Properties

Label 210.3.v.b.163.2
Level 210
Weight 3
Character 210.163
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 163.2
Character \(\chi\) \(=\) 210.163
Dual form 210.3.v.b.67.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-3.58272 + 3.48771i) q^{5} +2.44949 q^{6} +(3.00056 - 6.32429i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-3.58272 + 3.48771i) q^{5} +2.44949 q^{6} +(3.00056 - 6.32429i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(6.07567 + 3.61749i) q^{10} +(-1.95694 - 3.38951i) q^{11} +(-0.896575 - 3.34607i) q^{12} +(-8.93314 - 8.93314i) q^{13} +(-9.73742 - 1.78399i) q^{14} +(-4.22897 - 7.55750i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-14.3027 - 3.83238i) q^{17} +(-1.09808 + 4.09808i) q^{18} +(-28.0079 - 16.1704i) q^{19} +(2.71773 - 9.62361i) q^{20} +(9.23562 + 7.85514i) q^{21} +(-3.91387 + 3.91387i) q^{22} +(12.3227 - 3.30186i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(0.671716 - 24.9910i) q^{25} +(-8.93314 + 15.4726i) q^{26} +(3.67423 - 3.67423i) q^{27} +(1.12716 + 13.9546i) q^{28} +26.6068i q^{29} +(-8.77583 + 8.54312i) q^{30} +(-17.0130 - 29.4674i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(6.54804 - 1.75454i) q^{33} +20.9405i q^{34} +(11.3071 + 33.1232i) q^{35} +6.00000 q^{36} +(1.67475 + 6.25026i) q^{37} +(-11.8375 + 44.1783i) q^{38} +(18.9500 - 10.9408i) q^{39} +(-14.1409 - 0.190007i) q^{40} -26.0073 q^{41} +(7.34985 - 15.4913i) q^{42} +(21.0534 + 21.0534i) q^{43} +(6.77903 + 3.91387i) q^{44} +(14.5397 - 3.68727i) q^{45} +(-9.02086 - 15.6246i) q^{46} +(10.7473 + 40.1094i) q^{47} +(4.89898 + 4.89898i) q^{48} +(-30.9932 - 37.9528i) q^{49} +(-34.3842 + 8.22975i) q^{50} +(12.8234 - 22.2108i) q^{51} +(24.4058 + 6.53951i) q^{52} +(11.7128 - 43.7126i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(18.8328 + 5.31843i) q^{55} +(18.6497 - 6.64745i) q^{56} +(39.6092 - 39.6092i) q^{57} +(36.3456 - 9.73878i) q^{58} +(-20.7971 + 12.0072i) q^{59} +(14.8823 + 8.86101i) q^{60} +(8.39818 - 14.5461i) q^{61} +(-34.0260 + 34.0260i) q^{62} +(-17.2821 + 11.9301i) q^{63} +8.00000i q^{64} +(63.1611 + 0.848679i) q^{65} +(-4.79349 - 8.30258i) q^{66} +(57.0249 + 15.2798i) q^{67} +(28.6053 - 7.66477i) q^{68} +22.0965i q^{69} +(41.1085 - 27.5698i) q^{70} -132.560 q^{71} +(-2.19615 - 8.19615i) q^{72} +(2.29553 - 8.56704i) q^{73} +(7.92501 - 4.57551i) q^{74} +(41.5096 + 12.3269i) q^{75} +64.6815 q^{76} +(-27.3082 + 2.20578i) q^{77} +(-21.8816 - 21.8816i) q^{78} +(90.6550 + 52.3397i) q^{79} +(4.91636 + 19.3863i) q^{80} +(4.50000 + 7.79423i) q^{81} +(9.51932 + 35.5266i) q^{82} +(94.1629 + 94.1629i) q^{83} +(-23.8517 - 4.36988i) q^{84} +(64.6086 - 36.1532i) q^{85} +(21.0534 - 36.4656i) q^{86} +(-44.5141 - 11.9275i) q^{87} +(2.86515 - 10.6929i) q^{88} +(-43.2731 - 24.9837i) q^{89} +(-10.3588 - 18.5120i) q^{90} +(-83.3002 + 29.6913i) q^{91} +(-18.0417 + 18.0417i) q^{92} +(56.9266 - 15.2534i) q^{93} +(50.8567 - 29.3621i) q^{94} +(156.742 - 39.7497i) q^{95} +(4.89898 - 8.48528i) q^{96} +(118.224 - 118.224i) q^{97} +(-40.5002 + 56.2293i) q^{98} +11.7416i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −0.448288 + 1.67303i −0.149429 + 0.557678i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −3.58272 + 3.48771i −0.716543 + 0.697543i
\(6\) 2.44949 0.408248
\(7\) 3.00056 6.32429i 0.428652 0.903470i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) 6.07567 + 3.61749i 0.607567 + 0.361749i
\(11\) −1.95694 3.38951i −0.177903 0.308138i 0.763259 0.646093i \(-0.223598\pi\)
−0.941162 + 0.337955i \(0.890265\pi\)
\(12\) −0.896575 3.34607i −0.0747146 0.278839i
\(13\) −8.93314 8.93314i −0.687164 0.687164i 0.274440 0.961604i \(-0.411508\pi\)
−0.961604 + 0.274440i \(0.911508\pi\)
\(14\) −9.73742 1.78399i −0.695530 0.127428i
\(15\) −4.22897 7.55750i −0.281931 0.503833i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −14.3027 3.83238i −0.841332 0.225434i −0.187681 0.982230i \(-0.560097\pi\)
−0.653651 + 0.756796i \(0.726764\pi\)
\(18\) −1.09808 + 4.09808i −0.0610042 + 0.227671i
\(19\) −28.0079 16.1704i −1.47410 0.851072i −0.474526 0.880242i \(-0.657380\pi\)
−0.999574 + 0.0291696i \(0.990714\pi\)
\(20\) 2.71773 9.62361i 0.135887 0.481181i
\(21\) 9.23562 + 7.85514i 0.439792 + 0.374054i
\(22\) −3.91387 + 3.91387i −0.177903 + 0.177903i
\(23\) 12.3227 3.30186i 0.535770 0.143559i 0.0192188 0.999815i \(-0.493882\pi\)
0.516552 + 0.856256i \(0.327215\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 0.671716 24.9910i 0.0268686 0.999639i
\(26\) −8.93314 + 15.4726i −0.343582 + 0.595102i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) 1.12716 + 13.9546i 0.0402557 + 0.498377i
\(29\) 26.6068i 0.917478i 0.888571 + 0.458739i \(0.151699\pi\)
−0.888571 + 0.458739i \(0.848301\pi\)
\(30\) −8.77583 + 8.54312i −0.292528 + 0.284771i
\(31\) −17.0130 29.4674i −0.548807 0.950561i −0.998357 0.0573060i \(-0.981749\pi\)
0.449550 0.893255i \(-0.351584\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) 6.54804 1.75454i 0.198425 0.0531679i
\(34\) 20.9405i 0.615898i
\(35\) 11.3071 + 33.1232i 0.323061 + 0.946378i
\(36\) 6.00000 0.166667
\(37\) 1.67475 + 6.25026i 0.0452636 + 0.168926i 0.984858 0.173365i \(-0.0554639\pi\)
−0.939594 + 0.342291i \(0.888797\pi\)
\(38\) −11.8375 + 44.1783i −0.311514 + 1.16259i
\(39\) 18.9500 10.9408i 0.485898 0.280534i
\(40\) −14.1409 0.190007i −0.353521 0.00475018i
\(41\) −26.0073 −0.634324 −0.317162 0.948371i \(-0.602730\pi\)
−0.317162 + 0.948371i \(0.602730\pi\)
\(42\) 7.34985 15.4913i 0.174996 0.368840i
\(43\) 21.0534 + 21.0534i 0.489614 + 0.489614i 0.908185 0.418570i \(-0.137469\pi\)
−0.418570 + 0.908185i \(0.637469\pi\)
\(44\) 6.77903 + 3.91387i 0.154069 + 0.0889516i
\(45\) 14.5397 3.68727i 0.323105 0.0819393i
\(46\) −9.02086 15.6246i −0.196106 0.339665i
\(47\) 10.7473 + 40.1094i 0.228666 + 0.853391i 0.980903 + 0.194499i \(0.0623081\pi\)
−0.752237 + 0.658892i \(0.771025\pi\)
\(48\) 4.89898 + 4.89898i 0.102062 + 0.102062i
