Properties

Label 210.3.v.b.163.1
Level 210
Weight 3
Character 210.163
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 163.1
Character \(\chi\) \(=\) 210.163
Dual form 210.3.v.b.67.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-3.76724 - 3.28753i) q^{5} +2.44949 q^{6} +(5.65016 + 4.13228i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-3.76724 - 3.28753i) q^{5} +2.44949 q^{6} +(5.65016 + 4.13228i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(-3.11195 + 6.34947i) q^{10} +(2.47138 + 4.28056i) q^{11} +(-0.896575 - 3.34607i) q^{12} +(7.82868 + 7.82868i) q^{13} +(3.57669 - 9.23078i) q^{14} +(7.18896 - 4.82896i) q^{15} +(2.00000 - 3.46410i) q^{16} +(3.41115 + 0.914015i) q^{17} +(-1.09808 + 4.09808i) q^{18} +(26.8487 + 15.5011i) q^{19} +(9.81259 + 1.92693i) q^{20} +(-9.44633 + 7.60045i) q^{21} +(4.94276 - 4.94276i) q^{22} +(17.2084 - 4.61097i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(3.38424 + 24.7699i) q^{25} +(7.82868 - 13.5597i) q^{26} +(3.67423 - 3.67423i) q^{27} +(-13.9186 - 1.50715i) q^{28} +24.0299i q^{29} +(-9.22782 - 8.05278i) q^{30} +(7.79698 + 13.5048i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-8.26940 + 2.21578i) q^{33} -4.99427i q^{34} +(-7.70052 - 34.1424i) q^{35} +6.00000 q^{36} +(-8.92003 - 33.2900i) q^{37} +(11.3476 - 42.3498i) q^{38} +(-16.6071 + 9.58813i) q^{39} +(-0.959417 - 14.1096i) q^{40} -19.3822 q^{41} +(13.8400 + 10.1220i) q^{42} +(-11.5955 - 11.5955i) q^{43} +(-8.56111 - 4.94276i) q^{44} +(4.85628 + 14.1921i) q^{45} +(-12.5974 - 21.8194i) q^{46} +(8.13382 + 30.3558i) q^{47} +(4.89898 + 4.89898i) q^{48} +(14.8486 + 46.6960i) q^{49} +(32.5976 - 13.6894i) q^{50} +(-3.05835 + 5.29722i) q^{51} +(-21.3883 - 5.73099i) q^{52} +(26.9228 - 100.477i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(4.76218 - 24.2506i) q^{55} +(3.03577 + 19.5649i) q^{56} +(-37.9698 + 37.9698i) q^{57} +(32.8255 - 8.79557i) q^{58} +(13.5357 - 7.81482i) q^{59} +(-7.62269 + 15.5530i) q^{60} +(-44.1937 + 76.5457i) q^{61} +(15.5940 - 15.5940i) q^{62} +(-8.48113 - 19.2112i) q^{63} +8.00000i q^{64} +(-3.75548 - 55.2296i) q^{65} +(6.05362 + 10.4852i) q^{66} +(-75.6604 - 20.2731i) q^{67} +(-6.82230 + 1.82803i) q^{68} +30.8572i q^{69} +(-43.8208 + 23.0161i) q^{70} -59.7196 q^{71} +(-2.19615 - 8.19615i) q^{72} +(-27.5699 + 102.892i) q^{73} +(-42.2100 + 24.3700i) q^{74} +(-42.9579 - 5.44209i) q^{75} -62.0044 q^{76} +(-3.72475 + 34.3982i) q^{77} +(19.1763 + 19.1763i) q^{78} +(-23.6823 - 13.6730i) q^{79} +(-18.9228 + 6.47504i) q^{80} +(4.50000 + 7.79423i) q^{81} +(7.09436 + 26.4765i) q^{82} +(-48.9951 - 48.9951i) q^{83} +(8.76107 - 22.6107i) q^{84} +(-9.84577 - 14.6576i) q^{85} +(-11.5955 + 20.0839i) q^{86} +(-40.2029 - 10.7723i) q^{87} +(-3.61835 + 13.5039i) q^{88} +(98.6980 + 56.9833i) q^{89} +(17.6093 - 11.8285i) q^{90} +(11.8830 + 76.5835i) q^{91} +(-25.1948 + 25.1948i) q^{92} +(-26.0892 + 6.99058i) q^{93} +(38.4896 - 22.2220i) q^{94} +(-50.1852 - 146.662i) q^{95} +(4.89898 - 8.48528i) q^{96} +(99.3285 - 99.3285i) q^{97} +(58.3530 - 37.3755i) q^{98} -14.8283i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + O(q^{10}) \) \( 32q + 16q^{2} - 8q^{5} + 24q^{7} + 64q^{8} + 12q^{10} + 16q^{11} + 32q^{13} + 48q^{15} + 64q^{16} - 56q^{17} + 48q^{18} + 16q^{20} + 32q^{22} - 28q^{25} + 32q^{26} + 72q^{28} + 36q^{30} + 112q^{31} - 64q^{32} + 12q^{33} - 112q^{35} + 192q^{36} - 52q^{37} - 8q^{40} - 336q^{41} - 312q^{43} + 12q^{45} - 212q^{47} + 96q^{50} - 144q^{51} - 32q^{52} - 96q^{53} - 312q^{55} + 96q^{56} + 48q^{57} - 96q^{58} - 24q^{60} + 216q^{61} + 224q^{62} + 36q^{63} + 248q^{65} - 24q^{66} + 128q^{67} + 112q^{68} - 264q^{70} - 848q^{71} + 96q^{72} + 84q^{73} - 144q^{75} - 324q^{77} + 48q^{78} + 32q^{80} + 144q^{81} - 168q^{82} - 416q^{83} + 536q^{85} - 312q^{86} - 72q^{87} + 32q^{88} - 24q^{90} + 504q^{91} + 168q^{93} + 168q^{95} + 488q^{97} - 328q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −0.448288 + 1.67303i −0.149429 + 0.557678i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −3.76724 3.28753i −0.753449 0.657507i
\(6\) 2.44949 0.408248
\(7\) 5.65016 + 4.13228i 0.807166 + 0.590325i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) −3.11195 + 6.34947i −0.311195 + 0.634947i
\(11\) 2.47138 + 4.28056i 0.224671 + 0.389141i 0.956221 0.292647i \(-0.0945360\pi\)
−0.731550 + 0.681788i \(0.761203\pi\)
\(12\) −0.896575 3.34607i −0.0747146 0.278839i
\(13\) 7.82868 + 7.82868i 0.602206 + 0.602206i 0.940897 0.338692i \(-0.109984\pi\)
−0.338692 + 0.940897i \(0.609984\pi\)
\(14\) 3.57669 9.23078i 0.255478 0.659341i
\(15\) 7.18896 4.82896i 0.479264 0.321931i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 3.41115 + 0.914015i 0.200656 + 0.0537656i 0.357747 0.933819i \(-0.383545\pi\)
−0.157091 + 0.987584i \(0.550212\pi\)
\(18\) −1.09808 + 4.09808i −0.0610042 + 0.227671i
\(19\) 26.8487 + 15.5011i 1.41309 + 0.815848i 0.995678 0.0928696i \(-0.0296040\pi\)
0.417412 + 0.908718i \(0.362937\pi\)
\(20\) 9.81259 + 1.92693i 0.490630 + 0.0963467i
\(21\) −9.44633 + 7.60045i −0.449825 + 0.361926i
\(22\) 4.94276 4.94276i 0.224671 0.224671i
\(23\) 17.2084 4.61097i 0.748191 0.200477i 0.135475 0.990781i \(-0.456744\pi\)
0.612715 + 0.790304i \(0.290077\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 3.38424 + 24.7699i 0.135369 + 0.990795i
\(26\) 7.82868 13.5597i 0.301103 0.521526i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) −13.9186 1.50715i −0.497094 0.0538269i
\(29\) 24.0299i 0.828619i 0.910136 + 0.414309i \(0.135977\pi\)
−0.910136 + 0.414309i \(0.864023\pi\)
\(30\) −9.22782 8.05278i −0.307594 0.268426i
\(31\) 7.79698 + 13.5048i 0.251515 + 0.435638i 0.963943 0.266108i \(-0.0857377\pi\)
−0.712428 + 0.701745i \(0.752404\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) −8.26940 + 2.21578i −0.250588 + 0.0671448i
\(34\) 4.99427i 0.146890i
\(35\) −7.70052 34.1424i −0.220015 0.975496i
\(36\) 6.00000 0.166667
\(37\) −8.92003 33.2900i −0.241082 0.899730i −0.975312 0.220830i \(-0.929124\pi\)
0.734231 0.678900i \(-0.237543\pi\)
