Properties

Label 210.3.v.a.67.8
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.8
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.a.163.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.81996 + 1.32965i) q^{5} +2.44949 q^{6} +(4.03230 + 5.72194i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.81996 + 1.32965i) q^{5} +2.44949 q^{6} +(4.03230 + 5.72194i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(3.58056 - 6.09751i) q^{10} +(-5.44212 + 9.42602i) q^{11} +(0.896575 - 3.34607i) q^{12} +(-4.13640 + 4.13640i) q^{13} +(9.29223 - 3.41385i) q^{14} +(-0.0638118 + 8.66002i) q^{15} +(2.00000 + 3.46410i) q^{16} +(1.82667 - 0.489455i) q^{17} +(1.09808 + 4.09808i) q^{18} +(27.1044 - 15.6487i) q^{19} +(-7.01877 - 7.12298i) q^{20} +(-7.76535 + 9.31124i) q^{21} +(10.8842 + 10.8842i) q^{22} +(21.8434 + 5.85291i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(21.4641 + 12.8177i) q^{25} +(4.13640 + 7.16445i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-1.26221 - 13.9430i) q^{28} -35.4354i q^{29} +(11.8064 + 3.25696i) q^{30} +(-7.10988 + 12.3147i) q^{31} +(5.46410 - 1.46410i) q^{32} +(-18.2097 - 4.87927i) q^{33} -2.67443i q^{34} +(11.8274 + 32.9411i) q^{35} +6.00000 q^{36} +(-3.60515 + 13.4546i) q^{37} +(-11.4557 - 42.7531i) q^{38} +(-8.77462 - 5.06603i) q^{39} +(-12.2992 + 6.98063i) q^{40} -75.8676 q^{41} +(9.87708 + 14.0158i) q^{42} +(-5.54001 + 5.54001i) q^{43} +(18.8520 - 10.8842i) q^{44} +(-14.5171 + 3.77542i) q^{45} +(15.9904 - 27.6963i) q^{46} +(23.9991 - 89.5659i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-16.4811 + 46.1451i) q^{49} +(25.3657 - 24.6289i) q^{50} +(1.63775 + 2.83666i) q^{51} +(11.3008 - 3.02805i) q^{52} +(-19.6998 - 73.5205i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(-38.7641 + 38.1970i) q^{55} +(-19.5085 - 3.37927i) q^{56} +(38.3314 + 38.3314i) q^{57} +(-48.4057 - 12.9703i) q^{58} +(-39.8083 - 22.9834i) q^{59} +(8.77054 - 14.9358i) q^{60} +(46.7047 + 80.8948i) q^{61} +(14.2198 + 14.2198i) q^{62} +(-19.0591 - 8.81757i) q^{63} -8.00000i q^{64} +(-25.4372 + 14.4373i) q^{65} +(-13.3304 + 23.0889i) q^{66} +(24.1824 - 6.47966i) q^{67} +(-3.65334 - 0.978910i) q^{68} +39.1684i q^{69} +(49.3274 - 4.09925i) q^{70} +4.10846 q^{71} +(2.19615 - 8.19615i) q^{72} +(-25.3249 - 94.5138i) q^{73} +(17.0598 + 9.84945i) q^{74} +(-11.8223 + 41.6561i) q^{75} -62.5949 q^{76} +(-75.8794 + 6.86912i) q^{77} +(-10.1321 + 10.1321i) q^{78} +(-25.8988 + 14.9527i) q^{79} +(5.03389 + 19.3561i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-27.7695 + 103.637i) q^{82} +(-42.2562 + 42.2562i) q^{83} +(22.7612 - 8.36220i) q^{84} +(9.45529 + 0.0696718i) q^{85} +(5.54001 + 9.59557i) q^{86} +(59.2847 - 15.8853i) q^{87} +(-7.96781 - 29.7363i) q^{88} +(-71.6953 + 41.3933i) q^{89} +(-0.156306 + 21.2126i) q^{90} +(-40.3474 - 6.98900i) q^{91} +(-31.9809 - 31.9809i) q^{92} +(-23.7901 - 6.37455i) q^{93} +(-113.565 - 65.5668i) q^{94} +(151.449 - 39.3870i) q^{95} +(4.89898 + 8.48528i) q^{96} +(-60.0597 - 60.0597i) q^{97} +(57.0029 + 39.4039i) q^{98} -32.6527i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 4.81996 + 1.32965i 0.963993 + 0.265929i
\(6\) 2.44949 0.408248
\(7\) 4.03230 + 5.72194i 0.576043 + 0.817419i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 3.58056 6.09751i 0.358056 0.609751i
\(11\) −5.44212 + 9.42602i −0.494738 + 0.856911i −0.999982 0.00606548i \(-0.998069\pi\)
0.505244 + 0.862977i \(0.331403\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) −4.13640 + 4.13640i −0.318184 + 0.318184i −0.848069 0.529885i \(-0.822235\pi\)
0.529885 + 0.848069i \(0.322235\pi\)
\(14\) 9.29223 3.41385i 0.663731 0.243847i
\(15\) −0.0638118 + 8.66002i −0.00425412 + 0.577335i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 1.82667 0.489455i 0.107451 0.0287915i −0.204693 0.978826i \(-0.565620\pi\)
0.312144 + 0.950035i \(0.398953\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) 27.1044 15.6487i 1.42655 0.823618i 0.429701 0.902971i \(-0.358619\pi\)
0.996847 + 0.0793537i \(0.0252856\pi\)
\(20\) −7.01877 7.12298i −0.350939 0.356149i
\(21\) −7.76535 + 9.31124i −0.369779 + 0.443393i
\(22\) 10.8842 + 10.8842i 0.494738 + 0.494738i
\(23\) 21.8434 + 5.85291i 0.949711 + 0.254474i 0.700240 0.713908i \(-0.253077\pi\)
0.249471 + 0.968382i \(0.419743\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 21.4641 + 12.8177i 0.858563 + 0.512708i
\(26\) 4.13640 + 7.16445i 0.159092 + 0.275556i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −1.26221 13.9430i −0.0450791 0.497964i
\(29\) 35.4354i 1.22191i −0.791665 0.610956i \(-0.790785\pi\)
0.791665 0.610956i \(-0.209215\pi\)
\(30\) 11.8064 + 3.25696i 0.393548 + 0.108565i
\(31\) −7.10988 + 12.3147i −0.229351 + 0.397248i −0.957616 0.288048i \(-0.906994\pi\)
0.728265 + 0.685296i \(0.240327\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) −18.2097 4.87927i −0.551808 0.147857i
\(34\) 2.67443i 0.0786598i
\(35\) 11.8274 + 32.9411i 0.337925 + 0.941173i
\(36\) 6.00000 0.166667
\(37\) −3.60515 + 13.4546i −0.0974365 + 0.363638i −0.997378 0.0723735i \(-0.976943\pi\)
0.899941 + 0.436011i \(0.143609\pi\)
\(38\) −11.4557 42.7531i −0.301465 1.12508i
\(39\) −8.77462 5.06603i −0.224990 0.129898i
\(40\) −12.2992 + 6.98063i −0.307480 + 0.174516i
\(41\) −75.8676 −1.85043 −0.925215 0.379443i \(-0.876115\pi\)
−0.925215 + 0.379443i \(0.876115\pi\)
\(42\) 9.87708 + 14.0158i 0.235169 + 0.333710i
\(43\) −5.54001 + 5.54001i −0.128837 + 0.128837i −0.768585 0.639748i \(-0.779039\pi\)
0.639748 + 0.768585i \(0.279039\pi\)
\(44\) 18.8520 10.8842i 0.428456 0.247369i
\(45\) −14.5171 + 3.77542i −0.322602 + 0.0838982i
\(46\) 15.9904 27.6963i 0.347618 0.602093i
\(47\) 23.9991 89.5659i 0.510619 1.90566i 0.0967860 0.995305i \(-0.469144\pi\)
0.413833 0.910353i \(-0.364190\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −16.4811 + 46.1451i −0.336349 + 0.941737i
\(50\) 25.3657 24.6289i 0.507314 0.492578i