\(49\) −30.9932 37.9528i −0.632515 0.774548i
\(50\) −34.3842 + 8.22975i −0.687683 + 0.164595i
\(51\) 12.8234 22.2108i 0.251439 0.435506i
\(52\) 24.4058 + 6.53951i 0.469342 + 0.125760i
\(53\) 11.7128 43.7126i 0.220995 0.824766i −0.762974 0.646429i \(-0.776262\pi\)
0.983969 0.178337i \(-0.0570717\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) 18.8328 + 5.31843i 0.342414 + 0.0966988i
\(56\) 18.6497 6.64745i 0.333030 0.118704i
\(57\) 39.6092 39.6092i 0.694897 0.694897i
\(58\) 36.3456 9.73878i 0.626649 0.167910i
\(59\) −20.7971 + 12.0072i −0.352494 + 0.203512i −0.665783 0.746145i \(-0.731902\pi\)
0.313289 + 0.949658i \(0.398569\pi\)
\(60\) 14.8823 + 8.86101i 0.248038 + 0.147683i
\(61\) 8.39818 14.5461i 0.137675 0.238460i −0.788941 0.614469i \(-0.789370\pi\)
0.926616 + 0.376009i \(0.122704\pi\)
\(62\) −34.0260 + 34.0260i −0.548807 + 0.548807i
\(63\) −17.2821 + 11.9301i −0.274319 + 0.189367i
\(64\) 8.00000i 0.125000i
\(65\) 63.1611 + 0.848679i 0.971709 + 0.0130566i
\(66\) −4.79349 8.30258i −0.0726287 0.125797i
\(67\) 57.0249 + 15.2798i 0.851118 + 0.228056i 0.657906 0.753100i \(-0.271443\pi\)
0.193213 + 0.981157i \(0.438109\pi\)
\(68\) 28.6053 7.66477i 0.420666 0.112717i
\(69\) 22.0965i 0.320239i
\(70\) 41.1085 27.5698i 0.587264 0.393854i
\(71\) −132.560 −1.86705 −0.933524 0.358515i \(-0.883283\pi\)
−0.933524 + 0.358515i \(0.883283\pi\)
\(72\) −2.19615 8.19615i −0.0305021 0.113835i
\(73\) 2.29553 8.56704i 0.0314457 0.117357i −0.948419 0.317019i \(-0.897318\pi\)
0.979865 + 0.199663i \(0.0639846\pi\)
\(74\) 7.92501 4.57551i 0.107095 0.0618312i
\(75\) 41.5096 + 12.3269i 0.553461 + 0.164359i
\(76\) 64.6815 0.851072
\(77\) −27.3082 + 2.20578i −0.354651 + 0.0286465i
\(78\) −21.8816 21.8816i −0.280534 0.280534i
\(79\) 90.6550 + 52.3397i 1.14753 + 0.662528i 0.948284 0.317422i \(-0.102817\pi\)
0.199247 + 0.979949i \(0.436150\pi\)
\(80\) 4.91636 + 19.3863i 0.0614545 + 0.242329i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 9.51932 + 35.5266i 0.116089 + 0.433251i
\(83\) 94.1629 + 94.1629i 1.13449 + 1.13449i 0.989421 + 0.145072i \(0.0463413\pi\)
0.145072 + 0.989421i \(0.453659\pi\)
\(84\) −23.8517 4.36988i −0.283949 0.0520223i
\(85\) 64.6086 36.1532i 0.760101 0.425332i
\(86\) 21.0534 36.4656i 0.244807 0.424019i
\(87\) −44.5141 11.9275i −0.511657 0.137098i
\(88\) 2.86515 10.6929i 0.0325586 0.121510i
\(89\) −43.2731 24.9837i −0.486215 0.280716i 0.236788 0.971561i \(-0.423905\pi\)
−0.723003 + 0.690845i \(0.757239\pi\)
\(90\) −10.3588 18.5120i −0.115098 0.205689i
\(91\) −83.3002 + 29.6913i −0.915386 + 0.326278i
\(92\) −18.0417 + 18.0417i −0.196106 + 0.196106i
\(93\) 56.9266 15.2534i 0.612114 0.164016i
\(94\) 50.8567 29.3621i 0.541028 0.312363i
\(95\) 156.742 39.7497i 1.64992 0.418418i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) 118.224 118.224i 1.21881 1.21881i 0.250755 0.968050i \(-0.419321\pi\)
0.968050 0.250755i \(-0.0806790\pi\)
\(98\) −40.5002 + 56.2293i −0.413268 + 0.573768i
\(99\) 11.7416i 0.118602i
\(100\) 23.8275 + 43.9574i 0.238275 + 0.439574i
\(101\) −55.9197 96.8557i −0.553660 0.958967i −0.998006 0.0631124i \(-0.979897\pi\)
0.444346 0.895855i \(-0.353436\pi\)
\(102\) −35.0342 9.38738i −0.343473 0.0920332i
\(103\) −178.865 + 47.9268i −1.73656 + 0.465309i −0.981676 0.190556i \(-0.938971\pi\)
−0.754879 + 0.655864i \(0.772304\pi\)
\(104\) 35.7325i 0.343582i
\(105\) −60.4851 + 4.06847i −0.576049 + 0.0387473i
\(106\) −63.9997 −0.603771
\(107\) 8.28292 + 30.9123i 0.0774105 + 0.288900i 0.993769 0.111459i \(-0.0355523\pi\)
−0.916359 + 0.400358i \(0.868886\pi\)
\(108\) −2.68973 + 10.0382i −0.0249049 + 0.0929463i
\(109\) −151.129 + 87.2544i −1.38651 + 0.800499i −0.992920 0.118788i \(-0.962099\pi\)
−0.393586 + 0.919288i \(0.628766\pi\)
\(110\) 0.371832 27.6728i 0.00338029 0.251571i
\(111\) −11.2077 −0.100970
\(112\) −15.9069 23.0428i −0.142025 0.205740i
\(113\) −6.20286 6.20286i −0.0548925 0.0548925i 0.679128 0.734020i \(-0.262358\pi\)
−0.734020 + 0.679128i \(0.762358\pi\)
\(114\) −68.6051 39.6092i −0.601799 0.347449i
\(115\) −32.6329 + 54.8078i −0.283764 + 0.476589i
\(116\) −26.6068 46.0844i −0.229369 0.397279i
\(117\) 9.80926 + 36.6087i 0.0838399 + 0.312895i
\(118\) 24.0145 + 24.0145i 0.203512 + 0.203512i
\(119\) −67.1531 + 78.9548i −0.564312 + 0.663486i
\(120\) 6.65706 23.5729i 0.0554755 0.196441i
\(121\) 52.8408 91.5230i 0.436701 0.756388i
\(122\) −22.9443 6.14790i −0.188068 0.0503926i
\(123\) 11.6587 43.5110i 0.0947865 0.353748i
\(124\) 58.9348 + 34.0260i 0.475281 + 0.274403i
\(125\) 84.7548 + 91.8783i 0.678038 + 0.735027i
\(126\) 22.6226 + 19.2411i 0.179544 + 0.152707i
\(127\) 38.4037 38.4037i 0.302392 0.302392i −0.539557 0.841949i \(-0.681408\pi\)
0.841949 + 0.539557i \(0.181408\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) −44.6610 + 25.7851i −0.346210 + 0.199884i
\(130\) −21.9593 86.5903i −0.168917 0.666079i
\(131\) −73.5861 + 127.455i −0.561726 + 0.972938i 0.435620 + 0.900131i \(0.356529\pi\)
−0.997346 + 0.0728073i \(0.976804\pi\)
\(132\) −9.58699 + 9.58699i −0.0726287 + 0.0726287i
\(133\) −186.306 + 128.610i −1.40079 + 0.966991i
\(134\) 83.4903i 0.623062i
\(135\) −0.349065 + 25.9784i −0.00258567 + 0.192433i
\(136\) −20.9405 36.2701i −0.153975 0.266692i
\(137\) 1.13179 + 0.303261i 0.00826122 + 0.00221359i 0.262947 0.964810i \(-0.415305\pi\)
−0.254686 + 0.967024i \(0.581972\pi\)
\(138\) 30.1844 8.08788i 0.218727 0.0586078i
\(139\) 234.615i 1.68788i 0.536439 + 0.843939i \(0.319769\pi\)
−0.536439 + 0.843939i \(0.680231\pi\)
\(140\) −52.7078 46.0640i −0.376484 0.329028i
\(141\) −71.9222 −0.510086
\(142\) 48.5205 + 181.081i 0.341694 + 1.27522i
\(143\) −12.7974 + 47.7605i −0.0894923 + 0.333990i
\(144\) −10.3923 + 6.00000i −0.0721688 + 0.0416667i
\(145\) −92.7971 95.3248i −0.639980 0.657412i
\(146\) −12.5430 −0.0859111
\(147\) 77.3902 34.8389i 0.526464 0.236999i
\(148\) −9.15101 9.15101i −0.0618312 0.0618312i