\(38\) 11.3476 42.3498i 0.298621 1.11447i
\(39\) −16.6071 + 9.58813i −0.425824 + 0.245850i
\(40\) −0.959417 14.1096i −0.0239854 0.352739i
\(41\) −19.3822 −0.472736 −0.236368 0.971664i \(-0.575957\pi\)
−0.236368 + 0.971664i \(0.575957\pi\)
\(42\) 13.8400 + 10.1220i 0.329524 + 0.240999i
\(43\) −11.5955 11.5955i −0.269662 0.269662i 0.559302 0.828964i \(-0.311069\pi\)
−0.828964 + 0.559302i \(0.811069\pi\)
\(44\) −8.56111 4.94276i −0.194571 0.112335i
\(45\) 4.85628 + 14.1921i 0.107917 + 0.315381i
\(46\) −12.5974 21.8194i −0.273857 0.474334i
\(47\) 8.13382 + 30.3558i 0.173060 + 0.645869i 0.996874 + 0.0790084i \(0.0251754\pi\)
−0.823814 + 0.566860i \(0.808158\pi\)
\(48\) 4.89898 + 4.89898i 0.102062 + 0.102062i
\(49\) 14.8486 + 46.6960i 0.303033 + 0.952980i
\(50\) 32.5976 13.6894i 0.651951 0.273787i
\(51\) −3.05835 + 5.29722i −0.0599677 + 0.103867i
\(52\) −21.3883 5.73099i −0.411314 0.110211i
\(53\) 26.9228 100.477i 0.507977 1.89580i 0.0682425 0.997669i \(-0.478261\pi\)
0.439735 0.898128i \(-0.355072\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) 4.76218 24.2506i 0.0865852 0.440921i
\(56\) 3.03577 + 19.5649i 0.0542101 + 0.349373i
\(57\) −37.9698 + 37.9698i −0.666137 + 0.666137i
\(58\) 32.8255 8.79557i 0.565957 0.151648i
\(59\) 13.5357 7.81482i 0.229418 0.132455i −0.380885 0.924622i \(-0.624381\pi\)
0.610304 + 0.792168i \(0.291047\pi\)
\(60\) −7.62269 + 15.5530i −0.127045 + 0.259216i
\(61\) −44.1937 + 76.5457i −0.724486 + 1.25485i 0.234699 + 0.972068i \(0.424590\pi\)
−0.959185 + 0.282779i \(0.908744\pi\)
\(62\) 15.5940 15.5940i 0.251515 0.251515i
\(63\) −8.48113 19.2112i −0.134621 0.304940i
\(64\) 8.00000i 0.125000i
\(65\) −3.75548 55.2296i −0.0577767 0.849686i
\(66\) 6.05362 + 10.4852i 0.0917215 + 0.158866i
\(67\) −75.6604 20.2731i −1.12926 0.302584i −0.354634 0.935005i \(-0.615395\pi\)
−0.774625 + 0.632421i \(0.782061\pi\)
\(68\) −6.82230 + 1.82803i −0.100328 + 0.0268828i
\(69\) 30.8572i 0.447206i
\(70\) −43.8208 + 23.0161i −0.626011 + 0.328801i
\(71\) −59.7196 −0.841121 −0.420560 0.907265i \(-0.638167\pi\)
−0.420560 + 0.907265i \(0.638167\pi\)
\(72\) −2.19615 8.19615i −0.0305021 0.113835i
\(73\) −27.5699 + 102.892i −0.377670 + 1.40948i 0.471734 + 0.881741i \(0.343628\pi\)
−0.849404 + 0.527743i \(0.823038\pi\)
\(74\) −42.2100 + 24.3700i −0.570406 + 0.329324i
\(75\) −42.9579 5.44209i −0.572772 0.0725613i
\(76\) −62.0044 −0.815848
\(77\) −3.72475 + 34.3982i −0.0483733 + 0.446730i
\(78\) 19.1763 + 19.1763i 0.245850 + 0.245850i
\(79\) −23.6823 13.6730i −0.299776 0.173076i 0.342566 0.939494i \(-0.388704\pi\)
−0.642342 + 0.766418i \(0.722037\pi\)
\(80\) −18.9228 + 6.47504i −0.236535 + 0.0809380i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 7.09436 + 26.4765i 0.0865166 + 0.322884i
\(83\) −48.9951 48.9951i −0.590302 0.590302i 0.347411 0.937713i \(-0.387061\pi\)
−0.937713 + 0.347411i \(0.887061\pi\)
\(84\) 8.76107 22.6107i 0.104298 0.269175i
\(85\) −9.84577 14.6576i −0.115833 0.172442i
\(86\) −11.5955 + 20.0839i −0.134831 + 0.233534i
\(87\) −40.2029 10.7723i −0.462102 0.123820i
\(88\) −3.61835 + 13.5039i −0.0411176 + 0.153453i
\(89\) 98.6980 + 56.9833i 1.10897 + 0.640262i 0.938561 0.345112i \(-0.112159\pi\)
0.170405 + 0.985374i \(0.445492\pi\)
\(90\) 17.6093 11.8285i 0.195659 0.131428i
\(91\) 11.8830 + 76.5835i 0.130583 + 0.841577i
\(92\) −25.1948 + 25.1948i −0.273857 + 0.273857i
\(93\) −26.0892 + 6.99058i −0.280529 + 0.0751675i
\(94\) 38.4896 22.2220i 0.409464 0.236404i
\(95\) −50.1852 146.662i −0.528265 1.54382i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) 99.3285 99.3285i 1.02400 1.02400i 0.0243000 0.999705i \(-0.492264\pi\)
0.999705 0.0243000i \(-0.00773568\pi\)
\(98\) 58.3530 37.3755i 0.595439 0.381383i
\(99\) 14.8283i 0.149781i
\(100\) −30.6316 39.5185i −0.306316 0.395185i
\(101\) 39.4954 + 68.4080i 0.391043 + 0.677307i 0.992587 0.121533i \(-0.0387810\pi\)
−0.601544 + 0.798839i \(0.705448\pi\)
\(102\) 8.35558 + 2.23887i 0.0819174 + 0.0219497i
\(103\) 87.6811 23.4941i 0.851272 0.228098i 0.193300 0.981140i \(-0.438081\pi\)
0.657972 + 0.753042i \(0.271414\pi\)
\(104\) 31.3147i 0.301103i
\(105\) 60.5734 + 2.42238i 0.576889 + 0.0230703i
\(106\) −147.109 −1.38782
\(107\) −20.5193 76.5792i −0.191770 0.715694i −0.993079 0.117444i \(-0.962530\pi\)
0.801310 0.598250i \(-0.204137\pi\)
\(108\) −2.68973 + 10.0382i −0.0249049 + 0.0929463i
\(109\) 37.6062 21.7120i 0.345011 0.199192i −0.317475 0.948267i \(-0.602835\pi\)
0.662486 + 0.749074i \(0.269501\pi\)
\(110\) −34.8701 + 2.37108i −0.317001 + 0.0215553i
\(111\) 59.6940 0.537784
\(112\) 25.6149 11.3082i 0.228705 0.100966i
\(113\) 129.101 + 129.101i 1.14249 + 1.14249i 0.987994 + 0.154493i \(0.0493745\pi\)
0.154493 + 0.987994i \(0.450625\pi\)
\(114\) 65.7656 + 37.9698i 0.576892 + 0.333068i
\(115\) −79.9869 39.2025i −0.695538 0.340891i
\(116\) −24.0299 41.6211i −0.207155 0.358802i
\(117\) −8.59648 32.0825i −0.0734742 0.274209i
\(118\) −15.6296 15.6296i −0.132455 0.132455i
\(119\) 15.4966 + 19.2601i 0.130223 + 0.161850i
\(120\) 24.0358 + 4.72000i 0.200299 + 0.0393334i
\(121\) 48.2846 83.6313i 0.399046 0.691168i
\(122\) 120.739 + 32.3520i 0.989666 + 0.265180i
\(123\) 8.68879 32.4270i 0.0706405 0.263634i
\(124\) −27.0095 15.5940i −0.217819 0.125758i
\(125\) 68.6826 104.440i 0.549461 0.835520i
\(126\) −23.1387 + 18.6172i −0.183640 + 0.147756i
\(127\) 152.616 152.616i 1.20170 1.20170i 0.228056 0.973648i \(-0.426763\pi\)
0.973648 0.228056i \(-0.0732370\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 24.5977 14.2015i 0.190680 0.110089i
\(130\) −74.0704 + 25.3455i −0.569772 + 0.194965i
\(131\) −97.2153 + 168.382i −0.742102 + 1.28536i 0.209435 + 0.977823i \(0.432838\pi\)
−0.951537 + 0.307535i \(0.900496\pi\)
\(132\) 12.1072 12.1072i 0.0917215 0.0917215i
\(133\) 87.6446 + 198.530i 0.658982 + 1.49271i
\(134\) 110.774i 0.826675i
\(135\) −25.9209 + 1.76256i −0.192007 + 0.0130560i
\(136\) 4.99427 + 8.65033i 0.0367226 + 0.0636054i
\(137\) −179.801 48.1776i −1.31242 0.351661i −0.466285 0.884634i \(-0.654408\pi\)
