Properties

Label 210.3.v.b.163.4
Level 210
Weight 3
Character 210.163
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 163.4
Character \(\chi\) \(=\) 210.163
Dual form 210.3.v.b.67.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.60215 + 1.95454i) q^{5} +2.44949 q^{6} +(-2.49277 - 6.54111i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.60215 + 1.95454i) q^{5} +2.44949 q^{6} +(-2.49277 - 6.54111i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(0.985440 - 7.00206i) q^{10} +(1.59310 + 2.75932i) q^{11} +(-0.896575 - 3.34607i) q^{12} +(16.7146 + 16.7146i) q^{13} +(-8.02290 + 5.79940i) q^{14} +(-5.33309 + 6.82335i) q^{15} +(2.00000 - 3.46410i) q^{16} +(14.5470 + 3.89785i) q^{17} +(-1.09808 + 4.09808i) q^{18} +(13.5028 + 7.79585i) q^{19} +(-9.92569 + 1.21680i) q^{20} +(12.0610 - 1.23819i) q^{21} +(3.18619 - 3.18619i) q^{22} +(5.41879 - 1.45196i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(17.3596 + 17.9901i) q^{25} +(16.7146 - 28.9505i) q^{26} +(3.67423 - 3.67423i) q^{27} +(10.8587 + 8.83676i) q^{28} -47.4699i q^{29} +(11.2729 + 4.78761i) q^{30} +(0.731778 + 1.26748i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-5.33061 + 1.42833i) q^{33} -21.2982i q^{34} +(1.31271 - 34.9754i) q^{35} +6.00000 q^{36} +(14.3009 + 53.3715i) q^{37} +(5.70696 - 21.2987i) q^{38} +(-35.4570 + 20.4711i) q^{39} +(5.29523 + 13.1134i) q^{40} -27.2740 q^{41} +(-6.10602 - 16.0224i) q^{42} +(-16.8709 - 16.8709i) q^{43} +(-5.51865 - 3.18619i) q^{44} +(-9.02494 - 11.9813i) q^{45} +(-3.96683 - 6.87075i) q^{46} +(-7.04479 - 26.2915i) q^{47} +(4.89898 + 4.89898i) q^{48} +(-36.5722 + 32.6110i) q^{49} +(18.2209 - 30.2985i) q^{50} +(-13.0425 + 22.5902i) q^{51} +(-45.6651 - 12.2359i) q^{52} +(-8.92325 + 33.3020i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(1.93848 + 15.8126i) q^{55} +(8.09667 - 18.0678i) q^{56} +(-19.0959 + 19.0959i) q^{57} +(-64.8451 + 17.3752i) q^{58} +(46.3174 - 26.7414i) q^{59} +(2.41383 - 17.1515i) q^{60} +(20.4235 - 35.3745i) q^{61} +(1.46356 - 1.46356i) q^{62} +(-3.33525 + 20.7335i) q^{63} +8.00000i q^{64} +(44.2538 + 109.592i) q^{65} +(3.90227 + 6.75894i) q^{66} +(59.1406 + 15.8467i) q^{67} +(-29.0939 + 7.79570i) q^{68} +9.71671i q^{69} +(-48.2577 + 11.0087i) q^{70} -102.469 q^{71} +(-2.19615 - 8.19615i) q^{72} +(-7.92202 + 29.5654i) q^{73} +(67.6724 - 39.0707i) q^{74} +(-37.8802 + 20.9784i) q^{75} -31.1834 q^{76} +(14.0778 - 17.2990i) q^{77} +(40.9422 + 40.9422i) q^{78} +(-101.041 - 58.3361i) q^{79} +(15.9750 - 12.0332i) q^{80} +(4.50000 + 7.79423i) q^{81} +(9.98297 + 37.2570i) q^{82} +(-74.9073 - 74.9073i) q^{83} +(-19.6520 + 14.2056i) q^{84} +(59.3289 + 46.3711i) q^{85} +(-16.8709 + 29.2212i) q^{86} +(79.4187 + 21.2802i) q^{87} +(-2.33246 + 8.70484i) q^{88} +(-91.7988 - 53.0001i) q^{89} +(-13.0633 + 16.7137i) q^{90} +(67.6662 - 150.998i) q^{91} +(-7.93366 + 7.93366i) q^{92} +(-2.44858 + 0.656094i) q^{93} +(-33.3363 + 19.2467i) q^{94} +(46.9047 + 62.2694i) q^{95} +(4.89898 - 8.48528i) q^{96} +(-66.3214 + 66.3214i) q^{97} +(57.9338 + 38.0221i) q^{98} -9.55858i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −0.448288 + 1.67303i −0.149429 + 0.557678i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 4.60215 + 1.95454i 0.920430 + 0.390907i
\(6\) 2.44949 0.408248
\(7\) −2.49277 6.54111i −0.356110 0.934444i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) 0.985440 7.00206i 0.0985440 0.700206i
\(11\) 1.59310 + 2.75932i 0.144827 + 0.250848i 0.929308 0.369305i \(-0.120404\pi\)
−0.784481 + 0.620152i \(0.787071\pi\)
\(12\) −0.896575 3.34607i −0.0747146 0.278839i
\(13\) 16.7146 + 16.7146i 1.28574 + 1.28574i 0.937351 + 0.348386i \(0.113270\pi\)
0.348386 + 0.937351i \(0.386730\pi\)
\(14\) −8.02290 + 5.79940i −0.573064 + 0.414243i
\(15\) −5.33309 + 6.82335i −0.355539 + 0.454890i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 14.5470 + 3.89785i 0.855704 + 0.229285i 0.659896 0.751357i \(-0.270600\pi\)
0.195808 + 0.980642i \(0.437267\pi\)
\(18\) −1.09808 + 4.09808i −0.0610042 + 0.227671i
\(19\) 13.5028 + 7.79585i 0.710674 + 0.410308i 0.811311 0.584615i \(-0.198755\pi\)
−0.100636 + 0.994923i \(0.532088\pi\)
\(20\) −9.92569 + 1.21680i −0.496285 + 0.0608398i
\(21\) 12.0610 1.23819i 0.574332 0.0589615i
\(22\) 3.18619 3.18619i 0.144827 0.144827i
\(23\) 5.41879 1.45196i 0.235600 0.0631287i −0.139087 0.990280i \(-0.544417\pi\)
0.374687 + 0.927151i \(0.377750\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 17.3596 + 17.9901i 0.694383 + 0.719605i
\(26\) 16.7146 28.9505i 0.642869 1.11348i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) 10.8587 + 8.83676i 0.387811 + 0.315598i
\(29\) 47.4699i 1.63689i −0.574583 0.818446i \(-0.694836\pi\)
0.574583 0.818446i \(-0.305164\pi\)
\(30\) 11.2729 + 4.78761i 0.375764 + 0.159587i
\(31\) 0.731778 + 1.26748i 0.0236057 + 0.0408863i 0.877587 0.479417i \(-0.159152\pi\)
−0.853981 + 0.520304i \(0.825819\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) −5.33061 + 1.42833i −0.161533 + 0.0432828i
\(34\) 21.2982i 0.626419i
\(35\) 1.31271 34.9754i 0.0375059 0.999296i
\(36\) 6.00000 0.166667
\(37\) 14.3009 + 53.3715i 0.386510 + 1.44247i 0.835773 + 0.549074i \(0.185020\pi\)
−0.449264 + 0.893399i \(0.648314\pi\)
\(38\) 5.70696 21.2987i 0.150183 0.560491i
\(39\) −35.4570 + 20.4711i −0.909154 + 0.524900i
\(40\) 5.29523 + 13.1134i 0.132381 + 0.327834i
\(41\) −27.2740 −0.665219 −0.332610 0.943065i \(-0.607929\pi\)
−0.332610 + 0.943065i \(0.607929\pi\)
\(42\) −6.10602 16.0224i −0.145381 0.381485i
\(43\) −16.8709 16.8709i −0.392346 0.392346i 0.483177 0.875523i \(-0.339483\pi\)
−0.875523 + 0.483177i \(0.839483\pi\)
\(44\) −5.51865 3.18619i −0.125424 0.0724135i
\(45\) −9.02494 11.9813i −0.200554 0.266250i
\(46\) −3.96683 6.87075i −0.0862355 0.149364i
\(47\) −7.04479 26.2915i −0.149889 0.559394i −0.999489 0.0319661i \(-0.989823\pi\)
0.849600 0.527428i \(-0.176844\pi\)
\(48\) 4.89898 + 4.89898i 0.102062 + 0.102062i