\(149\) −224.139 129.407i −1.50429 0.868501i −0.999988 0.00497290i \(-0.998417\pi\)
−0.504300 0.863528i \(-0.668250\pi\)
\(150\) 1.64536 61.2151i 0.0109691 0.408101i
\(151\) −72.8305 126.146i −0.482321 0.835405i 0.517473 0.855700i \(-0.326873\pi\)
−0.999794 + 0.0202948i \(0.993540\pi\)
\(152\) −23.6751 88.3565i −0.155757 0.581293i
\(153\) 31.4108 + 31.4108i 0.205299 + 0.205299i
\(154\) 13.0086 + 36.4963i 0.0844717 + 0.236989i
\(155\) 163.727 + 46.2368i 1.05630 + 0.298302i
\(156\) −21.8816 + 37.9001i −0.140267 + 0.242949i
\(157\) 9.55304 + 2.55973i 0.0608474 + 0.0163040i 0.289114 0.957295i \(-0.406639\pi\)
−0.228267 + 0.973599i \(0.573306\pi\)
\(158\) 38.3153 142.995i 0.242502 0.905029i
\(159\) 67.8819 + 39.1917i 0.426930 + 0.246488i
\(160\) 24.6827 13.8118i 0.154267 0.0863235i
\(161\) 16.0932 87.8399i 0.0999575 0.545589i
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) −221.655 + 59.3922i −1.35985 + 0.364369i −0.863760 0.503904i \(-0.831896\pi\)
−0.496086 + 0.868274i \(0.665230\pi\)
\(164\) 45.0459 26.0073i 0.274670 0.158581i
\(165\) −17.3404 + 29.1237i −0.105093 + 0.176507i
\(166\) 94.1629 163.095i 0.567246 0.982500i
\(167\) 181.703 181.703i 1.08804 1.08804i 0.0923104 0.995730i \(-0.470575\pi\)
0.995730 0.0923104i \(-0.0294252\pi\)
\(168\) 2.76097 + 34.1815i 0.0164343 + 0.203461i
\(169\) 9.39820i 0.0556106i
\(170\) −73.0346 75.0240i −0.429615 0.441318i
\(171\) 48.5111 + 84.0237i 0.283691 + 0.491367i
\(172\) −57.5190 15.4122i −0.334413 0.0896057i
\(173\) −250.733 + 67.1837i −1.44932 + 0.388345i −0.895788 0.444481i \(-0.853388\pi\)
−0.553535 + 0.832826i \(0.686721\pi\)
\(174\) 65.1732i 0.374559i
\(175\) −156.035 79.2351i −0.891626 0.452772i
\(176\) −15.6555 −0.0889516
\(177\) −10.7654 40.1770i −0.0608214 0.226988i
\(178\) −18.2894 + 68.2568i −0.102749 + 0.383465i
\(179\) 267.294 154.322i 1.49326 0.862135i 0.493292 0.869864i \(-0.335794\pi\)
0.999970 + 0.00772900i \(0.00246024\pi\)
\(180\) −21.4963 + 20.9263i −0.119424 + 0.116257i
\(181\) 172.566 0.953406 0.476703 0.879064i \(-0.341832\pi\)
0.476703 + 0.879064i \(0.341832\pi\)
\(182\) 71.0490 + 102.922i 0.390379 + 0.565507i
\(183\) 20.5713 + 20.5713i 0.112411 + 0.112411i
\(184\) 31.2492 + 18.0417i 0.169832 + 0.0980528i
\(185\) −27.7993 16.5518i −0.150266 0.0894695i
\(186\) −41.6732 72.1801i −0.224049 0.388065i
\(187\) 14.9995 + 55.9787i 0.0802110 + 0.299352i
\(188\) −58.7242 58.7242i −0.312363 0.312363i
\(189\) −12.2121 34.2617i −0.0646145 0.181279i
\(190\) −111.671 199.564i −0.587740 1.05034i
\(191\) 67.6472 117.168i 0.354174 0.613447i −0.632802 0.774313i \(-0.718095\pi\)
0.986976 + 0.160866i \(0.0514288\pi\)
\(192\) −13.3843 3.58630i −0.0697097 0.0186787i
\(193\) 5.69944 21.2706i 0.0295308 0.110210i −0.949587 0.313503i \(-0.898498\pi\)
0.979118 + 0.203292i \(0.0651642\pi\)
\(194\) −204.770 118.224i −1.05552 0.609403i
\(195\) −29.7342 + 105.290i −0.152483 + 0.539949i
\(196\) 91.6347 + 34.7430i 0.467524 + 0.177260i
\(197\) 61.7521 61.7521i 0.313462 0.313462i −0.532787 0.846249i \(-0.678855\pi\)
0.846249 + 0.532787i \(0.178855\pi\)
\(198\) 16.0393 4.29773i 0.0810068 0.0217057i
\(199\) 287.540 166.011i 1.44492 0.834227i 0.446751 0.894658i \(-0.352581\pi\)
0.998172 + 0.0604310i \(0.0192475\pi\)
\(200\) 51.3254 48.6385i 0.256627 0.243193i
\(201\) −51.1272 + 88.5548i −0.254364 + 0.440571i
\(202\) −111.839 + 111.839i −0.553660 + 0.553660i
\(203\) 168.269 + 79.8355i 0.828913 + 0.393278i
\(204\) 51.2936i 0.251439i
\(205\) 93.1767 90.7059i 0.454520 0.442468i
\(206\) 130.938 + 226.792i 0.635623 + 1.10093i
\(207\) −36.9682 9.90559i −0.178590 0.0478531i
\(208\) −48.8116 + 13.0790i −0.234671 + 0.0628799i
\(209\) 126.578i 0.605634i
\(210\) 27.6967 + 81.1350i 0.131889 + 0.386357i
\(211\) −4.76592 −0.0225873 −0.0112936 0.999936i \(-0.503595\pi\)
−0.0112936 + 0.999936i \(0.503595\pi\)
\(212\) 23.4255 + 87.4252i 0.110498 + 0.412383i
\(213\) 59.4252 221.778i 0.278992 1.04121i
\(214\) 39.1952 22.6294i 0.183155 0.105745i
\(215\) −148.857 2.00015i −0.692357 0.00930302i
\(216\) 14.6969 0.0680414
\(217\) −237.409 + 19.1764i −1.09405 + 0.0883705i
\(218\) 174.509 + 174.509i 0.800499 + 0.800499i
\(219\) 13.3039 + 7.68100i 0.0607483 + 0.0350731i
\(220\) −37.9378 + 9.62100i −0.172444 + 0.0437318i
\(221\) 93.5323 + 162.003i 0.423223 + 0.733044i
\(222\) 4.10229 + 15.3099i 0.0184788 + 0.0689637i
\(223\) −96.4999 96.4999i −0.432735 0.432735i 0.456823 0.889558i \(-0.348987\pi\)
−0.889558 + 0.456823i \(0.848987\pi\)
\(224\) −25.6548 + 30.1634i −0.114530 + 0.134658i
\(225\) −39.2316 + 63.9209i −0.174363 + 0.284093i
\(226\) −6.20286 + 10.7437i −0.0274463 + 0.0475383i
\(227\) 59.5258 + 15.9499i 0.262228 + 0.0702639i 0.387538 0.921854i \(-0.373326\pi\)
−0.125309 + 0.992118i \(0.539992\pi\)
\(228\) −28.9959 + 108.214i −0.127175 + 0.474624i
\(229\) 390.888 + 225.680i 1.70694 + 0.985500i 0.938305 + 0.345808i \(0.112395\pi\)
0.768631 + 0.639693i \(0.220938\pi\)
\(230\) 86.8132 + 24.5163i 0.377449 + 0.106593i
\(231\) 8.55157 46.6763i 0.0370198 0.202062i
\(232\) −53.2137 + 53.2137i −0.229369 + 0.229369i
\(233\) 247.666 66.3620i 1.06295 0.284816i 0.315354 0.948974i \(-0.397877\pi\)
0.747592 + 0.664158i \(0.231210\pi\)
\(234\) 46.4179 26.7994i 0.198367 0.114527i
\(235\) −178.395 106.217i −0.759126 0.451988i
\(236\) 24.0145 41.5943i 0.101756 0.176247i
\(237\) −128.205 + 128.205i −0.540951 + 0.540951i
\(238\) 132.434 + 62.8334i 0.556445 + 0.264006i
\(239\) 7.06316i 0.0295529i −0.999891 0.0147765i \(-0.995296\pi\)
0.999891 0.0147765i \(-0.00470367\pi\)
\(240\) −34.6379 0.465420i −0.144325 0.00193925i
\(241\) −45.2255 78.3328i −0.187658 0.325033i 0.756811 0.653634i \(-0.226756\pi\)
−0.944469 + 0.328601i \(0.893423\pi\)
\(242\) −144.364 38.6822i −0.596544 0.159844i
\(243\) −15.0573 + 4.03459i −0.0619642 + 0.0166032i
\(244\) 33.5927i 0.137675i
\(245\) 243.409 + 27.8788i 0.993505 + 0.113791i
\(246\) −63.7046 −0.258962
\(247\) 105.746 + 394.650i 0.428123 + 1.59778i
\(248\) 24.9088 92.9608i 0.100439 0.374842i