−0.846132 + 0.532973i \(0.821075\pi\)
\(138\) 42.1518 11.2945i 0.305448 0.0818445i
\(139\) 202.296i 1.45537i −0.685913 0.727683i \(-0.740597\pi\)
0.685913 0.727683i \(-0.259403\pi\)
\(140\) 47.4801 + 51.4358i 0.339143 + 0.367399i
\(141\) −54.4326 −0.386047
\(142\) 21.8589 + 81.5785i 0.153936 + 0.574496i
\(143\) −14.1634 + 52.8587i −0.0990451 + 0.369641i
\(144\) −10.3923 + 6.00000i −0.0721688 + 0.0416667i
\(145\) 78.9993 90.5266i 0.544822 0.624322i
\(146\) 150.645 1.03181
\(147\) −84.7804 + 3.90893i −0.576738 + 0.0265913i
\(148\) 48.7399 + 48.7399i 0.329324 + 0.329324i
\(149\) −89.3747 51.6005i −0.599830 0.346312i 0.169144 0.985591i \(-0.445900\pi\)
−0.768975 + 0.639279i \(0.779233\pi\)
\(150\) 8.28965 + 60.6736i 0.0552644 + 0.404490i
\(151\) 37.3443 + 64.6822i 0.247313 + 0.428359i 0.962779 0.270288i \(-0.0871190\pi\)
−0.715466 + 0.698647i \(0.753786\pi\)
\(152\) 22.6952 + 84.6996i 0.149311 + 0.557234i
\(153\) −7.49140 7.49140i −0.0489634 0.0489634i
\(154\) 48.3522 7.50253i 0.313975 0.0487177i
\(155\) 15.0243 76.5086i 0.0969307 0.493604i
\(156\) 19.1763 33.2143i 0.122925 0.212912i
\(157\) −195.069 52.2685i −1.24248 0.332920i −0.423050 0.906106i \(-0.639041\pi\)
−0.819425 + 0.573186i \(0.805707\pi\)
\(158\) −10.0093 + 37.3553i −0.0633502 + 0.236426i
\(159\) 156.033 + 90.0854i 0.981336 + 0.566575i
\(160\) 15.7713 + 23.4790i 0.0985707 + 0.146744i
\(161\) 116.284 + 45.0571i 0.722261 + 0.279858i
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) 159.904 42.8461i 0.981004 0.262859i 0.267537 0.963548i \(-0.413790\pi\)
0.713467 + 0.700688i \(0.247124\pi\)
\(164\) 33.5709 19.3822i 0.204701 0.118184i
\(165\) 38.4373 + 18.8386i 0.232953 + 0.114173i
\(166\) −48.9951 + 84.8619i −0.295151 + 0.511216i
\(167\) 129.993 129.993i 0.778403 0.778403i −0.201156 0.979559i \(-0.564470\pi\)
0.979559 + 0.201156i \(0.0644698\pi\)
\(168\) −34.0936 3.69175i −0.202938 0.0219747i
\(169\) 46.4237i 0.274696i
\(170\) −16.4188 + 18.8146i −0.0965814 + 0.110674i
\(171\) −46.5033 80.5461i −0.271949 0.471030i
\(172\) 31.6794 + 8.48846i 0.184182 + 0.0493515i
\(173\) −28.5654 + 7.65408i −0.165118 + 0.0442432i −0.340431 0.940270i \(-0.610573\pi\)
0.175313 + 0.984513i \(0.443906\pi\)
\(174\) 58.8611i 0.338282i
\(175\) −83.2345 + 153.938i −0.475626 + 0.879648i
\(176\) 19.7710 0.112335
\(177\) 7.00658 + 26.1489i 0.0395852 + 0.147734i
\(178\) 41.7147 155.681i 0.234352 0.874614i
\(179\) −187.148 + 108.050i −1.04552 + 0.603629i −0.921391 0.388637i \(-0.872946\pi\)
−0.124126 + 0.992266i \(0.539613\pi\)
\(180\) −22.6035 19.7252i −0.125575 0.109584i
\(181\) 138.273 0.763937 0.381968 0.924175i \(-0.375246\pi\)
0.381968 + 0.924175i \(0.375246\pi\)
\(182\) 100.266 44.2640i 0.550910 0.243209i
\(183\) −108.252 108.252i −0.591540 0.591540i
\(184\) 43.6387 + 25.1948i 0.237167 + 0.136928i
\(185\) −75.8381 + 154.736i −0.409936 + 0.836413i
\(186\) 19.0986 + 33.0798i 0.102681 + 0.177848i
\(187\) 4.51775 + 16.8605i 0.0241591 + 0.0901631i
\(188\) −44.4440 44.4440i −0.236404 0.236404i
\(189\) 35.9430 5.57706i 0.190174 0.0295083i
\(190\) −181.976 + 122.236i −0.957767 + 0.643350i
\(191\) −76.7883 + 133.001i −0.402033 + 0.696342i −0.993971 0.109642i \(-0.965030\pi\)
0.591938 + 0.805983i \(0.298363\pi\)
\(192\) −13.3843 3.58630i −0.0697097 0.0186787i
\(193\) −80.5552 + 300.636i −0.417385 + 1.55770i 0.362627 + 0.931935i \(0.381880\pi\)
−0.780011 + 0.625766i \(0.784787\pi\)
\(194\) −172.042 99.3285i −0.886814 0.512002i
\(195\) 94.0844 + 18.4757i 0.482484 + 0.0947471i
\(196\) −72.4146 66.0313i −0.369462 0.336894i
\(197\) 67.5608 67.5608i 0.342948 0.342948i −0.514526 0.857475i \(-0.672032\pi\)
0.857475 + 0.514526i \(0.172032\pi\)
\(198\) −20.2558 + 5.42753i −0.102302 + 0.0274118i
\(199\) 279.894 161.597i 1.40650 0.812044i 0.411453 0.911431i \(-0.365021\pi\)
0.995049 + 0.0993866i \(0.0316880\pi\)
\(200\) −42.7713 + 56.3082i −0.213856 + 0.281541i
\(201\) 67.8352 117.494i 0.337489 0.584548i
\(202\) 78.9907 78.9907i 0.391043 0.391043i
\(203\) −99.2983 + 135.773i −0.489154 + 0.668833i
\(204\) 12.2334i 0.0599677i
\(205\) 73.0173 + 63.7195i 0.356182 + 0.310827i
\(206\) −64.1870 111.175i −0.311587 0.539685i
\(207\) −51.6252 13.8329i −0.249397 0.0668257i
\(208\) 42.7767 11.4620i 0.205657 0.0551057i
\(209\) 153.237i 0.733189i
\(210\) −18.8624 83.6314i −0.0898207 0.398245i
\(211\) −327.292 −1.55115 −0.775575 0.631256i \(-0.782540\pi\)
−0.775575 + 0.631256i \(0.782540\pi\)
\(212\) 53.8456 + 200.954i 0.253989 + 0.947898i
\(213\) 26.7716 99.9128i 0.125688 0.469074i
\(214\) −97.0986 + 56.0599i −0.453732 + 0.261962i
\(215\) 5.56244 + 81.8033i 0.0258718 + 0.380481i
\(216\) 14.6969 0.0680414
\(217\) −11.7512 + 108.523i −0.0541532 + 0.500108i
\(218\) −43.4239 43.4239i −0.199192 0.199192i
\(219\) −159.783 92.2507i −0.729603 0.421236i
\(220\) 16.0023 + 46.7655i 0.0727377 + 0.212571i
\(221\) 19.5493 + 33.8603i 0.0884582 + 0.153214i
\(222\) −21.8495 81.5435i −0.0984213 0.367313i
\(223\) 87.5407 + 87.5407i 0.392559 + 0.392559i 0.875599 0.483040i \(-0.160467\pi\)
−0.483040 + 0.875599i \(0.660467\pi\)
\(224\) −24.8230 30.8516i −0.110817 0.137730i
\(225\) 28.3623 69.4304i 0.126055 0.308580i
\(226\) 129.101 223.610i 0.571244 0.989423i
\(227\) −281.372 75.3933i −1.23952 0.332129i −0.421242 0.906948i \(-0.638406\pi\)
−0.818280 + 0.574819i \(0.805072\pi\)
\(228\) 27.7958 103.735i 0.121912 0.454980i
\(229\) 56.5510 + 32.6497i 0.246948 + 0.142575i 0.618366 0.785890i \(-0.287795\pi\)
−0.371418 + 0.928466i \(0.621128\pi\)
\(230\) −24.2744 + 123.613i −0.105541 + 0.537449i
\(231\) −55.8796 21.6519i −0.241903 0.0937313i
\(232\) −48.0599 + 48.0599i −0.207155 + 0.207155i
\(233\) −159.294 + 42.6828i −0.683667 + 0.183188i −0.583903 0.811823i \(-0.698475\pi\)
−0.0997635 + 0.995011i \(0.531809\pi\)
\(234\) −40.6790 + 23.4860i −0.173842 + 0.100368i
\(235\) 69.1537 141.098i 0.294271 0.600417i
\(236\) −15.6296 + 27.0713i −0.0662273 + 0.114709i
\(237\) 33.4919 33.4919i 0.141316 0.141316i
\(238\) 20.6377 28.2184i 0.0867130 0.118565i
\(239\) 84.6324i 0.354110i −0.984201 0.177055i \(-0.943343\pi\)