\(49\) −36.5722 + 32.6110i −0.746371 + 0.665530i
\(50\) 18.2209 30.2985i 0.364419 0.605970i
\(51\) −13.0425 + 22.5902i −0.255734 + 0.442945i
\(52\) −45.6651 12.2359i −0.878175 0.235306i
\(53\) −8.92325 + 33.3020i −0.168363 + 0.628340i 0.829224 + 0.558916i \(0.188783\pi\)
−0.997587 + 0.0694239i \(0.977884\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) 1.93848 + 15.8126i 0.0352450 + 0.287502i
\(56\) 8.09667 18.0678i 0.144583 0.322639i
\(57\) −19.0959 + 19.0959i −0.335015 + 0.335015i
\(58\) −64.8451 + 17.3752i −1.11802 + 0.299572i
\(59\) 46.3174 26.7414i 0.785041 0.453243i −0.0531731 0.998585i \(-0.516933\pi\)
0.838214 + 0.545342i \(0.183600\pi\)
\(60\) 2.41383 17.1515i 0.0402304 0.285858i
\(61\) 20.4235 35.3745i 0.334812 0.579911i −0.648637 0.761098i \(-0.724661\pi\)
0.983449 + 0.181187i \(0.0579940\pi\)
\(62\) 1.46356 1.46356i 0.0236057 0.0236057i
\(63\) −3.33525 + 20.7335i −0.0529404 + 0.329102i
\(64\) 8.00000i 0.125000i
\(65\) 44.2538 + 109.592i 0.680828 + 1.68604i
\(66\) 3.90227 + 6.75894i 0.0591254 + 0.102408i
\(67\) 59.1406 + 15.8467i 0.882695 + 0.236517i 0.671570 0.740941i \(-0.265620\pi\)
0.211126 + 0.977459i \(0.432287\pi\)
\(68\) −29.0939 + 7.79570i −0.427852 + 0.114643i
\(69\) 9.71671i 0.140822i
\(70\) −48.2577 + 11.0087i −0.689396 + 0.157267i
\(71\) −102.469 −1.44323 −0.721616 0.692294i \(-0.756600\pi\)
−0.721616 + 0.692294i \(0.756600\pi\)
\(72\) −2.19615 8.19615i −0.0305021 0.113835i
\(73\) −7.92202 + 29.5654i −0.108521 + 0.405005i −0.998721 0.0505648i \(-0.983898\pi\)
0.890200 + 0.455570i \(0.150565\pi\)
\(74\) 67.6724 39.0707i 0.914492 0.527982i
\(75\) −37.8802 + 20.9784i −0.505069 + 0.279712i
\(76\) −31.1834 −0.410308
\(77\) 14.0778 17.2990i 0.182829 0.224662i
\(78\) 40.9422 + 40.9422i 0.524900 + 0.524900i
\(79\) −101.041 58.3361i −1.27900 0.738431i −0.302336 0.953202i \(-0.597766\pi\)
−0.976665 + 0.214770i \(0.931100\pi\)
\(80\) 15.9750 12.0332i 0.199688 0.150416i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 9.98297 + 37.2570i 0.121744 + 0.454353i
\(83\) −74.9073 74.9073i −0.902497 0.902497i 0.0931546 0.995652i \(-0.470305\pi\)
−0.995652 + 0.0931546i \(0.970305\pi\)
\(84\) −19.6520 + 14.2056i −0.233953 + 0.169114i
\(85\) 59.3289 + 46.3711i 0.697987 + 0.545542i
\(86\) −16.8709 + 29.2212i −0.196173 + 0.339782i
\(87\) 79.4187 + 21.2802i 0.912858 + 0.244600i
\(88\) −2.33246 + 8.70484i −0.0265052 + 0.0989187i
\(89\) −91.7988 53.0001i −1.03145 0.595506i −0.114048 0.993475i \(-0.536382\pi\)
−0.917399 + 0.397969i \(0.869715\pi\)
\(90\) −13.0633 + 16.7137i −0.145148 + 0.185708i
\(91\) 67.6662 150.998i 0.743585 1.65931i
\(92\) −7.93366 + 7.93366i −0.0862355 + 0.0862355i
\(93\) −2.44858 + 0.656094i −0.0263288 + 0.00705478i
\(94\) −33.3363 + 19.2467i −0.354642 + 0.204752i
\(95\) 46.9047 + 62.2694i 0.493734 + 0.655467i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) −66.3214 + 66.3214i −0.683725 + 0.683725i −0.960838 0.277112i \(-0.910623\pi\)
0.277112 + 0.960838i \(0.410623\pi\)
\(98\) 57.9338 + 38.0221i 0.591161 + 0.387980i
\(99\) 9.55858i 0.0965513i
\(100\) −48.0578 13.8002i −0.480578 0.138002i
\(101\) −90.1553 156.154i −0.892627 1.54608i −0.836714 0.547640i \(-0.815526\pi\)
−0.0559130 0.998436i \(-0.517807\pi\)
\(102\) 35.6327 + 9.54774i 0.349340 + 0.0936053i
\(103\) −76.7078 + 20.5538i −0.744736 + 0.199551i −0.611182 0.791490i \(-0.709306\pi\)
−0.133554 + 0.991042i \(0.542639\pi\)
\(104\) 66.8583i 0.642869i
\(105\) 57.9265 + 17.8752i 0.551681 + 0.170240i
\(106\) 48.7576 0.459977
\(107\) 15.6342 + 58.3476i 0.146114 + 0.545305i 0.999703 + 0.0243583i \(0.00775424\pi\)
−0.853589 + 0.520947i \(0.825579\pi\)
\(108\) −2.68973 + 10.0382i −0.0249049 + 0.0929463i
\(109\) −12.3921 + 7.15460i −0.113689 + 0.0656385i −0.555766 0.831339i \(-0.687575\pi\)
0.442077 + 0.896977i \(0.354242\pi\)
\(110\) 20.8909 8.43582i 0.189917 0.0766892i
\(111\) −95.7032 −0.862191
\(112\) −27.6446 4.44700i −0.246827 0.0397053i
\(113\) 66.0293 + 66.0293i 0.584330 + 0.584330i 0.936090 0.351760i \(-0.114417\pi\)
−0.351760 + 0.936090i \(0.614417\pi\)
\(114\) 33.0750 + 19.0959i 0.290132 + 0.167508i
\(115\) 27.7760 + 3.90908i 0.241530 + 0.0339920i
\(116\) 47.4699 + 82.2202i 0.409223 + 0.708795i
\(117\) −18.3539 68.4976i −0.156871 0.585450i
\(118\) −53.4827 53.4827i −0.453243 0.453243i
\(119\) −10.7660 104.870i −0.0904710 0.881259i
\(120\) −24.3129 + 2.98053i −0.202607 + 0.0248378i
\(121\) 55.4241 95.9973i 0.458050 0.793366i
\(122\) −55.7980 14.9510i −0.457361 0.122550i
\(123\) 12.2266 45.6303i 0.0994032 0.370978i
\(124\) −2.53495 1.46356i −0.0204432 0.0118029i
\(125\) 44.7291 + 116.723i 0.357833 + 0.933786i
\(126\) 29.5432 3.03294i 0.234470 0.0240709i
\(127\) 150.156 150.156i 1.18233 1.18233i 0.203192 0.979139i \(-0.434868\pi\)
0.979139 0.203192i \(-0.0651317\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 35.7885 20.6625i 0.277431 0.160175i
\(130\) 133.508 100.565i 1.02698 0.773580i
\(131\) 118.435 205.135i 0.904084 1.56592i 0.0819423 0.996637i \(-0.473888\pi\)
0.822142 0.569283i \(-0.192779\pi\)
\(132\) 7.80455 7.80455i 0.0591254 0.0591254i
\(133\) 17.3341 107.757i 0.130331 0.810200i
\(134\) 86.5878i 0.646178i
\(135\) 24.0908 9.72796i 0.178450 0.0720590i
\(136\) 21.2982 + 36.8896i 0.156605 + 0.271247i
\(137\) 103.535 + 27.7420i 0.755727 + 0.202496i 0.616057 0.787702i \(-0.288729\pi\)
0.139670 + 0.990198i \(0.455396\pi\)
\(138\) 13.2733 3.55656i 0.0961832 0.0257722i
\(139\) 259.949i 1.87014i 0.354464 + 0.935070i \(0.384663\pi\)
−0.354464 + 0.935070i \(0.615337\pi\)
\(140\) 32.7017 + 61.8918i 0.233584 + 0.442085i
\(141\) 47.1447 0.334359
\(142\) 37.5064 + 139.976i 0.264130 + 0.985745i
\(143\) −19.4930 + 72.7489i −0.136315 + 0.508734i
\(144\) −10.3923 + 6.00000i −0.0721688 + 0.0416667i
\(145\) 92.7815 218.464i 0.639873 1.50665i
\(146\) 43.2867 0.296484
\(147\) −38.1644 75.8055i −0.259622 0.515684i
\(148\) −78.1413 78.1413i −0.527982 0.527982i
