Properties

Label 210.3.v.a.67.7
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.7
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.a.163.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(3.99034 - 3.01284i) q^{5} +2.44949 q^{6} +(-5.53495 - 4.28537i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(3.99034 - 3.01284i) q^{5} +2.44949 q^{6} +(-5.53495 - 4.28537i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-2.65505 - 6.55368i) q^{10} +(8.47882 - 14.6857i) q^{11} +(0.896575 - 3.34607i) q^{12} +(3.05181 - 3.05181i) q^{13} +(-7.87985 + 5.99233i) q^{14} +(6.82939 + 5.32535i) q^{15} +(2.00000 + 3.46410i) q^{16} +(10.7449 - 2.87910i) q^{17} +(1.09808 + 4.09808i) q^{18} +(5.74405 - 3.31633i) q^{19} +(-9.92431 + 1.22805i) q^{20} +(4.68831 - 11.1812i) q^{21} +(-16.9576 - 16.9576i) q^{22} +(-16.7817 - 4.49666i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(6.84563 - 24.0445i) q^{25} +(-3.05181 - 5.28588i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(5.30145 + 12.9574i) q^{28} +35.8861i q^{29} +(9.77430 - 7.37991i) q^{30} +(22.7901 - 39.4736i) q^{31} +(5.46410 - 1.46410i) q^{32} +(28.3707 + 7.60190i) q^{33} -15.7317i q^{34} +(-34.9974 - 0.424174i) q^{35} +6.00000 q^{36} +(-4.74524 + 17.7095i) q^{37} +(-2.42772 - 9.06038i) q^{38} +(6.47386 + 3.73768i) q^{39} +(-1.95501 + 14.0064i) q^{40} -42.9609 q^{41} +(-13.5578 - 10.4970i) q^{42} +(-1.98628 + 1.98628i) q^{43} +(-29.3715 + 16.9576i) q^{44} +(-5.84795 + 13.8131i) q^{45} +(-12.2851 + 21.2784i) q^{46} +(-11.3192 + 42.2437i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(12.2713 + 47.4385i) q^{49} +(-30.3397 - 18.1522i) q^{50} +(9.63365 + 16.6860i) q^{51} +(-8.33769 + 2.23408i) q^{52} +(22.0156 + 82.1632i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(-10.4124 - 84.1464i) q^{55} +(19.6406 - 2.49916i) q^{56} +(8.12331 + 8.12331i) q^{57} +(49.0213 + 13.1352i) q^{58} +(-22.0174 - 12.7117i) q^{59} +(-6.50351 - 16.0532i) q^{60} +(42.4823 + 73.5814i) q^{61} +(-45.5802 - 45.5802i) q^{62} +(20.8083 + 2.83128i) q^{63} -8.00000i q^{64} +(2.98315 - 21.3723i) q^{65} +(20.7688 - 35.9726i) q^{66} +(60.8022 - 16.2919i) q^{67} +(-21.4899 - 5.75820i) q^{68} -30.0922i q^{69} +(-13.3894 + 47.6521i) q^{70} +137.965 q^{71} +(2.19615 - 8.19615i) q^{72} +(1.87704 + 7.00522i) q^{73} +(22.4547 + 12.9642i) q^{74} +(43.2960 + 0.674117i) q^{75} -13.2653 q^{76} +(-109.864 + 44.9500i) q^{77} +(7.47537 - 7.47537i) q^{78} +(35.4965 - 20.4939i) q^{79} +(18.4175 + 7.79727i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-15.7248 + 58.6857i) q^{82} +(-109.947 + 109.947i) q^{83} +(-19.3016 + 14.6781i) q^{84} +(34.2017 - 43.8613i) q^{85} +(1.98628 + 3.44034i) q^{86} +(-60.0386 + 16.0873i) q^{87} +(12.4139 + 46.3291i) q^{88} +(49.9706 - 28.8505i) q^{89} +(16.7285 + 13.0444i) q^{90} +(-29.9697 + 3.81348i) q^{91} +(24.5702 + 24.5702i) q^{92} +(76.2572 + 20.4331i) q^{93} +(53.5628 + 30.9245i) q^{94} +(12.9292 - 30.5392i) q^{95} +(4.89898 + 8.48528i) q^{96} +(-39.7542 - 39.7542i) q^{97} +(69.2939 + 0.600821i) q^{98} +50.8729i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 3.99034 3.01284i 0.798068 0.602567i
\(6\) 2.44949 0.408248
\(7\) −5.53495 4.28537i −0.790707 0.612195i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −2.65505 6.55368i −0.265505 0.655368i
\(11\) 8.47882 14.6857i 0.770802 1.33507i −0.166322 0.986071i \(-0.553189\pi\)
0.937124 0.348996i \(-0.113477\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) 3.05181 3.05181i 0.234754 0.234754i −0.579920 0.814674i \(-0.696916\pi\)
0.814674 + 0.579920i \(0.196916\pi\)
\(14\) −7.87985 + 5.99233i −0.562846 + 0.428023i
\(15\) 6.82939 + 5.32535i 0.455293 + 0.355023i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 10.7449 2.87910i 0.632055 0.169359i 0.0714531 0.997444i \(-0.477236\pi\)
0.560602 + 0.828085i \(0.310570\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) 5.74405 3.31633i 0.302318 0.174544i −0.341166 0.940003i \(-0.610822\pi\)
0.643484 + 0.765460i \(0.277488\pi\)
\(20\) −9.92431 + 1.22805i −0.496215 + 0.0614023i
\(21\) 4.68831 11.1812i 0.223253 0.532439i
\(22\) −16.9576 16.9576i −0.770802 0.770802i
\(23\) −16.7817 4.49666i −0.729641 0.195507i −0.125172 0.992135i \(-0.539948\pi\)
−0.604469 + 0.796628i \(0.706615\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 6.84563 24.0445i 0.273825 0.961779i
\(26\) −3.05181 5.28588i −0.117377 0.203303i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 5.30145 + 12.9574i 0.189337 + 0.462765i
\(29\) 35.8861i 1.23745i 0.785607 + 0.618725i \(0.212351\pi\)
−0.785607 + 0.618725i \(0.787649\pi\)
\(30\) 9.77430 7.37991i 0.325810 0.245997i
\(31\) 22.7901 39.4736i 0.735165 1.27334i −0.219486 0.975616i \(-0.570438\pi\)
0.954651 0.297727i \(-0.0962286\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) 28.3707 + 7.60190i 0.859718 + 0.230361i
\(34\) 15.7317i 0.462697i
\(35\) −34.9974 0.424174i −0.999927 0.0121193i
\(36\) 6.00000 0.166667
\(37\) −4.74524 + 17.7095i −0.128250 + 0.478635i −0.999935 0.0114320i \(-0.996361\pi\)
0.871685 + 0.490067i \(0.163028\pi\)
\(38\) −2.42772 9.06038i −0.0638874 0.238431i
\(39\) 6.47386 + 3.73768i 0.165996 + 0.0958380i
\(40\) −1.95501 + 14.0064i −0.0488752 + 0.350159i
\(41\) −42.9609 −1.04783 −0.523913 0.851772i \(-0.675528\pi\)
−0.523913 + 0.851772i \(0.675528\pi\)
\(42\) −13.5578 10.4970i −0.322805 0.249928i
\(43\) −1.98628 + 1.98628i −0.0461926 + 0.0461926i −0.729826 0.683633i \(-0.760399\pi\)
0.683633 + 0.729826i \(0.260399\pi\)
\(44\) −29.3715 + 16.9576i −0.667534 + 0.385401i
\(45\) −5.84795 + 13.8131i −0.129955 + 0.306958i
\(46\) −12.2851 + 21.2784i −0.267067 + 0.462574i
\(47\) −11.3192 + 42.2437i −0.240833 + 0.898801i 0.734599 + 0.678501i \(0.237370\pi\)
−0.975432 + 0.220300i \(0.929296\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 12.2713 + 47.4385i 0.250434 + 0.968134i
\(50\) −30.3397 18.1522i −0.606794 0.363044i