0.984201 0.177055i \(-0.0566571\pi\)
\(240\) −2.35008 34.5612i −0.00979201 0.144005i
\(241\) −220.268 381.516i −0.913976 1.58305i −0.808393 0.588643i \(-0.799662\pi\)
−0.105583 0.994410i \(-0.533671\pi\)
\(242\) −131.916 35.3468i −0.545107 0.146061i
\(243\) −15.0573 + 4.03459i −0.0619642 + 0.0166032i
\(244\) 176.775i 0.724486i
\(245\) 97.5765 224.731i 0.398272 0.917268i
\(246\) −47.4764 −0.192994
\(247\) 88.8367 + 331.543i 0.359663 + 1.34228i
\(248\) −11.4156 + 42.6035i −0.0460305 + 0.171788i
\(249\) 103.934 60.0064i 0.417406 0.240990i
\(250\) −167.807 55.5945i −0.671229 0.222378i
\(251\) −78.4347 −0.312489 −0.156244 0.987718i \(-0.549939\pi\)
−0.156244 + 0.987718i \(0.549939\pi\)
\(252\) 33.9010 + 24.7937i 0.134528 + 0.0983875i
\(253\) 62.2660 + 62.2660i 0.246111 + 0.246111i
\(254\) −264.339 152.616i −1.04071 0.600852i
\(255\) 28.9364 9.90148i 0.113476 0.0388293i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 103.036 + 384.537i 0.400920 + 1.49625i 0.811459 + 0.584409i \(0.198674\pi\)
−0.410540 + 0.911843i \(0.634660\pi\)
\(258\) −28.4029 28.4029i −0.110089 0.110089i
\(259\) 87.1639 224.954i 0.336540 0.868548i
\(260\) 61.7343 + 91.9049i 0.237439 + 0.353480i
\(261\) 36.0449 62.4316i 0.138103 0.239202i
\(262\) 265.597 + 71.1666i 1.01373 + 0.271628i
\(263\) 104.904 391.508i 0.398876 1.48862i −0.416201 0.909272i \(-0.636639\pi\)
0.815077 0.579352i \(-0.196694\pi\)
\(264\) −20.9704 12.1072i −0.0794332 0.0458608i
\(265\) −431.747 + 290.012i −1.62923 + 1.09439i
\(266\) 239.117 192.392i 0.898936 0.723277i
\(267\) −139.580 + 139.580i −0.522772 + 0.522772i
\(268\) 151.321 40.5463i 0.564630 0.151292i
\(269\) −113.642 + 65.6115i −0.422463 + 0.243909i −0.696130 0.717915i \(-0.745096\pi\)
0.273668 + 0.961824i \(0.411763\pi\)
\(270\) 11.8954 + 34.7635i 0.0440571 + 0.128754i
\(271\) 31.0750 53.8235i 0.114668 0.198611i −0.802979 0.596007i \(-0.796753\pi\)
0.917647 + 0.397397i \(0.130086\pi\)
\(272\) 9.98854 9.98854i 0.0367226 0.0367226i
\(273\) −133.454 14.4508i −0.488841 0.0529332i
\(274\) 263.247i 0.960756i
\(275\) −97.6651 + 75.7022i −0.355146 + 0.275281i
\(276\) −30.8572 53.4463i −0.111802 0.193646i
\(277\) 86.7411 + 23.2422i 0.313145 + 0.0839068i 0.411968 0.911198i \(-0.364841\pi\)
−0.0988239 + 0.995105i \(0.531508\pi\)
\(278\) −276.341 + 74.0454i −0.994034 + 0.266351i
\(279\) 46.7819i 0.167677i
\(280\) 52.8837 83.6858i 0.188870 0.298878i
\(281\) −3.27031 −0.0116381 −0.00581906 0.999983i \(-0.501852\pi\)
−0.00581906 + 0.999983i \(0.501852\pi\)
\(282\) 19.9237 + 74.3563i 0.0706514 + 0.263675i
\(283\) 52.8584 197.270i 0.186779 0.697068i −0.807464 0.589917i \(-0.799160\pi\)
0.994243 0.107151i \(-0.0341729\pi\)
\(284\) 103.437 59.7196i 0.364216 0.210280i
\(285\) 267.869 18.2144i 0.939890 0.0639103i
\(286\) 77.3905 0.270596
\(287\) −109.512 80.0924i −0.381576 0.279068i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) −239.481 138.264i −0.828653 0.478423i
\(290\) −152.577 74.7799i −0.526129 0.257862i
\(291\) 121.652 + 210.707i 0.418048 + 0.724081i
\(292\) −55.1398 205.785i −0.188835 0.704742i
\(293\) −269.541 269.541i −0.919935 0.919935i 0.0770891 0.997024i \(-0.475437\pi\)
−0.997024 + 0.0770891i \(0.975437\pi\)
\(294\) 36.3715 + 114.381i 0.123713 + 0.389053i
\(295\) −76.6837 15.0586i −0.259945 0.0510463i
\(296\) 48.7399 84.4201i 0.164662 0.285203i
\(297\) 24.8082 + 6.64734i 0.0835293 + 0.0223816i
\(298\) −37.7742 + 140.975i −0.126759 + 0.473071i
\(299\) 170.817 + 98.6211i 0.571293 + 0.329836i
\(300\) 79.8474 33.5319i 0.266158 0.111773i
\(301\) −17.6005 113.432i −0.0584736 0.376850i
\(302\) 74.6886 74.6886i 0.247313 0.247313i
\(303\) −132.154 + 35.4106i −0.436152 + 0.116867i
\(304\) 107.395 62.0044i 0.353272 0.203962i
\(305\) 418.135 143.078i 1.37093 0.469108i
\(306\) −7.49140 + 12.9755i −0.0244817 + 0.0424036i
\(307\) 167.472 167.472i 0.545511 0.545511i −0.379628 0.925139i \(-0.623948\pi\)
0.925139 + 0.379628i \(0.123948\pi\)
\(308\) −27.9468 63.3042i −0.0907363 0.205533i
\(309\) 157.225i 0.508820i
\(310\) −110.012 + 7.48056i −0.354877 + 0.0241308i
\(311\) 275.366 + 476.948i 0.885422 + 1.53360i 0.845229 + 0.534404i \(0.179464\pi\)
0.0401933 + 0.999192i \(0.487203\pi\)
\(312\) −52.3905 14.0380i −0.167918 0.0449936i
\(313\) −274.100 + 73.4448i −0.875718 + 0.234648i −0.668559 0.743659i \(-0.733088\pi\)
−0.207159 + 0.978307i \(0.566422\pi\)
\(314\) 285.600i 0.909555i
\(315\) −31.2070 + 100.255i −0.0990699 + 0.318271i
\(316\) 54.6920 0.173076
\(317\) 97.6208 + 364.326i 0.307952 + 1.14929i 0.930374 + 0.366611i \(0.119482\pi\)
−0.622422 + 0.782682i \(0.713851\pi\)
\(318\) 65.9471 246.118i 0.207381 0.773956i
\(319\) −102.861 + 59.3871i −0.322450 + 0.186167i
\(320\) 26.3003 30.1379i 0.0821884 0.0941811i
\(321\) 137.318 0.427782
\(322\) 18.9862 175.339i 0.0589634 0.544531i
\(323\) 77.4167 + 77.4167i 0.239680 + 0.239680i
\(324\) −15.5885 9.00000i −0.0481125 0.0277778i
\(325\) −167.421 + 220.409i −0.515142 + 0.678183i
\(326\) −117.058 202.750i −0.359072 0.621932i
\(327\) 19.4664 + 72.6497i 0.0595303 + 0.222170i
\(328\) −38.7643 38.7643i −0.118184 0.118184i
\(329\) −79.4813 + 205.126i −0.241584 + 0.623485i
\(330\) 11.6649 59.4017i 0.0353482 0.180005i
\(331\) 203.687 352.797i 0.615369 1.06585i −0.374950 0.927045i \(-0.622340\pi\)
0.990320 0.138806i \(-0.0443264\pi\)
\(332\) 133.857 + 35.8669i 0.403184 + 0.108033i
\(333\) −26.7601 + 99.8700i −0.0803606 + 0.299910i
\(334\) −225.155 129.993i −0.674117 0.389202i
\(335\) 218.382 + 325.110i 0.651888 + 0.970477i
\(336\) 7.43608 + 47.9239i 0.0221312 + 0.142631i
\(337\) −51.7090 + 51.7090i −0.153439 + 0.153439i −0.779652 0.626213i \(-0.784604\pi\)
0.626213 + 0.779652i \(0.284604\pi\)
\(338\) −63.4159 + 16.9922i −0.187621 + 0.0502729i
\(339\) −273.865 + 158.116i −0.807860 + 0.466418i
\(340\) 31.7110 + 15.5419i 0.0932675 + 0.0457115i
\(341\) −38.5386 + 66.7508i −0.113016 + 0.195750i
\(342\) −93.0067 + 93.0067i −0.271949 + 0.271949i
\(343\) −109.064 + 325.198i −0.317971 + 0.948101i
\(344\) 46.3818i 0.134831i