\(249\) −199.750 + 115.326i −0.802208 + 0.463155i
\(250\) 94.4857 149.407i 0.377943 0.597628i
\(251\) 79.0027 0.314752 0.157376 0.987539i \(-0.449697\pi\)
0.157376 + 0.987539i \(0.449697\pi\)
\(252\) 18.0034 37.9457i 0.0714420 0.150578i
\(253\) −35.3065 35.3065i −0.139551 0.139551i
\(254\) −66.5172 38.4037i −0.261879 0.151196i
\(255\) 31.5222 + 124.299i 0.123617 + 0.487448i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −74.5277 278.141i −0.289991 1.08226i −0.945115 0.326739i \(-0.894050\pi\)
0.655124 0.755522i \(-0.272617\pi\)
\(258\) 51.5701 + 51.5701i 0.199884 + 0.199884i
\(259\) 44.5536 + 8.16268i 0.172022 + 0.0315161i
\(260\) −110.247 + 61.6911i −0.424027 + 0.237274i
\(261\) 39.9103 69.1266i 0.152913 0.264853i
\(262\) 201.041 + 53.8688i 0.767332 + 0.205606i
\(263\) 69.0735 257.786i 0.262637 0.980174i −0.701044 0.713118i \(-0.747282\pi\)
0.963681 0.267056i \(-0.0860509\pi\)
\(264\) 16.6052 + 9.58699i 0.0628983 + 0.0363144i
\(265\) 110.494 + 197.461i 0.416957 + 0.745134i
\(266\) 243.877 + 207.424i 0.916830 + 0.779788i
\(267\) 61.1974 61.1974i 0.229204 0.229204i
\(268\) −114.050 + 30.5596i −0.425559 + 0.114028i
\(269\) 127.690 73.7221i 0.474686 0.274060i −0.243514 0.969898i \(-0.578300\pi\)
0.718199 + 0.695838i \(0.244967\pi\)
\(270\) 35.6149 9.03193i 0.131907 0.0334516i
\(271\) −248.993 + 431.268i −0.918793 + 1.59140i −0.117542 + 0.993068i \(0.537501\pi\)
−0.801251 + 0.598328i \(0.795832\pi\)
\(272\) −41.8811 + 41.8811i −0.153975 + 0.153975i
\(273\) −12.3321 152.674i −0.0451724 0.559246i
\(274\) 1.65705i 0.00604763i
\(275\) −86.0217 + 46.6289i −0.312806 + 0.169560i
\(276\) −22.0965 38.2723i −0.0800598 0.138668i
\(277\) −251.215 67.3127i −0.906912 0.243006i −0.224930 0.974375i \(-0.572215\pi\)
−0.681982 + 0.731369i \(0.738882\pi\)
\(278\) 320.490 85.8751i 1.15284 0.308903i
\(279\) 102.078i 0.365871i
\(280\) −43.6322 + 88.8607i −0.155829 + 0.317360i
\(281\) −170.124 −0.605422 −0.302711 0.953082i \(-0.597892\pi\)
−0.302711 + 0.953082i \(0.597892\pi\)
\(282\) 26.3253 + 98.2475i 0.0933523 + 0.348396i
\(283\) 87.9512 328.238i 0.310782 1.15985i −0.617072 0.786907i \(-0.711681\pi\)
0.927853 0.372946i \(-0.121652\pi\)
\(284\) 229.601 132.560i 0.808456 0.466762i
\(285\) −3.76301 + 280.054i −0.0132035 + 0.982645i
\(286\) 69.9263 0.244498
\(287\) −78.0365 + 164.478i −0.271904 + 0.573092i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) −60.4027 34.8735i −0.209006 0.120670i
\(290\) −96.2500 + 161.654i −0.331897 + 0.557429i
\(291\) 144.794 + 250.791i 0.497575 + 0.861826i
\(292\) 4.59106 + 17.1341i 0.0157228 + 0.0586784i
\(293\) −373.925 373.925i −1.27619 1.27619i −0.942780 0.333415i \(-0.891799\pi\)
−0.333415 0.942780i \(-0.608201\pi\)
\(294\) −75.9176 92.9651i −0.258223 0.316208i
\(295\) 32.6324 115.553i 0.110618 0.391705i
\(296\) −9.15101 + 15.8500i −0.0309156 + 0.0535474i
\(297\) −19.6441 5.26362i −0.0661418 0.0177226i
\(298\) −94.7323 + 353.546i −0.317893 + 1.18639i
\(299\) −139.577 80.5845i −0.466811 0.269514i
\(300\) −84.2237 + 20.1587i −0.280746 + 0.0671956i
\(301\) 196.320 69.9758i 0.652226 0.232478i
\(302\) −145.661 + 145.661i −0.482321 + 0.482321i
\(303\) 187.111 50.1362i 0.617528 0.165466i
\(304\) −112.032 + 64.6815i −0.368525 + 0.212768i
\(305\) 20.6442 + 81.4049i 0.0676861 + 0.266901i
\(306\) 31.4108 54.4051i 0.102650 0.177794i
\(307\) −7.39324 + 7.39324i −0.0240822 + 0.0240822i −0.719045 0.694963i \(-0.755421\pi\)
0.694963 + 0.719045i \(0.255421\pi\)
\(308\) 45.0933 31.1287i 0.146407 0.101067i
\(309\) 320.732i 1.03797i
\(310\) 3.23259 240.579i 0.0104277 0.776060i
\(311\) −146.398 253.569i −0.470733 0.815334i 0.528707 0.848805i \(-0.322677\pi\)
−0.999440 + 0.0334709i \(0.989344\pi\)
\(312\) 59.7817 + 16.0185i 0.191608 + 0.0513412i
\(313\) 332.842 89.1847i 1.06339 0.284935i 0.315617 0.948887i \(-0.397788\pi\)
0.747776 + 0.663951i \(0.231122\pi\)
\(314\) 13.9866i 0.0445434i
\(315\) 20.3081 103.017i 0.0644700 0.327039i
\(316\) −209.359 −0.662528
\(317\) −33.0285 123.264i −0.104191 0.388845i 0.894061 0.447944i \(-0.147844\pi\)
−0.998252 + 0.0590994i \(0.981177\pi\)
\(318\) 28.6903 107.074i 0.0902210 0.336709i
\(319\) 90.1842 52.0679i 0.282709 0.163222i
\(320\) −27.9017 28.6617i −0.0871928 0.0895679i
\(321\) −55.4304 −0.172680
\(322\) −125.882 + 10.1680i −0.390938 + 0.0315775i
\(323\) 338.616 + 338.616i 1.04835 + 1.04835i
\(324\) −15.5885 9.00000i −0.0481125 0.0277778i
\(325\) −229.248 + 217.247i −0.705379 + 0.668453i
\(326\) 162.263 + 281.047i 0.497738 + 0.862107i
\(327\) −78.2302 291.959i −0.239236 0.892841i
\(328\) −52.0146 52.0146i −0.158581 0.158581i
\(329\) 285.911 + 52.3819i 0.869031 + 0.159215i
\(330\) 46.1307 + 13.0274i 0.139790 + 0.0394771i
\(331\) 115.234 199.591i 0.348139 0.602994i −0.637780 0.770218i \(-0.720147\pi\)
0.985919 + 0.167225i \(0.0534805\pi\)
\(332\) −257.258 68.9320i −0.774873 0.207627i
\(333\) 5.02425 18.7508i 0.0150879 0.0563086i
\(334\) −314.718 181.703i −0.942271 0.544020i
\(335\) −257.596 + 144.143i −0.768942 + 0.430279i
\(336\) 45.6823 16.2829i 0.135959 0.0484609i
\(337\) 261.018 261.018i 0.774533 0.774533i −0.204363 0.978895i \(-0.565512\pi\)
0.978895 + 0.204363i \(0.0655122\pi\)
\(338\) −12.8382 + 3.43998i −0.0379828 + 0.0101775i
\(339\) 13.1582 7.59692i 0.0388149 0.0224098i
\(340\) −75.7522 + 127.228i −0.222801 + 0.374199i
\(341\) −66.5867 + 115.332i −0.195269 + 0.338216i
\(342\) 97.0222 97.0222i 0.283691 0.283691i
\(343\) −333.022 + 82.1303i −0.970909 + 0.239447i
\(344\) 84.2137i 0.244807i
\(345\) −77.0662 79.1655i −0.223380 0.229465i
\(346\) 183.549 + 317.917i 0.530489 + 0.918834i
\(347\) 100.891 + 27.0336i 0.290751 + 0.0779066i 0.401247 0.915970i \(-0.368577\pi\)
−0.110495 + 0.993877i \(0.535244\pi\)
\(348\) 89.0283 23.8550i 0.255828 0.0685490i
\(349\) 425.240i 1.21845i −0.792996 0.609227i \(-0.791480\pi\)
0.792996 0.609227i \(-0.208520\pi\)
\(350\) −51.1246 + 242.149i −0.146070 + 0.691855i