\(51\) 1.63775 + 2.83666i 0.0321127 + 0.0556209i
\(52\) 11.3008 3.02805i 0.217324 0.0582318i
\(53\) −19.6998 73.5205i −0.371694 1.38718i −0.858116 0.513456i \(-0.828365\pi\)
0.486422 0.873724i \(-0.338302\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) −38.7641 + 38.1970i −0.704801 + 0.694491i
\(56\) −19.5085 3.37927i −0.348366 0.0603441i
\(57\) 38.3314 + 38.3314i 0.672481 + 0.672481i
\(58\) −48.4057 12.9703i −0.834581 0.223625i
\(59\) −39.8083 22.9834i −0.674718 0.389548i 0.123144 0.992389i \(-0.460702\pi\)
−0.797862 + 0.602840i \(0.794036\pi\)
\(60\) 8.77054 14.9358i 0.146176 0.248930i
\(61\) 46.7047 + 80.8948i 0.765650 + 1.32615i 0.939902 + 0.341444i \(0.110916\pi\)
−0.174252 + 0.984701i \(0.555751\pi\)
\(62\) 14.2198 + 14.2198i 0.229351 + 0.229351i
\(63\) −19.0591 8.81757i −0.302526 0.139961i
\(64\) 8.00000i 0.125000i
\(65\) −25.4372 + 14.4373i −0.391342 + 0.222113i
\(66\) −13.3304 + 23.0889i −0.201976 + 0.349833i
\(67\) 24.1824 6.47966i 0.360932 0.0967113i −0.0737959 0.997273i \(-0.523511\pi\)
0.434728 + 0.900562i \(0.356845\pi\)
\(68\) −3.65334 0.978910i −0.0537256 0.0143957i
\(69\) 39.1684i 0.567658i
\(70\) 49.3274 4.09925i 0.704678 0.0585607i
\(71\) 4.10846 0.0578656 0.0289328 0.999581i \(-0.490789\pi\)
0.0289328 + 0.999581i \(0.490789\pi\)
\(72\) 2.19615 8.19615i 0.0305021 0.113835i
\(73\) −25.3249 94.5138i −0.346916 1.29471i −0.890357 0.455262i \(-0.849545\pi\)
0.543441 0.839448i \(-0.317121\pi\)
\(74\) 17.0598 + 9.84945i 0.230537 + 0.133101i
\(75\) −11.8223 + 41.6561i −0.157631 + 0.555415i
\(76\) −62.5949 −0.823618
\(77\) −75.8794 + 6.86912i −0.985446 + 0.0892094i
\(78\) −10.1321 + 10.1321i −0.129898 + 0.129898i
\(79\) −25.8988 + 14.9527i −0.327833 + 0.189274i −0.654879 0.755734i \(-0.727280\pi\)
0.327046 + 0.945009i \(0.393947\pi\)
\(80\) 5.03389 + 19.3561i 0.0629237 + 0.241952i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −27.7695 + 103.637i −0.338652 + 1.26387i
\(83\) −42.2562 + 42.2562i −0.509111 + 0.509111i −0.914254 0.405142i \(-0.867222\pi\)
0.405142 + 0.914254i \(0.367222\pi\)
\(84\) 22.7612 8.36220i 0.270967 0.0995499i
\(85\) 9.45529 + 0.0696718i 0.111239 + 0.000819668i
\(86\) 5.54001 + 9.59557i 0.0644187 + 0.111576i
\(87\) 59.2847 15.8853i 0.681433 0.182589i
\(88\) −7.96781 29.7363i −0.0905433 0.337912i
\(89\) −71.6953 + 41.3933i −0.805565 + 0.465093i −0.845413 0.534113i \(-0.820646\pi\)
0.0398483 + 0.999206i \(0.487313\pi\)
\(90\) −0.156306 + 21.2126i −0.00173674 + 0.235696i
\(91\) −40.3474 6.98900i −0.443378 0.0768022i
\(92\) −31.9809 31.9809i −0.347618 0.347618i
\(93\) −23.7901 6.37455i −0.255808 0.0685435i
\(94\) −113.565 65.5668i −1.20814 0.697519i
\(95\) 151.449 39.3870i 1.59421 0.414600i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) −60.0597 60.0597i −0.619172 0.619172i 0.326147 0.945319i \(-0.394249\pi\)
−0.945319 + 0.326147i \(0.894249\pi\)
\(98\) 57.0029 + 39.4039i 0.581663 + 0.402080i
\(99\) 32.6527i 0.329825i
\(100\) −24.3592 43.6650i −0.243592 0.436650i
\(101\) −13.8942 + 24.0654i −0.137566 + 0.238272i −0.926575 0.376110i \(-0.877261\pi\)
0.789009 + 0.614382i \(0.210595\pi\)
\(102\) 4.47441 1.19892i 0.0438668 0.0117541i
\(103\) 138.570 + 37.1298i 1.34534 + 0.360483i 0.858413 0.512959i \(-0.171451\pi\)
0.486928 + 0.873442i \(0.338117\pi\)
\(104\) 16.5456i 0.159092i
\(105\) −49.8094 + 34.5547i −0.474375 + 0.329092i
\(106\) −107.642 −1.01549
\(107\) 32.9910 123.124i 0.308328 1.15069i −0.621715 0.783243i \(-0.713564\pi\)
0.930043 0.367451i \(-0.119769\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) −59.7045 34.4704i −0.547748 0.316242i 0.200465 0.979701i \(-0.435755\pi\)
−0.748213 + 0.663458i \(0.769088\pi\)
\(110\) 37.9894 + 66.9338i 0.345358 + 0.608489i
\(111\) −24.1261 −0.217353
\(112\) −11.7568 + 25.4122i −0.104971 + 0.226894i
\(113\) 133.742 133.742i 1.18356 1.18356i 0.204742 0.978816i \(-0.434364\pi\)
0.978816 0.204742i \(-0.0656356\pi\)
\(114\) 66.3920 38.3314i 0.582386 0.336240i
\(115\) 97.5018 + 57.2547i 0.847842 + 0.497867i
\(116\) −35.4354 + 61.3760i −0.305478 + 0.529103i
\(117\) 4.54208 16.9513i 0.0388212 0.144883i
\(118\) −45.9667 + 45.9667i −0.389548 + 0.389548i
\(119\) 10.1663 + 8.47847i 0.0854313 + 0.0712476i
\(120\) −17.1924 17.4477i −0.143270 0.145397i
\(121\) 1.26672 + 2.19402i 0.0104687 + 0.0181324i
\(122\) 127.600 34.1902i 1.04590 0.280247i
\(123\) −34.0105 126.929i −0.276508 1.03194i
\(124\) 24.6294 14.2198i 0.198624 0.114676i
\(125\) 86.4131 + 90.3204i 0.691305 + 0.722564i
\(126\) −19.0212 + 22.8078i −0.150962 + 0.181014i
\(127\) 25.4322 + 25.4322i 0.200254 + 0.200254i 0.800109 0.599855i \(-0.204775\pi\)
−0.599855 + 0.800109i \(0.704775\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) −11.7521 6.78509i −0.0911018 0.0525976i
\(130\) 10.4111 + 40.0323i 0.0800853 + 0.307941i
\(131\) 43.4151 + 75.1971i 0.331413 + 0.574024i 0.982789 0.184731i \(-0.0591414\pi\)
−0.651376 + 0.758755i \(0.725808\pi\)
\(132\) 26.6608 + 26.6608i 0.201976 + 0.201976i
\(133\) 198.834 + 91.9892i 1.49499 + 0.691648i
\(134\) 35.4055i 0.264220i
\(135\) −12.8242 22.5951i −0.0949944 0.167371i
\(136\) −2.67443 + 4.63225i −0.0196649 + 0.0340607i
\(137\) −22.6977 + 6.08183i −0.165677 + 0.0443929i −0.340704 0.940171i \(-0.610665\pi\)
0.175027 + 0.984564i \(0.443999\pi\)
\(138\) 53.5051 + 14.3366i 0.387718 + 0.103889i
\(139\) 123.024i 0.885067i −0.896752 0.442533i \(-0.854080\pi\)
0.896752 0.442533i \(-0.145920\pi\)
\(140\) 12.4554 68.8830i 0.0889672 0.492021i
\(141\) 160.605 1.13904
\(142\) 1.50380 5.61226i 0.0105901 0.0395230i
\(143\) −16.4790 61.5005i −0.115238 0.430074i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 47.1166 170.798i 0.324942 1.17791i
\(146\) −138.378 −0.947793
\(147\) −84.5906 6.88711i −0.575446 0.0468511i
\(148\) 19.6989 19.6989i 0.133101 0.133101i
\(149\) −32.9396 + 19.0177i −0.221071 + 0.127635i −0.606446 0.795125i \(-0.707405\pi\)
0.385375 + 0.922760i \(0.374072\pi\)