\(149\) 26.3910 + 15.2369i 0.177121 + 0.102261i 0.585939 0.810355i \(-0.300726\pi\)
−0.408818 + 0.912616i \(0.634059\pi\)
\(150\) 42.5221 + 44.0666i 0.283481 + 0.293778i
\(151\) 46.5201 + 80.5751i 0.308080 + 0.533610i 0.977942 0.208875i \(-0.0669803\pi\)
−0.669862 + 0.742485i \(0.733647\pi\)
\(152\) 11.4139 + 42.5973i 0.0750916 + 0.280246i
\(153\) −31.9474 31.9474i −0.208806 0.208806i
\(154\) −28.7837 12.8988i −0.186907 0.0837583i
\(155\) 0.890425 + 7.26341i 0.00574468 + 0.0468607i
\(156\) 40.9422 70.9140i 0.262450 0.454577i
\(157\) 43.2837 + 11.5978i 0.275692 + 0.0738715i 0.394016 0.919104i \(-0.371085\pi\)
−0.118324 + 0.992975i \(0.537752\pi\)
\(158\) −42.7050 + 159.377i −0.270285 + 1.00872i
\(159\) −51.7152 29.8578i −0.325253 0.187785i
\(160\) −22.2850 17.4178i −0.139281 0.108861i
\(161\) −23.0052 31.8255i −0.142890 0.197674i
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) −132.967 + 35.6285i −0.815750 + 0.218580i −0.642488 0.766296i \(-0.722098\pi\)
−0.173263 + 0.984876i \(0.555431\pi\)
\(164\) 47.2399 27.2740i 0.288048 0.166305i
\(165\) −27.3240 3.84546i −0.165600 0.0233058i
\(166\) −74.9073 + 129.743i −0.451249 + 0.781585i
\(167\) −44.3224 + 44.3224i −0.265404 + 0.265404i −0.827245 0.561841i \(-0.810093\pi\)
0.561841 + 0.827245i \(0.310093\pi\)
\(168\) 26.5983 + 21.6455i 0.158323 + 0.128843i
\(169\) 389.755i 2.30624i
\(170\) 41.6282 98.0177i 0.244872 0.576575i
\(171\) −23.3876 40.5084i −0.136769 0.236891i
\(172\) 46.0921 + 12.3503i 0.267977 + 0.0718043i
\(173\) 107.039 28.6810i 0.618723 0.165786i 0.0641758 0.997939i \(-0.479558\pi\)
0.554547 + 0.832152i \(0.312891\pi\)
\(174\) 116.277i 0.668258i
\(175\) 74.4019 158.396i 0.425154 0.905121i
\(176\) 12.7448 0.0724135
\(177\) 23.9756 + 89.4783i 0.135456 + 0.505527i
\(178\) −38.7987 + 144.799i −0.217970 + 0.813477i
\(179\) −250.216 + 144.462i −1.39785 + 0.807050i −0.994167 0.107848i \(-0.965604\pi\)
−0.403685 + 0.914898i \(0.632271\pi\)
\(180\) 27.6129 + 11.7272i 0.153405 + 0.0651512i
\(181\) 119.317 0.659212 0.329606 0.944119i \(-0.393084\pi\)
0.329606 + 0.944119i \(0.393084\pi\)
\(182\) −231.034 37.1648i −1.26942 0.204202i
\(183\) 50.0272 + 50.0272i 0.273372 + 0.273372i
\(184\) 13.7415 + 7.93366i 0.0746821 + 0.0431177i
\(185\) −38.5018 + 273.575i −0.208118 + 1.47879i
\(186\) 1.79248 + 3.10467i 0.00963700 + 0.0166918i
\(187\) 12.4193 + 46.3495i 0.0664134 + 0.247858i
\(188\) 38.4935 + 38.4935i 0.204752 + 0.204752i
\(189\) −33.1926 14.8745i −0.175622 0.0787012i
\(190\) 67.8933 86.8652i 0.357333 0.457185i
\(191\) 63.4019 109.815i 0.331947 0.574950i −0.650946 0.759124i \(-0.725628\pi\)
0.982894 + 0.184174i \(0.0589610\pi\)
\(192\) −13.3843 3.58630i −0.0697097 0.0186787i
\(193\) 74.2715 277.185i 0.384827 1.43619i −0.453613 0.891199i \(-0.649865\pi\)
0.838440 0.544994i \(-0.183468\pi\)
\(194\) 114.872 + 66.3214i 0.592123 + 0.341863i
\(195\) −203.190 + 24.9092i −1.04200 + 0.127739i
\(196\) 30.7339 93.0561i 0.156805 0.474776i
\(197\) 3.41904 3.41904i 0.0173555 0.0173555i −0.698376 0.715731i \(-0.746094\pi\)
0.715731 + 0.698376i \(0.246094\pi\)
\(198\) −13.0573 + 3.49868i −0.0659458 + 0.0176701i
\(199\) 190.157 109.787i 0.955563 0.551694i 0.0607582 0.998153i \(-0.480648\pi\)
0.894805 + 0.446458i \(0.147315\pi\)
\(200\) −1.26109 + 70.6994i −0.00630545 + 0.353497i
\(201\) −53.0240 + 91.8402i −0.263801 + 0.456917i
\(202\) −180.311 + 180.311i −0.892627 + 0.892627i
\(203\) −310.506 + 118.332i −1.52958 + 0.582914i
\(204\) 52.1698i 0.255734i
\(205\) −125.519 53.3080i −0.612288 0.260039i
\(206\) 56.1540 + 97.2616i 0.272592 + 0.472144i
\(207\) −16.2564 4.35588i −0.0785332 0.0210429i
\(208\) 91.3302 24.4719i 0.439087 0.117653i
\(209\) 49.6782i 0.237695i
\(210\) 3.21546 85.6718i 0.0153117 0.407961i
\(211\) −210.755 −0.998840 −0.499420 0.866360i \(-0.666453\pi\)
−0.499420 + 0.866360i \(0.666453\pi\)
\(212\) −17.8465 66.6041i −0.0841816 0.314170i
\(213\) 45.9358 171.435i 0.215661 0.804858i
\(214\) 73.9818 42.7134i 0.345709 0.199595i
\(215\) −44.6676 110.617i −0.207756 0.514498i
\(216\) 14.6969 0.0680414
\(217\) 6.46654 7.94617i 0.0297997 0.0366183i
\(218\) 14.3092 + 14.3092i 0.0656385 + 0.0656385i
\(219\) −45.9125 26.5076i −0.209646 0.121039i
\(220\) −19.1701 25.4497i −0.0871369 0.115681i
\(221\) 177.996 + 308.298i 0.805410 + 1.39501i
\(222\) 35.0298 + 130.733i 0.157792 + 0.588887i
\(223\) −306.751 306.751i −1.37557 1.37557i −0.851960 0.523607i \(-0.824586\pi\)
−0.523607 0.851960i \(-0.675414\pi\)
\(224\) 4.04392 + 39.3909i 0.0180532 + 0.175852i
\(225\) −18.1163 72.7791i −0.0805170 0.323463i
\(226\) 66.0293 114.366i 0.292165 0.506044i
\(227\) −17.9726 4.81575i −0.0791745 0.0212147i 0.219014 0.975722i \(-0.429716\pi\)
−0.298189 + 0.954507i \(0.596383\pi\)
\(228\) 13.9791 52.1708i 0.0613120 0.228820i
\(229\) 53.2936 + 30.7691i 0.232723 + 0.134363i 0.611828 0.790991i \(-0.290435\pi\)
−0.379104 + 0.925354i \(0.623768\pi\)
\(230\) −4.82683 39.3736i −0.0209862 0.171189i
\(231\) 22.6309 + 31.3076i 0.0979691 + 0.135531i
\(232\) 94.9398 94.9398i 0.409223 0.409223i
\(233\) 241.844 64.8020i 1.03796 0.278120i 0.300691 0.953722i \(-0.402783\pi\)
0.737267 + 0.675602i \(0.236116\pi\)
\(234\) −86.8515 + 50.1438i −0.371160 + 0.214290i
\(235\) 18.9665 134.767i 0.0807085 0.573476i
\(236\) −53.4827 + 92.6348i −0.226622 + 0.392520i
\(237\) 142.894 142.894i 0.602927 0.602927i
\(238\) −139.314 + 53.0917i −0.585353 + 0.223074i
\(239\) 19.0275i 0.0796128i −0.999207 0.0398064i \(-0.987326\pi\)
0.999207 0.0398064i \(-0.0126741\pi\)
\(240\) 12.9706 + 32.1211i 0.0540442 + 0.133838i
\(241\) 148.159 + 256.620i 0.614769 + 1.06481i 0.990425 + 0.138052i \(0.0440841\pi\)
−0.375656 + 0.926759i \(0.622583\pi\)
\(242\) −151.421 40.5732i −0.625708 0.167658i
\(243\) −15.0573 + 4.03459i −0.0619642 + 0.0166032i
\(244\) 81.6940i 0.334812i
\(245\) −232.050 + 78.5991i −0.947143 + 0.320813i
\(246\) −66.8073 −0.271575
\(247\) 95.3894 + 355.998i 0.386192 + 1.44129i