\(345\) 101.444 116.247i 0.294041 0.336947i
\(346\) 20.9113 + 36.2195i 0.0604374 + 0.104681i
\(347\) −465.261 124.666i −1.34081 0.359269i −0.484075 0.875027i \(-0.660844\pi\)
−0.856734 + 0.515758i \(0.827510\pi\)
\(348\) 80.4058 21.5447i 0.231051 0.0619099i
\(349\) 165.950i 0.475501i 0.971326 + 0.237750i \(0.0764100\pi\)
−0.971326 + 0.237750i \(0.923590\pi\)
\(350\) 240.750 + 57.3551i 0.687856 + 0.163872i
\(351\) 57.5288 0.163900
\(352\) −7.23670 27.0077i −0.0205588 0.0767265i
\(353\) 16.3422 60.9899i 0.0462951 0.172776i −0.938907 0.344170i \(-0.888160\pi\)
0.985203 + 0.171394i \(0.0548271\pi\)
\(354\) 33.1555 19.1423i 0.0936596 0.0540744i
\(355\) 224.978 + 196.330i 0.633741 + 0.553043i
\(356\) −227.933 −0.640262
\(357\) −39.1698 + 17.2922i −0.109719 + 0.0484375i
\(358\) 216.099 + 216.099i 0.603629 + 0.603629i
\(359\) −140.408 81.0646i −0.391109 0.225807i 0.291532 0.956561i \(-0.405835\pi\)
−0.682640 + 0.730754i \(0.739168\pi\)
\(360\) −18.6717 + 38.0968i −0.0518658 + 0.105825i
\(361\) 300.069 + 519.734i 0.831215 + 1.43971i
\(362\) −50.6113 188.884i −0.139810 0.521778i
\(363\) 118.273 + 118.273i 0.325820 + 0.325820i
\(364\) −97.1655 120.764i −0.266938 0.331768i
\(365\) 442.125 296.983i 1.21130 0.813653i
\(366\) −108.252 + 187.498i −0.295770 + 0.512289i
\(367\) 18.5994 + 4.98370i 0.0506796 + 0.0135796i 0.284070 0.958804i \(-0.408315\pi\)
−0.233390 + 0.972383i \(0.574982\pi\)
\(368\) 18.4439 68.8336i 0.0501193 0.187048i
\(369\) 50.3563 + 29.0732i 0.136467 + 0.0787893i
\(370\) 239.133 + 46.9593i 0.646304 + 0.126917i
\(371\) 567.318 456.460i 1.52916 1.23035i
\(372\) 38.1972 38.1972i 0.102681 0.102681i
\(373\) −326.843 + 87.5772i −0.876253 + 0.234791i −0.668790 0.743451i \(-0.733187\pi\)
−0.207463 + 0.978243i \(0.566521\pi\)
\(374\) 21.3782 12.3427i 0.0571611 0.0330020i
\(375\) 143.942 + 161.727i 0.383845 + 0.431273i
\(376\) −44.4440 + 76.9793i −0.118202 + 0.204732i
\(377\) −188.123 + 188.123i −0.498999 + 0.498999i
\(378\) −20.7744 47.0577i −0.0549588 0.124491i
\(379\) 531.207i 1.40160i −0.713357 0.700801i \(-0.752826\pi\)
0.713357 0.700801i \(-0.247174\pi\)
\(380\) 233.586 + 203.842i 0.614699 + 0.536426i
\(381\) 186.916 + 323.748i 0.490594 + 0.849733i
\(382\) 209.790 + 56.2129i 0.549187 + 0.147154i
\(383\) −96.4442 + 25.8421i −0.251813 + 0.0674730i −0.382517 0.923948i \(-0.624943\pi\)
0.130705 + 0.991421i \(0.458276\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 127.117 117.341i 0.330175 0.304783i
\(386\) 440.162 1.14032
\(387\) 12.7327 + 47.5191i 0.0329010 + 0.122788i
\(388\) −72.7135 + 271.370i −0.187406 + 0.699408i
\(389\) 528.011 304.848i 1.35736 0.783670i 0.368089 0.929791i \(-0.380012\pi\)
0.989267 + 0.146121i \(0.0466788\pi\)
\(390\) −9.19902 135.284i −0.0235872 0.346883i
\(391\) 62.9149 0.160908
\(392\) −63.6949 + 123.089i −0.162487 + 0.314003i
\(393\) −238.128 238.128i −0.605924 0.605924i
\(394\) −117.019 67.5608i −0.297002 0.171474i
\(395\) 44.2666 + 129.366i 0.112067 + 0.327509i
\(396\) 14.8283 + 25.6833i 0.0374451 + 0.0648569i
\(397\) −173.904 649.017i −0.438044 1.63480i −0.733675 0.679501i \(-0.762196\pi\)
0.295631 0.955302i \(-0.404470\pi\)
\(398\) −323.194 323.194i −0.812044 0.812044i
\(399\) −371.437 + 57.6337i −0.930920 + 0.144445i
\(400\) 92.5739 + 37.8164i 0.231435 + 0.0945410i
\(401\) 304.095 526.709i 0.758343 1.31349i −0.185353 0.982672i \(-0.559343\pi\)
0.943695 0.330816i \(-0.107324\pi\)
\(402\) −185.329 49.6588i −0.461018 0.123529i
\(403\) −44.6844 + 166.764i −0.110879 + 0.413808i
\(404\) −136.816 78.9907i −0.338653 0.195522i
\(405\) 8.67120 44.1567i 0.0214104 0.109029i
\(406\) 221.815 + 85.9477i 0.546343 + 0.211694i
\(407\) 120.455 120.455i 0.295958 0.295958i
\(408\) −16.7112 + 4.47774i −0.0409587 + 0.0109749i
\(409\) −322.212 + 186.029i −0.787804 + 0.454839i −0.839189 0.543840i \(-0.816970\pi\)
0.0513849 + 0.998679i \(0.483636\pi\)
\(410\) 60.3163 123.066i 0.147113 0.300162i
\(411\) 161.205 279.216i 0.392227 0.679357i
\(412\) −128.374 + 128.374i −0.311587 + 0.311587i
\(413\) 108.772 + 11.7781i 0.263370 + 0.0285185i
\(414\) 75.5845i 0.182571i
\(415\) 23.5033 + 345.649i 0.0566346 + 0.832890i
\(416\) −31.3147 54.2387i −0.0752757 0.130381i
\(417\) 338.448 + 90.6868i 0.811625 + 0.217474i
\(418\) 209.325 56.0885i 0.500777 0.134183i
\(419\) 338.166i 0.807079i 0.914962 + 0.403540i \(0.132220\pi\)
−0.914962 + 0.403540i \(0.867780\pi\)
\(420\) −107.339 + 56.3777i −0.255568 + 0.134233i
\(421\) 13.7324 0.0326186 0.0163093 0.999867i \(-0.494808\pi\)
0.0163093 + 0.999867i \(0.494808\pi\)
\(422\) 119.797 + 447.090i 0.283880 + 1.05945i
\(423\) 24.4015 91.0675i 0.0576867 0.215290i
\(424\) 254.800 147.109i 0.600943 0.346955i
\(425\) −11.0959 + 87.5870i −0.0261080 + 0.206087i
\(426\) −146.282 −0.343386
\(427\) −566.009 + 249.875i −1.32555 + 0.585187i
\(428\) 112.120 + 112.120i 0.261962 + 0.261962i
\(429\) −82.0851 47.3918i −0.191340 0.110470i
\(430\) 109.709 37.5405i 0.255138 0.0873036i
\(431\) −54.4290 94.2738i −0.126285 0.218733i 0.795949 0.605363i \(-0.206972\pi\)
−0.922235 + 0.386631i \(0.873639\pi\)
\(432\) −5.37945 20.0764i −0.0124524 0.0464731i
\(433\) −449.174 449.174i −1.03735 1.03735i −0.999275 0.0380787i \(-0.987876\pi\)
−0.0380787 0.999275i \(-0.512124\pi\)
\(434\) 152.547 23.6698i 0.351491 0.0545387i
\(435\) 116.040 + 172.750i 0.266758 + 0.397127i
\(436\) −43.4239 + 75.2125i −0.0995962 + 0.172506i
\(437\) 533.498 + 142.950i 1.22082 + 0.327118i
\(438\) −67.5322 + 252.034i −0.154183 + 0.575419i
\(439\) 97.0976 + 56.0593i 0.221179 + 0.127698i 0.606496 0.795086i \(-0.292575\pi\)
−0.385317 + 0.922784i \(0.625908\pi\)
\(440\) 58.0256 38.9769i 0.131876 0.0885839i
\(441\) 31.4663 143.593i 0.0713521 0.325607i
\(442\) 39.0985 39.0985i 0.0884582 0.0884582i
\(443\) 614.169 164.566i 1.38639 0.371481i 0.512950 0.858419i \(-0.328553\pi\)
0.873437 + 0.486938i \(0.161886\pi\)
\(444\) −103.393 + 59.6940i −0.232867 + 0.134446i
\(445\) −184.485 539.143i −0.414572 1.21156i
\(446\) 87.5407 151.625i 0.196279 0.339966i
\(447\) 126.395 126.395i 0.282763 0.282763i