\(150\) 52.5760 + 31.3968i 0.350507 + 0.209312i
\(151\) 82.2319 142.430i 0.544582 0.943244i −0.454051 0.890976i \(-0.650022\pi\)
0.998633 0.0522683i \(-0.0166451\pi\)
\(152\) −22.9113 + 85.5063i −0.150732 + 0.562541i
\(153\) −4.01165 + 4.01165i −0.0262199 + 0.0262199i
\(154\) −18.3904 + 106.167i −0.119418 + 0.689399i
\(155\) −50.6435 + 49.9027i −0.326733 + 0.321953i
\(156\) 10.1321 + 17.5492i 0.0649491 + 0.112495i
\(157\) 0.258808 0.0693474i 0.00164846 0.000441703i −0.257995 0.966146i \(-0.583062\pi\)
0.259643 + 0.965705i \(0.416395\pi\)
\(158\) 10.9461 + 40.8515i 0.0692792 + 0.258554i
\(159\) 114.171 65.9167i 0.718057 0.414571i
\(160\) 28.2835 + 0.208408i 0.176772 + 0.00130255i
\(161\) 54.5890 + 148.587i 0.339062 + 0.922900i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 224.808 + 60.2372i 1.37919 + 0.369553i 0.870827 0.491589i \(-0.163584\pi\)
0.508364 + 0.861142i \(0.330250\pi\)
\(164\) 131.407 + 75.8676i 0.801260 + 0.462607i
\(165\) −81.2823 47.7303i −0.492620 0.289275i
\(166\) 42.2562 + 73.1899i 0.254556 + 0.440903i
\(167\) 12.1342 + 12.1342i 0.0726601 + 0.0726601i 0.742503 0.669843i \(-0.233639\pi\)
−0.669843 + 0.742503i \(0.733639\pi\)
\(168\) −3.09178 34.1532i −0.0184035 0.203293i
\(169\) 134.780i 0.797517i
\(170\) 3.55605 12.8907i 0.0209179 0.0758275i
\(171\) −46.9462 + 81.3132i −0.274539 + 0.475516i
\(172\) 15.1356 4.05557i 0.0879975 0.0235789i
\(173\) −242.184 64.8931i −1.39991 0.375104i −0.521597 0.853192i \(-0.674663\pi\)
−0.878312 + 0.478088i \(0.841330\pi\)
\(174\) 86.7988i 0.498844i
\(175\) 13.2076 + 174.501i 0.0754721 + 0.997148i
\(176\) −43.5369 −0.247369
\(177\) 20.6063 76.9038i 0.116420 0.434485i
\(178\) 30.3020 + 113.089i 0.170236 + 0.635329i
\(179\) 44.2012 + 25.5196i 0.246934 + 0.142567i 0.618360 0.785895i \(-0.287798\pi\)
−0.371425 + 0.928463i \(0.621131\pi\)
\(180\) 28.9198 + 7.97788i 0.160665 + 0.0443216i
\(181\) −183.017 −1.01114 −0.505572 0.862785i \(-0.668718\pi\)
−0.505572 + 0.862785i \(0.668718\pi\)
\(182\) −24.3153 + 52.5574i −0.133601 + 0.288777i
\(183\) −114.403 + 114.403i −0.625151 + 0.625151i
\(184\) −55.3925 + 31.9809i −0.301046 + 0.173809i
\(185\) −35.2666 + 60.0571i −0.190630 + 0.324633i
\(186\) −17.4156 + 30.1647i −0.0936322 + 0.162176i
\(187\) −5.32735 + 19.8819i −0.0284885 + 0.106320i
\(188\) −131.134 + 131.134i −0.697519 + 0.697519i
\(189\) 6.20811 35.8394i 0.0328472 0.189626i
\(190\) 1.63066 221.301i 0.00858244 1.16474i
\(191\) −68.2455 118.205i −0.357307 0.618873i 0.630203 0.776430i \(-0.282972\pi\)
−0.987510 + 0.157557i \(0.949638\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) 15.5777 + 58.1367i 0.0807134 + 0.301227i 0.994468 0.105040i \(-0.0334971\pi\)
−0.913755 + 0.406267i \(0.866830\pi\)
\(194\) −104.026 + 60.0597i −0.536218 + 0.309586i
\(195\) −35.5573 36.0852i −0.182345 0.185052i
\(196\) 74.6912 63.4446i 0.381078 0.323697i
\(197\) 160.750 + 160.750i 0.815988 + 0.815988i 0.985524 0.169536i \(-0.0542270\pi\)
−0.169536 + 0.985524i \(0.554227\pi\)
\(198\) −44.6044 11.9517i −0.225275 0.0603622i
\(199\) −195.772 113.029i −0.983780 0.567986i −0.0803711 0.996765i \(-0.525611\pi\)
−0.903409 + 0.428779i \(0.858944\pi\)
\(200\) −68.5635 + 17.2928i −0.342818 + 0.0864639i
\(201\) 21.6814 + 37.5532i 0.107867 + 0.186832i
\(202\) 27.7884 + 27.7884i 0.137566 + 0.137566i
\(203\) 202.759 142.886i 0.998815 0.703874i
\(204\) 6.55100i 0.0321127i
\(205\) −365.679 100.877i −1.78380 0.492084i
\(206\) 101.440 175.700i 0.492429 0.852912i
\(207\) −65.5301 + 17.5587i −0.316570 + 0.0848248i
\(208\) −22.6017 6.05611i −0.108662 0.0291159i
\(209\) 340.649i 1.62990i
\(210\) 28.9711 + 80.6888i 0.137957 + 0.384232i
\(211\) 320.337 1.51819 0.759093 0.650982i \(-0.225643\pi\)
0.759093 + 0.650982i \(0.225643\pi\)
\(212\) −39.3995 + 147.041i −0.185847 + 0.693590i
\(213\) 1.84177 + 6.87359i 0.00864682 + 0.0322704i
\(214\) −156.115 90.1332i −0.729511 0.421183i
\(215\) −34.0689 + 19.3364i −0.158460 + 0.0899366i
\(216\) 14.6969 0.0680414
\(217\) −99.1330 + 8.97420i −0.456834 + 0.0413558i
\(218\) −68.9409 + 68.9409i −0.316242 + 0.316242i
\(219\) 146.772 84.7388i 0.670191 0.386935i
\(220\) 105.338 27.3950i 0.478811 0.124523i
\(221\) −5.53126 + 9.58042i −0.0250283 + 0.0433503i
\(222\) −8.83078 + 32.9569i −0.0397783 + 0.148455i
\(223\) 134.141 134.141i 0.601528 0.601528i −0.339190 0.940718i \(-0.610153\pi\)
0.940718 + 0.339190i \(0.110153\pi\)
\(224\) 30.4104 + 25.3615i 0.135761 + 0.113221i
\(225\) −74.9919 1.10522i −0.333297 0.00491210i
\(226\) −133.742 231.648i −0.591779 1.02499i
\(227\) 7.32127 1.96173i 0.0322523 0.00864198i −0.242657 0.970112i \(-0.578019\pi\)
0.274909 + 0.961470i \(0.411352\pi\)
\(228\) −28.0605 104.723i −0.123073 0.459313i
\(229\) 172.294 99.4742i 0.752377 0.434385i −0.0741751 0.997245i \(-0.523632\pi\)
0.826552 + 0.562860i \(0.190299\pi\)
\(230\) 113.900 112.233i 0.495216 0.487971i
\(231\) −45.5080 123.869i −0.197005 0.536231i
\(232\) 70.8709 + 70.8709i 0.305478 + 0.305478i
\(233\) −193.781 51.9234i −0.831677 0.222847i −0.182232 0.983256i \(-0.558332\pi\)
−0.649445 + 0.760408i \(0.724999\pi\)
\(234\) −21.4933 12.4092i −0.0918519 0.0530307i
\(235\) 234.766 399.794i 0.999004 1.70125i
\(236\) 45.9667 + 79.6167i 0.194774 + 0.337359i
\(237\) −36.6264 36.6264i −0.154542 0.154542i
\(238\) 15.3029 10.7841i 0.0642980 0.0453114i
\(239\) 118.152i 0.494360i 0.968970 + 0.247180i \(0.0795039\pi\)
−0.968970 + 0.247180i \(0.920496\pi\)
\(240\) −30.1268 + 17.0990i −0.125528 + 0.0712458i
\(241\) 10.9226 18.9185i 0.0453219 0.0784999i −0.842475 0.538736i \(-0.818902\pi\)
0.887796 + 0.460236i \(0.152235\pi\)
\(242\) 3.46073 0.927301i 0.0143006 0.00383182i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 186.819i 0.765650i
\(245\) −140.795 + 200.504i −0.574673 + 0.818383i
\(246\) −185.837 −0.755435
\(247\) −47.3852 + 176.844i −0.191843 + 0.715967i
\(248\) −10.4096 38.8491i −0.0419742 0.156650i
\(249\) −89.6390 51.7531i −0.359996 0.207844i
