −0.0127373 0.0475363i
\(663\) −191.844 + 715.972i −0.289358 + 1.07990i
\(664\) 113.146i 0.170400i
\(665\) 444.144 + 405.201i 0.667885 + 0.609325i
\(666\) 97.8893 0.146981
\(667\) 470.172 + 125.982i 0.704906 + 0.188879i
\(668\) 315.556 84.5529i 0.472389 0.126576i
\(669\) −73.9961 42.7216i −0.110607 0.0638590i
\(670\) 2.68099 20.7085i 0.00400148 0.0309082i
\(671\) 70.2224 0.104653
\(672\) 39.3373 56.1834i 0.0585377 0.0836063i
\(673\) 183.435 + 183.435i 0.272563 + 0.272563i 0.830131 0.557568i \(-0.188265\pi\)
−0.557568 + 0.830131i \(0.688265\pi\)
\(674\) −759.782 + 438.660i −1.12727 + 0.650831i
\(675\) −112.219 + 65.4356i −0.166251 + 0.0969416i
\(676\) −188.740 + 326.907i −0.279201 + 0.483591i
\(677\) −1033.53 276.933i −1.52663 0.409059i −0.604711 0.796445i \(-0.706711\pi\)
−0.921917 + 0.387386i \(0.873378\pi\)
\(678\) 171.398 + 171.398i 0.252799 + 0.252799i
\(679\) 521.518 + 189.798i 0.768068 + 0.279526i
\(680\) 194.245 254.276i 0.285654 0.373935i
\(681\) −149.518 258.973i −0.219557 0.380283i
\(682\) 405.493 + 1513.32i 0.594565 + 2.21895i
\(683\) 314.257 84.2049i 0.460113 0.123287i −0.0213146 0.999773i \(-0.506785\pi\)
0.481427 + 0.876486i \(0.340118\pi\)
\(684\) −89.2563 + 51.5322i −0.130492 + 0.0753394i
\(685\) −53.3153 398.342i −0.0778325 0.581522i
\(686\) −420.111 242.497i −0.612407 0.353494i
\(687\) 25.7265 25.7265i 0.0374475 0.0374475i
\(688\) −21.4944 + 80.2182i −0.0312418 + 0.116596i
\(689\) −68.1269 39.3331i −0.0988780 0.0570872i
\(690\) −97.8259 + 237.618i −0.141777 + 0.344374i
\(691\) −391.517 678.127i −0.566595 0.981371i −0.996899 0.0786873i \(-0.974927\pi\)
0.430304 0.902684i \(-0.358406\pi\)
\(692\) −283.153 + 283.153i −0.409181 + 0.409181i
\(693\) −380.036 + 177.229i −0.548393 + 0.255742i
\(694\) 646.642i 0.931760i
\(695\) 9.71114 75.0107i 0.0139729 0.107929i
\(696\) −56.8272 + 98.4277i −0.0816483 + 0.141419i
\(697\) −126.667 472.729i −0.181732 0.678233i
\(698\) −25.7465 + 96.0873i −0.0368861 + 0.137661i
\(699\) 347.264i 0.496801i
\(700\) −118.279 + 329.409i −0.168971 + 0.470584i
\(701\) −451.488 −0.644063 −0.322031 0.946729i \(-0.604366\pi\)
−0.322031 + 0.946729i \(0.604366\pi\)
\(702\) 134.253 + 35.9730i 0.191244 + 0.0512436i
\(703\) −382.825 + 102.578i −0.544559 + 0.145914i
\(704\) −138.343 79.8724i −0.196510 0.113455i
\(705\) 650.514 + 84.2178i 0.922715 + 0.119458i
\(706\) −235.918 −0.334162
\(707\) −787.481 68.8699i −1.11384 0.0974114i
\(708\) 75.7737 + 75.7737i 0.107025 + 0.107025i
\(709\) 389.602 224.937i 0.549509 0.317259i −0.199415 0.979915i \(-0.563904\pi\)
0.748924 + 0.662656i \(0.230571\pi\)
\(710\) 77.7691 + 32.0171i 0.109534 + 0.0450945i
\(711\) 113.546 196.668i 0.159699 0.276607i
\(712\) −393.214 105.361i −0.552267 0.147979i
\(713\) 823.101 + 823.101i 1.15442 + 1.15442i
\(714\) 297.183 249.383i 0.416223 0.349275i
\(715\) −1871.69 + 250.513i −2.61775 + 0.350368i