\(448\) −33.0582 + 45.2013i −0.0737906 + 0.100896i
\(449\) 199.822i 0.445038i −0.974928 0.222519i \(-0.928572\pi\)
0.974928 0.222519i \(-0.0714279\pi\)
\(450\) −105.225 13.3304i −0.233833 0.0296230i
\(451\) −47.9007 82.9664i −0.106210 0.183961i
\(452\) −352.711 94.5085i −0.780333 0.209090i
\(453\) −124.956 + 33.4820i −0.275842 + 0.0739116i
\(454\) 411.957i 0.907393i
\(455\) 207.005 327.575i 0.454955 0.719944i
\(456\) −151.879 −0.333068
\(457\) 109.714 + 409.459i 0.240075 + 0.895971i 0.975795 + 0.218686i \(0.0701771\pi\)
−0.735720 + 0.677285i \(0.763156\pi\)
\(458\) 23.9013 89.2008i 0.0521862 0.194761i
\(459\) 15.8917 9.17506i 0.0346224 0.0199892i
\(460\) 177.744 12.0862i 0.386400 0.0262743i
\(461\) −768.361 −1.66673 −0.833364 0.552725i \(-0.813588\pi\)
−0.833364 + 0.552725i \(0.813588\pi\)
\(462\) −9.12373 + 84.2581i −0.0197483 + 0.182377i
\(463\) −2.18079 2.18079i −0.00471013 0.00471013i 0.704748 0.709458i \(-0.251060\pi\)
−0.709458 + 0.704748i \(0.751060\pi\)
\(464\) 83.2422 + 48.0599i 0.179401 + 0.103577i
\(465\) 121.266 + 59.4339i 0.260787 + 0.127815i
\(466\) 116.612 + 201.977i 0.250239 + 0.433427i
\(467\) −222.687 831.079i −0.476846 1.77961i −0.614265 0.789100i \(-0.710547\pi\)
0.137419 0.990513i \(-0.456119\pi\)
\(468\) 46.9721 + 46.9721i 0.100368 + 0.100368i
\(469\) −343.719 427.196i −0.732876 0.910866i
\(470\) −218.055 42.8203i −0.463948 0.0911071i
\(471\) 174.894 302.925i 0.371324 0.643153i
\(472\) 42.7010 + 11.4417i 0.0904682 + 0.0242409i
\(473\) 20.9782 78.2918i 0.0443514 0.165522i
\(474\) −58.0096 33.4919i −0.122383 0.0706579i
\(475\) −293.098 + 717.499i −0.617049 + 1.51052i
\(476\) −46.1010 17.8630i −0.0968508 0.0375272i
\(477\) −220.663 + 220.663i −0.462606 + 0.462606i
\(478\) −115.610 + 30.9776i −0.241862 + 0.0648067i
\(479\) 440.106 254.095i 0.918801 0.530470i 0.0355485 0.999368i \(-0.488682\pi\)
0.883252 + 0.468898i \(0.155349\pi\)
\(480\) −46.3513 + 15.8606i −0.0965652 + 0.0330428i
\(481\) 190.785 330.449i 0.396642 0.687003i
\(482\) −440.537 + 440.537i −0.913976 + 0.913976i
\(483\) −127.511 + 174.348i −0.263997 + 0.360970i
\(484\) 193.138i 0.399046i
\(485\) −700.740 + 47.6487i −1.44482 + 0.0982448i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) 733.901 + 196.648i 1.50698 + 0.403795i 0.915432 0.402473i \(-0.131849\pi\)
0.591551 + 0.806268i \(0.298516\pi\)
\(488\) −241.479 + 64.7040i −0.494833 + 0.132590i
\(489\) 286.731i 0.586363i
\(490\) −342.703 51.0349i −0.699394 0.104153i
\(491\) −160.570 −0.327027 −0.163514 0.986541i \(-0.552283\pi\)
−0.163514 + 0.986541i \(0.552283\pi\)
\(492\) 17.3776 + 64.8540i 0.0353203 + 0.131817i
\(493\) −21.9637 + 81.9697i −0.0445512 + 0.166267i
\(494\) 420.380 242.706i 0.850971 0.491308i
\(495\) −48.7485 + 55.8617i −0.0984818 + 0.112852i
\(496\) 62.3758 0.125758
\(497\) −337.425 246.778i −0.678924 0.496535i
\(498\) −120.013 120.013i −0.240990 0.240990i
\(499\) −53.3534 30.8036i −0.106921 0.0617307i 0.445586 0.895239i \(-0.352995\pi\)
−0.552507 + 0.833508i \(0.686329\pi\)
\(500\) −14.5218 + 249.578i −0.0290436 + 0.499156i
\(501\) 159.209 + 275.758i 0.317782 + 0.550414i
\(502\) 28.7091 + 107.144i 0.0571894 + 0.213434i
\(503\) 10.2453 + 10.2453i 0.0203684 + 0.0203684i 0.717218 0.696849i \(-0.245415\pi\)
−0.696849 + 0.717218i \(0.745415\pi\)
\(504\) 21.4602 55.3847i 0.0425797 0.109890i
\(505\) 76.1049 387.552i 0.150703 0.767429i
\(506\) 62.2660 107.848i 0.123055 0.213138i
\(507\) 77.6683 + 20.8112i 0.153192 + 0.0410476i
\(508\) −111.723 + 416.956i −0.219927 + 0.820779i
\(509\) 447.613 + 258.430i 0.879398 + 0.507720i 0.870460 0.492240i \(-0.163822\pi\)
0.00893787 + 0.999960i \(0.497155\pi\)
\(510\) −24.1171 35.9036i −0.0472885 0.0703992i
\(511\) −580.954 + 467.432i −1.13690 + 0.914739i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 155.603 41.6937i 0.303320 0.0812744i
\(514\) 487.573 281.500i 0.948586 0.547666i
\(515\) −407.553 199.747i −0.791366 0.387858i
\(516\) −28.4029 + 49.1953i −0.0550445 + 0.0953398i
\(517\) −109.838 + 109.838i −0.212453 + 0.212453i
\(518\) −339.197 36.7293i −0.654820 0.0709059i
\(519\) 51.2221i 0.0986938i
\(520\) 102.948 117.970i 0.197977 0.226866i
\(521\) −319.243 552.945i −0.612751 1.06132i −0.990775 0.135520i \(-0.956730\pi\)
0.378024 0.925796i \(-0.376604\pi\)
\(522\) −98.4765 26.3867i −0.188652 0.0505492i
\(523\) 664.497 178.051i 1.27055 0.340442i 0.440307 0.897847i \(-0.354870\pi\)
0.830241 + 0.557405i \(0.188203\pi\)
\(524\) 388.861i 0.742102i
\(525\) −220.231 208.263i −0.419487 0.396691i
\(526\) −573.208 −1.08975
\(527\) 14.2531 + 53.1933i 0.0270457 + 0.100936i
\(528\) −8.86311 + 33.0776i −0.0167862 + 0.0626470i
\(529\) −183.260 + 105.805i −0.346427 + 0.200010i
\(530\) 554.195 + 483.625i 1.04565 + 0.912501i
\(531\) −46.8889 −0.0883031
\(532\) −350.335 256.219i −0.658524 0.481615i
\(533\) −151.737 151.737i −0.284684 0.284684i
\(534\) 241.760 + 139.580i 0.452734 + 0.261386i
\(535\) −174.456 + 355.951i −0.326085 + 0.665328i
\(536\) −110.774 191.867i −0.206669 0.357961i
\(537\) −96.8747 361.541i −0.180400 0.673261i
\(538\) 131.223 + 131.223i 0.243909 + 0.243909i
\(539\) −163.188 + 178.964i −0.302761 + 0.332029i
\(540\) 43.1338 28.9738i 0.0798773 0.0536551i
\(541\) 63.2590 109.568i 0.116930 0.202528i −0.801620 0.597834i \(-0.796028\pi\)
0.918550 + 0.395306i \(0.129361\pi\)
\(542\) −84.8985 22.7485i −0.156639 0.0419714i
\(543\) −61.9859 + 231.334i −0.114154 + 0.426030i
\(544\) −17.3007 9.98854i −0.0318027 0.0183613i
\(545\) −213.051 41.8375i −0.390919 0.0767661i
\(546\) 29.1073 + 187.591i 0.0533101 + 0.343572i
\(547\) 425.173 425.173i 0.777281 0.777281i −0.202087 0.979368i \(-0.564772\pi\)
0.979368 + 0.202087i \(0.0647723\pi\)
\(548\) 359.602 96.3552i 0.656209 0.175831i
\(549\) 229.637 132.581i 0.418282 0.241495i
\(550\) 139.159 + 105.704i 0.253016 + 0.192189i
\(551\) −372.491 + 645.173i −0.676027 + 1.17091i
\(552\) −61.7145 + 61.7145i −0.111802 + 0.111802i
\(553\) −77.3083 175.116i −0.139798 0.316666i
\(554\) 126.998i 0.229238i
\(555\) −224.882 196.246i −0.405192 0.353596i