\(248\) −1.07140 + 3.99851i −0.00432015 + 0.0161230i
\(249\) 158.902 91.7423i 0.638162 0.368443i
\(250\) 143.075 103.825i 0.572300 0.415299i
\(251\) −431.580 −1.71944 −0.859721 0.510763i \(-0.829363\pi\)
−0.859721 + 0.510763i \(0.829363\pi\)
\(252\) −14.9566 39.2466i −0.0593517 0.155741i
\(253\) 12.6391 + 12.6391i 0.0499569 + 0.0499569i
\(254\) −260.078 150.156i −1.02393 0.591166i
\(255\) −104.177 + 78.4716i −0.408536 + 0.307732i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −80.0190 298.635i −0.311358 1.16200i −0.927333 0.374238i \(-0.877904\pi\)
0.615975 0.787766i \(-0.288762\pi\)
\(258\) −41.3251 41.3251i −0.160175 0.160175i
\(259\) 313.460 226.587i 1.21027 0.874851i
\(260\) −186.242 145.566i −0.716316 0.559868i
\(261\) −71.2048 + 123.330i −0.272815 + 0.472530i
\(262\) −323.571 86.7005i −1.23500 0.330918i
\(263\) −66.3382 + 247.577i −0.252236 + 0.941359i 0.717371 + 0.696692i \(0.245345\pi\)
−0.969607 + 0.244667i \(0.921321\pi\)
\(264\) −13.5179 7.80455i −0.0512041 0.0295627i
\(265\) −106.156 + 135.820i −0.400589 + 0.512529i
\(266\) −153.543 + 15.7629i −0.577229 + 0.0592590i
\(267\) 129.823 129.823i 0.486229 0.486229i
\(268\) −118.281 + 31.6933i −0.441348 + 0.118259i
\(269\) 165.231 95.3963i 0.614242 0.354633i −0.160382 0.987055i \(-0.551272\pi\)
0.774624 + 0.632422i \(0.217939\pi\)
\(270\) −22.1065 29.3480i −0.0818759 0.108696i
\(271\) −86.4705 + 149.771i −0.319080 + 0.552662i −0.980296 0.197533i \(-0.936707\pi\)
0.661217 + 0.750195i \(0.270040\pi\)
\(272\) 42.5965 42.5965i 0.156605 0.156605i
\(273\) 222.290 + 180.898i 0.814249 + 0.662631i
\(274\) 151.585i 0.553230i
\(275\) −21.9851 + 76.5607i −0.0799458 + 0.278403i
\(276\) −9.71671 16.8298i −0.0352055 0.0609777i
\(277\) −442.182 118.482i −1.59633 0.427734i −0.652395 0.757879i \(-0.726236\pi\)
−0.943930 + 0.330145i \(0.892903\pi\)
\(278\) 355.097 95.1481i 1.27733 0.342259i
\(279\) 4.39067i 0.0157372i
\(280\) 72.5762 67.3253i 0.259201 0.240448i
\(281\) −268.170 −0.954340 −0.477170 0.878811i \(-0.658337\pi\)
−0.477170 + 0.878811i \(0.658337\pi\)
\(282\) −17.2561 64.4008i −0.0611920 0.228372i
\(283\) 36.2210 135.179i 0.127989 0.477663i −0.871939 0.489614i \(-0.837138\pi\)
0.999929 + 0.0119513i \(0.00380432\pi\)
\(284\) 177.482 102.469i 0.624938 0.360808i
\(285\) −125.206 + 50.5585i −0.439318 + 0.177398i
\(286\) 106.512 0.372419
\(287\) 67.9878 + 178.402i 0.236891 + 0.621610i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) −53.8601 31.0962i −0.186367 0.107599i
\(290\) −332.387 46.7787i −1.14616 0.161306i
\(291\) −81.2267 140.689i −0.279130 0.483467i
\(292\) −15.8440 59.1307i −0.0542604 0.202503i
\(293\) 98.0721 + 98.0721i 0.334717 + 0.334717i 0.854375 0.519657i \(-0.173940\pi\)
−0.519657 + 0.854375i \(0.673940\pi\)
\(294\) −89.5831 + 79.8803i −0.304705 + 0.271702i
\(295\) 265.427 32.5388i 0.899751 0.110301i
\(296\) −78.1413 + 135.345i −0.263991 + 0.457246i
\(297\) 15.9918 + 4.28499i 0.0538445 + 0.0144276i
\(298\) 11.1542 41.6279i 0.0374301 0.139691i
\(299\) 114.842 + 66.3039i 0.384086 + 0.221752i
\(300\) 44.6320 74.2158i 0.148773 0.247386i
\(301\) −68.2990 + 152.410i −0.226907 + 0.506344i
\(302\) 93.0401 93.0401i 0.308080 0.308080i
\(303\) 301.666 80.8311i 0.995596 0.266769i
\(304\) 54.0112 31.1834i 0.177669 0.102577i
\(305\) 163.133 122.881i 0.534862 0.402887i
\(306\) −31.9474 + 55.3345i −0.104403 + 0.180832i
\(307\) 256.782 256.782i 0.836422 0.836422i −0.151964 0.988386i \(-0.548560\pi\)
0.988386 + 0.151964i \(0.0485598\pi\)
\(308\) −7.08449 + 44.0405i −0.0230016 + 0.142989i
\(309\) 137.549i 0.445141i
\(310\) 9.59608 3.87493i 0.0309551 0.0124998i
\(311\) 103.111 + 178.593i 0.331545 + 0.574253i 0.982815 0.184593i \(-0.0590968\pi\)
−0.651270 + 0.758846i \(0.725763\pi\)
\(312\) −111.856 29.9718i −0.358513 0.0960634i
\(313\) −486.861 + 130.454i −1.55547 + 0.416786i −0.931225 0.364445i \(-0.881259\pi\)
−0.624242 + 0.781231i \(0.714592\pi\)
\(314\) 63.3717i 0.201821i
\(315\) −55.8736 + 88.8996i −0.177376 + 0.282221i
\(316\) 233.344 0.738431
\(317\) 51.2938 + 191.431i 0.161810 + 0.603884i 0.998426 + 0.0560930i \(0.0178643\pi\)
−0.836615 + 0.547791i \(0.815469\pi\)
\(318\) −21.8574 + 81.5730i −0.0687340 + 0.256519i
\(319\) 130.985 75.6241i 0.410611 0.237066i
\(320\) −15.6363 + 36.8172i −0.0488634 + 0.115054i
\(321\) −104.626 −0.325938
\(322\) −35.0539 + 43.0747i −0.108863 + 0.133772i
\(323\) 166.038 + 166.038i 0.514049 + 0.514049i
\(324\) −15.5885 9.00000i −0.0481125 0.0277778i
\(325\) −10.5393 + 590.856i −0.0324286 + 1.81802i
\(326\) 97.3388 + 168.596i 0.298585 + 0.517165i
\(327\) −6.41464 23.9398i −0.0196166 0.0732103i
\(328\) −54.5480 54.5480i −0.166305 0.166305i
\(329\) −154.415 + 111.620i −0.469345 + 0.339269i
\(330\) 4.74827 + 38.7328i 0.0143887 + 0.117372i
\(331\) 40.5455 70.2269i 0.122494 0.212166i −0.798257 0.602317i \(-0.794244\pi\)
0.920751 + 0.390152i \(0.127577\pi\)
\(332\) 204.650 + 54.8359i 0.616417 + 0.165168i
\(333\) 42.9026 160.115i 0.128837 0.480825i
\(334\) 76.7687 + 44.3224i 0.229846 + 0.132702i
\(335\) 241.201 + 188.521i 0.720003 + 0.562750i
\(336\) 19.8327 44.2568i 0.0590259 0.131717i
\(337\) −440.171 + 440.171i −1.30614 + 1.30614i −0.381969 + 0.924175i \(0.624754\pi\)
−0.924175 + 0.381969i \(0.875246\pi\)
\(338\) 532.415 142.660i 1.57519 0.422071i
\(339\) −140.069 + 80.8690i −0.413184 + 0.238552i
\(340\) −149.132 20.9882i −0.438623 0.0617299i
\(341\) −2.33159 + 4.03843i −0.00683750 + 0.0118429i
\(342\) −46.7751 + 46.7751i −0.136769 + 0.136769i
\(343\) 304.478 + 157.931i 0.887691 + 0.460439i
\(344\) 67.4835i 0.196173i
\(345\) −18.9917 + 44.7178i −0.0550483 + 0.129617i
\(346\) −78.3581 135.720i −0.226468 0.392255i
\(347\) −65.0860 17.4397i −0.187568 0.0502586i 0.163812 0.986492i \(-0.447621\pi\)
−0.351380 + 0.936233i \(0.614288\pi\)
\(348\) −158.837 + 42.5603i −0.456429 + 0.122300i
\(349\) 28.9513i 0.0829550i 0.999139 + 0.0414775i \(0.0132065\pi\)
−0.999139 + 0.0414775i \(0.986794\pi\)