\(250\) 155.009 84.9829i 0.620038 0.339931i
\(251\) −198.472 −0.790724 −0.395362 0.918525i \(-0.629381\pi\)
−0.395362 + 0.918525i \(0.629381\pi\)
\(252\) 24.1938 + 34.3316i 0.0960072 + 0.136237i
\(253\) −174.044 + 174.044i −0.687920 + 0.687920i
\(254\) 44.0499 25.4322i 0.173425 0.100127i
\(255\) 4.12213 + 15.8502i 0.0161652 + 0.0621578i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 14.0998 52.6213i 0.0548632 0.204752i −0.933054 0.359737i \(-0.882866\pi\)
0.987917 + 0.154985i \(0.0495330\pi\)
\(258\) −13.5702 + 13.5702i −0.0525976 + 0.0525976i
\(259\) −91.5234 + 33.6246i −0.353372 + 0.129825i
\(260\) 58.4959 + 0.431030i 0.224984 + 0.00165781i
\(261\) 53.1532 + 92.0640i 0.203652 + 0.352736i
\(262\) 118.612 31.7820i 0.452718 0.121305i
\(263\) 49.7632 + 185.719i 0.189214 + 0.706154i 0.993689 + 0.112169i \(0.0357797\pi\)
−0.804476 + 0.593986i \(0.797554\pi\)
\(264\) 46.1779 26.6608i 0.174916 0.100988i
\(265\) 2.80418 380.560i 0.0105818 1.43608i
\(266\) 198.438 237.942i 0.746007 0.894519i
\(267\) −101.392 101.392i −0.379747 0.379747i
\(268\) −48.3648 12.9593i −0.180466 0.0483557i
\(269\) −168.301 97.1687i −0.625655 0.361222i 0.153413 0.988162i \(-0.450974\pi\)
−0.779067 + 0.626940i \(0.784307\pi\)
\(270\) −35.5595 + 9.24786i −0.131702 + 0.0342513i
\(271\) −211.981 367.162i −0.782218 1.35484i −0.930647 0.365918i \(-0.880755\pi\)
0.148429 0.988923i \(-0.452578\pi\)
\(272\) 5.34887 + 5.34887i 0.0196649 + 0.0196649i
\(273\) −6.39442 70.6356i −0.0234228 0.258738i
\(274\) 33.2317i 0.121284i
\(275\) −237.630 + 132.566i −0.864109 + 0.482057i
\(276\) 39.1684 67.8417i 0.141915 0.245803i
\(277\) −340.207 + 91.1582i −1.22818 + 0.329091i −0.813872 0.581044i \(-0.802644\pi\)
−0.414312 + 0.910135i \(0.635978\pi\)
\(278\) −168.054 45.0300i −0.604512 0.161978i
\(279\) 42.6593i 0.152901i
\(280\) −89.5369 42.2273i −0.319775 0.150812i
\(281\) 358.294 1.27507 0.637534 0.770422i \(-0.279954\pi\)
0.637534 + 0.770422i \(0.279954\pi\)
\(282\) 58.7856 219.391i 0.208460 0.777982i
\(283\) 142.004 + 529.966i 0.501781 + 1.87267i 0.488141 + 0.872765i \(0.337675\pi\)
0.0136400 + 0.999907i \(0.495658\pi\)
\(284\) −7.11606 4.10846i −0.0250566 0.0144664i
\(285\) 133.789 + 235.723i 0.469434 + 0.827099i
\(286\) −90.0430 −0.314836
\(287\) −305.921 434.110i −1.06593 1.51258i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −247.184 + 142.712i −0.855309 + 0.493813i
\(290\) −216.068 126.879i −0.745062 0.437513i
\(291\) 73.5578 127.406i 0.252776 0.437821i
\(292\) −50.6498 + 189.028i −0.173458 + 0.647355i
\(293\) −90.1783 + 90.1783i −0.307776 + 0.307776i −0.844046 0.536270i \(-0.819833\pi\)
0.536270 + 0.844046i \(0.319833\pi\)
\(294\) −40.3703 + 113.032i −0.137314 + 0.384463i
\(295\) −161.315 163.710i −0.546831 0.554949i
\(296\) −19.6989 34.1195i −0.0665504 0.115269i
\(297\) 54.6290 14.6378i 0.183936 0.0492855i
\(298\) 13.9219 + 51.9572i 0.0467178 + 0.174353i
\(299\) −114.563 + 66.1428i −0.383153 + 0.221213i
\(300\) 62.1330 60.3282i 0.207110 0.201094i
\(301\) −54.0385 9.36058i −0.179530 0.0310983i
\(302\) −164.464 164.464i −0.544582 0.544582i
\(303\) −46.4909 12.4572i −0.153435 0.0411128i
\(304\) 108.418 + 62.5949i 0.356637 + 0.205904i
\(305\) 117.553 + 452.011i 0.385420 + 1.48200i
\(306\) 4.01165 + 6.94838i 0.0131100 + 0.0227071i
\(307\) 201.844 + 201.844i 0.657473 + 0.657473i 0.954781 0.297309i \(-0.0960890\pi\)
−0.297309 + 0.954781i \(0.596089\pi\)
\(308\) 138.296 + 63.9817i 0.449013 + 0.207733i
\(309\) 248.477i 0.804133i
\(310\) 49.6315 + 87.4460i 0.160102 + 0.282084i
\(311\) −232.134 + 402.068i −0.746412 + 1.29282i 0.203121 + 0.979154i \(0.434892\pi\)
−0.949532 + 0.313669i \(0.898442\pi\)
\(312\) 27.6813 7.41718i 0.0887221 0.0237730i
\(313\) −121.038 32.4320i −0.386702 0.103616i 0.0602298 0.998185i \(-0.480817\pi\)
−0.446932 + 0.894568i \(0.647483\pi\)
\(314\) 0.378921i 0.00120676i
\(315\) −80.1400 67.8423i −0.254413 0.215372i
\(316\) 59.8107 0.189274
\(317\) 18.3633 68.5329i 0.0579285 0.216192i −0.930894 0.365289i \(-0.880970\pi\)
0.988823 + 0.149097i \(0.0476367\pi\)
\(318\) −48.2544 180.088i −0.151743 0.566314i
\(319\) 334.015 + 192.844i 1.04707 + 0.604526i
\(320\) 10.6372 38.5597i 0.0332412 0.120499i
\(321\) 220.780 0.687789
\(322\) 222.954 20.1834i 0.692405 0.0626813i
\(323\) 41.8515 41.8515i 0.129571 0.129571i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −141.803 + 35.7649i −0.436317 + 0.110046i
\(326\) 164.571 285.045i 0.504819 0.874372i
\(327\) 30.9053 115.340i 0.0945117 0.352723i
\(328\) 151.735 151.735i 0.462607 0.462607i
\(329\) 609.262 223.835i 1.85186 0.680351i
\(330\) −94.9522 + 93.5631i −0.287734 + 0.283525i
\(331\) 319.578 + 553.526i 0.965493 + 1.67228i 0.708285 + 0.705927i \(0.249469\pi\)
0.257208 + 0.966356i \(0.417197\pi\)
\(332\) 115.446 30.9337i 0.347729 0.0931738i
\(333\) −10.8155 40.3638i −0.0324788 0.121213i
\(334\) 21.0171 12.1342i 0.0629255 0.0363300i
\(335\) 125.174 + 0.922351i 0.373654 + 0.00275329i
\(336\) −47.7858 8.27749i −0.142220 0.0246354i
\(337\) −257.177 257.177i −0.763138 0.763138i 0.213751 0.976888i \(-0.431432\pi\)
−0.976888 + 0.213751i \(0.931432\pi\)
\(338\) 184.114 + 49.3331i 0.544715 + 0.145956i
\(339\) 283.710 + 163.800i 0.836902 + 0.483186i
\(340\) −16.3074 9.57597i −0.0479629 0.0281646i
\(341\) −77.3856 134.036i −0.226937 0.393067i
\(342\) 93.8924 + 93.8924i 0.274539 + 0.274539i
\(343\) −330.496 + 91.7673i −0.963546 + 0.267543i
\(344\) 22.1600i 0.0644187i
\(345\) −52.0802 + 188.790i −0.150957 + 0.547218i
\(346\) −177.291 + 307.077i −0.512402 + 0.887507i
\(347\) 21.7789 5.83564i 0.0627635 0.0168174i −0.227301 0.973825i \(-0.572990\pi\)
0.290064 + 0.957007i \(0.406323\pi\)
\(348\) −118.569 31.7706i −0.340716 0.0912947i
\(349\) 262.235i 0.751390i 0.926743 + 0.375695i \(0.122596\pi\)
−0.926743 + 0.375695i \(0.877404\pi\)
\(350\) 243.207 + 45.8298i 0.694877 + 0.130942i
\(351\) 30.3962 0.0865988
\(352\) −15.9356 + 59.4726i −0.0452717 + 0.168956i