\(51\) 9.63365 + 16.6860i 0.188895 + 0.327176i
\(52\) −8.33769 + 2.23408i −0.160340 + 0.0429630i
\(53\) 22.0156 + 82.1632i 0.415388 + 1.55025i 0.784057 + 0.620688i \(0.213147\pi\)
−0.368669 + 0.929561i \(0.620187\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) −10.4124 84.1464i −0.189316 1.52993i
\(56\) 19.6406 2.49916i 0.350725 0.0446279i
\(57\) 8.12331 + 8.12331i 0.142514 + 0.142514i
\(58\) 49.0213 + 13.1352i 0.845195 + 0.226469i
\(59\) −22.0174 12.7117i −0.373176 0.215453i 0.301669 0.953413i \(-0.402456\pi\)
−0.674845 + 0.737960i \(0.735789\pi\)
\(60\) −6.50351 16.0532i −0.108392 0.267553i
\(61\) 42.4823 + 73.5814i 0.696431 + 1.20625i 0.969696 + 0.244314i \(0.0785629\pi\)
−0.273265 + 0.961939i \(0.588104\pi\)
\(62\) −45.5802 45.5802i −0.735165 0.735165i
\(63\) 20.8083 + 2.83128i 0.330290 + 0.0449410i
\(64\) 8.00000i 0.125000i
\(65\) 2.98315 21.3723i 0.0458946 0.328805i
\(66\) 20.7688 35.9726i 0.314678 0.545039i
\(67\) 60.8022 16.2919i 0.907496 0.243163i 0.225263 0.974298i \(-0.427676\pi\)
0.682233 + 0.731135i \(0.261009\pi\)
\(68\) −21.4899 5.75820i −0.316028 0.0846794i
\(69\) 30.0922i 0.436119i
\(70\) −13.3894 + 47.6521i −0.191277 + 0.680745i
\(71\) 137.965 1.94316 0.971582 0.236705i \(-0.0760674\pi\)
0.971582 + 0.236705i \(0.0760674\pi\)
\(72\) 2.19615 8.19615i 0.0305021 0.113835i
\(73\) 1.87704 + 7.00522i 0.0257129 + 0.0959619i 0.977590 0.210519i \(-0.0675152\pi\)
−0.951877 + 0.306480i \(0.900849\pi\)
\(74\) 22.4547 + 12.9642i 0.303442 + 0.175193i
\(75\) 43.2960 + 0.674117i 0.577280 + 0.00898823i
\(76\) −13.2653 −0.174544
\(77\) −109.864 + 44.9500i −1.42680 + 0.583766i
\(78\) 7.47537 7.47537i 0.0958380 0.0958380i
\(79\) 35.4965 20.4939i 0.449322 0.259416i −0.258222 0.966086i \(-0.583137\pi\)
0.707544 + 0.706669i \(0.249803\pi\)
\(80\) 18.4175 + 7.79727i 0.230218 + 0.0974659i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −15.7248 + 58.6857i −0.191766 + 0.715679i
\(83\) −109.947 + 109.947i −1.32466 + 1.32466i −0.414699 + 0.909959i \(0.636113\pi\)
−0.909959 + 0.414699i \(0.863887\pi\)
\(84\) −19.3016 + 14.6781i −0.229781 + 0.174740i
\(85\) 34.2017 43.8613i 0.402373 0.516016i
\(86\) 1.98628 + 3.44034i 0.0230963 + 0.0400040i
\(87\) −60.0386 + 16.0873i −0.690098 + 0.184911i
\(88\) 12.4139 + 46.3291i 0.141066 + 0.526467i
\(89\) 49.9706 28.8505i 0.561467 0.324163i −0.192267 0.981343i \(-0.561584\pi\)
0.753734 + 0.657179i \(0.228251\pi\)
\(90\) 16.7285 + 13.0444i 0.185873 + 0.144938i
\(91\) −29.9697 + 3.81348i −0.329337 + 0.0419064i
\(92\) 24.5702 + 24.5702i 0.267067 + 0.267067i
\(93\) 76.2572 + 20.4331i 0.819970 + 0.219710i
\(94\) 53.5628 + 30.9245i 0.569817 + 0.328984i
\(95\) 12.9292 30.5392i 0.136096 0.321465i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) −39.7542 39.7542i −0.409837 0.409837i 0.471845 0.881682i \(-0.343588\pi\)
−0.881682 + 0.471845i \(0.843588\pi\)
\(98\) 69.2939 + 0.600821i 0.707080 + 0.00613082i
\(99\) 50.8729i 0.513868i
\(100\) −35.9015 + 34.8006i −0.359015 + 0.348006i
\(101\) 36.2458 62.7796i 0.358869 0.621580i −0.628903 0.777484i \(-0.716496\pi\)
0.987772 + 0.155904i \(0.0498290\pi\)
\(102\) 26.3196 7.05232i 0.258036 0.0691404i
\(103\) −152.873 40.9621i −1.48420 0.397690i −0.576426 0.817149i \(-0.695553\pi\)
−0.907774 + 0.419459i \(0.862220\pi\)
\(104\) 12.2072i 0.117377i
\(105\) −14.9793 58.7420i −0.142660 0.559448i
\(106\) 120.295 1.13486
\(107\) −11.6403 + 43.4424i −0.108788 + 0.406003i −0.998747 0.0500370i \(-0.984066\pi\)
0.889959 + 0.456040i \(0.150733\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) 83.0179 + 47.9304i 0.761632 + 0.439729i 0.829881 0.557940i \(-0.188408\pi\)
−0.0682492 + 0.997668i \(0.521741\pi\)
\(110\) −118.757 16.5762i −1.07961 0.150692i
\(111\) −31.7558 −0.286088
\(112\) 3.77505 27.7444i 0.0337058 0.247717i
\(113\) −86.6065 + 86.6065i −0.766429 + 0.766429i −0.977476 0.211047i \(-0.932313\pi\)
0.211047 + 0.977476i \(0.432313\pi\)
\(114\) 14.0700 8.12331i 0.123421 0.0712571i
\(115\) −80.5126 + 32.6175i −0.700109 + 0.283630i
\(116\) 35.8861 62.1565i 0.309363 0.535832i
\(117\) −3.35111 + 12.5065i −0.0286420 + 0.106893i
\(118\) −25.4235 + 25.4235i −0.215453 + 0.215453i
\(119\) −71.8107 30.1103i −0.603451 0.253028i
\(120\) −24.3095 + 3.00809i −0.202579 + 0.0250674i
\(121\) −83.2807 144.246i −0.688270 1.19212i
\(122\) 116.064 31.0992i 0.951342 0.254911i
\(123\) −19.2588 71.8750i −0.156576 0.584350i
\(124\) −78.9472 + 45.5802i −0.636671 + 0.367582i
\(125\) −45.1257 116.570i −0.361006 0.932564i
\(126\) 11.4840 27.3883i 0.0911425 0.217367i
\(127\) 46.1257 + 46.1257i 0.363194 + 0.363194i 0.864988 0.501793i \(-0.167326\pi\)
−0.501793 + 0.864988i \(0.667326\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) −4.21354 2.43269i −0.0326631 0.0188581i
\(130\) −28.1032 11.8979i −0.216179 0.0915221i
\(131\) −50.4917 87.4543i −0.385433 0.667590i 0.606396 0.795163i \(-0.292615\pi\)
−0.991829 + 0.127573i \(0.959281\pi\)
\(132\) −41.5376 41.5376i −0.314678 0.314678i
\(133\) −46.0047 6.25965i −0.345900 0.0470650i
\(134\) 89.0206i 0.664333i
\(135\) −25.7313 3.59158i −0.190602 0.0266043i
\(136\) −15.7317 + 27.2481i −0.115674 + 0.200354i
\(137\) −127.593 + 34.1884i −0.931334 + 0.249550i −0.692423 0.721491i \(-0.743457\pi\)
−0.238911 + 0.971042i \(0.576790\pi\)
\(138\) −41.1067 11.0145i −0.297875 0.0798153i
\(139\) 49.7454i 0.357880i −0.983860 0.178940i \(-0.942733\pi\)
0.983860 0.178940i \(-0.0572669\pi\)
\(140\) 60.1932 + 35.7321i 0.429951 + 0.255229i
\(141\) −75.7493 −0.537229
\(142\) 50.4985 188.463i 0.355624 1.32721i
\(143\) −18.9423 70.6937i −0.132464 0.494362i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 108.119 + 143.198i 0.745647 + 0.987570i
\(146\) 10.2564 0.0702490
\(147\) −73.8652 + 41.7964i −0.502484 + 0.284329i
\(148\) 25.9285 25.9285i 0.175193 0.175193i
\(149\) 196.729 113.581i 1.32033 0.762291i 0.336546 0.941667i \(-0.390741\pi\)
0.983780 + 0.179377i \(0.0574080\pi\)