\(350\) −243.606 43.6578i −0.696018 0.124737i
\(351\) 122.827 0.349933
\(352\) −4.66491 17.4097i −0.0132526 0.0494593i
\(353\) 166.352 620.833i 0.471251 1.75873i −0.164032 0.986455i \(-0.552450\pi\)
0.635284 0.772279i \(-0.280883\pi\)
\(354\) 113.454 65.5027i 0.320492 0.185036i
\(355\) −471.580 200.280i −1.32839 0.564169i
\(356\) 212.000 0.595506
\(357\) 180.277 + 28.9999i 0.504977 + 0.0812322i
\(358\) 288.924 + 288.924i 0.807050 + 0.807050i
\(359\) −61.7189 35.6334i −0.171919 0.0992575i 0.411571 0.911378i \(-0.364980\pi\)
−0.583490 + 0.812120i \(0.698313\pi\)
\(360\) 5.91264 42.0124i 0.0164240 0.116701i
\(361\) −58.9494 102.103i −0.163295 0.282835i
\(362\) −43.6732 162.991i −0.120644 0.450250i
\(363\) 135.761 + 135.761i 0.373997 + 0.373997i
\(364\) 33.7962 + 329.202i 0.0928467 + 0.904400i
\(365\) −94.2449 + 120.580i −0.258205 + 0.330357i
\(366\) 50.0272 86.6496i 0.136686 0.236747i
\(367\) 226.363 + 60.6537i 0.616792 + 0.165269i 0.553669 0.832737i \(-0.313227\pi\)
0.0631229 + 0.998006i \(0.479894\pi\)
\(368\) 5.80784 21.6752i 0.0157822 0.0588999i
\(369\) 70.8599 + 40.9110i 0.192032 + 0.110870i
\(370\) 387.804 47.5411i 1.04812 0.128489i
\(371\) 240.076 24.6465i 0.647105 0.0664325i
\(372\) 3.58497 3.58497i 0.00963700 0.00963700i
\(373\) 94.5060 25.3228i 0.253367 0.0678895i −0.129900 0.991527i \(-0.541466\pi\)
0.383267 + 0.923638i \(0.374799\pi\)
\(374\) 58.7688 33.9302i 0.157136 0.0907224i
\(375\) −215.333 + 22.5076i −0.574222 + 0.0600204i
\(376\) 38.4935 66.6726i 0.102376 0.177321i
\(377\) 793.439 793.439i 2.10461 2.10461i
\(378\) −8.16965 + 50.7864i −0.0216128 + 0.134356i
\(379\) 415.479i 1.09625i 0.836396 + 0.548126i \(0.184658\pi\)
−0.836396 + 0.548126i \(0.815342\pi\)
\(380\) −143.511 60.9491i −0.377660 0.160392i
\(381\) 183.903 + 318.529i 0.482685 + 0.836034i
\(382\) −173.217 46.4134i −0.453449 0.121501i
\(383\) 254.473 68.1859i 0.664421 0.178031i 0.0891805 0.996015i \(-0.471575\pi\)
0.575240 + 0.817984i \(0.304909\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 98.5997 52.0970i 0.256103 0.135317i
\(386\) −405.827 −1.05137
\(387\) 18.5255 + 69.1382i 0.0478695 + 0.178652i
\(388\) 48.5506 181.193i 0.125130 0.466993i
\(389\) −100.478 + 58.0113i −0.258299 + 0.149129i −0.623559 0.781777i \(-0.714314\pi\)
0.365259 + 0.930906i \(0.380980\pi\)
\(390\) 108.399 + 268.445i 0.277947 + 0.688321i
\(391\) 84.4865 0.216078
\(392\) −138.366 7.92236i −0.352975 0.0202101i
\(393\) 290.105 + 290.105i 0.738182 + 0.738182i
\(394\) −5.92194 3.41904i −0.0150303 0.00867776i
\(395\) −350.986 465.960i −0.888573 1.17964i
\(396\) 9.55858 + 16.5559i 0.0241378 + 0.0418079i
\(397\) −138.287 516.094i −0.348330 1.29998i −0.888674 0.458540i \(-0.848373\pi\)
0.540344 0.841444i \(-0.318294\pi\)
\(398\) −219.574 219.574i −0.551694 0.551694i
\(399\) 172.510 + 77.3064i 0.432355 + 0.193750i
\(400\) 97.0388 24.1551i 0.242597 0.0603878i
\(401\) 222.706 385.738i 0.555376 0.961939i −0.442498 0.896769i \(-0.645908\pi\)
0.997874 0.0651700i \(-0.0207590\pi\)
\(402\) 144.864 + 38.8163i 0.360359 + 0.0965578i
\(403\) −8.95398 + 33.4167i −0.0222183 + 0.0829199i
\(404\) 312.307 + 180.311i 0.773038 + 0.446314i
\(405\) 5.47559 + 44.6656i 0.0135200 + 0.110285i
\(406\) 275.297 + 380.846i 0.678071 + 0.938045i
\(407\) −124.487 + 124.487i −0.305864 + 0.305864i
\(408\) −71.2653 + 19.0955i −0.174670 + 0.0468027i
\(409\) −244.715 + 141.286i −0.598326 + 0.345444i −0.768383 0.639991i \(-0.778938\pi\)
0.170057 + 0.985434i \(0.445605\pi\)
\(410\) −26.8769 + 190.974i −0.0655534 + 0.465791i
\(411\) −92.8266 + 160.780i −0.225855 + 0.391193i
\(412\) 112.308 112.308i 0.272592 0.272592i
\(413\) −290.377 236.307i −0.703092 0.572172i
\(414\) 23.8010i 0.0574903i
\(415\) −198.326 491.143i −0.477893 1.18348i
\(416\) −66.8583 115.802i −0.160717 0.278370i
\(417\) −434.904 116.532i −1.04293 0.279453i
\(418\) 67.8616 18.1835i 0.162348 0.0435011i
\(419\) 128.452i 0.306567i −0.988182 0.153283i \(-0.951015\pi\)
0.988182 0.153283i \(-0.0489848\pi\)
\(420\) −118.207 + 26.9657i −0.281445 + 0.0642040i
\(421\) −432.680 −1.02774 −0.513872 0.857867i \(-0.671789\pi\)
−0.513872 + 0.857867i \(0.671789\pi\)
\(422\) 77.1418 + 287.897i 0.182800 + 0.682220i
\(423\) −21.1344 + 78.8746i −0.0499631 + 0.186465i
\(424\) −84.4506 + 48.7576i −0.199176 + 0.114994i
\(425\) 182.407 + 329.367i 0.429192 + 0.774981i
\(426\) −250.998 −0.589197
\(427\) −282.300 45.4116i −0.661124 0.106350i
\(428\) −85.4268 85.4268i −0.199595 0.199595i
\(429\) −112.973 65.2249i −0.263340 0.152039i
\(430\) −134.756 + 101.506i −0.313387 + 0.236060i
\(431\) 204.635 + 354.438i 0.474791 + 0.822362i 0.999583 0.0288683i \(-0.00919033\pi\)
−0.524792 + 0.851230i \(0.675857\pi\)
\(432\) −5.37945 20.0764i −0.0124524 0.0464731i
\(433\) 74.6999 + 74.6999i 0.172517 + 0.172517i 0.788084 0.615567i \(-0.211073\pi\)
−0.615567 + 0.788084i \(0.711073\pi\)
\(434\) −13.2216 5.92496i −0.0304645 0.0136520i
\(435\) 323.904 + 253.161i 0.744606 + 0.581979i
\(436\) 14.3092 24.7843i 0.0328193 0.0568446i
\(437\) 84.4882 + 22.6385i 0.193337 + 0.0518044i
\(438\) −19.4049 + 72.4201i −0.0443034 + 0.165343i
\(439\) 348.826 + 201.395i 0.794592 + 0.458758i 0.841577 0.540138i \(-0.181628\pi\)
−0.0469848 + 0.998896i \(0.514961\pi\)
\(440\) −27.7482 + 35.5021i −0.0630642 + 0.0806867i
\(441\) 143.934 29.8676i 0.326380 0.0677269i
\(442\) 355.991 355.991i 0.805410 0.805410i
\(443\) 99.0413 26.5380i 0.223569 0.0599053i −0.145295 0.989388i \(-0.546413\pi\)
0.368865 + 0.929483i \(0.379747\pi\)
\(444\) 165.763 95.7032i 0.373340 0.215548i
\(445\) −318.881 423.338i −0.716588 0.951322i
\(446\) −306.751 + 531.309i −0.687784 + 1.19128i
\(447\) −37.3226 + 37.3226i −0.0834957 + 0.0834957i
\(448\) 52.3289 19.9422i 0.116805 0.0445138i
\(449\) 435.242i 0.969359i −0.874692 0.484680i \(-0.838936\pi\)
0.874692 0.484680i \(-0.161064\pi\)
\(450\) −92.7871 + 51.3864i −0.206193 + 0.114192i
\(451\) −43.4501 75.2578i −0.0963417 0.166869i
\(452\) −180.395 48.3368i −0.399105 0.106940i