\(353\) −30.2052 112.727i −0.0855671 0.319341i 0.909854 0.414929i \(-0.136194\pi\)
−0.995421 + 0.0955880i \(0.969527\pi\)
\(354\) −97.5101 56.2975i −0.275452 0.159032i
\(355\) 19.8026 + 5.46280i 0.0557820 + 0.0153882i
\(356\) 165.573 0.465093
\(357\) −9.62732 + 20.8094i −0.0269673 + 0.0582896i
\(358\) 51.0392 51.0392i 0.142567 0.142567i
\(359\) 189.185 109.226i 0.526979 0.304251i −0.212806 0.977094i \(-0.568260\pi\)
0.739785 + 0.672843i \(0.234927\pi\)
\(360\) 21.4834 36.5850i 0.0596760 0.101625i
\(361\) 309.266 535.664i 0.856692 1.48383i
\(362\) −66.9889 + 250.006i −0.185052 + 0.690624i
\(363\) −3.10281 + 3.10281i −0.00854768 + 0.00854768i
\(364\) 62.8947 + 52.4527i 0.172788 + 0.144101i
\(365\) 3.60489 489.226i 0.00987641 1.34035i
\(366\) 114.403 + 198.151i 0.312575 + 0.541396i
\(367\) −212.437 + 56.9224i −0.578848 + 0.155102i −0.536352 0.843995i \(-0.680198\pi\)
−0.0424967 + 0.999097i \(0.513531\pi\)
\(368\) 23.4116 + 87.3734i 0.0636186 + 0.237428i
\(369\) 197.110 113.801i 0.534173 0.308405i
\(370\) 69.1311 + 70.1574i 0.186841 + 0.189615i
\(371\) 341.244 409.178i 0.919796 1.10291i
\(372\) 34.8312 + 34.8312i 0.0936322 + 0.0936322i
\(373\) 612.944 + 164.238i 1.64328 + 0.440316i 0.957721 0.287700i \(-0.0928906\pi\)
0.685560 + 0.728016i \(0.259557\pi\)
\(374\) 25.2093 + 14.5546i 0.0674045 + 0.0389160i
\(375\) −112.371 + 185.061i −0.299656 + 0.493497i
\(376\) 131.134 + 227.130i 0.348760 + 0.604069i
\(377\) 146.575 + 146.575i 0.388793 + 0.388793i
\(378\) −46.6851 21.5986i −0.123506 0.0571390i
\(379\) 311.145i 0.820964i 0.911869 + 0.410482i \(0.134640\pi\)
−0.911869 + 0.410482i \(0.865360\pi\)
\(380\) −301.705 83.2291i −0.793961 0.219024i
\(381\) −31.1480 + 53.9499i −0.0817533 + 0.141601i
\(382\) −186.450 + 49.9592i −0.488090 + 0.130783i
\(383\) −300.124 80.4180i −0.783614 0.209969i −0.155236 0.987877i \(-0.549614\pi\)
−0.628377 + 0.777909i \(0.716281\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −374.869 67.7838i −0.973686 0.176062i
\(386\) 85.1181 0.220513
\(387\) 6.08335 22.7034i 0.0157192 0.0586650i
\(388\) 43.9667 + 164.086i 0.113316 + 0.422902i
\(389\) 649.129 + 374.775i 1.66871 + 0.963431i 0.968334 + 0.249657i \(0.0803179\pi\)
0.700377 + 0.713774i \(0.253015\pi\)
\(390\) −62.3082 + 35.3641i −0.159765 + 0.0906772i
\(391\) 42.7654 0.109374
\(392\) −59.3281 125.252i −0.151347 0.319522i
\(393\) −106.345 + 106.345i −0.270597 + 0.270597i
\(394\) 278.426 160.750i 0.706666 0.407994i
\(395\) −144.713 + 37.6351i −0.366362 + 0.0952787i
\(396\) −32.6527 + 56.5561i −0.0824563 + 0.142819i
\(397\) 121.367 452.948i 0.305711 1.14093i −0.626621 0.779324i \(-0.715563\pi\)
0.932332 0.361604i \(-0.117771\pi\)
\(398\) −226.058 + 226.058i −0.567986 + 0.567986i
\(399\) −64.7661 + 373.894i −0.162321 + 0.937077i
\(400\) −1.47363 + 99.9891i −0.00368408 + 0.249973i
\(401\) 156.647 + 271.320i 0.390640 + 0.676609i 0.992534 0.121967i \(-0.0389203\pi\)
−0.601894 + 0.798576i \(0.705587\pi\)
\(402\) 59.2346 15.8719i 0.147350 0.0394822i
\(403\) −21.5291 80.3477i −0.0534221 0.199374i
\(404\) 48.1309 27.7884i 0.119136 0.0687831i
\(405\) 32.0534 31.5845i 0.0791442 0.0779864i
\(406\) −120.971 329.274i −0.297959 0.811021i
\(407\) −107.204 107.204i −0.263400 0.263400i
\(408\) −8.94883 2.39783i −0.0219334 0.00587704i
\(409\) −368.604 212.814i −0.901233 0.520327i −0.0236332 0.999721i \(-0.507523\pi\)
−0.877600 + 0.479393i \(0.840857\pi\)
\(410\) −271.649 + 462.603i −0.662557 + 1.12830i
\(411\) −20.3502 35.2476i −0.0495139 0.0857605i
\(412\) −202.881 202.881i −0.492429 0.492429i
\(413\) −29.0099 320.457i −0.0702420 0.775924i
\(414\) 95.9427i 0.231746i
\(415\) −259.859 + 147.488i −0.626167 + 0.355392i
\(416\) −16.5456 + 28.6578i −0.0397730 + 0.0688889i
\(417\) 205.824 55.1503i 0.493582 0.132255i
\(418\) 465.335 + 124.686i 1.11324 + 0.298292i
\(419\) 804.373i 1.91975i −0.280437 0.959873i \(-0.590479\pi\)
0.280437 0.959873i \(-0.409521\pi\)
\(420\) 120.827 10.0411i 0.287683 0.0239073i
\(421\) −184.978 −0.439379 −0.219689 0.975570i \(-0.570504\pi\)
−0.219689 + 0.975570i \(0.570504\pi\)
\(422\) 117.252 437.589i 0.277847 1.03694i
\(423\) 71.9973 + 268.698i 0.170206 + 0.635219i
\(424\) 186.441 + 107.642i 0.439718 + 0.253872i
\(425\) 45.4815 + 12.9080i 0.107015 + 0.0303718i
\(426\) 10.0636 0.0236235
\(427\) −274.548 + 593.433i −0.642969 + 1.38977i
\(428\) −180.266 + 180.266i −0.421183 + 0.421183i
\(429\) 95.5051 55.1399i 0.222622 0.128531i
\(430\) 13.9439 + 53.6165i 0.0324277 + 0.124690i
\(431\) −334.095 + 578.669i −0.775162 + 1.34262i 0.159542 + 0.987191i \(0.448998\pi\)
−0.934704 + 0.355428i \(0.884335\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) 283.514 283.514i 0.654767 0.654767i −0.299370 0.954137i \(-0.596776\pi\)
0.954137 + 0.299370i \(0.0967765\pi\)
\(434\) −24.0262 + 138.703i −0.0553599 + 0.319592i
\(435\) 306.872 + 2.26120i 0.705452 + 0.00519816i
\(436\) 68.9409 + 119.409i 0.158121 + 0.273874i
\(437\) 683.642 183.181i 1.56440 0.419179i
\(438\) −62.0331 231.511i −0.141628 0.528563i
\(439\) −533.804 + 308.192i −1.21595 + 0.702032i −0.964050 0.265721i \(-0.914390\pi\)
−0.251904 + 0.967752i \(0.581057\pi\)
\(440\) 1.13418 153.922i 0.00257769 0.349823i
\(441\) −26.3986 144.610i −0.0598607 0.327914i
\(442\) 11.0625 + 11.0625i 0.0250283 + 0.0250283i
\(443\) 585.918 + 156.996i 1.32261 + 0.354393i 0.849956 0.526853i \(-0.176628\pi\)
0.472657 + 0.881246i \(0.343295\pi\)
\(444\) 41.7877 + 24.1261i 0.0941164 + 0.0543381i
\(445\) −400.607 + 104.185i −0.900241 + 0.234123i
\(446\) −134.141 232.339i −0.300764 0.520939i
\(447\) −46.5836 46.5836i −0.104214 0.104214i
\(448\) 45.7755 32.2584i 0.102177 0.0720054i
\(449\) 794.202i 1.76882i −0.466707 0.884412i \(-0.654560\pi\)
0.466707 0.884412i \(-0.345440\pi\)
\(450\) −28.9587 + 102.036i −0.0643526 + 0.226747i
\(451\) 412.881 715.130i 0.915478 1.58565i
\(452\) −365.390 + 97.9060i −0.808385 + 0.216606i
\(453\) 275.153 + 73.7271i 0.607403 + 0.162753i