\(150\) 16.7683 58.8967i 0.111789 0.392645i
\(151\) 99.4676 172.283i 0.658726 1.14095i −0.322220 0.946665i \(-0.604429\pi\)
0.980946 0.194282i \(-0.0622377\pi\)
\(152\) −4.85544 + 18.1208i −0.0319437 + 0.119215i
\(153\) −23.5975 + 23.5975i −0.154232 + 0.154232i
\(154\) 21.1900 + 166.529i 0.137597 + 1.08136i
\(155\) −27.9873 226.176i −0.180563 1.45920i
\(156\) −7.47537 12.9477i −0.0479190 0.0829982i
\(157\) 268.691 71.9955i 1.71141 0.458570i 0.735638 0.677375i \(-0.236882\pi\)
0.975769 + 0.218805i \(0.0702157\pi\)
\(158\) −15.0026 55.9903i −0.0949530 0.354369i
\(159\) −127.592 + 73.6655i −0.802468 + 0.463305i
\(160\) 17.3925 22.3047i 0.108703 0.139404i
\(161\) 73.6163 + 96.8047i 0.457244 + 0.601271i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −202.663 54.3034i −1.24333 0.333150i −0.423574 0.905861i \(-0.639225\pi\)
−0.819757 + 0.572712i \(0.805891\pi\)
\(164\) 74.4105 + 42.9609i 0.453722 + 0.261957i
\(165\) 136.112 55.1420i 0.824921 0.334194i
\(166\) 109.947 + 190.433i 0.662329 + 1.14719i
\(167\) 14.8502 + 14.8502i 0.0889236 + 0.0889236i 0.750169 0.661246i \(-0.229972\pi\)
−0.661246 + 0.750169i \(0.729972\pi\)
\(168\) 12.9858 + 31.7391i 0.0772966 + 0.188923i
\(169\) 150.373i 0.889781i
\(170\) −47.3970 62.7748i −0.278806 0.369263i
\(171\) −9.94898 + 17.2321i −0.0581812 + 0.100773i
\(172\) 5.42662 1.45406i 0.0315501 0.00845383i
\(173\) 123.597 + 33.1178i 0.714435 + 0.191432i 0.597687 0.801729i \(-0.296086\pi\)
0.116748 + 0.993162i \(0.462753\pi\)
\(174\) 87.9026i 0.505187i
\(175\) −140.930 + 103.749i −0.805312 + 0.592851i
\(176\) 67.8305 0.385401
\(177\) 11.3970 42.5343i 0.0643900 0.240307i
\(178\) −21.1200 78.8211i −0.118652 0.442815i
\(179\) 128.441 + 74.1555i 0.717548 + 0.414277i 0.813850 0.581076i \(-0.197368\pi\)
−0.0963015 + 0.995352i \(0.530701\pi\)
\(180\) 23.9420 18.0770i 0.133011 0.100428i
\(181\) −140.949 −0.778724 −0.389362 0.921085i \(-0.627305\pi\)
−0.389362 + 0.921085i \(0.627305\pi\)
\(182\) −5.76035 + 42.3352i −0.0316503 + 0.232611i
\(183\) −104.060 + 104.060i −0.568633 + 0.568633i
\(184\) 42.5568 24.5702i 0.231287 0.133534i
\(185\) 34.4207 + 84.9636i 0.186058 + 0.459262i
\(186\) 55.8241 96.6902i 0.300130 0.519840i
\(187\) 48.8227 182.209i 0.261084 0.974379i
\(188\) 61.8490 61.8490i 0.328984 0.328984i
\(189\) 4.59126 + 36.0821i 0.0242924 + 0.190911i
\(190\) −36.9849 28.8397i −0.194657 0.151788i
\(191\) 81.4029 + 140.994i 0.426193 + 0.738188i 0.996531 0.0832220i \(-0.0265211\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) −59.8847 223.493i −0.310283 1.15799i −0.928301 0.371829i \(-0.878731\pi\)
0.618018 0.786164i \(-0.287936\pi\)
\(194\) −68.8562 + 39.7542i −0.354929 + 0.204918i
\(195\) 37.0939 4.59004i 0.190225 0.0235387i
\(196\) 26.1840 94.4373i 0.133592 0.481823i
\(197\) 175.872 + 175.872i 0.892750 + 0.892750i 0.994781 0.102031i \(-0.0325340\pi\)
−0.102031 + 0.994781i \(0.532534\pi\)
\(198\) 69.4937 + 18.6208i 0.350978 + 0.0940443i
\(199\) −222.868 128.673i −1.11994 0.646598i −0.178555 0.983930i \(-0.557142\pi\)
−0.941386 + 0.337332i \(0.890475\pi\)
\(200\) 34.3977 + 61.7802i 0.171989 + 0.308901i
\(201\) 54.5138 + 94.4206i 0.271213 + 0.469754i
\(202\) −72.4916 72.4916i −0.358869 0.358869i
\(203\) 153.785 198.628i 0.757561 0.978461i
\(204\) 38.5346i 0.188895i
\(205\) −171.429 + 129.434i −0.836237 + 0.631386i
\(206\) −111.911 + 193.835i −0.543255 + 0.940945i
\(207\) 50.3452 13.4900i 0.243214 0.0651689i
\(208\) 16.6754 + 4.46815i 0.0801701 + 0.0214815i
\(209\) 112.474i 0.538154i
\(210\) −85.7258 1.03901i −0.408218 0.00494767i
\(211\) −269.844 −1.27888 −0.639441 0.768840i \(-0.720834\pi\)
−0.639441 + 0.768840i \(0.720834\pi\)
\(212\) 44.0311 164.326i 0.207694 0.775125i
\(213\) 61.8478 + 230.819i 0.290365 + 1.08366i
\(214\) 55.0827 + 31.8020i 0.257396 + 0.148608i
\(215\) −1.94160 + 13.9103i −0.00903069 + 0.0646990i
\(216\) 14.6969 0.0680414
\(217\) −295.301 + 120.821i −1.36083 + 0.556777i
\(218\) 95.8608 95.8608i 0.439729 0.439729i
\(219\) −10.8785 + 6.28071i −0.0496735 + 0.0286790i
\(220\) −66.1116 + 156.158i −0.300507 + 0.709810i
\(221\) 24.0050 41.5779i 0.108620 0.188135i
\(222\) −11.6234 + 43.3792i −0.0523578 + 0.195402i
\(223\) 253.501 253.501i 1.13677 1.13677i 0.147749 0.989025i \(-0.452797\pi\)
0.989025 0.147749i \(-0.0472029\pi\)
\(224\) −36.5177 15.3119i −0.163026 0.0683569i
\(225\) 18.2813 + 72.7379i 0.0812500 + 0.323279i
\(226\) 86.6065 + 150.007i 0.383215 + 0.663747i
\(227\) 13.4140 3.59427i 0.0590925 0.0158338i −0.229152 0.973391i \(-0.573595\pi\)
0.288244 + 0.957557i \(0.406929\pi\)
\(228\) −5.94668 22.1933i −0.0260819 0.0973390i
\(229\) 310.927 179.514i 1.35776 0.783904i 0.368440 0.929651i \(-0.379892\pi\)
0.989322 + 0.145747i \(0.0465586\pi\)
\(230\) 15.0867 + 121.921i 0.0655941 + 0.530091i
\(231\) −124.453 163.655i −0.538759 0.708463i
\(232\) −71.7721 71.7721i −0.309363 0.309363i
\(233\) 205.192 + 54.9811i 0.880653 + 0.235970i 0.670689 0.741739i \(-0.265999\pi\)
0.209964 + 0.977709i \(0.432665\pi\)
\(234\) 15.8576 + 9.15542i 0.0677677 + 0.0391257i
\(235\) 82.1060 + 202.669i 0.349387 + 0.862423i
\(236\) 25.4235 + 44.0347i 0.107727 + 0.186588i
\(237\) 50.1996 + 50.1996i 0.211813 + 0.211813i
\(238\) −67.4160 + 87.0741i −0.283261 + 0.365857i
\(239\) 145.882i 0.610384i 0.952291 + 0.305192i \(0.0987206\pi\)
−0.952291 + 0.305192i \(0.901279\pi\)
\(240\) −4.78877 + 34.3084i −0.0199532 + 0.142952i
\(241\) −132.371 + 229.274i −0.549258 + 0.951343i 0.449068 + 0.893498i \(0.351756\pi\)
−0.998326 + 0.0578448i \(0.981577\pi\)
\(242\) −227.527 + 60.9657i −0.940195 + 0.251924i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 169.929i 0.696431i
\(245\) 191.891 + 152.325i 0.783229 + 0.621733i
\(246\) −105.232 −0.427774
\(247\) 7.40893 27.6505i 0.0299957 0.111945i
\(248\) 33.3670 + 124.527i 0.134544 + 0.502127i
\(249\) −233.232 134.657i −0.936674 0.540789i
\(250\) −175.755 + 18.9751i −0.703021 + 0.0759005i