\(453\) −155.659 + 41.7087i −0.343618 + 0.0920723i
\(454\) 26.3137i 0.0579598i
\(455\) 606.540 562.658i 1.33306 1.23661i
\(456\) −76.3834 −0.167508
\(457\) 32.0021 + 119.433i 0.0700264 + 0.261342i 0.992060 0.125769i \(-0.0401397\pi\)
−0.922033 + 0.387111i \(0.873473\pi\)
\(458\) 22.5245 84.0627i 0.0491802 0.183543i
\(459\) 67.7706 39.1274i 0.147648 0.0852448i
\(460\) −52.0185 + 21.0053i −0.113084 + 0.0456637i
\(461\) 721.106 1.56422 0.782110 0.623140i \(-0.214143\pi\)
0.782110 + 0.623140i \(0.214143\pi\)
\(462\) 34.4834 42.3737i 0.0746395 0.0917179i
\(463\) −190.901 190.901i −0.412313 0.412313i 0.470231 0.882544i \(-0.344171\pi\)
−0.882544 + 0.470231i \(0.844171\pi\)
\(464\) −164.440 94.9398i −0.354398 0.204612i
\(465\) −12.5511 1.76638i −0.0269916 0.00379868i
\(466\) −177.042 306.646i −0.379919 0.658039i
\(467\) −44.6556 166.657i −0.0956222 0.356867i 0.901491 0.432798i \(-0.142474\pi\)
−0.997113 + 0.0759313i \(0.975807\pi\)
\(468\) 100.288 + 100.288i 0.214290 + 0.214290i
\(469\) −43.7693 426.347i −0.0933246 0.909055i
\(470\) −191.037 + 23.4194i −0.406462 + 0.0498284i
\(471\) −38.8071 + 67.2159i −0.0823930 + 0.142709i
\(472\) 146.118 + 39.1521i 0.309571 + 0.0829493i
\(473\) 19.6753 73.4292i 0.0415968 0.155241i
\(474\) −247.499 142.894i −0.522150 0.301463i
\(475\) 94.1548 + 378.250i 0.198221 + 0.796316i
\(476\) 123.517 + 170.874i 0.259490 + 0.358978i
\(477\) 73.1364 73.1364i 0.153326 0.153326i
\(478\) −25.9920 + 6.96454i −0.0543766 + 0.0145702i
\(479\) 330.041 190.549i 0.689021 0.397806i −0.114224 0.993455i \(-0.536438\pi\)
0.803245 + 0.595649i \(0.203105\pi\)
\(480\) 39.1306 29.4753i 0.0815221 0.0614069i
\(481\) −653.050 + 1131.12i −1.35769 + 2.35159i
\(482\) 296.319 296.319i 0.614769 0.614769i
\(483\) 63.5581 24.2216i 0.131590 0.0501481i
\(484\) 221.696i 0.458050i
\(485\) −434.848 + 175.593i −0.896594 + 0.362048i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) 233.660 + 62.6089i 0.479794 + 0.128560i 0.490607 0.871381i \(-0.336775\pi\)
−0.0108128 + 0.999942i \(0.503442\pi\)
\(488\) 111.596 29.9021i 0.228681 0.0612748i
\(489\) 238.430i 0.487588i
\(490\) 192.305 + 288.217i 0.392458 + 0.588198i
\(491\) −899.374 −1.83172 −0.915860 0.401498i \(-0.868490\pi\)
−0.915860 + 0.401498i \(0.868490\pi\)
\(492\) 24.4532 + 91.2605i 0.0497016 + 0.185489i
\(493\) 185.030 690.543i 0.375315 1.40070i
\(494\) 451.388 260.609i 0.913740 0.527548i
\(495\) 18.6826 43.9900i 0.0377426 0.0888687i
\(496\) 5.85422 0.0118029
\(497\) 255.433 + 670.264i 0.513950 + 1.34862i
\(498\) −183.485 183.485i −0.368443 0.368443i
\(499\) 128.915 + 74.4290i 0.258346 + 0.149156i 0.623580 0.781760i \(-0.285678\pi\)
−0.365234 + 0.930916i \(0.619011\pi\)
\(500\) −194.196 157.441i −0.388393 0.314883i
\(501\) −54.2837 94.0221i −0.108351 0.187669i
\(502\) 157.969 + 589.549i 0.314680 + 1.17440i
\(503\) 306.658 + 306.658i 0.609658 + 0.609658i 0.942857 0.333199i \(-0.108128\pi\)
−0.333199 + 0.942857i \(0.608128\pi\)
\(504\) −48.1374 + 34.7964i −0.0955107 + 0.0690405i
\(505\) −109.701 894.854i −0.217229 1.77199i
\(506\) 12.6391 21.8915i 0.0249784 0.0432639i
\(507\) −652.072 174.722i −1.28614 0.344620i
\(508\) −109.922 + 410.234i −0.216382 + 0.807547i
\(509\) 1.24200 + 0.717067i 0.00244007 + 0.00140878i 0.501220 0.865320i \(-0.332885\pi\)
−0.498779 + 0.866729i \(0.666218\pi\)
\(510\) 145.325 + 113.585i 0.284952 + 0.222717i
\(511\) 213.138 21.8810i 0.417100 0.0428199i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 78.2563 20.9687i 0.152546 0.0408747i
\(514\) −378.654 + 218.616i −0.736681 + 0.425323i
\(515\) −393.194 55.3364i −0.763483 0.107449i
\(516\) −41.3251 + 71.5771i −0.0800873 + 0.138715i
\(517\) 61.3238 61.3238i 0.118615 0.118615i
\(518\) −424.257 345.258i −0.819030 0.666521i
\(519\) 191.937i 0.369821i
\(520\) −130.677 + 307.692i −0.251302 + 0.591716i
\(521\) −457.957 793.205i −0.878996 1.52247i −0.852444 0.522819i \(-0.824880\pi\)
−0.0265527 0.999647i \(-0.508453\pi\)
\(522\) 194.535 + 52.1255i 0.372673 + 0.0998574i
\(523\) 39.3228 10.5365i 0.0751870 0.0201463i −0.221029 0.975267i \(-0.570942\pi\)
0.296216 + 0.955121i \(0.404275\pi\)
\(524\) 473.740i 0.904084i
\(525\) 231.649 + 195.484i 0.441235 + 0.372350i
\(526\) 362.478 0.689123
\(527\) 5.70472 + 21.2903i 0.0108249 + 0.0403991i
\(528\) −5.71333 + 21.3224i −0.0108207 + 0.0403834i
\(529\) −430.872 + 248.764i −0.814503 + 0.470254i
\(530\) 224.390 + 95.2984i 0.423377 + 0.179808i
\(531\) −160.448 −0.302162
\(532\) 77.7331 + 203.974i 0.146115 + 0.383410i
\(533\) −455.873 455.873i −0.855297 0.855297i
\(534\) −224.860 129.823i −0.421087 0.243114i
\(535\) −42.0915 + 299.082i −0.0786757 + 0.559032i
\(536\) 86.5878 + 149.974i 0.161544 + 0.279803i
\(537\) −129.521 483.379i −0.241194 0.900148i
\(538\) −190.793 190.793i −0.354633 0.354633i
\(539\) −148.247 48.9620i −0.275041 0.0908386i
\(540\) −31.9985 + 40.9401i −0.0592565 + 0.0758150i
\(541\) 301.769 522.680i 0.557799 0.966137i −0.439881 0.898056i \(-0.644979\pi\)
0.997680 0.0680803i \(-0.0216874\pi\)
\(542\) 236.242 + 63.3008i 0.435871 + 0.116791i
\(543\) −53.4885 + 199.622i −0.0985055 + 0.367628i
\(544\) −73.7793 42.5965i −0.135624 0.0783024i
\(545\) −71.0144 + 8.70569i −0.130302 + 0.0159737i
\(546\) 165.748 369.867i 0.303567 0.677412i
\(547\) −518.562 + 518.562i −0.948010 + 0.948010i −0.998714 0.0507035i \(-0.983854\pi\)
0.0507035 + 0.998714i \(0.483854\pi\)
\(548\) −207.069 + 55.4840i −0.377863 + 0.101248i
\(549\) −106.124 + 61.2705i −0.193304 + 0.111604i
\(550\) 112.631 + 2.00904i 0.204784 + 0.00365279i
\(551\) 370.068 640.977i 0.671630 1.16330i
\(552\) −19.4334 + 19.4334i −0.0352055 + 0.0352055i
\(553\) −129.710 + 806.339i −0.234557 + 1.45812i
\(554\) 647.400i 1.16859i
\(555\) −440.441 187.055i −0.793587 0.337037i
\(556\) −259.949 450.245i −0.467535 0.809794i
\(557\) −835.705 223.927i −1.50037 0.402023i −0.587145 0.809482i \(-0.699748\pi\)
−0.913223 + 0.407459i \(0.866415\pi\)