\(556\) 202.296 + 350.387i 0.363842 + 0.630192i
\(557\) −14.7556 3.95376i −0.0264912 0.00709831i 0.245549 0.969384i \(-0.421032\pi\)
−0.272040 + 0.962286i \(0.587698\pi\)
\(558\) −63.9052 + 17.1234i −0.114526 + 0.0306870i
\(559\) 181.554i 0.324784i
\(560\) −133.674 41.6094i −0.238703 0.0743024i
\(561\) −30.2334 −0.0538920
\(562\) 1.19702 + 4.46733i 0.00212992 + 0.00794899i
\(563\) −61.5366 + 229.658i −0.109301 + 0.407918i −0.998798 0.0490246i \(-0.984389\pi\)
0.889496 + 0.456942i \(0.151055\pi\)
\(564\) 94.2800 54.4326i 0.167163 0.0965117i
\(565\) −61.9309 910.779i −0.109612 1.61200i
\(566\) −288.824 −0.510290
\(567\) −6.78219 + 62.6339i −0.0119615 + 0.110465i
\(568\) −119.439 119.439i −0.210280 0.210280i
\(569\) 179.993 + 103.919i 0.316331 + 0.182634i 0.649756 0.760143i \(-0.274871\pi\)
−0.333425 + 0.942777i \(0.608204\pi\)
\(570\) −122.928 359.248i −0.215663 0.630260i
\(571\) −214.885 372.192i −0.376331 0.651824i 0.614194 0.789155i \(-0.289481\pi\)
−0.990525 + 0.137331i \(0.956148\pi\)
\(572\) −28.3269 105.717i −0.0495226 0.184821i
\(573\) −188.092 188.092i −0.328259 0.328259i
\(574\) −69.3240 + 178.912i −0.120774 + 0.311694i
\(575\) 172.451 + 410.645i 0.299914 + 0.714165i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 357.130 + 95.6927i 0.618943 + 0.165845i 0.554647 0.832086i \(-0.312853\pi\)
0.0642958 + 0.997931i \(0.479520\pi\)
\(578\) −101.217 + 377.745i −0.175115 + 0.653538i
\(579\) −466.862 269.543i −0.806325 0.465532i
\(580\) −46.3041 + 235.796i −0.0798347 + 0.406545i
\(581\) −74.3688 479.291i −0.128001 0.824941i
\(582\) 243.304 243.304i 0.418048 0.418048i
\(583\) 496.635 133.073i 0.851861 0.228255i
\(584\) −260.924 + 150.645i −0.446788 + 0.257953i
\(585\) −73.0873 + 149.124i −0.124936 + 0.254913i
\(586\) −269.541 + 466.859i −0.459968 + 0.796687i
\(587\) 425.963 425.963i 0.725661 0.725661i −0.244091 0.969752i \(-0.578490\pi\)
0.969752 + 0.244091i \(0.0784897\pi\)
\(588\) 142.935 91.5509i 0.243087 0.155699i
\(589\) 483.447i 0.820794i
\(590\) 7.49768 + 110.264i 0.0127079 + 0.186888i
\(591\) 82.7447 + 143.318i 0.140008 + 0.242501i
\(592\) −133.160 35.6801i −0.224932 0.0602705i
\(593\) −183.152 + 49.0753i −0.308856 + 0.0827577i −0.409918 0.912122i \(-0.634443\pi\)
0.101062 + 0.994880i \(0.467776\pi\)
\(594\) 36.3217i 0.0611477i
\(595\) 4.93900 123.503i 0.00830084 0.207568i
\(596\) 206.402 0.346312
\(597\) 144.884 + 540.714i 0.242686 + 0.905718i
\(598\) 72.1956 269.438i 0.120729 0.450565i
\(599\) −238.166 + 137.505i −0.397605 + 0.229557i −0.685450 0.728120i \(-0.740395\pi\)
0.287845 + 0.957677i \(0.407061\pi\)
\(600\) −75.0317 96.8000i −0.125053 0.161333i
\(601\) −1029.92 −1.71368 −0.856842 0.515580i \(-0.827577\pi\)
−0.856842 + 0.515580i \(0.827577\pi\)
\(602\) −148.508 + 65.5617i −0.246692 + 0.108906i
\(603\) 166.162 + 166.162i 0.275558 + 0.275558i
\(604\) −129.364 74.6886i −0.214179 0.123657i
\(605\) −456.840 + 156.322i −0.755108 + 0.258384i
\(606\) 96.7435 + 167.565i 0.159643 + 0.276509i
\(607\) 6.83168 + 25.4962i 0.0112548 + 0.0420036i 0.971325 0.237756i \(-0.0764119\pi\)
−0.960070 + 0.279760i \(0.909745\pi\)
\(608\) −124.009 124.009i −0.203962 0.203962i
\(609\) −182.638 226.995i −0.299899 0.372734i
\(610\) −348.496 518.812i −0.571305 0.850512i
\(611\) −173.969 + 301.323i −0.284728 + 0.493164i
\(612\) 20.4669 + 5.48409i 0.0334426 + 0.00896093i
\(613\) −8.97661 + 33.5012i −0.0146437 + 0.0546511i −0.972861 0.231390i \(-0.925673\pi\)
0.958217 + 0.286041i \(0.0923394\pi\)
\(614\) −290.070 167.472i −0.472427 0.272756i
\(615\) −139.338 + 93.5957i −0.226565 + 0.152188i
\(616\) −76.2460 + 61.3470i −0.123776 + 0.0995893i
\(617\) 349.027 349.027i 0.565684 0.565684i −0.365232 0.930916i \(-0.619011\pi\)
0.930916 + 0.365232i \(0.119011\pi\)
\(618\) 214.774 57.5485i 0.347530 0.0931205i
\(619\) −942.217 + 543.989i −1.52216 + 0.878820i −0.522503 + 0.852638i \(0.675002\pi\)
−0.999657 + 0.0261820i \(0.991665\pi\)
\(620\) 50.4858 + 147.541i 0.0814287 + 0.237969i
\(621\) 46.2859 80.1695i 0.0745344 0.129097i
\(622\) 550.733 550.733i 0.885422 0.885422i
\(623\) 322.189 + 729.812i 0.517157 + 1.17145i
\(624\) 76.7050i 0.122925i
\(625\) −602.094 + 167.654i −0.963350 + 0.268247i
\(626\) 200.655 + 347.544i 0.320535 + 0.555183i
\(627\) −256.370 68.6940i −0.408883 0.109560i
\(628\) 390.137 104.537i 0.621238 0.166460i
\(629\) 121.710i 0.193498i
\(630\) 148.374 + 5.93360i 0.235514 + 0.00941841i
\(631\) 573.080 0.908209 0.454104 0.890949i \(-0.349959\pi\)
0.454104 + 0.890949i \(0.349959\pi\)
\(632\) −20.0187 74.7106i −0.0316751 0.118213i
\(633\) 146.721 547.571i 0.231787 0.865041i
\(634\) 461.947 266.705i 0.728623 0.420671i
\(635\) −1076.67 + 73.2114i −1.69555 + 0.115294i
\(636\) −360.342 −0.566575
\(637\) −249.323 + 481.813i −0.391402 + 0.756378i
\(638\) 118.774 + 118.774i 0.186167 + 0.186167i
\(639\) 155.156 + 89.5794i 0.242811 + 0.140187i
\(640\) −50.7958 24.8956i −0.0793684 0.0388994i
\(641\) 515.594 + 893.035i 0.804359 + 1.39319i 0.916723 + 0.399523i \(0.130824\pi\)
−0.112364 + 0.993667i \(0.535842\pi\)
\(642\) −50.2619 187.580i −0.0782896 0.292181i
\(643\) 413.439 + 413.439i 0.642985 + 0.642985i 0.951288 0.308303i \(-0.0997612\pi\)
−0.308303 + 0.951288i \(0.599761\pi\)
\(644\) −246.467 + 38.2428i −0.382712 + 0.0593833i
\(645\) −139.353 27.3653i −0.216052 0.0424268i
\(646\) 77.4167 134.090i 0.119840 0.207569i
\(647\) 732.536 + 196.283i 1.13220 + 0.303373i 0.775813 0.630963i \(-0.217340\pi\)
0.356392 + 0.934337i \(0.384007\pi\)
\(648\) −6.58846 + 24.5885i −0.0101674 + 0.0379452i
\(649\) 66.9036 + 38.6268i 0.103087 + 0.0595174i
\(650\) 362.365 + 148.026i 0.557485 + 0.227733i
\(651\) −176.295 68.3099i −0.270807 0.104931i
\(652\) −234.115 + 234.115i −0.359072 + 0.359072i
\(653\) 710.307 190.326i 1.08776 0.291464i 0.329988 0.943985i \(-0.392955\pi\)
0.757771 + 0.652521i \(0.226288\pi\)
\(654\) 92.1161 53.1832i 0.140850 0.0813199i
\(655\) 919.795 314.737i 1.40427 0.480514i
\(656\) −38.7643 + 67.1418i −0.0590920 + 0.102350i
\(657\) 225.967 225.967i 0.343938 0.343938i