\(251\) −301.864 −1.20265 −0.601323 0.799006i \(-0.705359\pi\)
−0.601323 + 0.799006i \(0.705359\pi\)
\(252\) −33.2097 25.7122i −0.131784 0.102033i
\(253\) −208.326 + 208.326i −0.823423 + 0.823423i
\(254\) 79.8921 46.1257i 0.314536 0.181597i
\(255\) 88.7136 + 37.5581i 0.347897 + 0.147287i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 30.6224 114.284i 0.119153 0.444687i −0.880411 0.474212i \(-0.842733\pi\)
0.999564 + 0.0295256i \(0.00939965\pi\)
\(258\) −4.86538 + 4.86538i −0.0188581 + 0.0188581i
\(259\) 102.156 77.6860i 0.394426 0.299946i
\(260\) −26.5393 + 34.0348i −0.102074 + 0.130903i
\(261\) −53.8291 93.2347i −0.206242 0.357221i
\(262\) −137.946 + 36.9625i −0.526511 + 0.141078i
\(263\) 88.0092 + 328.455i 0.334636 + 1.24888i 0.904264 + 0.426975i \(0.140421\pi\)
−0.569628 + 0.821903i \(0.692913\pi\)
\(264\) −71.9452 + 41.5376i −0.272520 + 0.157339i
\(265\) 335.394 + 261.530i 1.26564 + 0.986905i
\(266\) −25.3897 + 60.5524i −0.0954501 + 0.227641i
\(267\) 70.6691 + 70.6691i 0.264678 + 0.264678i
\(268\) −121.604 32.5838i −0.453748 0.121581i
\(269\) −319.982 184.742i −1.18953 0.686773i −0.231327 0.972876i \(-0.574307\pi\)
−0.958199 + 0.286103i \(0.907640\pi\)
\(270\) −14.3245 + 33.8350i −0.0530537 + 0.125315i
\(271\) 137.014 + 237.315i 0.505586 + 0.875700i 0.999979 + 0.00646203i \(0.00205694\pi\)
−0.494393 + 0.869238i \(0.664610\pi\)
\(272\) 31.4634 + 31.4634i 0.115674 + 0.115674i
\(273\) −19.8151 48.4307i −0.0725829 0.177402i
\(274\) 186.809i 0.681784i
\(275\) −295.068 304.402i −1.07298 1.10692i
\(276\) −30.0922 + 52.1212i −0.109030 + 0.188845i
\(277\) 54.3485 14.5626i 0.196204 0.0525727i −0.159379 0.987218i \(-0.550949\pi\)
0.355583 + 0.934645i \(0.384282\pi\)
\(278\) −67.9534 18.2081i −0.244437 0.0654967i
\(279\) 136.741i 0.490110i
\(280\) 70.8432 69.1465i 0.253011 0.246952i
\(281\) 535.008 1.90394 0.951971 0.306187i \(-0.0990534\pi\)
0.951971 + 0.306187i \(0.0990534\pi\)
\(282\) −27.7262 + 103.475i −0.0983197 + 0.366934i
\(283\) −52.4326 195.681i −0.185274 0.691452i −0.994572 0.104054i \(-0.966819\pi\)
0.809298 0.587399i \(-0.199848\pi\)
\(284\) −238.962 137.965i −0.841414 0.485791i
\(285\) 56.8890 + 7.94057i 0.199610 + 0.0278616i
\(286\) −103.503 −0.361898
\(287\) 237.786 + 184.103i 0.828524 + 0.641474i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −143.117 + 82.6285i −0.495214 + 0.285912i
\(290\) 235.186 95.2791i 0.810986 0.328549i
\(291\) 48.6887 84.3313i 0.167315 0.289798i
\(292\) 3.75408 14.0104i 0.0128565 0.0479809i
\(293\) −225.228 + 225.228i −0.768696 + 0.768696i −0.977877 0.209181i \(-0.932920\pi\)
0.209181 + 0.977877i \(0.432920\pi\)
\(294\) 30.0584 + 116.200i 0.102239 + 0.395239i
\(295\) −126.155 + 15.6106i −0.427645 + 0.0529172i
\(296\) −25.9285 44.9095i −0.0875963 0.151721i
\(297\) −85.1120 + 22.8057i −0.286573 + 0.0767869i
\(298\) −83.1473 310.310i −0.279018 1.04131i
\(299\) −64.9375 + 37.4917i −0.217182 + 0.125390i
\(300\) −74.3168 44.4636i −0.247723 0.148212i
\(301\) 19.5059 2.48202i 0.0648037 0.00824592i
\(302\) −198.935 198.935i −0.658726 0.658726i
\(303\) 121.281 + 32.4971i 0.400267 + 0.107251i
\(304\) 22.9762 + 13.2653i 0.0755796 + 0.0436359i
\(305\) 391.208 + 165.623i 1.28265 + 0.543026i
\(306\) 23.5975 + 40.8721i 0.0771161 + 0.133569i
\(307\) 294.340 + 294.340i 0.958762 + 0.958762i 0.999183 0.0404208i \(-0.0128699\pi\)
−0.0404208 + 0.999183i \(0.512870\pi\)
\(308\) 235.239 + 32.0079i 0.763764 + 0.103922i
\(309\) 274.124i 0.887132i
\(310\) −319.206 44.5548i −1.02970 0.143725i
\(311\) −116.986 + 202.625i −0.376160 + 0.651529i −0.990500 0.137513i \(-0.956089\pi\)
0.614340 + 0.789042i \(0.289422\pi\)
\(312\) −20.4231 + 5.47235i −0.0654586 + 0.0175396i
\(313\) −137.285 36.7853i −0.438609 0.117525i 0.0327556 0.999463i \(-0.489572\pi\)
−0.471365 + 0.881938i \(0.656238\pi\)
\(314\) 393.391i 1.25284i
\(315\) 91.5623 51.3941i 0.290674 0.163156i
\(316\) −81.9755 −0.259416
\(317\) 18.1584 67.7680i 0.0572820 0.213779i −0.931352 0.364119i \(-0.881370\pi\)
0.988634 + 0.150340i \(0.0480368\pi\)
\(318\) 53.9269 + 201.258i 0.169581 + 0.632887i
\(319\) 527.014 + 304.271i 1.65208 + 0.953829i
\(320\) −24.1027 31.9227i −0.0753209 0.0997585i
\(321\) −77.8987 −0.242675
\(322\) 159.183 65.1287i 0.494357 0.202263i
\(323\) 52.1714 52.1714i 0.161521 0.161521i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −52.4876 94.2706i −0.161500 0.290063i
\(326\) −148.360 + 256.966i −0.455091 + 0.788240i
\(327\) −42.9732 + 160.378i −0.131417 + 0.490454i
\(328\) 85.9218 85.9218i 0.261957 0.261957i
\(329\) 243.680 185.310i 0.740670 0.563252i
\(330\) −25.5050 206.116i −0.0772879 0.624593i
\(331\) 127.726 + 221.227i 0.385878 + 0.668360i 0.991891 0.127095i \(-0.0405652\pi\)
−0.606013 + 0.795455i \(0.707232\pi\)
\(332\) 300.380 80.4865i 0.904758 0.242429i
\(333\) −14.2357 53.1285i −0.0427499 0.159545i
\(334\) 25.7214 14.8502i 0.0770101 0.0444618i
\(335\) 193.537 248.197i 0.577721 0.740888i
\(336\) 48.1095 6.12168i 0.143183 0.0182193i
\(337\) 2.44497 + 2.44497i 0.00725510 + 0.00725510i 0.710725 0.703470i \(-0.248367\pi\)
−0.703470 + 0.710725i \(0.748367\pi\)
\(338\) 205.413 + 55.0403i 0.607732 + 0.162841i
\(339\) −183.720 106.071i −0.541947 0.312893i
\(340\) −103.100 + 41.7683i −0.303237 + 0.122848i
\(341\) −386.466 669.379i −1.13333 1.96299i
\(342\) 19.8980 + 19.8980i 0.0581812 + 0.0581812i
\(343\) 135.371 315.157i 0.394666 0.918825i
\(344\) 7.94513i 0.0230963i
\(345\) −90.6629 120.078i −0.262791 0.348053i
\(346\) 90.4795 156.715i 0.261501 0.452934i
\(347\) −509.917 + 136.632i −1.46950 + 0.393752i −0.902760 0.430145i \(-0.858463\pi\)
−0.566741 + 0.823896i \(0.691796\pi\)
\(348\) 120.077 + 32.1746i 0.345049 + 0.0924557i
\(349\) 74.0257i 0.212108i 0.994360 + 0.106054i \(0.0338216\pi\)
−0.994360 + 0.106054i \(0.966178\pi\)
\(350\) 90.1399 + 230.488i 0.257542 + 0.658538i
\(351\) −22.4261 −0.0638920
\(352\) 24.8277 92.6583i 0.0705332 0.263234i