\(351\) −65.6449 −0.187022
\(352\) 5.73031 + 21.3858i 0.0162793 + 0.0607551i
\(353\) 15.7714 58.8597i 0.0446782 0.166741i −0.939982 0.341224i \(-0.889159\pi\)
0.984660 + 0.174483i \(0.0558253\pi\)
\(354\) −50.9423 + 29.4116i −0.143905 + 0.0830836i
\(355\) 474.926 462.333i 1.33782 1.30235i
\(356\) 99.9350 0.280716
\(357\) −101.990 147.744i −0.285686 0.413848i
\(358\) −308.644 308.644i −0.862135 0.862135i
\(359\) −527.860 304.760i −1.47036 0.848914i −0.470916 0.882178i \(-0.656076\pi\)
−0.999447 + 0.0332639i \(0.989410\pi\)
\(360\) 36.4540 + 21.7049i 0.101261 + 0.0602915i
\(361\) 342.462 + 593.161i 0.948647 + 1.64311i
\(362\) −63.1637 235.730i −0.174485 0.651188i
\(363\) 129.433 + 129.433i 0.356565 + 0.356565i
\(364\) 114.589 134.727i 0.314804 0.370129i
\(365\) 21.6551 + 38.6994i 0.0593292 + 0.106026i
\(366\) 20.5713 35.6305i 0.0562056 0.0973510i
\(367\) −81.0326 21.7126i −0.220797 0.0591625i 0.146724 0.989177i \(-0.453127\pi\)
−0.367522 + 0.930015i \(0.619794\pi\)
\(368\) 13.2075 49.2909i 0.0358898 0.133943i
\(369\) 67.5689 + 39.0109i 0.183114 + 0.105721i
\(370\) −12.4350 + 44.0329i −0.0336081 + 0.119008i
\(371\) −241.306 205.237i −0.650421 0.553200i
\(372\) −83.3464 + 83.3464i −0.224049 + 0.224049i
\(373\) 136.229 36.5025i 0.365226 0.0978620i −0.0715386 0.997438i \(-0.522791\pi\)
0.436765 + 0.899576i \(0.356124\pi\)
\(374\) 70.9782 40.9793i 0.189781 0.109570i
\(375\) −191.710 + 100.610i −0.511227 + 0.268292i
\(376\) −58.7242 + 101.713i −0.156181 + 0.270514i
\(377\) 237.683 237.683i 0.630458 0.630458i
\(378\) −42.3324 + 29.2228i −0.111990 + 0.0773089i
\(379\) 123.783i 0.326603i 0.986576 + 0.163302i \(0.0522144\pi\)
−0.986576 + 0.163302i \(0.947786\pi\)
\(380\) −231.735 + 225.590i −0.609830 + 0.593659i
\(381\) 47.0348 + 81.4666i 0.123451 + 0.213823i
\(382\) −184.816 49.5212i −0.483810 0.129637i
\(383\) −305.182 + 81.7732i −0.796819 + 0.213507i −0.634187 0.773180i \(-0.718665\pi\)
−0.162632 + 0.986687i \(0.551998\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 90.1443 103.146i 0.234141 0.267911i
\(386\) −31.1423 −0.0806796
\(387\) −23.1183 86.2785i −0.0597371 0.222942i
\(388\) −86.5461 + 322.994i −0.223057 + 0.832460i
\(389\) −300.792 + 173.662i −0.773243 + 0.446432i −0.834030 0.551718i \(-0.813972\pi\)
0.0607870 + 0.998151i \(0.480639\pi\)
\(390\) 154.712 + 2.07883i 0.396699 + 0.00533034i
\(391\) −188.902 −0.483124
\(392\) 13.9192 137.892i 0.0355082 0.351766i
\(393\) −180.248 180.248i −0.458647 0.458647i
\(394\) −106.958 61.7521i −0.271466 0.156731i
\(395\) −507.337 + 128.660i −1.28440 + 0.325722i
\(396\) −11.7416 20.3371i −0.0296505 0.0513563i
\(397\) 97.9772 + 365.656i 0.246794 + 0.921047i 0.972473 + 0.233014i \(0.0748589\pi\)
−0.725679 + 0.688033i \(0.758474\pi\)
\(398\) −332.022 332.022i −0.834227 0.834227i
\(399\) −131.650 369.349i −0.329950 0.925688i
\(400\) −85.2278 52.3088i −0.213070 0.130772i
\(401\) −85.2179 + 147.602i −0.212513 + 0.368084i −0.952500 0.304537i \(-0.901498\pi\)
0.739987 + 0.672621i \(0.234832\pi\)
\(402\) 139.682 + 37.4277i 0.347468 + 0.0931037i
\(403\) −111.257 + 415.216i −0.276071 + 1.03031i
\(404\) 193.711 + 111.839i 0.479484 + 0.276830i
\(405\) −43.3063 12.2298i −0.106929 0.0301970i
\(406\) 47.4665 259.082i 0.116913 0.638133i
\(407\) 17.9079 17.9079i 0.0439999 0.0439999i
\(408\) 70.0684 18.7748i 0.171736 0.0460166i
\(409\) 230.144 132.873i 0.562698 0.324874i −0.191530 0.981487i \(-0.561345\pi\)
0.754228 + 0.656613i \(0.228011\pi\)
\(410\) −158.012 94.0811i −0.385394 0.229466i
\(411\) −1.01473 + 1.75757i −0.00246894 + 0.00427632i
\(412\) 261.877 261.877i 0.635623 0.635623i
\(413\) 13.5341 + 167.555i 0.0327702 + 0.405703i
\(414\) 54.1251i 0.130737i
\(415\) −665.772 8.94581i −1.60427 0.0215562i
\(416\) 35.7325 + 61.8906i 0.0858955 + 0.148775i
\(417\) −392.519 105.175i −0.941292 0.252218i
\(418\) 172.908 46.3306i 0.413656 0.110839i
\(419\) 173.250i 0.413485i 0.978395 + 0.206742i \(0.0662862\pi\)
−0.978395 + 0.206742i \(0.933714\pi\)
\(420\) 100.695 67.5319i 0.239750 0.160790i
\(421\) 541.087 1.28524 0.642621 0.766184i \(-0.277847\pi\)
0.642621 + 0.766184i \(0.277847\pi\)
\(422\) 1.74445 + 6.51036i 0.00413376 + 0.0154274i
\(423\) 32.2418 120.328i 0.0762218 0.284464i
\(424\) 110.851 63.9997i 0.261440 0.150943i
\(425\) −105.382 + 354.863i −0.247958 + 0.834972i
\(426\) −324.705 −0.762219
\(427\) −66.7943 96.7590i −0.156427 0.226602i
\(428\) −45.2587 45.2587i −0.105745 0.105745i
\(429\) −74.1680 42.8209i −0.172886 0.0998157i
\(430\) 51.7531 + 204.074i 0.120356 + 0.474591i
\(431\) 272.438 + 471.876i 0.632106 + 1.09484i 0.987120 + 0.159979i \(0.0511428\pi\)
−0.355014 + 0.934861i \(0.615524\pi\)
\(432\) −5.37945 20.0764i −0.0124524 0.0464731i
\(433\) −440.714 440.714i −1.01782 1.01782i −0.999838 0.0179771i \(-0.994277\pi\)
−0.0179771 0.999838i \(-0.505723\pi\)
\(434\) 113.093 + 317.288i 0.260583 + 0.731077i
\(435\) 201.081 112.520i 0.462256 0.258666i
\(436\) 174.509 302.258i 0.400250 0.693253i
\(437\) −398.526 106.785i −0.911959 0.244359i
\(438\) 5.62288 20.9849i 0.0128376 0.0479107i
\(439\) 411.747 + 237.722i 0.937920 + 0.541508i 0.889308 0.457310i \(-0.151187\pi\)
0.0486121 + 0.998818i \(0.484520\pi\)
\(440\) 27.0287 + 48.3025i 0.0614289 + 0.109778i
\(441\) 23.5935 + 145.094i 0.0535001 + 0.329012i
\(442\) 187.065 187.065i 0.423223 0.423223i
\(443\) 454.552 121.797i 1.02608 0.274937i 0.293745 0.955884i \(-0.405098\pi\)
0.732332 + 0.680947i \(0.238432\pi\)
\(444\) 19.4122 11.2077i 0.0437212 0.0252425i
\(445\) 242.171 61.4145i 0.544205 0.138010i
\(446\) −96.4999 + 167.143i −0.216367 + 0.374759i
\(447\) 316.980 316.980i 0.709128 0.709128i
\(448\) 50.5943 + 24.0045i 0.112934 + 0.0535815i
\(449\) 728.737i 1.62302i 0.584337 + 0.811511i \(0.301355\pi\)
−0.584337 + 0.811511i \(0.698645\pi\)
\(450\) 101.677 + 30.1947i 0.225950 + 0.0670994i
\(451\) 50.8946 + 88.1520i 0.112848 + 0.195459i
\(452\) 16.9465 + 4.54081i 0.0374923 + 0.0100460i