\(558\) −5.99776 + 1.60710i −0.0107487 + 0.00288010i
\(559\) 563.980i 1.00891i
\(560\) −118.533 74.4981i −0.211666 0.133032i
\(561\) −83.1116 −0.148149
\(562\) 98.1569 + 366.326i 0.174656 + 0.651826i
\(563\) −137.803 + 514.289i −0.244766 + 0.913480i 0.728734 + 0.684796i \(0.240109\pi\)
−0.973501 + 0.228684i \(0.926558\pi\)
\(564\) −81.6570 + 47.1447i −0.144782 + 0.0835898i
\(565\) 174.820 + 432.933i 0.309416 + 0.766253i
\(566\) −197.915 −0.349673
\(567\) 39.7654 48.8642i 0.0701330 0.0861803i
\(568\) −204.939 204.939i −0.360808 0.360808i
\(569\) −758.601 437.979i −1.33322 0.769734i −0.347427 0.937707i \(-0.612945\pi\)
−0.985792 + 0.167973i \(0.946278\pi\)
\(570\) 114.893 + 152.528i 0.201566 + 0.267593i
\(571\) 92.9859 + 161.056i 0.162847 + 0.282060i 0.935889 0.352296i \(-0.114599\pi\)
−0.773041 + 0.634356i \(0.781266\pi\)
\(572\) −38.9860 145.498i −0.0681574 0.254367i
\(573\) 155.302 + 155.302i 0.271034 + 0.271034i
\(574\) 218.816 158.173i 0.381213 0.275562i
\(575\) 120.189 + 72.2793i 0.209024 + 0.125703i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −38.0669 10.2000i −0.0659739 0.0176776i 0.225681 0.974201i \(-0.427539\pi\)
−0.291655 + 0.956524i \(0.594206\pi\)
\(578\) −22.7640 + 84.9563i −0.0393840 + 0.146983i
\(579\) 430.445 + 248.517i 0.743428 + 0.429218i
\(580\) 57.7612 + 471.171i 0.0995883 + 0.812365i
\(581\) −303.250 + 676.703i −0.521944 + 1.16472i
\(582\) −162.453 + 162.453i −0.279130 + 0.279130i
\(583\) −106.107 + 28.4312i −0.182001 + 0.0487671i
\(584\) −74.9748 + 43.2867i −0.128381 + 0.0741211i
\(585\) 49.4137 351.110i 0.0844678 0.600188i
\(586\) 98.0721 169.866i 0.167359 0.289874i
\(587\) −269.361 + 269.361i −0.458878 + 0.458878i −0.898287 0.439409i \(-0.855188\pi\)
0.439409 + 0.898287i \(0.355188\pi\)
\(588\) 141.908 + 93.1346i 0.241340 + 0.158392i
\(589\) 22.8193i 0.0387425i
\(590\) −141.602 350.669i −0.240003 0.594355i
\(591\) 4.18745 + 7.25287i 0.00708536 + 0.0122722i
\(592\) 213.486 + 57.2034i 0.360618 + 0.0966274i
\(593\) −583.511 + 156.351i −0.983998 + 0.263661i −0.714727 0.699403i \(-0.753449\pi\)
−0.269270 + 0.963065i \(0.586783\pi\)
\(594\) 23.4136i 0.0394169i
\(595\) 155.425 503.669i 0.261218 0.846503i
\(596\) −60.9475 −0.102261
\(597\) 98.4325 + 367.355i 0.164879 + 0.615335i
\(598\) 48.5378 181.146i 0.0811670 0.302919i
\(599\) −373.767 + 215.794i −0.623985 + 0.360258i −0.778419 0.627745i \(-0.783978\pi\)
0.154434 + 0.988003i \(0.450645\pi\)
\(600\) −117.717 33.8035i −0.196195 0.0563392i
\(601\) 473.060 0.787121 0.393560 0.919299i \(-0.371243\pi\)
0.393560 + 0.919299i \(0.371243\pi\)
\(602\) 233.194 + 37.5124i 0.387366 + 0.0623129i
\(603\) −129.882 129.882i −0.215393 0.215393i
\(604\) −161.150 93.0401i −0.266805 0.154040i
\(605\) 442.700 333.466i 0.731736 0.551183i
\(606\) −220.835 382.497i −0.364414 0.631183i
\(607\) 296.215 + 1105.49i 0.487999 + 1.82124i 0.566160 + 0.824296i \(0.308429\pi\)
−0.0781609 + 0.996941i \(0.524905\pi\)
\(608\) −62.3668 62.3668i −0.102577 0.102577i
\(609\) −58.7768 572.533i −0.0965137 0.940119i
\(610\) −227.569 177.866i −0.373063 0.291584i
\(611\) 321.701 557.203i 0.526516 0.911952i
\(612\) 87.2818 + 23.3871i 0.142617 + 0.0382142i
\(613\) −36.9829 + 138.022i −0.0603310 + 0.225158i −0.989508 0.144476i \(-0.953850\pi\)
0.929177 + 0.369634i \(0.120517\pi\)
\(614\) −444.759 256.782i −0.724363 0.418211i
\(615\) 145.455 186.100i 0.236512 0.302602i
\(616\) 62.7536 6.44235i 0.101873 0.0104584i
\(617\) 341.819 341.819i 0.554002 0.554002i −0.373591 0.927593i \(-0.621874\pi\)
0.927593 + 0.373591i \(0.121874\pi\)
\(618\) −187.895 + 50.3463i −0.304037 + 0.0814665i
\(619\) 260.991 150.683i 0.421633 0.243430i −0.274143 0.961689i \(-0.588394\pi\)
0.695776 + 0.718259i \(0.255061\pi\)
\(620\) −8.80567 11.6902i −0.0142027 0.0188551i
\(621\) 14.5751 25.2448i 0.0234703 0.0406518i
\(622\) 206.221 206.221i 0.331545 0.331545i
\(623\) −117.846 + 732.583i −0.189158 + 1.17590i
\(624\) 163.769i 0.262450i
\(625\) −22.2896 + 624.602i −0.0356633 + 0.999364i
\(626\) 356.407 + 617.315i 0.569340 + 0.986127i
\(627\) −83.1132 22.2701i −0.132557 0.0355185i
\(628\) −86.5674 + 23.1957i −0.137846 + 0.0369358i
\(629\) 832.137i 1.32295i
\(630\) 141.890 + 43.7852i 0.225223 + 0.0695003i
\(631\) 866.914 1.37387 0.686937 0.726717i \(-0.258955\pi\)
0.686937 + 0.726717i \(0.258955\pi\)
\(632\) −85.4099 318.754i −0.135142 0.504358i
\(633\) 94.4790 352.600i 0.149256 0.557031i
\(634\) 242.725 140.137i 0.382847 0.221037i
\(635\) 984.526 397.556i 1.55044 0.626072i
\(636\) 119.431 0.187785
\(637\) −1156.37 66.2094i −1.81533 0.103939i
\(638\) −151.248 151.248i −0.237066 0.237066i
\(639\) 266.223 + 153.704i 0.416625 + 0.240539i
\(640\) 56.0165 + 7.88352i 0.0875258 + 0.0123180i
\(641\) 263.616 + 456.597i 0.411258 + 0.712319i 0.995028 0.0996000i \(-0.0317563\pi\)
−0.583770 + 0.811919i \(0.698423\pi\)
\(642\) 38.2958 + 142.922i 0.0596508 + 0.222620i
\(643\) −831.612 831.612i −1.29333 1.29333i −0.932714 0.360617i \(-0.882566\pi\)
−0.360617 0.932714i \(-0.617434\pi\)
\(644\) 71.6717 + 32.1181i 0.111292 + 0.0498729i
\(645\) 205.090 25.1421i 0.317969 0.0389800i
\(646\) 166.038 287.586i 0.257025 0.445180i
\(647\) 80.8644 + 21.6675i 0.124984 + 0.0334893i 0.320769 0.947158i \(-0.396059\pi\)
−0.195785 + 0.980647i \(0.562725\pi\)
\(648\) −6.58846 + 24.5885i −0.0101674 + 0.0379452i
\(649\) 147.576 + 85.2032i 0.227390 + 0.131284i
\(650\) 810.982 201.871i 1.24766 0.310571i
\(651\) 10.3953 + 14.3809i 0.0159682 + 0.0220905i
\(652\) 194.678 194.678i 0.298585 0.298585i
\(653\) 328.360 87.9837i 0.502848 0.134738i 0.00152651 0.999999i \(-0.499514\pi\)
0.501321 + 0.865261i \(0.332847\pi\)
\(654\) −30.3544 + 17.5251i −0.0464134 + 0.0267968i
\(655\) 946.000 712.579i 1.44428 1.08791i
\(656\) −54.5480 + 94.4799i −0.0831524 + 0.144024i
\(657\) 64.9301 64.9301i 0.0988281 0.0988281i
\(658\) 208.995 + 170.079i 0.317621 + 0.258478i
\(659\) 286.236i 0.434349i 0.976133 + 0.217174i \(0.0696840\pi\)