\(353\) −74.2945 277.271i −0.210466 0.785470i −0.987714 0.156275i \(-0.950051\pi\)
0.777248 0.629195i \(-0.216615\pi\)
\(354\) −53.9313 31.1373i −0.152348 0.0879584i
\(355\) 550.526 415.665i 1.55078 1.17089i
\(356\) −115.402 −0.324163
\(357\) 18.1837 133.640i 0.0509348 0.374341i
\(358\) 148.311 148.311i 0.414277 0.414277i
\(359\) −571.100 + 329.725i −1.59081 + 0.918453i −0.597638 + 0.801766i \(0.703894\pi\)
−0.993169 + 0.116687i \(0.962773\pi\)
\(360\) −15.9303 39.3221i −0.0442508 0.109228i
\(361\) −158.504 + 274.537i −0.439069 + 0.760490i
\(362\) −51.5910 + 192.540i −0.142516 + 0.531879i
\(363\) 203.995 203.995i 0.561970 0.561970i
\(364\) 55.7225 + 23.3645i 0.153084 + 0.0641883i
\(365\) 28.5956 + 22.2980i 0.0783442 + 0.0610904i
\(366\) 104.060 + 180.237i 0.284317 + 0.492451i
\(367\) 377.829 101.239i 1.02951 0.275856i 0.295749 0.955266i \(-0.404431\pi\)
0.733759 + 0.679410i \(0.237764\pi\)
\(368\) −17.9866 67.1270i −0.0488767 0.182410i
\(369\) 111.616 64.4414i 0.302482 0.174638i
\(370\) 128.661 15.9207i 0.347733 0.0430289i
\(371\) 230.244 549.114i 0.620605 1.48009i
\(372\) −111.648 111.648i −0.300130 0.300130i
\(373\) −28.3802 7.60446i −0.0760864 0.0203873i 0.220575 0.975370i \(-0.429207\pi\)
−0.296661 + 0.954983i \(0.595873\pi\)
\(374\) −231.032 133.386i −0.617731 0.356647i
\(375\) 174.797 127.754i 0.466125 0.340677i
\(376\) −61.8490 107.126i −0.164492 0.284909i
\(377\) 109.517 + 109.517i 0.290497 + 0.290497i
\(378\) 50.9696 + 6.93520i 0.134840 + 0.0183471i
\(379\) 469.896i 1.23983i −0.784668 0.619916i \(-0.787167\pi\)
0.784668 0.619916i \(-0.212833\pi\)
\(380\) −52.9331 + 39.9662i −0.139298 + 0.105174i
\(381\) −56.4922 + 97.8474i −0.148274 + 0.256817i
\(382\) 222.397 59.5911i 0.582191 0.155998i
\(383\) −524.588 140.563i −1.36968 0.367005i −0.502318 0.864683i \(-0.667519\pi\)
−0.867362 + 0.497678i \(0.834186\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −302.966 + 510.367i −0.786925 + 1.32563i
\(386\) −327.216 −0.847709
\(387\) 2.18109 8.13994i 0.00563589 0.0210334i
\(388\) 29.1021 + 108.610i 0.0750053 + 0.279924i
\(389\) −329.553 190.268i −0.847180 0.489120i 0.0125180 0.999922i \(-0.496015\pi\)
−0.859699 + 0.510802i \(0.829349\pi\)
\(390\) 7.30720 52.3513i 0.0187364 0.134234i
\(391\) −193.265 −0.494284
\(392\) −119.420 70.3345i −0.304642 0.179425i
\(393\) 123.679 123.679i 0.314705 0.314705i
\(394\) 304.619 175.872i 0.773145 0.446375i
\(395\) 79.8982 188.723i 0.202274 0.477779i
\(396\) 50.8729 88.1145i 0.128467 0.222511i
\(397\) −88.3122 + 329.585i −0.222449 + 0.830190i 0.760962 + 0.648797i \(0.224727\pi\)
−0.983411 + 0.181393i \(0.941939\pi\)
\(398\) −257.346 + 257.346i −0.646598 + 0.646598i
\(399\) −10.1507 79.7735i −0.0254405 0.199934i
\(400\) 96.9838 24.3750i 0.242460 0.0609375i
\(401\) −216.181 374.437i −0.539105 0.933757i −0.998952 0.0457593i \(-0.985429\pi\)
0.459848 0.887998i \(-0.347904\pi\)
\(402\) 148.934 39.9068i 0.370484 0.0992708i
\(403\) −50.9148 190.017i −0.126340 0.471506i
\(404\) −125.559 + 72.4916i −0.310790 + 0.179435i
\(405\) −5.52621 44.6594i −0.0136450 0.110270i
\(406\) −215.041 282.777i −0.529658 0.696495i
\(407\) 219.843 + 219.843i 0.540155 + 0.540155i
\(408\) −52.6392 14.1046i −0.129018 0.0345702i
\(409\) −219.191 126.550i −0.535918 0.309413i 0.207505 0.978234i \(-0.433466\pi\)
−0.743423 + 0.668821i \(0.766799\pi\)
\(410\) 114.063 + 281.552i 0.278203 + 0.686712i
\(411\) −114.397 198.141i −0.278337 0.482094i
\(412\) 223.821 + 223.821i 0.543255 + 0.543255i
\(413\) 67.3905 + 164.711i 0.163173 + 0.398817i
\(414\) 73.7105i 0.178045i
\(415\) −107.473 + 769.975i −0.258972 + 1.85536i
\(416\) 12.2072 21.1435i 0.0293443 0.0508258i
\(417\) 83.2256 22.3002i 0.199582 0.0534778i
\(418\) −153.643 41.1684i −0.367566 0.0984890i
\(419\) 456.021i 1.08835i 0.838970 + 0.544177i \(0.183158\pi\)
−0.838970 + 0.544177i \(0.816842\pi\)
\(420\) −32.7972 + 116.723i −0.0780885 + 0.277913i
\(421\) 87.9279 0.208855 0.104427 0.994533i \(-0.466699\pi\)
0.104427 + 0.994533i \(0.466699\pi\)
\(422\) −98.7698 + 368.614i −0.234052 + 0.873493i
\(423\) −33.9575 126.731i −0.0802777 0.299600i
\(424\) −208.358 120.295i −0.491409 0.283715i
\(425\) 4.32947 278.066i 0.0101870 0.654273i
\(426\) 337.943 0.793293
\(427\) 80.1862 589.321i 0.187790 1.38014i
\(428\) 63.6040 63.6040i 0.148608 0.148608i
\(429\) 109.781 63.3823i 0.255900 0.147744i
\(430\) 18.2911 + 7.74379i 0.0425375 + 0.0180088i
\(431\) −368.932 + 639.009i −0.855991 + 1.48262i 0.0197313 + 0.999805i \(0.493719\pi\)
−0.875722 + 0.482815i \(0.839614\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) 29.1869 29.1869i 0.0674062 0.0674062i −0.672600 0.740006i \(-0.734823\pi\)
0.740006 + 0.672600i \(0.234823\pi\)
\(434\) 56.9562 + 447.612i 0.131236 + 1.03136i
\(435\) −191.106 + 245.080i −0.439324 + 0.563403i
\(436\) −95.8608 166.036i −0.219864 0.380816i
\(437\) −111.308 + 29.8248i −0.254708 + 0.0682489i
\(438\) 4.59780 + 17.1592i 0.0104973 + 0.0391763i
\(439\) 353.707 204.213i 0.805710 0.465177i −0.0397539 0.999210i \(-0.512657\pi\)
0.845464 + 0.534033i \(0.179324\pi\)
\(440\) 189.118 + 147.468i 0.429813 + 0.335155i
\(441\) −103.040 104.842i −0.233650 0.237737i
\(442\) −48.0100 48.0100i −0.108620 0.108620i
\(443\) 572.880 + 153.503i 1.29318 + 0.346507i 0.838869 0.544334i \(-0.183218\pi\)
0.454314 + 0.890841i \(0.349884\pi\)
\(444\) 55.0026 + 31.7558i 0.123880 + 0.0715221i
\(445\) 112.478 265.677i 0.252759 0.597026i
\(446\) −253.501 439.076i −0.568387 0.984475i
\(447\) 278.216 + 278.216i 0.622408 + 0.622408i
\(448\) −34.2829 + 44.2796i −0.0765244 + 0.0988383i
\(449\) 176.194i 0.392415i 0.980562 + 0.196208i \(0.0628627\pi\)
−0.980562 + 0.196208i \(0.937137\pi\)
\(450\) 106.053 + 1.65124i 0.235674 + 0.00366943i
\(451\) −364.258 + 630.913i −0.807667 + 1.39892i
\(452\) 236.613 63.4004i 0.523481 0.140266i
\(453\) 332.825 + 89.1802i 0.734713 + 0.196866i
\(454\) 19.6394i 0.0432587i