\(454\) 10.7191i 0.0236103i
\(455\) −185.180 87.3345i −0.406989 0.191944i
\(456\) −153.326 −0.336240
\(457\) 125.511 468.412i 0.274640 1.02497i −0.681442 0.731872i \(-0.738647\pi\)
0.956082 0.293099i \(-0.0946866\pi\)
\(458\) −72.8202 271.769i −0.158996 0.593381i
\(459\) −8.50999 4.91325i −0.0185403 0.0107042i
\(460\) −111.623 196.670i −0.242660 0.427543i
\(461\) 259.108 0.562057 0.281028 0.959699i \(-0.409324\pi\)
0.281028 + 0.959699i \(0.409324\pi\)
\(462\) −185.866 + 16.8258i −0.402307 + 0.0364196i
\(463\) −529.834 + 529.834i −1.14435 + 1.14435i −0.156705 + 0.987645i \(0.550087\pi\)
−0.987645 + 0.156705i \(0.949913\pi\)
\(464\) 122.752 70.8709i 0.264552 0.152739i
\(465\) −106.192 62.3575i −0.228369 0.134102i
\(466\) −141.857 + 245.704i −0.304415 + 0.527262i
\(467\) 26.9974 100.756i 0.0578103 0.215751i −0.930978 0.365075i \(-0.881043\pi\)
0.988788 + 0.149324i \(0.0477099\pi\)
\(468\) −24.8184 + 24.8184i −0.0530307 + 0.0530307i
\(469\) 134.587 + 112.242i 0.286966 + 0.239323i
\(470\) −460.199 467.031i −0.979146 0.993683i
\(471\) 0.232041 + 0.401907i 0.000492656 + 0.000853306i
\(472\) 125.583 33.6500i 0.266067 0.0712923i
\(473\) −22.0709 82.3696i −0.0466614 0.174143i
\(474\) −63.4388 + 36.6264i −0.133837 + 0.0772709i
\(475\) 782.352 + 11.5302i 1.64706 + 0.0242742i
\(476\) −9.13012 24.8515i −0.0191809 0.0522089i
\(477\) 161.462 + 161.462i 0.338495 + 0.338495i
\(478\) 161.399 + 43.2467i 0.337654 + 0.0904742i
\(479\) −352.830 203.707i −0.736598 0.425275i 0.0842332 0.996446i \(-0.473156\pi\)
−0.820831 + 0.571171i \(0.806489\pi\)
\(480\) 12.3305 + 47.4127i 0.0256885 + 0.0987764i
\(481\) −40.7412 70.5659i −0.0847011 0.146707i
\(482\) −21.8452 21.8452i −0.0453219 0.0453219i
\(483\) −224.119 + 157.939i −0.464015 + 0.326996i
\(484\) 5.06687i 0.0104687i
\(485\) −209.627 369.343i −0.432221 0.761533i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) −784.291 + 210.150i −1.61045 + 0.431520i −0.948178 0.317739i \(-0.897076\pi\)
−0.662277 + 0.749259i \(0.730410\pi\)
\(488\) −255.199 68.3804i −0.522949 0.140124i
\(489\) 403.115i 0.824366i
\(490\) 222.359 + 265.719i 0.453793 + 0.542284i
\(491\) 334.632 0.681531 0.340766 0.940148i \(-0.389314\pi\)
0.340766 + 0.940148i \(0.389314\pi\)
\(492\) −68.0211 + 253.858i −0.138254 + 0.515972i
\(493\) −17.3441 64.7289i −0.0351807 0.131296i
\(494\) 224.229 + 129.459i 0.453905 + 0.262062i
\(495\) 43.4166 157.385i 0.0877102 0.317949i
\(496\) −56.8791 −0.114676
\(497\) 16.5665 + 23.5083i 0.0333331 + 0.0473005i
\(498\) −103.506 + 103.506i −0.207844 + 0.207844i
\(499\) −313.315 + 180.893i −0.627886 + 0.362510i −0.779933 0.625863i \(-0.784747\pi\)
0.152047 + 0.988373i \(0.451413\pi\)
\(500\) −59.3514 242.853i −0.118703 0.485705i
\(501\) −14.8613 + 25.7406i −0.0296634 + 0.0513784i
\(502\) −72.6457 + 271.118i −0.144713 + 0.540075i
\(503\) −319.003 + 319.003i −0.634200 + 0.634200i −0.949119 0.314918i \(-0.898023\pi\)
0.314918 + 0.949119i \(0.398023\pi\)
\(504\) 55.7534 20.4831i 0.110622 0.0406411i
\(505\) −98.9680 + 97.5201i −0.195976 + 0.193109i
\(506\) 174.044 + 301.453i 0.343960 + 0.595756i
\(507\) −225.492 + 60.4204i −0.444758 + 0.119172i
\(508\) −18.6177 69.4822i −0.0366490 0.136776i
\(509\) −116.748 + 67.4044i −0.229367 + 0.132425i −0.610280 0.792186i \(-0.708943\pi\)
0.380913 + 0.924611i \(0.375610\pi\)
\(510\) 23.1606 + 0.170660i 0.0454130 + 0.000334628i
\(511\) 438.684 526.016i 0.858482 1.02938i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −157.085 42.0908i −0.306209 0.0820484i
\(514\) −66.7212 38.5215i −0.129808 0.0749445i
\(515\) 618.534 + 363.213i 1.20104 + 0.705269i
\(516\) 13.5702 + 23.5043i 0.0262988 + 0.0455509i
\(517\) 713.644 + 713.644i 1.38036 + 1.38036i
\(518\) 12.4321 + 137.331i 0.0240002 + 0.265117i
\(519\) 434.273i 0.836749i
\(520\) 21.9998 79.7491i 0.0423073 0.153364i
\(521\) −299.369 + 518.522i −0.574605 + 0.995244i 0.421480 + 0.906838i \(0.361511\pi\)
−0.996084 + 0.0884066i \(0.971823\pi\)
\(522\) 145.217 38.9108i 0.278194 0.0745418i
\(523\) −593.701 159.082i −1.13518 0.304172i −0.358171 0.933656i \(-0.616600\pi\)
−0.777013 + 0.629484i \(0.783266\pi\)
\(524\) 173.660i 0.331413i
\(525\) −286.025 + 100.323i −0.544809 + 0.191092i
\(526\) 271.911 0.516941
\(527\) −6.95994 + 25.9748i −0.0132067 + 0.0492881i
\(528\) −19.5171 72.8387i −0.0369642 0.137952i
\(529\) −15.2520 8.80574i −0.0288317 0.0166460i
\(530\) −518.828 143.125i −0.978921 0.270048i
\(531\) 137.900 0.259699
\(532\) −252.402 358.164i −0.474439 0.673241i
\(533\) 313.819 313.819i 0.588778 0.588778i
\(534\) −175.617 + 101.392i −0.328871 + 0.189874i
\(535\) 322.727 549.588i 0.603229 1.02727i
\(536\) −35.4055 + 61.3242i −0.0660551 + 0.114411i
\(537\) −22.8802 + 85.3902i −0.0426075 + 0.159013i
\(538\) −194.337 + 194.337i −0.361222 + 0.361222i
\(539\) −345.273 406.478i −0.640581 0.754134i
\(540\) −0.382871 + 51.9601i −0.000709020 + 0.0962224i
\(541\) −384.127 665.328i −0.710032 1.22981i −0.964845 0.262821i \(-0.915347\pi\)
0.254813 0.966990i \(-0.417986\pi\)
\(542\) −579.143 + 155.181i −1.06853 + 0.286312i
\(543\) −82.0443 306.193i −0.151094 0.563892i
\(544\) 9.26451 5.34887i 0.0170303 0.00983247i
\(545\) −241.940 245.532i −0.443927 0.450518i
\(546\) −98.8305 17.1195i −0.181008 0.0313544i
\(547\) 83.3079 + 83.3079i 0.152300 + 0.152300i 0.779144 0.626845i \(-0.215654\pi\)
−0.626845 + 0.779144i \(0.715654\pi\)
\(548\) 45.3954 + 12.1637i 0.0828383 + 0.0221965i
\(549\) −242.685 140.114i −0.442048 0.255217i
\(550\) 94.1093 + 373.131i 0.171108 + 0.678420i
\(551\) −554.520 960.457i −1.00639 1.74312i
\(552\) −78.3369 78.3369i −0.141915 0.141915i
\(553\) −189.990 87.8975i −0.343562 0.158947i
\(554\) 498.097i 0.899093i
\(555\) −116.287 32.0792i −0.209526 0.0578004i
\(556\) −123.024 + 213.084i −0.221267 + 0.383245i
\(557\) −586.616 + 157.183i −1.05317 + 0.282196i −0.743562 0.668667i \(-0.766865\pi\)
−0.309610 + 0.950864i \(0.600198\pi\)