\(658\) 309.300 + 33.4919i 0.470061 + 0.0508996i
\(659\) 913.700i 1.38650i 0.720700 + 0.693248i \(0.243821\pi\)
−0.720700 + 0.693248i \(0.756179\pi\)
\(660\) −85.4139 + 5.80795i −0.129415 + 0.00879992i
\(661\) −27.1929 47.0994i −0.0411390 0.0712548i 0.844723 0.535204i \(-0.179765\pi\)
−0.885862 + 0.463949i \(0.846432\pi\)
\(662\) −556.484 149.109i −0.840610 0.225241i
\(663\) −65.4131 + 17.5274i −0.0986623 + 0.0264365i
\(664\) 195.980i 0.295151i
\(665\) 322.496 1036.05i 0.484956 1.55796i
\(666\) 146.220 0.219549
\(667\) 110.801 + 413.517i 0.166119 + 0.619965i
\(668\) −95.1617 + 355.148i −0.142458 + 0.531659i
\(669\) −185.702 + 107.215i −0.277581 + 0.160262i
\(670\) 364.175 417.314i 0.543545 0.622857i
\(671\) −436.877 −0.651084
\(672\) 62.7435 27.6993i 0.0933684 0.0412191i
\(673\) −93.9180 93.9180i −0.139551 0.139551i 0.633880 0.773431i \(-0.281461\pi\)
−0.773431 + 0.633880i \(0.781461\pi\)
\(674\) 89.5626 + 51.7090i 0.132882 + 0.0767196i
\(675\) 103.445 + 78.5759i 0.153252 + 0.116409i
\(676\) 46.4237 + 80.4081i 0.0686741 + 0.118947i
\(677\) 60.8859 + 227.229i 0.0899349 + 0.335642i 0.996203 0.0870620i \(-0.0277478\pi\)
−0.906268 + 0.422704i \(0.861081\pi\)
\(678\) 316.232 + 316.232i 0.466418 + 0.466418i
\(679\) 971.674 150.769i 1.43104 0.222046i
\(680\) 9.62362 49.0067i 0.0141524 0.0720687i
\(681\) 252.271 436.946i 0.370442 0.641624i
\(682\) 105.289 + 28.2122i 0.154383 + 0.0413669i
\(683\) 140.148 523.038i 0.205194 0.765795i −0.784196 0.620513i \(-0.786924\pi\)
0.989390 0.145282i \(-0.0464089\pi\)
\(684\) 161.092 + 93.0067i 0.235515 + 0.135975i
\(685\) 518.969 + 772.599i 0.757619 + 1.12788i
\(686\) 484.150 + 29.9532i 0.705757 + 0.0436636i
\(687\) −79.9752 + 79.9752i −0.116412 + 0.116412i
\(688\) −63.3587 + 16.9769i −0.0920912 + 0.0246758i
\(689\) 997.373 575.834i 1.44757 0.835753i
\(690\) −195.927 96.0262i −0.283952 0.139168i
\(691\) −245.831 + 425.792i −0.355761 + 0.616196i −0.987248 0.159190i \(-0.949112\pi\)
0.631487 + 0.775387i \(0.282445\pi\)
\(692\) 41.8227 41.8227i 0.0604374 0.0604374i
\(693\) 61.2745 83.7821i 0.0884192 0.120898i
\(694\) 681.189i 0.981540i
\(695\) −665.055 + 762.098i −0.956913 + 1.09654i
\(696\) −58.8611 101.950i −0.0845705 0.146480i
\(697\) −66.1155 17.7156i −0.0948572 0.0254169i
\(698\) 226.692 60.7418i 0.324773 0.0870226i
\(699\) 285.639i 0.408639i
\(700\) −9.77199 349.864i −0.0139600 0.499805i
\(701\) −372.833 −0.531858 −0.265929 0.963993i \(-0.585679\pi\)
−0.265929 + 0.963993i \(0.585679\pi\)
\(702\) −21.0570 78.5858i −0.0299957 0.111946i
\(703\) 276.541 1032.06i 0.393372 1.46809i
\(704\) −34.2444 + 19.7710i −0.0486427 + 0.0280839i
\(705\) 205.061 + 178.949i 0.290866 + 0.253828i
\(706\) −89.2954 −0.126481
\(707\) −59.5255 + 549.722i −0.0841945 + 0.777541i
\(708\) −38.2847 38.2847i −0.0540744 0.0540744i
\(709\) 471.040 + 271.955i 0.664372 + 0.383575i 0.793941 0.607995i \(-0.208026\pi\)
−0.129569 + 0.991570i \(0.541359\pi\)
\(710\) 185.844 379.188i 0.261752 0.534067i
\(711\) 41.0190 + 71.0470i 0.0576920 + 0.0999254i
\(712\) 83.4294 + 311.363i 0.117176 + 0.437307i
\(713\) 196.444 + 196.444i 0.275517 + 0.275517i
\(714\) 37.9587 + 47.1775i 0.0531634 + 0.0660749i
\(715\) 227.132 152.569i 0.317667 0.213383i
\(716\) 216.099 374.295i 0.301815 0.522758i
\(717\) 141.593 + 37.9396i 0.197479 + 0.0529144i
\(718\) −59.3434 + 221.473i −0.0826510 + 0.308458i
\(719\) −479.506 276.843i −0.666906 0.385039i 0.127997 0.991775i \(-0.459145\pi\)
−0.794903 + 0.606736i \(0.792479\pi\)
\(720\) 58.8755 + 11.5616i 0.0817716 + 0.0160578i
\(721\) 592.496 + 229.577i 0.821770 + 0.318415i
\(722\) 600.138 600.138i 0.831215 0.831215i
\(723\) 737.032 197.487i 1.01941 0.273150i
\(724\) −239.495 + 138.273i −0.330794 + 0.190984i
\(725\) −595.219 + 81.3230i −0.820991 + 0.112170i
\(726\) 118.273 204.854i 0.162910 0.282168i
\(727\) 544.208 544.208i 0.748566 0.748566i −0.225644 0.974210i \(-0.572449\pi\)
0.974210 + 0.225644i \(0.0724485\pi\)
\(728\) −129.401 + 176.933i −0.177749 + 0.243040i
\(729\) 27.0000i 0.0370370i
\(730\) −567.516 495.250i −0.777419 0.678425i
\(731\) −28.9554 50.1522i −0.0396107 0.0686077i
\(732\) 295.750 + 79.2459i 0.404030 + 0.108259i
\(733\) −29.6500 + 7.94468i −0.0404501 + 0.0108386i −0.278987 0.960295i \(-0.589999\pi\)
0.238537 + 0.971133i \(0.423332\pi\)
\(734\) 27.2314i 0.0371001i
\(735\) 332.239 + 263.993i 0.452026 + 0.359174i
\(736\) −100.779 −0.136928
\(737\) −100.205 373.971i −0.135964 0.507423i
\(738\) 21.2831 79.4296i 0.0288389 0.107628i
\(739\) 70.2506 40.5592i 0.0950616 0.0548839i −0.451716 0.892162i \(-0.649188\pi\)
0.546777 + 0.837278i \(0.315854\pi\)
\(740\) −23.3810 343.849i −0.0315959 0.464661i
\(741\) −594.507 −0.802303
\(742\) −831.188 607.894i −1.12020 0.819265i
\(743\) 824.672 + 824.672i 1.10992 + 1.10992i 0.993160 + 0.116761i \(0.0372513\pi\)
0.116761 + 0.993160i \(0.462749\pi\)
\(744\) −66.1596 38.1972i −0.0889242 0.0513404i
\(745\) 167.058 + 488.214i 0.224239 + 0.655321i
\(746\) 239.265 + 414.420i 0.320731 + 0.555522i
\(747\) 53.8003 + 200.785i 0.0720218 + 0.268789i
\(748\) −24.6855 24.6855i −0.0330020 0.0330020i
\(749\) 200.509 517.477i 0.267702 0.690890i
\(750\) 168.237 255.825i 0.224316 0.341099i
\(751\) 91.6006 158.657i 0.121972 0.211261i −0.798574 0.601897i \(-0.794412\pi\)
0.920545 + 0.390636i \(0.127745\pi\)
\(752\) 121.423 + 32.5353i 0.161467 + 0.0432650i
\(753\) 35.1613 131.224i 0.0466950 0.174268i
\(754\) 325.838 + 188.123i 0.432146 + 0.249500i
\(755\) 71.9600 366.444i 0.0953112 0.485357i
\(756\) −56.6780 + 45.6027i −0.0749709 + 0.0603210i
\(757\) 298.331 298.331i 0.394096 0.394096i −0.482048 0.876145i \(-0.660107\pi\)
0.876145 + 0.482048i \(0.160107\pi\)
\(758\) −725.642 + 194.435i −0.957312 + 0.256511i
\(759\) −132.086 + 76.2600i −0.174027 + 0.100474i
\(760\) 192.955 393.695i 0.253888 0.518020i
\(761\) 16.0986 27.8836i 0.0211546 0.0366408i −0.855254 0.518208i \(-0.826599\pi\)
0.876409 + 0.481568i \(0.159932\pi\)
\(762\) 373.832 373.832i 0.490594 0.490594i
\(763\) 302.201 + 32.7232i 0.396069 + 0.0428876i
\(764\) 307.153i