\(453\) 243.696 65.2980i 0.537959 0.144146i
\(454\) 87.1519i 0.191965i
\(455\) 194.886 396.903i 0.428321 0.872313i
\(456\) 158.437 0.347449
\(457\) 161.152 + 601.427i 0.352630 + 1.31603i 0.883441 + 0.468543i \(0.155221\pi\)
−0.530811 + 0.847490i \(0.678113\pi\)
\(458\) 165.209 616.568i 0.360718 1.34622i
\(459\) −66.6324 + 38.4702i −0.145169 + 0.0838131i
\(460\) 1.71403 127.563i 0.00372614 0.277310i
\(461\) −796.674 −1.72814 −0.864071 0.503370i \(-0.832093\pi\)
−0.864071 + 0.503370i \(0.832093\pi\)
\(462\) −66.8911 + 5.40304i −0.144786 + 0.0116949i
\(463\) 215.541 + 215.541i 0.465531 + 0.465531i 0.900463 0.434932i \(-0.143228\pi\)
−0.434932 + 0.900463i \(0.643228\pi\)
\(464\) 92.1688 + 53.2137i 0.198640 + 0.114685i
\(465\) −150.752 + 253.193i −0.324199 + 0.544500i
\(466\) −181.304 314.028i −0.389065 0.673881i
\(467\) −74.0339 276.298i −0.158531 0.591645i −0.998777 0.0494401i \(-0.984256\pi\)
0.840246 0.542205i \(-0.182410\pi\)
\(468\) −53.5988 53.5988i −0.114527 0.114527i
\(469\) 267.741 314.794i 0.570876 0.671203i
\(470\) −79.7984 + 282.570i −0.169784 + 0.601212i
\(471\) −8.56502 + 14.8351i −0.0181848 + 0.0314969i
\(472\) −65.6087 17.5798i −0.139001 0.0372453i
\(473\) 30.1606 112.561i 0.0637646 0.237973i
\(474\) 222.058 + 128.205i 0.468478 + 0.270476i
\(475\) −422.927 + 689.083i −0.890372 + 1.45070i
\(476\) 37.3578 203.907i 0.0784828 0.428376i
\(477\) −95.9996 + 95.9996i −0.201257 + 0.201257i
\(478\) −9.64845 + 2.58529i −0.0201850 + 0.00540857i
\(479\) −581.667 + 335.826i −1.21434 + 0.701098i −0.963701 0.266984i \(-0.913973\pi\)
−0.250636 + 0.968081i \(0.580640\pi\)
\(480\) 12.0426 + 47.4866i 0.0250887 + 0.0989304i
\(481\) 40.8736 70.7952i 0.0849763 0.147183i
\(482\) −90.4510 + 90.4510i −0.187658 + 0.187658i
\(483\) 139.745 + 66.3019i 0.289326 + 0.137271i
\(484\) 211.363i 0.436701i
\(485\) −11.2317 + 835.896i −0.0231582 + 1.72350i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) −98.7957 26.4722i −0.202866 0.0543578i 0.155955 0.987764i \(-0.450154\pi\)
−0.358821 + 0.933406i \(0.616821\pi\)
\(488\) 45.8885 12.2958i 0.0940339 0.0251963i
\(489\) 397.460i 0.812802i
\(490\) −51.0107 342.707i −0.104103 0.699402i
\(491\) 260.790 0.531140 0.265570 0.964092i \(-0.414440\pi\)
0.265570 + 0.964092i \(0.414440\pi\)
\(492\) 23.3175 + 87.0220i 0.0473933 + 0.176874i
\(493\) 101.968 380.548i 0.206831 0.771904i
\(494\) 500.397 288.904i 1.01295 0.584826i
\(495\) −40.9514 42.0669i −0.0827301 0.0849836i
\(496\) −136.104 −0.274403
\(497\) −397.756 + 838.350i −0.800314 + 1.68682i
\(498\) 230.651 + 230.651i 0.463155 + 0.463155i
\(499\) 82.9389 + 47.8848i 0.166210 + 0.0959615i 0.580798 0.814048i \(-0.302741\pi\)
−0.414587 + 0.910009i \(0.636074\pi\)
\(500\) −238.678 74.3832i −0.477356 0.148766i
\(501\) 222.540 + 385.450i 0.444191 + 0.769361i
\(502\) −28.9170 107.920i −0.0576036 0.214979i
\(503\) −172.595 172.595i −0.343132 0.343132i 0.514412 0.857543i \(-0.328010\pi\)
−0.857543 + 0.514412i \(0.828010\pi\)
\(504\) −58.4245 10.7040i −0.115922 0.0212380i
\(505\) 538.149 + 151.975i 1.06564 + 0.300940i
\(506\) −35.3065 + 61.1526i −0.0697757 + 0.120855i
\(507\) 15.7235 + 4.21310i 0.0310128 + 0.00830985i
\(508\) −28.1135 + 104.921i −0.0553415 + 0.206537i
\(509\) 165.245 + 95.4042i 0.324646 + 0.187435i 0.653462 0.756960i \(-0.273316\pi\)
−0.328815 + 0.944394i \(0.606649\pi\)
\(510\) 158.258 88.5569i 0.310310 0.173641i
\(511\) −47.2926 40.2236i −0.0925491 0.0787154i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −162.321 + 43.4939i −0.316416 + 0.0847834i
\(514\) −352.669 + 203.613i −0.686126 + 0.396135i
\(515\) 473.668 795.539i 0.919744 1.54473i
\(516\) 51.5701 89.3221i 0.0999421 0.173105i
\(517\) 114.920 114.920i 0.222282 0.222282i
\(518\) −5.15733 63.8491i −0.00995624 0.123261i
\(519\) 449.602i 0.866285i
\(520\) 124.625 + 128.020i 0.239663 + 0.246191i
\(521\) 321.064 + 556.100i 0.616246 + 1.06737i 0.990164 + 0.139908i \(0.0446808\pi\)
−0.373918 + 0.927462i \(0.621986\pi\)
\(522\) −109.037 29.2163i −0.208883 0.0559700i
\(523\) −112.482 + 30.1396i −0.215072 + 0.0576283i −0.364746 0.931107i \(-0.618844\pi\)
0.149674 + 0.988735i \(0.452177\pi\)
\(524\) 294.344i 0.561726i
\(525\) 202.511 225.531i 0.385736 0.429583i
\(526\) −377.424 −0.717537
\(527\) 130.401 + 486.662i 0.247440 + 0.923458i
\(528\) 7.01816 26.1921i 0.0132920 0.0496063i
\(529\) −317.180 + 183.124i −0.599585 + 0.346170i
\(530\) 229.293 223.213i 0.432628 0.421156i
\(531\) 72.0434 0.135675
\(532\) 194.081 409.064i 0.364814 0.768918i
\(533\) 232.327 + 232.327i 0.435885 + 0.435885i
\(534\) −105.997 61.1974i −0.198496 0.114602i
\(535\) −137.488 81.8615i −0.256988 0.153012i
\(536\) 83.4903 + 144.609i 0.155765 + 0.269794i
\(537\) 138.361 + 516.372i 0.257656 + 0.961587i
\(538\) −147.444 147.444i −0.274060 0.274060i
\(539\) −67.9899 + 179.323i −0.126141 + 0.332696i
\(540\) −25.3738 45.3450i −0.0469886 0.0839722i
\(541\) 211.339 366.049i 0.390645 0.676616i −0.601890 0.798579i \(-0.705585\pi\)
0.992535 + 0.121963i \(0.0389188\pi\)
\(542\) 680.261 + 182.275i 1.25509 + 0.336302i
\(543\) −77.3594 + 288.709i −0.142467 + 0.531693i
\(544\) 72.5401 + 41.8811i 0.133346 + 0.0769873i
\(545\) 237.134 839.703i 0.435109 1.54074i
\(546\) −204.043 + 72.7285i −0.373705 + 0.133202i
\(547\) −57.9153 + 57.9153i −0.105878 + 0.105878i −0.758061 0.652183i \(-0.773853\pi\)
0.652183 + 0.758061i \(0.273853\pi\)
\(548\) −2.26357 + 0.606523i −0.00413061 + 0.00110679i
\(549\) −43.6382 + 25.1946i −0.0794868 + 0.0458917i
\(550\) 95.1825 + 100.440i 0.173059 + 0.182619i
\(551\) 430.243 745.202i 0.780840 1.35245i
\(552\) −44.1930 + 44.1930i −0.0800598 + 0.0800598i
\(553\) 603.027 416.280i 1.09046 0.752766i
\(554\) 367.804i 0.663906i
\(555\) 40.1539 39.0891i 0.0723493 0.0704308i
\(556\) −234.615 406.365i −0.421970 0.730873i
\(557\) 25.9058 + 6.94144i 0.0465095 + 0.0124622i 0.281999 0.959415i \(-0.409003\pi\)
−0.235489 + 0.971877i \(0.575669\pi\)
\(558\) 139.441 37.3632i 0.249895 0.0669591i