\(716\) −120.088 207.998i −0.167720 0.290500i
\(717\) 126.765 + 473.093i 0.176799 + 0.659823i
\(718\) 705.045 188.916i 0.981957 0.263115i
\(719\) 825.620 476.672i 1.14829 0.662965i 0.199820 0.979833i \(-0.435964\pi\)
0.948470 + 0.316868i \(0.102631\pi\)
\(720\) −47.6797 36.4231i −0.0662218 0.0505877i
\(721\) −1356.57 + 239.246i −1.88152 + 0.331825i
\(722\) −65.9374 + 65.9374i −0.0913260 + 0.0913260i
\(723\) −40.8610 + 152.495i −0.0565159 + 0.210920i
\(724\) 377.293 + 217.830i 0.521123 + 0.300871i
\(725\) 147.700 560.869i 0.203724 0.773612i
\(726\) 340.142 + 589.143i 0.468515 + 0.811492i
\(727\) 438.595 438.595i 0.603295 0.603295i −0.337890 0.941185i \(-0.609713\pi\)
0.941185 + 0.337890i \(0.109713\pi\)
\(728\) 339.388 158.272i 0.466192 0.217407i
\(729\) 27.0000i 0.0370370i
\(730\) −153.104 19.8213i −0.209731 0.0271525i
\(731\) −234.881 + 406.825i −0.321314 + 0.556532i
\(732\) 3.15302 + 11.7672i 0.00430740 + 0.0160754i
\(733\) −196.927 + 734.941i −0.268659 + 1.00265i 0.691314 + 0.722554i \(0.257032\pi\)
−0.959973 + 0.280093i \(0.909635\pi\)
\(734\) 711.808i 0.969766i
\(735\) −227.210 + 358.400i −0.309130 + 0.487619i
\(736\) −118.688 −0.161261
\(737\) −56.9578 15.2618i −0.0772833 0.0207080i
\(738\) −88.6421 + 23.7516i −0.120111 + 0.0321837i
\(739\) −557.758 322.022i −0.754747 0.435754i 0.0726593 0.997357i \(-0.476851\pi\)
−0.827407 + 0.561603i \(0.810185\pi\)
\(740\) −140.852 182.746i −0.190340 0.246954i
\(741\) −562.732 −0.759422
\(742\) 17.4019 + 37.3153i 0.0234527 + 0.0502901i
\(743\) −166.104 166.104i −0.223558 0.223558i 0.586437 0.809995i \(-0.300530\pi\)
−0.809995 + 0.586437i \(0.800530\pi\)
\(744\) −235.381 + 135.897i −0.316373 + 0.182658i
\(745\) −151.894 + 63.2998i −0.203884 + 0.0849662i
\(746\) 272.063 471.227i 0.364696 0.631672i
\(747\) 115.920 + 31.0606i 0.155180 + 0.0415805i
\(748\) −638.939 638.939i −0.854197 0.854197i
\(749\) 197.996 + 1122.68i 0.264347 + 1.49890i
\(750\) 283.630 + 115.343i 0.378173 + 0.153791i
\(751\) 560.910 + 971.525i 0.746884 + 1.29364i 0.949309 + 0.314344i \(0.101785\pi\)
−0.202425 + 0.979298i \(0.564882\pi\)
\(752\) 78.4136 + 292.644i 0.104273 + 0.389154i
\(753\) −466.435 + 124.981i −0.619436 + 0.165977i
\(754\) −537.416 + 310.277i −0.712753 + 0.411508i
\(755\) 863.127 1129.88i 1.14321 1.49652i
\(756\) −46.7621 55.7253i −0.0618547 0.0737106i
\(757\) 646.859 646.859i 0.854504 0.854504i −0.136180 0.990684i \(-0.543483\pi\)
0.990684 + 0.136180i \(0.0434827\pi\)
\(758\) 129.064 481.673i 0.170269 0.635452i
\(759\) 628.435 + 362.827i 0.827977 + 0.478033i
\(760\) 224.633 + 92.4801i 0.295570 + 0.121684i
\(761\) 273.840 + 474.305i 0.359842 + 0.623265i 0.987934 0.154874i \(-0.0494971\pi\)
−0.628092 + 0.778139i \(0.716164\pi\)
\(762\) 105.650 105.650i 0.138648 0.138648i
\(763\) −35.7575 + 408.864i −0.0468644 + 0.535863i
\(764\) 224.666i