\(558\) −58.2737 15.6144i −0.104433 0.0279828i
\(559\) 45.8313i 0.0819881i
\(560\) −90.4564 + 106.853i −0.161529 + 0.190810i
\(561\) −35.6513 −0.0635495
\(562\) 131.145 489.439i 0.233354 0.870888i
\(563\) −155.054 578.669i −0.275406 1.02783i −0.955569 0.294769i \(-0.904757\pi\)
0.680162 0.733062i \(-0.261909\pi\)
\(564\) −278.176 160.605i −0.493221 0.284761i
\(565\) 822.461 466.802i 1.45568 0.826198i
\(566\) 775.924 1.37089
\(567\) 62.7434 5.67997i 0.110659 0.0100176i
\(568\) −8.21692 + 8.21692i −0.0144664 + 0.0144664i
\(569\) −520.684 + 300.617i −0.915086 + 0.528325i −0.882064 0.471130i \(-0.843846\pi\)
−0.0330217 + 0.999455i \(0.510513\pi\)
\(570\) 370.974 96.4782i 0.650832 0.169260i
\(571\) −175.699 + 304.320i −0.307705 + 0.532960i −0.977860 0.209261i \(-0.932894\pi\)
0.670155 + 0.742221i \(0.266228\pi\)
\(572\) −32.9580 + 123.001i −0.0576189 + 0.215037i
\(573\) 167.167 167.167i 0.291740 0.291740i
\(574\) −704.980 + 259.001i −1.22819 + 0.451221i
\(575\) 393.827 + 405.609i 0.684916 + 0.705406i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 830.576 222.552i 1.43947 0.385705i 0.547123 0.837052i \(-0.315723\pi\)
0.892349 + 0.451346i \(0.149056\pi\)
\(578\) 104.472 + 389.896i 0.180748 + 0.674561i
\(579\) −90.2814 + 52.1240i −0.155926 + 0.0900241i
\(580\) −252.406 + 248.713i −0.435183 + 0.428816i
\(581\) −412.177 71.3976i −0.709427 0.122887i
\(582\) −147.116 147.116i −0.252776 0.252776i
\(583\) 800.215 + 214.417i 1.37258 + 0.367782i
\(584\) 239.677 + 138.378i 0.410407 + 0.236948i
\(585\) 44.4318 75.6651i 0.0759519 0.129342i
\(586\) 90.1783 + 156.193i 0.153888 + 0.266542i
\(587\) 601.442 + 601.442i 1.02460 + 1.02460i 0.999690 + 0.0249132i \(0.00793095\pi\)
0.0249132 + 0.999690i \(0.492069\pi\)
\(588\) 139.628 + 96.5194i 0.237463 + 0.164149i
\(589\) 445.043i 0.755590i
\(590\) −282.677 + 160.438i −0.479114 + 0.271929i
\(591\) −196.877 + 341.001i −0.333126 + 0.576990i
\(592\) −53.8184 + 14.4206i −0.0909095 + 0.0243591i
\(593\) −189.198 50.6955i −0.319052 0.0854898i 0.0957387 0.995407i \(-0.469479\pi\)
−0.414791 + 0.909917i \(0.636145\pi\)
\(594\) 79.9825i 0.134651i
\(595\) 37.7279 + 54.3835i 0.0634083 + 0.0914009i
\(596\) 76.0707 0.127635
\(597\) 101.339 378.203i 0.169747 0.633506i
\(598\) 48.4199 + 180.706i 0.0809697 + 0.302183i
\(599\) −273.403 157.849i −0.456432 0.263521i 0.254111 0.967175i \(-0.418217\pi\)
−0.710543 + 0.703654i \(0.751551\pi\)
\(600\) −59.6676 106.957i −0.0994460 0.178262i
\(601\) −956.156 −1.59094 −0.795470 0.605992i \(-0.792776\pi\)
−0.795470 + 0.605992i \(0.792776\pi\)
\(602\) −32.5663 + 70.3918i −0.0540968 + 0.116930i
\(603\) −53.1083 + 53.1083i −0.0880734 + 0.0880734i
\(604\) −284.860 + 164.464i −0.471622 + 0.272291i
\(605\) 3.18826 + 12.2594i 0.00526985 + 0.0202634i
\(606\) −34.0337 + 58.9480i −0.0561612 + 0.0972740i
\(607\) −150.693 + 562.393i −0.248258 + 0.926513i 0.723459 + 0.690367i \(0.242551\pi\)
−0.971718 + 0.236146i \(0.924116\pi\)
\(608\) 125.190 125.190i 0.205904 0.205904i
\(609\) 329.948 + 275.169i 0.541787 + 0.451837i
\(610\) 660.486 + 4.86682i 1.08276 + 0.00797840i
\(611\) 271.210 + 469.750i 0.443879 + 0.768822i
\(612\) 10.9600 2.93673i 0.0179085 0.00479858i
\(613\) −176.760 659.677i −0.288352 1.07614i −0.946355 0.323129i \(-0.895265\pi\)
0.658003 0.753016i \(-0.271402\pi\)
\(614\) 349.604 201.844i 0.569388 0.328736i
\(615\) 4.84125 657.015i 0.00787195 1.06832i
\(616\) 138.020 165.497i 0.224059 0.268664i
\(617\) 709.720 + 709.720i 1.15027 + 1.15027i 0.986497 + 0.163777i \(0.0523679\pi\)
0.163777 + 0.986497i \(0.447632\pi\)
\(618\) 339.426 + 90.9490i 0.549233 + 0.147167i
\(619\) −286.349 165.324i −0.462599 0.267082i 0.250537 0.968107i \(-0.419393\pi\)
−0.713137 + 0.701025i \(0.752726\pi\)
\(620\) 137.620 35.7904i 0.221967 0.0577265i
\(621\) −58.7526 101.763i −0.0946097 0.163869i
\(622\) 464.268 + 464.268i 0.746412 + 0.746412i
\(623\) −525.947 243.326i −0.844216 0.390571i
\(624\) 40.5282i 0.0649491i
\(625\) 296.413 + 550.240i 0.474262 + 0.880384i
\(626\) −88.6058 + 153.470i −0.141543 + 0.245159i
\(627\) −569.917 + 152.709i −0.908958 + 0.243555i
\(628\) −0.517616 0.138695i −0.000824230 0.000220852i
\(629\) 26.3417i 0.0418787i
\(630\) −122.008 + 84.6413i −0.193663 + 0.134351i
\(631\) −786.255 −1.24605 −0.623023 0.782203i \(-0.714096\pi\)
−0.623023 + 0.782203i \(0.714096\pi\)
\(632\) 21.8922 81.7029i 0.0346396 0.129277i
\(633\) 143.603 + 535.935i 0.226861 + 0.846658i
\(634\) −86.8962 50.1696i −0.137060 0.0791318i
\(635\) 88.7665 + 156.398i 0.139790 + 0.246297i
\(636\) −263.667 −0.414571
\(637\) −122.702 259.047i −0.192625 0.406667i
\(638\) 385.688 385.688i 0.604526 0.604526i
\(639\) −10.6741 + 6.16269i −0.0167044 + 0.00964427i
\(640\) −48.7801 28.6445i −0.0762188 0.0447570i
\(641\) −184.010 + 318.714i −0.287067 + 0.497214i −0.973108 0.230348i \(-0.926013\pi\)
0.686042 + 0.727562i \(0.259347\pi\)
\(642\) 80.8112 301.592i 0.125874 0.469769i
\(643\) 569.132 569.132i 0.885119 0.885119i −0.108930 0.994049i \(-0.534743\pi\)
0.994049 + 0.108930i \(0.0347425\pi\)
\(644\) 54.0360 311.949i 0.0839068 0.484393i
\(645\) −47.6230 48.3301i −0.0738342 0.0749303i
\(646\) −41.8515 72.4889i −0.0647856 0.112212i
\(647\) −3.17022 + 0.849457i −0.00489987 + 0.00131292i −0.261268 0.965266i \(-0.584141\pi\)
0.256368 + 0.966579i \(0.417474\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) 433.283 250.156i 0.667617 0.385449i
\(650\) −3.04776 + 206.797i −0.00468886 + 0.318150i
\(651\) −59.4542 161.830i −0.0913275 0.248586i
\(652\) −329.142 329.142i −0.504819 0.504819i
\(653\) 448.682 + 120.224i 0.687108 + 0.184110i 0.585449 0.810709i \(-0.300918\pi\)
0.101659 + 0.994819i \(0.467585\pi\)
\(654\) −146.246 84.4350i −0.223617 0.129105i
\(655\) 109.273 + 420.174i 0.166830 + 0.641487i
\(656\) −151.735 262.813i −0.231304 0.400630i
\(657\) 207.567 + 207.567i 0.315931 + 0.315931i
\(658\) −82.7594 914.197i −0.125774 1.38936i
\(659\) 591.441i 0.897482i −0.893662 0.448741i \(-0.851873\pi\)