\(559\) 376.146i 0.672891i
\(560\) 137.357 + 27.0774i 0.245280 + 0.0483525i
\(561\) −100.378 −0.178928
\(562\) 62.2696 + 232.393i 0.110800 + 0.413511i
\(563\) −268.804 + 1003.19i −0.477449 + 1.78186i 0.134443 + 0.990921i \(0.457075\pi\)
−0.611892 + 0.790942i \(0.709591\pi\)
\(564\) 124.573 71.9222i 0.220874 0.127522i
\(565\) 43.8569 + 0.589293i 0.0776228 + 0.00104300i
\(566\) −480.574 −0.849071
\(567\) 62.7955 5.07222i 0.110750 0.00894572i
\(568\) −265.121 265.121i −0.466762 0.466762i
\(569\) −35.1341 20.2847i −0.0617471 0.0356497i 0.468809 0.883300i \(-0.344683\pi\)
−0.530556 + 0.847650i \(0.678017\pi\)
\(570\) 383.938 97.3664i 0.673575 0.170818i
\(571\) −104.960 181.797i −0.183819 0.318383i 0.759359 0.650672i \(-0.225513\pi\)
−0.943178 + 0.332289i \(0.892179\pi\)
\(572\) −25.5948 95.5211i −0.0447462 0.166995i
\(573\) 165.701 + 165.701i 0.289182 + 0.289182i
\(574\) 253.244 + 46.3969i 0.441191 + 0.0808308i
\(575\) −74.2394 310.175i −0.129112 0.539434i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −35.7155 9.56994i −0.0618986 0.0165857i 0.227737 0.973723i \(-0.426867\pi\)
−0.289635 + 0.957137i \(0.593534\pi\)
\(578\) −25.5292 + 95.2762i −0.0441681 + 0.164838i
\(579\) 33.0314 + 19.0707i 0.0570491 + 0.0329373i
\(580\) 256.054 + 72.3103i 0.441472 + 0.124673i
\(581\) 878.055 312.972i 1.51128 0.538678i
\(582\) 289.589 289.589i 0.497575 0.497575i
\(583\) −171.086 + 45.8422i −0.293457 + 0.0786316i
\(584\) 21.7252 12.5430i 0.0372006 0.0214778i
\(585\) −162.824 96.9466i −0.278332 0.165721i
\(586\) −373.925 + 647.657i −0.638097 + 1.10522i
\(587\) 452.761 452.761i 0.771314 0.771314i −0.207022 0.978336i \(-0.566377\pi\)
0.978336 + 0.207022i \(0.0663773\pi\)
\(588\) −99.2049 + 137.733i −0.168716 + 0.234240i
\(589\) 1100.43i 1.86830i
\(590\) −169.792 2.28146i −0.287784 0.00386688i
\(591\) 75.6305 + 130.996i 0.127970 + 0.221651i
\(592\) 25.0010 + 6.69901i 0.0422315 + 0.0113159i
\(593\) −3.93666 + 1.05483i −0.00663855 + 0.00177880i −0.262137 0.965031i \(-0.584427\pi\)
0.255498 + 0.966810i \(0.417760\pi\)
\(594\) 28.7610i 0.0484191i
\(595\) −34.7811 517.083i −0.0584556 0.869048i
\(596\) 517.627 0.868501
\(597\) 148.842 + 555.484i 0.249316 + 0.930459i
\(598\) −58.9920 + 220.161i −0.0986488 + 0.368162i
\(599\) 499.784 288.550i 0.834364 0.481720i −0.0209807 0.999780i \(-0.506679\pi\)
0.855344 + 0.518060i \(0.173346\pi\)
\(600\) 58.3653 + 107.673i 0.0972755 + 0.179455i
\(601\) 16.8472 0.0280319 0.0140160 0.999902i \(-0.495538\pi\)
0.0140160 + 0.999902i \(0.495538\pi\)
\(602\) −167.447 242.565i −0.278151 0.402932i
\(603\) −125.235 125.235i −0.207687 0.207687i
\(604\) 252.292 + 145.661i 0.417702 + 0.241161i
\(605\) 129.892 + 512.194i 0.214698 + 0.846602i
\(606\) −136.975 237.247i −0.226031 0.391497i
\(607\) −107.298 400.443i −0.176768 0.659709i −0.996244 0.0865941i \(-0.972402\pi\)
0.819475 0.573115i \(-0.194265\pi\)
\(608\) 129.363 + 129.363i 0.212768 + 0.212768i
\(609\) −209.001 + 245.731i −0.343186 + 0.403499i
\(610\) 103.645 57.9968i 0.169910 0.0950768i
\(611\) 262.296 454.310i 0.429289 0.743551i
\(612\) −85.8159 22.9943i −0.140222 0.0375724i
\(613\) −256.791 + 958.356i −0.418908 + 1.56339i 0.357968 + 0.933734i \(0.383470\pi\)
−0.776876 + 0.629653i \(0.783197\pi\)
\(614\) 12.8055 + 7.39324i 0.0208558 + 0.0120411i
\(615\) 109.984 + 196.550i 0.178836 + 0.319594i
\(616\) −59.0279 50.2048i −0.0958245 0.0815012i
\(617\) −435.763 + 435.763i −0.706261 + 0.706261i −0.965747 0.259486i \(-0.916447\pi\)
0.259486 + 0.965747i \(0.416447\pi\)
\(618\) −438.128 + 117.396i −0.708946 + 0.189961i
\(619\) 339.430 195.970i 0.548352 0.316591i −0.200105 0.979774i \(-0.564128\pi\)
0.748457 + 0.663183i \(0.230795\pi\)
\(620\) −329.820 + 83.6421i −0.531967 + 0.134907i
\(621\) 33.1447 57.4084i 0.0533732 0.0924451i
\(622\) −292.796 + 292.796i −0.470733 + 0.470733i
\(623\) −287.848 + 198.706i −0.462035 + 0.318951i
\(624\) 87.5265i 0.140267i
\(625\) −624.098 33.5737i −0.998556 0.0537179i
\(626\) −243.657 422.027i −0.389229 0.674164i
\(627\) −211.768 56.7431i −0.337748 0.0904994i
\(628\) −19.1061 + 5.11946i −0.0304237 + 0.00815201i
\(629\) 95.8136i 0.152327i
\(630\) −148.158 + 9.96567i −0.235171 + 0.0158185i
\(631\) −786.782 −1.24688 −0.623441 0.781870i \(-0.714266\pi\)
−0.623441 + 0.781870i \(0.714266\pi\)
\(632\) 76.6306 + 285.989i 0.121251 + 0.452515i
\(633\) 2.13650 7.97353i 0.00337520 0.0125964i
\(634\) −156.292 + 90.2354i −0.246518 + 0.142327i
\(635\) −3.64849 + 271.531i −0.00574565 + 0.427608i
\(636\) −156.767 −0.246488
\(637\) −62.1711 + 615.905i −0.0975998 + 0.966883i
\(638\) −104.136 104.136i −0.163222 0.163222i
\(639\) 344.402 + 198.841i 0.538970 + 0.311175i
\(640\) −28.9399 + 48.6054i −0.0452186 + 0.0759459i
\(641\) −350.141 606.461i −0.546241 0.946118i −0.998528 0.0542449i \(-0.982725\pi\)
0.452286 0.891873i \(-0.350609\pi\)
\(642\) 20.2889 + 75.7193i 0.0316027 + 0.117943i
\(643\) 175.844 + 175.844i 0.273474 + 0.273474i 0.830497 0.557023i \(-0.188056\pi\)
−0.557023 + 0.830497i \(0.688056\pi\)
\(644\) 59.9657 + 168.236i 0.0931144 + 0.261236i
\(645\) 70.0770 248.146i 0.108646 0.384722i
\(646\) 338.616 586.500i 0.524174 0.907895i
\(647\) 1197.59 + 320.893i 1.85099 + 0.495971i 0.999592 0.0285523i \(-0.00908973\pi\)
0.851396 + 0.524523i \(0.175756\pi\)
\(648\) −6.58846 + 24.5885i −0.0101674 + 0.0379452i
\(649\) 81.3973 + 46.9947i 0.125420 + 0.0724110i
\(650\) 380.676 + 233.641i 0.585655 + 0.359448i
\(651\) 74.3448 405.789i 0.114201 0.623332i
\(652\) 324.525 324.525i 0.497738 0.497738i
\(653\) 49.1787 13.1774i 0.0753119 0.0201798i −0.220966 0.975281i \(-0.570921\pi\)
0.296278 + 0.955102i \(0.404254\pi\)
\(654\) −370.189 + 213.729i −0.566039 + 0.326802i
\(655\) −180.888 713.282i −0.276165 1.08898i
\(656\) −52.0146 + 90.0919i −0.0792905 + 0.137335i
\(657\) −18.8145 + 18.8145i −0.0286370 + 0.0286370i
\(658\) −33.0958 409.735i −0.0502976 0.622698i
\(659\) 741.347i 1.12496i −0.826812 0.562479i \(-0.809848\pi\)