\(455\) −108.100 + 105.511i −0.237582 + 0.231892i
\(456\) −32.4932 −0.0712571
\(457\) −13.4496 + 50.1945i −0.0294302 + 0.109835i −0.979078 0.203483i \(-0.934774\pi\)
0.949648 + 0.313318i \(0.101441\pi\)
\(458\) −131.413 490.442i −0.286929 1.07083i
\(459\) −50.0579 28.9010i −0.109059 0.0629650i
\(460\) 172.069 + 24.0174i 0.374064 + 0.0522118i
\(461\) −420.947 −0.913117 −0.456558 0.889693i \(-0.650918\pi\)
−0.456558 + 0.889693i \(0.650918\pi\)
\(462\) −269.110 + 110.105i −0.582489 + 0.238322i
\(463\) −45.3241 + 45.3241i −0.0978921 + 0.0978921i −0.754357 0.656465i \(-0.772051\pi\)
0.656465 + 0.754357i \(0.272051\pi\)
\(464\) −124.313 + 71.7721i −0.267916 + 0.154681i
\(465\) 365.854 148.216i 0.786782 0.318743i
\(466\) 150.211 260.173i 0.322342 0.558312i
\(467\) 137.330 512.522i 0.294068 1.09748i −0.647886 0.761737i \(-0.724347\pi\)
0.941954 0.335741i \(-0.108987\pi\)
\(468\) 18.3108 18.3108i 0.0391257 0.0391257i
\(469\) −406.354 170.385i −0.866426 0.363294i
\(470\) 306.904 37.9767i 0.652988 0.0808015i
\(471\) 240.902 + 417.254i 0.511468 + 0.885889i
\(472\) 69.4582 18.6113i 0.147157 0.0394306i
\(473\) 12.3287 + 46.0114i 0.0260649 + 0.0972756i
\(474\) 86.9482 50.1996i 0.183435 0.105906i
\(475\) −40.4178 160.815i −0.0850900 0.338558i
\(476\) 94.2694 + 123.963i 0.198045 + 0.260427i
\(477\) −180.443 180.443i −0.378287 0.378287i
\(478\) 199.278 + 53.3964i 0.416900 + 0.111708i
\(479\) 287.563 + 166.025i 0.600340 + 0.346607i 0.769175 0.639038i \(-0.220667\pi\)
−0.168835 + 0.985644i \(0.554001\pi\)
\(480\) 45.1134 + 19.0993i 0.0939862 + 0.0397903i
\(481\) 39.5644 + 68.5275i 0.0822544 + 0.142469i
\(482\) 264.742 + 264.742i 0.549258 + 0.549258i
\(483\) −128.956 + 166.559i −0.266990 + 0.344842i
\(484\) 333.123i 0.688270i
\(485\) −278.405 38.8598i −0.574032 0.0801234i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) −718.303 + 192.469i −1.47496 + 0.395213i −0.904627 0.426204i \(-0.859851\pi\)
−0.570328 + 0.821417i \(0.693184\pi\)
\(488\) −232.127 62.1984i −0.475671 0.127456i
\(489\) 363.405i 0.743160i
\(490\) 278.316 206.374i 0.567992 0.421171i
\(491\) 46.6728 0.0950567 0.0475284 0.998870i \(-0.484866\pi\)
0.0475284 + 0.998870i \(0.484866\pi\)
\(492\) −38.5177 + 143.750i −0.0782880 + 0.292175i
\(493\) 103.320 + 385.594i 0.209573 + 0.782137i
\(494\) −35.0594 20.2416i −0.0709705 0.0409748i
\(495\) 153.272 + 203.000i 0.309640 + 0.410101i
\(496\) 182.321 0.367582
\(497\) −763.627 591.229i −1.53647 1.18959i
\(498\) −269.313 + 269.313i −0.540789 + 0.540789i
\(499\) 216.276 124.867i 0.433418 0.250234i −0.267384 0.963590i \(-0.586159\pi\)
0.700802 + 0.713356i \(0.252826\pi\)
\(500\) −38.4104 + 247.032i −0.0768209 + 0.494063i
\(501\) −18.1878 + 31.5021i −0.0363029 + 0.0628785i
\(502\) −110.490 + 412.354i −0.220099 + 0.821422i
\(503\) −77.7709 + 77.7709i −0.154614 + 0.154614i −0.780175 0.625561i \(-0.784870\pi\)
0.625561 + 0.780175i \(0.284870\pi\)
\(504\) −47.2791 + 35.9540i −0.0938077 + 0.0713372i
\(505\) −44.5115 359.715i −0.0881416 0.712306i
\(506\) 208.326 + 360.831i 0.411712 + 0.713106i
\(507\) −251.579 + 67.4104i −0.496211 + 0.132959i
\(508\) −33.7664 126.018i −0.0664692 0.248066i
\(509\) −269.664 + 155.690i −0.529791 + 0.305875i −0.740931 0.671581i \(-0.765616\pi\)
0.211140 + 0.977456i \(0.432282\pi\)
\(510\) 83.7768 107.438i 0.164268 0.210663i
\(511\) 19.6306 46.8173i 0.0384160 0.0916190i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −33.2900 8.92002i −0.0648927 0.0173879i
\(514\) −144.907 83.6620i −0.281920 0.162767i
\(515\) −733.426 + 297.128i −1.42413 + 0.576947i
\(516\) 4.86538 + 8.42708i 0.00942903 + 0.0163316i
\(517\) 524.407 + 524.407i 1.01433 + 1.01433i
\(518\) −68.7293 167.983i −0.132682 0.324292i
\(519\) 221.629i 0.427030i
\(520\) 36.7784 + 48.7110i 0.0707276 + 0.0936749i
\(521\) 146.921 254.474i 0.281997 0.488434i −0.689879 0.723924i \(-0.742336\pi\)
0.971877 + 0.235491i \(0.0756698\pi\)
\(522\) −147.064 + 39.4056i −0.281732 + 0.0754897i
\(523\) −27.8292 7.45680i −0.0532106 0.0142577i 0.232116 0.972688i \(-0.425435\pi\)
−0.285326 + 0.958430i \(0.592102\pi\)
\(524\) 201.967i 0.385433i
\(525\) −236.752 189.270i −0.450957 0.360515i
\(526\) 480.891 0.914242
\(527\) 131.230 489.757i 0.249013 0.929330i
\(528\) 30.4076 + 113.483i 0.0575902 + 0.214929i
\(529\) −196.720 113.577i −0.371872 0.214700i
\(530\) 480.019 362.430i 0.905696 0.683830i
\(531\) 76.2704 0.143635
\(532\) 73.4228 + 56.8467i 0.138013 + 0.106855i
\(533\) −131.108 + 131.108i −0.245982 + 0.245982i
\(534\) 122.402 70.6691i 0.229218 0.132339i
\(535\) 84.4358 + 208.420i 0.157824 + 0.389571i
\(536\) −89.0206 + 154.188i −0.166083 + 0.287665i
\(537\) −66.4860 + 248.129i −0.123810 + 0.462066i
\(538\) −369.484 + 369.484i −0.686773 + 0.686773i
\(539\) 800.716 + 222.010i 1.48556 + 0.411892i
\(540\) 40.9764 + 31.9521i 0.0758822 + 0.0591706i
\(541\) 429.327 + 743.616i 0.793580 + 1.37452i 0.923737 + 0.383028i \(0.125119\pi\)
−0.130157 + 0.991493i \(0.541548\pi\)
\(542\) 374.329 100.301i 0.690643 0.185057i
\(543\) −63.1858 235.812i −0.116364 0.434277i
\(544\) 54.4962 31.4634i 0.100177 0.0578371i
\(545\) 475.676 58.8607i 0.872800 0.108001i
\(546\) −73.4104 + 9.34108i −0.134451 + 0.0171082i
\(547\) −579.972 579.972i −1.06028 1.06028i −0.998063 0.0622157i \(-0.980183\pi\)
−0.0622157 0.998063i \(-0.519817\pi\)
\(548\) 255.185 + 68.3767i 0.465667 + 0.124775i
\(549\) −220.744 127.447i −0.402084 0.232144i
\(550\) −523.823 + 291.652i −0.952406 + 0.530276i
\(551\) 119.010 + 206.131i 0.215989 + 0.374104i
\(552\) 60.1844 + 60.1844i 0.109030 + 0.109030i
\(553\) −284.295 38.6827i −0.514095 0.0699506i
\(554\) 79.5717i 0.143631i
\(555\) −126.716 + 95.6750i −0.228318 + 0.172387i
\(556\) −49.7454 + 86.1615i −0.0894701 + 0.154967i
\(557\) −877.073 + 235.011i −1.57464 + 0.421923i −0.937261 0.348629i \(-0.886647\pi\)
−0.637377 + 0.770552i \(0.719981\pi\)
\(558\) 186.791 + 50.0505i 0.334751 + 0.0896963i