0.893662 0.448741i \(-0.148127\pi\)
\(660\) 93.0547 + 163.954i 0.140992 + 0.248415i
\(661\) −251.099 + 434.916i −0.379878 + 0.657967i −0.991044 0.133535i \(-0.957367\pi\)
0.611166 + 0.791502i \(0.290701\pi\)
\(662\) 873.104 233.947i 1.31889 0.353395i
\(663\) −18.5080 4.95919i −0.0279155 0.00747993i
\(664\) 169.025i 0.254556i
\(665\) 836.060 + 707.764i 1.25723 + 1.06431i
\(666\) −59.0967 −0.0887338
\(667\) 207.400 774.029i 0.310945 1.16046i
\(668\) −8.88288 33.1513i −0.0132977 0.0496278i
\(669\) 284.556 + 164.288i 0.425345 + 0.245573i
\(670\) 47.0768 170.653i 0.0702639 0.254706i
\(671\) −1016.69 −1.51518
\(672\) −28.7981 + 62.2469i −0.0428543 + 0.0926292i
\(673\) −145.430 + 145.430i −0.216092 + 0.216092i −0.806849 0.590757i \(-0.798829\pi\)
0.590757 + 0.806849i \(0.298829\pi\)
\(674\) −445.444 + 257.177i −0.660897 + 0.381569i
\(675\) −31.7689 125.959i −0.0470650 0.186606i
\(676\) 134.780 233.447i 0.199379 0.345335i
\(677\) −127.480 + 475.760i −0.188301 + 0.702747i 0.805599 + 0.592461i \(0.201844\pi\)
−0.993900 + 0.110287i \(0.964823\pi\)
\(678\) 327.600 327.600i 0.483186 0.483186i
\(679\) 101.479 585.836i 0.149453 0.862793i
\(680\) −19.0499 + 18.7712i −0.0280146 + 0.0276048i
\(681\) 6.56408 + 11.3693i 0.00963888 + 0.0166950i
\(682\) −211.421 + 56.6502i −0.310002 + 0.0830648i
\(683\) 286.711 + 1070.02i 0.419782 + 1.56665i 0.775061 + 0.631887i \(0.217719\pi\)
−0.355279 + 0.934760i \(0.615614\pi\)
\(684\) 162.626 93.8924i 0.237758 0.137270i
\(685\) −117.489 0.865722i −0.171516 0.00126383i
\(686\) 4.38646 + 485.055i 0.00639426 + 0.707078i
\(687\) 243.661 + 243.661i 0.354674 + 0.354674i
\(688\) −30.2712 8.11113i −0.0439988 0.0117894i
\(689\) 385.596 + 222.624i 0.559646 + 0.323112i
\(690\) 238.830 + 140.245i 0.346130 + 0.203253i
\(691\) 551.244 + 954.783i 0.797748 + 1.38174i 0.921079 + 0.389375i \(0.127309\pi\)
−0.123331 + 0.992366i \(0.539358\pi\)
\(692\) 354.582 + 354.582i 0.512402 + 0.512402i
\(693\) 186.837 131.666i 0.269606 0.189994i
\(694\) 31.8866i 0.0459460i
\(695\) 163.579 592.973i 0.235365 0.853198i
\(696\) −86.7988 + 150.340i −0.124711 + 0.216006i
\(697\) −138.585 + 37.1338i −0.198831 + 0.0532766i
\(698\) 358.220 + 95.9847i 0.513209 + 0.137514i
\(699\) 347.478i 0.497108i
\(700\) 151.625 315.452i 0.216607 0.450646i
\(701\) −869.635 −1.24056 −0.620282 0.784379i \(-0.712982\pi\)
−0.620282 + 0.784379i \(0.712982\pi\)
\(702\) 11.1258 41.5220i 0.0158487 0.0591481i
\(703\) 112.832 + 421.095i 0.160501 + 0.598997i
\(704\) 75.4082 + 43.5369i 0.107114 + 0.0618422i
\(705\) 774.111 + 213.548i 1.09803 + 0.302905i
\(706\) −165.044 −0.233774
\(707\) −193.726 + 17.5374i −0.274012 + 0.0248054i
\(708\) −112.595 + 112.595i −0.159032 + 0.159032i
\(709\) 1104.74 637.824i 1.55817 0.899610i 0.560739 0.827993i \(-0.310517\pi\)
0.997432 0.0716178i \(-0.0228162\pi\)
\(710\) 14.7106 25.0514i 0.0207191 0.0352836i
\(711\) 44.8580 77.6964i 0.0630915 0.109278i
\(712\) 60.6040 226.177i 0.0851180 0.317665i
\(713\) −227.380 + 227.380i −0.318907 + 0.318907i
\(714\) 24.9023 + 20.7679i 0.0348772 + 0.0290867i
\(715\) 2.34572 318.342i 0.00328072 0.445233i
\(716\) −51.0392 88.4024i −0.0712837 0.123467i
\(717\) −197.672 + 52.9661i −0.275694 + 0.0738719i
\(718\) −79.9592 298.412i −0.111364 0.415615i
\(719\) −477.496 + 275.682i −0.664111 + 0.383425i −0.793841 0.608125i \(-0.791922\pi\)
0.129731 + 0.991549i \(0.458589\pi\)
\(720\) −42.1126 42.7379i −0.0584898 0.0593581i
\(721\) 346.303 + 942.608i 0.480309 + 1.30736i
\(722\) −618.532 618.532i −0.856692 0.856692i
\(723\) 36.5477 + 9.79292i 0.0505501 + 0.0135448i
\(724\) 316.995 + 183.017i 0.437838 + 0.252786i
\(725\) 454.201 760.589i 0.626484 1.04909i
\(726\) 3.10281 + 5.37422i 0.00427384 + 0.00740251i
\(727\) 380.507 + 380.507i 0.523393 + 0.523393i 0.918594 0.395202i \(-0.129325\pi\)
−0.395202 + 0.918594i \(0.629325\pi\)
\(728\) 94.6728 66.7168i 0.130045 0.0916439i
\(729\) 27.0000i 0.0370370i
\(730\) −666.976 183.994i −0.913666 0.252046i
\(731\) −7.40819 + 12.8314i −0.0101343 + 0.0175532i
\(732\) 312.554 83.7485i 0.426986 0.114411i
\(733\) 164.691 + 44.1289i 0.224681 + 0.0602031i 0.369403 0.929269i \(-0.379562\pi\)
−0.144722 + 0.989472i \(0.546229\pi\)
\(734\) 311.030i 0.423746i
\(735\) −398.566 145.671i −0.542267 0.198192i
\(736\) 127.924 0.173809
\(737\) −70.5261 + 263.207i −0.0956935 + 0.357133i
\(738\) −83.3084 310.911i −0.112884 0.421289i
\(739\) 199.580 + 115.227i 0.270067 + 0.155923i 0.628918 0.777471i \(-0.283498\pi\)
−0.358851 + 0.933395i \(0.616831\pi\)
\(740\) 121.141 68.7554i 0.163703 0.0929127i
\(741\) −317.108 −0.427946
\(742\) −434.043 615.918i −0.584964 0.830078i
\(743\) −944.117 + 944.117i −1.27068 + 1.27068i −0.324952 + 0.945731i \(0.605348\pi\)
−0.945731 + 0.324952i \(0.894652\pi\)
\(744\) 60.3294 34.8312i 0.0810878 0.0468161i
\(745\) −184.054 + 47.8665i −0.247053 + 0.0642503i
\(746\) 448.706 777.182i 0.601483 1.04180i
\(747\) 46.4006 173.169i 0.0621159 0.231820i
\(748\) 29.1092 29.1092i 0.0389160 0.0389160i
\(749\) 837.539 307.701i 1.11821 0.410816i
\(750\) 211.668 + 221.239i 0.282224 + 0.294985i
\(751\) 147.067 + 254.727i 0.195828 + 0.339184i 0.947172 0.320727i \(-0.103927\pi\)
−0.751344 + 0.659911i \(0.770594\pi\)
\(752\) 358.264 95.9965i 0.476414 0.127655i
\(753\) −88.9725 332.050i −0.118157 0.440969i
\(754\) 253.875 146.575i 0.336705 0.194397i
\(755\) 585.736 577.167i 0.775809 0.764460i
\(756\) −46.5921 + 55.8675i −0.0616298 + 0.0738988i
\(757\) −521.238 521.238i −0.688557 0.688557i 0.273356 0.961913i \(-0.411866\pi\)
−0.961913 + 0.273356i \(0.911866\pi\)
\(758\) 425.033 + 113.887i 0.560729 + 0.150247i
\(759\) −369.203 213.159i −0.486433 0.280842i
\(760\) −224.125 + 381.673i −0.294901 + 0.502201i
\(761\) 237.263 + 410.952i 0.311779 + 0.540016i 0.978747 0.205069i \(-0.0657420\pi\)
−0.666969 + 0.745086i \(0.732409\pi\)
\(762\) 62.2960 + 62.2960i 0.0817533 + 0.0817533i
\(763\) −43.5091 480.621i −0.0570237