0.826812 0.562479i \(-0.190152\pi\)
\(660\) 0.910798 67.7841i 0.00138000 0.102703i
\(661\) −337.951 585.348i −0.511272 0.885549i −0.999915 0.0130653i \(-0.995841\pi\)
0.488642 0.872484i \(-0.337492\pi\)
\(662\) −314.825 84.3571i −0.475566 0.127428i
\(663\) −312.965 + 83.8588i −0.472044 + 0.126484i
\(664\) 376.652i 0.567246i
\(665\) 218.926 1110.55i 0.329212 1.67000i
\(666\) −27.4530 −0.0412208
\(667\) 87.8522 + 327.869i 0.131712 + 0.491557i
\(668\) −133.016 + 496.421i −0.199125 + 0.743146i
\(669\) 204.707 118.188i 0.305990 0.176663i
\(670\) 291.190 + 299.122i 0.434612 + 0.446451i
\(671\) −65.7388 −0.0979714
\(672\) −38.9637 56.4432i −0.0579817 0.0839928i
\(673\) 212.014 + 212.014i 0.315029 + 0.315029i 0.846854 0.531825i \(-0.178494\pi\)
−0.531825 + 0.846854i \(0.678494\pi\)
\(674\) −452.096 261.018i −0.670765 0.387266i
\(675\) −89.3547 94.2907i −0.132377 0.139690i
\(676\) 9.39820 + 16.2782i 0.0139027 + 0.0240801i
\(677\) −218.391 815.048i −0.322587 1.20391i −0.916715 0.399541i \(-0.869170\pi\)
0.594128 0.804370i \(-0.297497\pi\)
\(678\) −15.1938 15.1938i −0.0224098 0.0224098i
\(679\) −392.945 1102.42i −0.578711 1.62360i
\(680\) 201.524 + 56.9108i 0.296358 + 0.0836924i
\(681\) −53.3694 + 92.4385i −0.0783692 + 0.135739i
\(682\) 181.918 + 48.7449i 0.266742 + 0.0714734i
\(683\) −243.853 + 910.072i −0.357032 + 1.33246i 0.520875 + 0.853633i \(0.325606\pi\)
−0.877908 + 0.478830i \(0.841061\pi\)
\(684\) −168.047 97.0222i −0.245683 0.141845i
\(685\) −5.11256 + 2.86085i −0.00746359 + 0.00417642i
\(686\) 234.087 + 424.855i 0.341234 + 0.619322i
\(687\) −552.800 + 552.800i −0.804658 + 0.804658i
\(688\) 115.038 30.8243i 0.167206 0.0448028i
\(689\) −495.122 + 285.859i −0.718610 + 0.414890i
\(690\) −79.9339 + 134.251i −0.115846 + 0.194567i
\(691\) 241.773 418.764i 0.349889 0.606026i −0.636340 0.771408i \(-0.719553\pi\)
0.986229 + 0.165383i \(0.0528860\pi\)
\(692\) 367.098 367.098i 0.530489 0.530489i
\(693\) 74.2574 + 35.2315i 0.107153 + 0.0508390i
\(694\) 147.714i 0.212845i
\(695\) −818.270 840.559i −1.17737 1.20944i
\(696\) −65.1732 112.883i −0.0936397 0.162189i
\(697\) 371.973 + 99.6699i 0.533677 + 0.142998i
\(698\) −580.889 + 155.649i −0.832220 + 0.222993i
\(699\) 444.103i 0.635341i
\(700\) 349.495 18.7954i 0.499279 0.0268505i
\(701\) −1192.55 −1.70122 −0.850609 0.525799i \(-0.823767\pi\)
−0.850609 + 0.525799i \(0.823767\pi\)
\(702\) 24.0277 + 89.6726i 0.0342275 + 0.127739i
\(703\) 54.1627 202.138i 0.0770451 0.287536i
\(704\) 27.1161 15.6555i 0.0385172 0.0222379i
\(705\) 257.677 250.844i 0.365499 0.355807i
\(706\) −86.1765 −0.122063
\(707\) −780.334 + 63.0305i −1.10373 + 0.0891520i
\(708\) 58.8232 + 58.8232i 0.0830836 + 0.0830836i
\(709\) −1102.14 636.323i −1.55450 0.897494i −0.997766 0.0668057i \(-0.978719\pi\)
−0.556738 0.830688i \(-0.687947\pi\)
\(710\) −805.393 479.536i −1.13436 0.675403i
\(711\) −157.019 271.965i −0.220843 0.382510i
\(712\) −36.5787 136.514i −0.0513746 0.191733i
\(713\) −306.944 306.944i −0.430496 0.430496i
\(714\) −164.491 + 193.399i −0.230379 + 0.270867i
\(715\) −120.726 215.746i −0.168847 0.301743i
\(716\) −308.644 + 534.588i −0.431068 + 0.746631i
\(717\) 11.8169 + 3.16633i 0.0164810 + 0.00441608i
\(718\) −223.100 + 832.620i −0.310724 + 1.15964i
\(719\) −492.720 284.472i −0.685285 0.395650i 0.116558 0.993184i \(-0.462814\pi\)
−0.801843 + 0.597534i \(0.796147\pi\)
\(720\) 16.3064 57.7417i 0.0226478 0.0801968i
\(721\) −233.593 + 1275.00i −0.323985 + 1.76838i
\(722\) 684.923 684.923i 0.948647 0.948647i
\(723\) 151.327 40.5481i 0.209305 0.0560831i
\(724\) −298.894 + 172.566i −0.412837 + 0.238351i
\(725\) 664.931 + 17.8722i 0.917146 + 0.0246514i
\(726\) 129.433 224.185i 0.178282 0.308794i
\(727\) −467.794 + 467.794i −0.643459 + 0.643459i −0.951404 0.307945i \(-0.900359\pi\)
0.307945 + 0.951404i \(0.400359\pi\)
\(728\) −225.983 107.218i −0.310416 0.147277i
\(729\) 27.0000i 0.0370370i
\(730\) 44.9381 43.7465i 0.0615590 0.0599267i
\(731\) −220.435 381.805i −0.301553 0.522304i
\(732\) −56.2017 15.0592i −0.0767783 0.0205727i
\(733\) 615.162 164.832i 0.839239 0.224873i 0.186499 0.982455i \(-0.440286\pi\)
0.652740 + 0.757582i \(0.273619\pi\)
\(734\) 118.640i 0.161635i
\(735\) −155.759 + 394.733i −0.211917 + 0.537052i
\(736\) −72.1669 −0.0980528
\(737\) −59.8031 223.188i −0.0811440 0.302833i
\(738\) 28.5580 106.580i 0.0386964 0.144417i
\(739\) −306.153 + 176.758i −0.414280 + 0.239185i −0.692627 0.721296i \(-0.743547\pi\)
0.278347 + 0.960481i \(0.410213\pi\)
\(740\) 64.7016 + 0.869378i 0.0874346 + 0.00117484i
\(741\) −707.668 −0.955017
\(742\) −192.035 + 404.753i −0.258807 + 0.545489i
\(743\) −278.067 278.067i −0.374250 0.374250i 0.494773 0.869022i \(-0.335251\pi\)
−0.869022 + 0.494773i \(0.835251\pi\)
\(744\) 144.360 + 83.3464i 0.194032 + 0.112025i
\(745\) 1254.36 318.105i 1.68370 0.426986i
\(746\) −99.7268 172.732i −0.133682 0.231544i
\(747\) −103.398 385.887i −0.138418 0.516582i
\(748\) −81.9586 81.9586i −0.109570 0.109570i
\(749\) 220.352 + 40.3707i 0.294194 + 0.0538994i
\(750\) 207.606 + 225.055i 0.276808 + 0.300073i
\(751\) 375.703 650.737i 0.500271 0.866494i −0.499729 0.866182i \(-0.666567\pi\)
1.00000 0.000312486i \(-9.94674e-5\pi\)
\(752\) 160.438 + 42.9891i 0.213348 + 0.0571664i
\(753\) −35.4159 + 132.174i −0.0470331 + 0.175530i
\(754\) −411.678 237.683i −0.545992 0.315229i
\(755\) 700.893 + 197.934i 0.928335 + 0.262164i
\(756\) 55.4137 + 47.1308i 0.0732986 + 0.0623424i
\(757\) −554.603 + 554.603i −0.732632 + 0.732632i −0.971140 0.238508i \(-0.923342\pi\)
0.238508 + 0.971140i \(0.423342\pi\)
\(758\) 169.090 45.3076i 0.223074 0.0597726i
\(759\) 74.8964 43.2414i 0.0986777 0.0569716i
\(760\) 392.983 + 233.985i 0.517083 + 0.307874i
\(761\) 127.641 221.080i 0.167728 0.290513i −0.769893 0.638173i \(-0.779690\pi\)
0.937621 + 0.347660i \(0.113024\pi\)
\(762\) 94.0696 94.0696i 0.123451 0.123451i
\(763\) 98.3498 + 1217.60i 0.128899 + 1.59580i
\(764\)