\(559\) 12.1235i 0.0216878i
\(560\) −68.5255 122.083i −0.122367 0.218005i
\(561\) 326.728 0.582403
\(562\) 195.826 730.834i 0.348446 1.30042i
\(563\) 23.9322 + 89.3163i 0.0425084 + 0.158644i 0.983918 0.178623i \(-0.0571643\pi\)
−0.941409 + 0.337267i \(0.890498\pi\)
\(564\) 131.202 + 75.7493i 0.232627 + 0.134307i
\(565\) −84.6582 + 606.521i −0.149837 + 1.07349i
\(566\) −286.497 −0.506178
\(567\) −58.3084 + 23.8565i −0.102837 + 0.0420750i
\(568\) −275.929 + 275.929i −0.485791 + 0.485791i
\(569\) −579.130 + 334.361i −1.01780 + 0.587628i −0.913467 0.406914i \(-0.866605\pi\)
−0.104336 + 0.994542i \(0.533272\pi\)
\(570\) 31.6698 74.8054i 0.0555611 0.131237i
\(571\) 47.9078 82.9787i 0.0839016 0.145322i −0.821021 0.570898i \(-0.806595\pi\)
0.904923 + 0.425576i \(0.139929\pi\)
\(572\) −37.8847 + 141.387i −0.0662319 + 0.247181i
\(573\) −199.396 + 199.396i −0.347985 + 0.347985i
\(574\) 338.525 257.436i 0.589766 0.448494i
\(575\) −223.001 + 372.726i −0.387829 + 0.648219i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 411.220 110.186i 0.712686 0.190964i 0.115780 0.993275i \(-0.463063\pi\)
0.596906 + 0.802311i \(0.296397\pi\)
\(578\) 60.4883 + 225.745i 0.104651 + 0.390563i
\(579\) 347.065 200.378i 0.599421 0.346076i
\(580\) −44.0697 356.144i −0.0759823 0.614042i
\(581\) 1079.71 137.387i 1.85836 0.236467i
\(582\) −97.3774 97.3774i −0.167315 0.167315i
\(583\) 1393.29 + 373.332i 2.38987 + 0.640364i
\(584\) −17.7645 10.2564i −0.0304187 0.0175622i
\(585\) 24.3080 + 60.0017i 0.0415522 + 0.102567i
\(586\) 225.228 + 390.106i 0.384348 + 0.665710i
\(587\) 139.731 + 139.731i 0.238042 + 0.238042i 0.816039 0.577997i \(-0.196165\pi\)
−0.577997 + 0.816039i \(0.696165\pi\)
\(588\) 169.735 + 1.47170i 0.288664 + 0.00250290i
\(589\) 302.318i 0.513273i
\(590\) −24.8515 + 178.045i −0.0421212 + 0.301771i
\(591\) −215.398 + 373.081i −0.364464 + 0.631270i
\(592\) −70.8380 + 18.9810i −0.119659 + 0.0320625i
\(593\) 358.740 + 96.1240i 0.604957 + 0.162098i 0.548280 0.836295i \(-0.315283\pi\)
0.0566772 + 0.998393i \(0.481949\pi\)
\(594\) 124.613i 0.209786i
\(595\) −377.267 + 96.2033i −0.634061 + 0.161686i
\(596\) −454.325 −0.762291
\(597\) 115.365 430.548i 0.193241 0.721186i
\(598\) 27.4458 + 102.429i 0.0458960 + 0.171286i
\(599\) 612.367 + 353.550i 1.02232 + 0.590234i 0.914774 0.403966i \(-0.132369\pi\)
0.107542 + 0.994201i \(0.465702\pi\)
\(600\) −87.9403 + 85.2438i −0.146567 + 0.142073i
\(601\) −568.154 −0.945347 −0.472674 0.881238i \(-0.656711\pi\)
−0.472674 + 0.881238i \(0.656711\pi\)
\(602\) 3.74915 27.5541i 0.00622783 0.0457709i
\(603\) −133.531 + 133.531i −0.221444 + 0.221444i
\(604\) −344.566 + 198.935i −0.570473 + 0.329363i
\(605\) −766.909 324.681i −1.26762 0.536663i
\(606\) 88.7838 153.778i 0.146508 0.253759i
\(607\) 68.8578 256.981i 0.113439 0.423362i −0.885726 0.464209i \(-0.846339\pi\)
0.999165 + 0.0408466i \(0.0130055\pi\)
\(608\) 26.5306 26.5306i 0.0436359 0.0436359i
\(609\) 401.250 + 168.245i 0.658867 + 0.276264i
\(610\) 369.437 473.777i 0.605634 0.776684i
\(611\) 94.3756 + 163.463i 0.154461 + 0.267534i
\(612\) 64.4696 17.2746i 0.105343 0.0282265i
\(613\) −212.919 794.625i −0.347340 1.29629i −0.889855 0.456243i \(-0.849195\pi\)
0.542515 0.840046i \(-0.317472\pi\)
\(614\) 509.812 294.340i 0.830312 0.479381i
\(615\) −293.397 228.782i −0.477068 0.372003i
\(616\) 129.827 309.627i 0.210758 0.502642i
\(617\) −49.7691 49.7691i −0.0806631 0.0806631i 0.665624 0.746287i \(-0.268165\pi\)
−0.746287 + 0.665624i \(0.768165\pi\)
\(618\) −374.460 100.336i −0.605922 0.162356i
\(619\) 309.731 + 178.823i 0.500373 + 0.288891i 0.728868 0.684655i \(-0.240047\pi\)
−0.228494 + 0.973545i \(0.573380\pi\)
\(620\) −177.701 + 419.736i −0.286614 + 0.676993i
\(621\) 45.1383 + 78.1818i 0.0726865 + 0.125897i
\(622\) 233.972 + 233.972i 0.376160 + 0.376160i
\(623\) −400.219 54.4560i −0.642407 0.0874093i
\(624\) 29.9015i 0.0479190i
\(625\) −531.275 329.199i −0.850039 0.526719i
\(626\) −100.499 + 174.070i −0.160542 + 0.278067i
\(627\) 188.173 50.4208i 0.300116 0.0804159i
\(628\) −537.382 143.991i −0.855703 0.229285i
\(629\) 203.949i 0.324244i
\(630\) −36.6915 143.888i −0.0582406 0.228394i
\(631\) −35.2671 −0.0558908 −0.0279454 0.999609i \(-0.508896\pi\)
−0.0279454 + 0.999609i \(0.508896\pi\)
\(632\) −30.0051 + 111.981i −0.0474765 + 0.177185i
\(633\) −120.968 451.458i −0.191102 0.713204i
\(634\) −85.9264 49.6096i −0.135531 0.0782486i
\(635\) 323.026 + 45.0880i 0.508703 + 0.0710048i
\(636\) 294.662 0.463305
\(637\) 182.223 + 107.324i 0.286064 + 0.168483i
\(638\) 608.543 608.543i 0.953829 0.953829i
\(639\) −358.443 + 206.947i −0.560943 + 0.323861i
\(640\) −52.4294 + 21.2404i −0.0819210 + 0.0331881i
\(641\) 154.470 267.550i 0.240983 0.417394i −0.720012 0.693962i \(-0.755864\pi\)
0.960995 + 0.276567i \(0.0891969\pi\)
\(642\) −28.5129 + 106.412i −0.0444126 + 0.165750i
\(643\) 356.455 356.455i 0.554362 0.554362i −0.373335 0.927697i \(-0.621786\pi\)
0.927697 + 0.373335i \(0.121786\pi\)
\(644\) −30.7025 241.287i −0.0476746 0.374669i
\(645\) −24.1428 + 2.98745i −0.0374306 + 0.00463171i
\(646\) −52.1714 90.3636i −0.0807607 0.139882i
\(647\) 297.486 79.7113i 0.459794 0.123201i −0.0214847 0.999769i \(-0.506839\pi\)
0.481278 + 0.876568i \(0.340173\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) −373.362 + 215.561i −0.575289 + 0.332143i
\(650\) −147.988 + 37.1939i −0.227674 + 0.0572214i
\(651\) −334.516 439.886i −0.513850 0.675708i
\(652\) 296.719 + 296.719i 0.455091 + 0.455091i
\(653\) 23.9141 + 6.40777i 0.0366219 + 0.00981282i 0.277083 0.960846i \(-0.410632\pi\)
−0.240462 + 0.970659i \(0.577299\pi\)
\(654\) 203.352 + 117.405i 0.310935 + 0.179518i
\(655\) −464.965 196.849i −0.709870 0.300533i
\(656\) −85.9218 148.821i −0.130978 0.226861i
\(657\) −15.3845 15.3845i −0.0234163 0.0234163i
\(658\) −163.945 400.702i −0.249156 0.608969i
\(659\) 392.819i 0.596083i −0.954553 0.298042i \(-0.903667\pi\)