−0.976133 + 0.217174i \(0.930316\pi\)
\(660\) 51.1720 20.6634i 0.0775333 0.0313082i
\(661\) −287.474 497.920i −0.434908 0.753283i 0.562380 0.826879i \(-0.309886\pi\)
−0.997288 + 0.0735962i \(0.976552\pi\)
\(662\) −110.772 29.6814i −0.167330 0.0448359i
\(663\) −595.585 + 159.587i −0.898318 + 0.240704i
\(664\) 299.629i 0.451249i
\(665\) 290.388 462.032i 0.436674 0.694785i
\(666\) −234.424 −0.351988
\(667\) −68.9244 257.229i −0.103335 0.385651i
\(668\) 32.4463 121.091i 0.0485723 0.181274i
\(669\) 650.718 375.692i 0.972673 0.561573i
\(670\) 169.239 398.490i 0.252595 0.594761i
\(671\) 130.146 0.193959
\(672\) −67.7152 10.8929i −0.100767 0.0162096i
\(673\) 95.3384 + 95.3384i 0.141662 + 0.141662i 0.774381 0.632719i \(-0.218061\pi\)
−0.632719 + 0.774381i \(0.718061\pi\)
\(674\) 762.398 + 440.171i 1.13115 + 0.653072i
\(675\) 129.883 + 2.31677i 0.192419 + 0.00343225i
\(676\) −389.755 675.075i −0.576560 0.998632i
\(677\) 67.6328 + 252.409i 0.0999008 + 0.372835i 0.997717 0.0675358i \(-0.0215137\pi\)
−0.897816 + 0.440371i \(0.854847\pi\)
\(678\) 161.738 + 161.738i 0.238552 + 0.238552i
\(679\) 599.139 + 268.491i 0.882385 + 0.395421i
\(680\) 25.9156 + 211.400i 0.0381112 + 0.310882i
\(681\) 16.1138 27.9099i 0.0236620 0.0409837i
\(682\) 6.37001 + 1.70684i 0.00934019 + 0.00250270i
\(683\) −197.660 + 737.678i −0.289400 + 1.08005i 0.656164 + 0.754618i \(0.272178\pi\)
−0.945564 + 0.325437i \(0.894489\pi\)
\(684\) 81.0169 + 46.7751i 0.118446 + 0.0683847i
\(685\) 422.259 + 330.035i 0.616437 + 0.481803i
\(686\) 104.291 473.731i 0.152027 0.690571i
\(687\) −75.3686 + 75.3686i −0.109707 + 0.109707i
\(688\) −92.1842 + 24.7007i −0.133989 + 0.0359022i
\(689\) −705.778 + 407.481i −1.02435 + 0.591410i
\(690\) 68.0370 + 9.57524i 0.0986044 + 0.0138772i
\(691\) 103.948 180.043i 0.150431 0.260555i −0.780955 0.624588i \(-0.785267\pi\)
0.931386 + 0.364033i \(0.118600\pi\)
\(692\) −156.716 + 156.716i −0.226468 + 0.226468i
\(693\) −62.5237 + 23.8274i −0.0902218 + 0.0343829i
\(694\) 95.2925i 0.137309i
\(695\) −508.080 + 1196.33i −0.731050 + 1.72133i
\(696\) 116.277 + 201.398i 0.167065 + 0.289364i
\(697\) −396.754 106.310i −0.569231 0.152525i
\(698\) 39.5482 10.5969i 0.0566593 0.0151818i
\(699\) 433.663i 0.620405i
\(700\) 29.5284 + 348.752i 0.0421834 + 0.498217i
\(701\) 1201.88 1.71453 0.857263 0.514879i \(-0.172163\pi\)
0.857263 + 0.514879i \(0.172163\pi\)
\(702\) −44.9577 167.784i −0.0640423 0.239009i
\(703\) −222.975 + 832.153i −0.317176 + 1.18372i
\(704\) −22.0746 + 12.7448i −0.0313560 + 0.0181034i
\(705\) 216.967 + 92.1459i 0.307754 + 0.130703i
\(706\) −908.963 −1.28748
\(707\) −796.681 + 978.971i −1.12685 + 1.38468i
\(708\) −131.005 131.005i −0.185036 0.185036i
\(709\) −284.619 164.325i −0.401437 0.231770i 0.285667 0.958329i \(-0.407785\pi\)
−0.687104 + 0.726559i \(0.741118\pi\)
\(710\) −100.978 + 717.498i −0.142222 + 1.01056i
\(711\) 175.008 + 303.123i 0.246144 + 0.426333i
\(712\) −77.5975 289.598i −0.108985 0.406738i
\(713\) 5.80568 + 5.80568i 0.00814261 + 0.00814261i
\(714\) −26.3713 256.877i −0.0369346 0.359772i
\(715\) −231.900 + 296.702i −0.324336 + 0.414967i
\(716\) 288.924 500.431i 0.403525 0.698926i
\(717\) 31.8336 + 8.52978i 0.0443983 + 0.0118965i
\(718\) −26.0855 + 97.3523i −0.0363308 + 0.135588i
\(719\) −18.0139 10.4003i −0.0250540 0.0144650i 0.487421 0.873167i \(-0.337938\pi\)
−0.512475 + 0.858702i \(0.671271\pi\)
\(720\) −59.5542 + 7.30078i −0.0827141 + 0.0101400i
\(721\) 325.660 + 450.518i 0.451678 + 0.624851i
\(722\) −117.899 + 117.899i −0.163295 + 0.163295i
\(723\) −495.751 + 132.836i −0.685686 + 0.183729i
\(724\) −206.664 + 119.317i −0.285447 + 0.164803i
\(725\) 853.989 824.057i 1.17792 1.13663i
\(726\) 135.761 235.144i 0.186998 0.323890i
\(727\) 869.829 869.829i 1.19646 1.19646i 0.221245 0.975218i \(-0.428988\pi\)
0.975218 0.221245i \(-0.0710121\pi\)
\(728\) 437.328 166.663i 0.600725 0.228932i
\(729\) 27.0000i 0.0370370i
\(730\) 199.212 + 84.6054i 0.272893 + 0.115898i
\(731\) −179.660 311.180i −0.245773 0.425691i
\(732\) −136.677 36.6224i −0.186717 0.0500306i
\(733\) 895.402 239.922i 1.22156 0.327315i 0.410271 0.911964i \(-0.365434\pi\)
0.811287 + 0.584648i \(0.198767\pi\)
\(734\) 331.418i 0.451523i
\(735\) −27.4737 423.462i −0.0373792 0.576139i
\(736\) −31.7346 −0.0431177
\(737\) 50.4906 + 188.433i 0.0685082 + 0.255676i
\(738\) 29.9489 111.771i 0.0405812 0.151451i
\(739\) 2.96458 1.71160i 0.00401160 0.00231610i −0.497993 0.867181i \(-0.665929\pi\)
0.502004 + 0.864865i \(0.332596\pi\)
\(740\) −206.888 512.348i −0.279579 0.692362i
\(741\) −638.359 −0.861483
\(742\) −121.542 318.928i −0.163803 0.429823i
\(743\) −72.5388 72.5388i −0.0976296 0.0976296i 0.656605 0.754235i \(-0.271992\pi\)
−0.754235 + 0.656605i \(0.771992\pi\)
\(744\) −6.20934 3.58497i −0.00834589 0.00481850i
\(745\) 91.6746 + 121.705i 0.123053 + 0.163362i
\(746\) −69.1832 119.829i −0.0927388 0.160628i
\(747\) 82.2539 + 306.976i 0.110112 + 0.410945i
\(748\) −67.8603 67.8603i −0.0907224 0.0907224i
\(749\) 342.685 247.712i 0.457524 0.330724i
\(750\) 109.563 + 285.912i 0.146085 + 0.381216i
\(751\) 625.085 1082.68i 0.832336 1.44165i −0.0638447 0.997960i \(-0.520336\pi\)
0.896181 0.443689i \(-0.146330\pi\)
\(752\) −105.166 28.1792i −0.139849 0.0374723i
\(753\) 193.472 722.048i 0.256935 0.958895i
\(754\) −1374.28 793.439i −1.82265 1.05231i
\(755\) 56.6055 + 461.744i 0.0749741 + 0.611581i
\(756\) 72.3658 7.42915i 0.0957219 0.00982692i
\(757\) 477.258 477.258i 0.630460 0.630460i −0.317723 0.948183i \(-0.602918\pi\)
0.948183 + 0.317723i \(0.102918\pi\)
\(758\) 567.555 152.076i 0.748754 0.200628i
\(759\) −26.8116 + 15.4797i −0.0353248 + 0.0203948i
\(760\) −30.7294 + 218.348i −0.0404334 + 0.287300i
\(761\) 291.071 504.150i 0.382485 0.662483i −0.608932 0.793222i \(-0.708402\pi\)
0.991417 + 0.130739i \(0.0417351\pi\)
\(762\) 367.806 367.806i 0.482685 0.482685i
\(763\) 77.6898 + 63.2234i 0.101821 + 0.0828617i
\(764\) 253.608i