0.954553 0.298042i \(-0.0963334\pi\)
\(660\) −290.895 40.6031i −0.440750 0.0615199i
\(661\) 630.880 1092.72i 0.954433 1.65313i 0.218772 0.975776i \(-0.429795\pi\)
0.735661 0.677350i \(-0.236872\pi\)
\(662\) 348.953 93.5016i 0.527119 0.141241i
\(663\) 80.3224 + 21.5223i 0.121150 + 0.0324620i
\(664\) 439.786i 0.662329i
\(665\) −202.434 + 113.626i −0.304412 + 0.170867i
\(666\) −77.7855 −0.116795
\(667\) 161.367 602.231i 0.241930 0.902895i
\(668\) −10.8711 40.5716i −0.0162741 0.0607360i
\(669\) 537.756 + 310.474i 0.803821 + 0.464086i
\(670\) −268.205 355.223i −0.400305 0.530183i
\(671\) 1440.80 2.14724
\(672\) 9.24694 67.9595i 0.0137603 0.101130i
\(673\) −848.161 + 848.161i −1.26027 + 1.26027i −0.309306 + 0.950962i \(0.600097\pi\)
−0.950962 + 0.309306i \(0.899903\pi\)
\(674\) 4.23481 2.44497i 0.00628310 0.00362755i
\(675\) −113.498 + 63.1926i −0.168145 + 0.0936187i
\(676\) 150.373 260.454i 0.222445 0.385286i
\(677\) 196.826 734.564i 0.290732 1.08503i −0.653815 0.756654i \(-0.726833\pi\)
0.944548 0.328374i \(-0.106501\pi\)
\(678\) −212.142 + 212.142i −0.312893 + 0.312893i
\(679\) 49.6761 + 390.398i 0.0731607 + 0.574961i
\(680\) 19.3192 + 156.126i 0.0284106 + 0.229597i
\(681\) 12.0267 + 20.8308i 0.0176603 + 0.0305885i
\(682\) −1055.85 + 282.913i −1.54816 + 0.414828i
\(683\) −59.8436 223.339i −0.0876187 0.326997i 0.908179 0.418583i \(-0.137473\pi\)
−0.995797 + 0.0915857i \(0.970806\pi\)
\(684\) 34.4643 19.8980i 0.0503864 0.0290906i
\(685\) −406.134 + 520.839i −0.592897 + 0.760349i
\(686\) −380.963 300.275i −0.555340 0.437719i
\(687\) 439.718 + 439.718i 0.640055 + 0.640055i
\(688\) −10.8532 2.90812i −0.0157751 0.00422692i
\(689\) 317.933 + 183.559i 0.461442 + 0.266413i
\(690\) −197.215 + 79.8962i −0.285818 + 0.115792i
\(691\) −536.360 929.003i −0.776209 1.34443i −0.934112 0.356979i \(-0.883807\pi\)
0.157904 0.987455i \(-0.449526\pi\)
\(692\) −180.959 180.959i −0.261501 0.261501i
\(693\) 218.009 281.579i 0.314587 0.406319i
\(694\) 746.570i 1.07575i
\(695\) −149.875 198.501i −0.215647 0.285613i
\(696\) 87.9026 152.252i 0.126297 0.218752i
\(697\) −461.612 + 123.689i −0.662285 + 0.177459i
\(698\) 101.121 + 27.0953i 0.144872 + 0.0388185i
\(699\) 367.941i 0.526382i
\(700\) 347.846 38.7688i 0.496923 0.0553840i
\(701\) 708.751 1.01106 0.505528 0.862810i \(-0.331298\pi\)
0.505528 + 0.862810i \(0.331298\pi\)
\(702\) −8.20852 + 30.6346i −0.0116930 + 0.0436391i
\(703\) 31.4736 + 117.461i 0.0447704 + 0.167085i
\(704\) −117.486 67.8305i −0.166883 0.0963502i
\(705\) −302.265 + 228.220i −0.428745 + 0.323717i
\(706\) −405.953 −0.575004
\(707\) −469.652 + 192.155i −0.664289 + 0.271790i
\(708\) −62.2745 + 62.2745i −0.0879584 + 0.0879584i
\(709\) −328.423 + 189.615i −0.463220 + 0.267440i −0.713397 0.700760i \(-0.752844\pi\)
0.250177 + 0.968200i \(0.419511\pi\)
\(710\) −366.302 904.176i −0.515919 1.27349i
\(711\) −61.4817 + 106.489i −0.0864721 + 0.149774i
\(712\) −42.2401 + 157.642i −0.0593260 + 0.221408i
\(713\) −559.957 + 559.957i −0.785354 + 0.785354i
\(714\) −175.900 73.7550i −0.246358 0.103298i
\(715\) −288.575 225.022i −0.403601 0.314716i
\(716\) −148.311 256.882i −0.207138 0.358774i
\(717\) −244.065 + 65.3970i −0.340397 + 0.0912092i
\(718\) 241.375 + 900.824i 0.336177 + 1.25463i
\(719\) −498.664 + 287.904i −0.693552 + 0.400422i −0.804941 0.593355i \(-0.797803\pi\)
0.111390 + 0.993777i \(0.464470\pi\)
\(720\) −59.5459 + 7.36827i −0.0827026 + 0.0102337i
\(721\) 670.605 + 881.838i 0.930103 + 1.22308i
\(722\) 317.008 + 317.008i 0.439069 + 0.439069i
\(723\) −442.923 118.681i −0.612618 0.164150i
\(724\) 244.131 + 140.949i 0.337198 + 0.194681i
\(725\) 862.862 + 245.663i 1.19015 + 0.338845i
\(726\) −203.995 353.330i −0.280985 0.486681i
\(727\) 841.342 + 841.342i 1.15728 + 1.15728i 0.985058 + 0.172220i \(0.0550941\pi\)
0.172220 + 0.985058i \(0.444906\pi\)
\(728\) 52.3124 67.5663i 0.0718577 0.0928109i
\(729\) 27.0000i 0.0370370i
\(730\) 40.9263 30.9007i 0.0560635 0.0423297i
\(731\) −15.6238 + 27.0612i −0.0213732 + 0.0370194i
\(732\) 284.297 76.1771i 0.388384 0.104067i
\(733\) −434.189 116.341i −0.592345 0.158718i −0.0498201 0.998758i \(-0.515865\pi\)
−0.542525 + 0.840040i \(0.682531\pi\)
\(734\) 553.181i 0.753652i
\(735\) −168.821 + 389.325i −0.229689 + 0.529694i
\(736\) −98.2807 −0.133534
\(737\) 276.272 1031.06i 0.374860 1.39900i
\(738\) −47.1743 176.057i −0.0639219 0.238560i
\(739\) 725.131 + 418.655i 0.981233 + 0.566515i 0.902642 0.430392i \(-0.141625\pi\)
0.0785910 + 0.996907i \(0.474958\pi\)
\(740\) 25.3452 181.582i 0.0342503 0.245381i
\(741\) 49.5815 0.0669116
\(742\) −665.828 515.509i −0.897342 0.694756i
\(743\) 241.494 241.494i 0.325025 0.325025i −0.525666 0.850691i \(-0.676184\pi\)
0.850691 + 0.525666i \(0.176184\pi\)
\(744\) −193.380 + 111.648i −0.259920 + 0.150065i
\(745\) 442.812 1045.94i 0.594379 1.40395i
\(746\) −20.7758 + 35.9847i −0.0278495 + 0.0482368i
\(747\) 120.730 450.569i 0.161619 0.603172i
\(748\) −266.772 + 266.772i −0.356647 + 0.356647i
\(749\) 250.595 190.568i 0.334573 0.254430i
\(750\) −110.535 285.538i −0.147380 0.380718i
\(751\) 157.587 + 272.949i 0.209836 + 0.363447i 0.951663 0.307145i \(-0.0993735\pi\)
−0.741826 + 0.670592i \(0.766040\pi\)
\(752\) −168.975 + 45.2766i −0.224700 + 0.0602083i
\(753\) −135.322 505.028i −0.179710 0.670688i
\(754\) 189.690 109.517i 0.251578 0.145248i
\(755\) −122.151 987.147i −0.161789 1.30748i
\(756\) 28.1298 67.0873i 0.0372088 0.0887399i
\(757\) −650.017 650.017i −0.858675 0.858675i 0.132507 0.991182i \(-0.457697\pi\)
−0.991182 + 0.132507i \(0.957697\pi\)
\(758\) −641.890 171.994i −0.846821 0.226905i
\(759\) −441.926 255.146i −0.582248 0.336161i
\(760\) 35.2200 + 86.9366i 0.0463421 + 0.114390i
\(761\) 349.979 + 606.182i 0.459894 + 0.796560i 0.998955 0.0457070i \(-0.0145541\pi\)
−0.539061 + 0.842267i \(0.681221\pi\)
\(762\) 112.984 + 112.984i 0.148274 + 0.148274i
\(763\) −254.100 621.054i −0.333028 0.813964i