Properties

Label 210.3.v.a.67.5
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.5
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.a.163.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-4.09442 - 2.86979i) q^{5} +2.44949 q^{6} +(-3.46105 + 6.08450i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(0.448288 + 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-4.09442 - 2.86979i) q^{5} +2.44949 q^{6} +(-3.46105 + 6.08450i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-5.41887 + 4.54267i) q^{10} +(-5.62423 + 9.74146i) q^{11} +(0.896575 - 3.34607i) q^{12} +(-5.84142 + 5.84142i) q^{13} +(7.04475 + 6.95496i) q^{14} +(2.96578 - 8.13659i) q^{15} +(2.00000 + 3.46410i) q^{16} +(24.8241 - 6.65160i) q^{17} +(1.09808 + 4.09808i) q^{18} +(-27.5095 + 15.8826i) q^{19} +(4.22195 + 9.06505i) q^{20} +(-11.7311 - 3.06284i) q^{21} +(11.2485 + 11.2485i) q^{22} +(-39.8193 - 10.6696i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(8.52858 + 23.5003i) q^{25} +(5.84142 + 10.1176i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(12.0792 - 7.07761i) q^{28} +8.29704i q^{29} +(-10.0292 - 7.02953i) q^{30} +(6.00177 - 10.3954i) q^{31} +(5.46410 - 1.46410i) q^{32} +(-18.8190 - 5.04255i) q^{33} -36.3450i q^{34} +(31.6323 - 14.9800i) q^{35} +6.00000 q^{36} +(6.32737 - 23.6141i) q^{37} +(11.6269 + 43.3921i) q^{38} +(-12.3915 - 7.15424i) q^{39} +(13.9284 - 2.44926i) q^{40} +42.9567 q^{41} +(-8.47781 + 14.9039i) q^{42} +(-37.4962 + 37.4962i) q^{43} +(19.4829 - 11.2485i) q^{44} +(14.9423 + 1.31431i) q^{45} +(-29.1498 + 50.4889i) q^{46} +(9.60246 - 35.8369i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-25.0423 - 42.1175i) q^{49} +(35.2237 - 3.04855i) q^{50} +(22.2567 + 38.5497i) q^{51} +(15.9590 - 4.27621i) q^{52} +(-2.96326 - 11.0590i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(50.9839 - 23.7452i) q^{55} +(-5.24690 - 19.0911i) q^{56} +(-38.9043 - 38.9043i) q^{57} +(11.3340 + 3.03693i) q^{58} +(52.5762 + 30.3549i) q^{59} +(-13.2735 + 11.1272i) q^{60} +(18.8287 + 32.6122i) q^{61} +(-12.0035 - 12.0035i) q^{62} +(-0.134677 - 20.9996i) q^{63} -8.00000i q^{64} +(40.6809 - 7.15356i) q^{65} +(-13.7765 + 23.8616i) q^{66} +(-78.8176 + 21.1191i) q^{67} +(-49.6482 - 13.3032i) q^{68} -71.4020i q^{69} +(-8.88486 - 48.6935i) q^{70} +1.19909 q^{71} +(2.19615 - 8.19615i) q^{72} +(-18.5123 - 69.0889i) q^{73} +(-29.9414 - 17.2867i) q^{74} +(-35.4935 + 24.8035i) q^{75} +63.5304 q^{76} +(-39.8061 - 67.9363i) q^{77} +(-14.3085 + 14.3085i) q^{78} +(-71.0156 + 41.0009i) q^{79} +(1.75241 - 19.9231i) q^{80} +(4.50000 - 7.79423i) q^{81} +(15.7232 - 58.6799i) q^{82} +(103.192 - 103.192i) q^{83} +(17.2560 + 17.0361i) q^{84} +(-120.729 - 44.0056i) q^{85} +(37.4962 + 64.9454i) q^{86} +(-13.8812 + 3.71946i) q^{87} +(-8.23445 - 30.7314i) q^{88} +(-12.6471 + 7.30178i) q^{89} +(7.26464 - 19.9305i) q^{90} +(-15.3247 - 55.7595i) q^{91} +(58.2995 + 58.2995i) q^{92} +(20.0823 + 5.38104i) q^{93} +(-45.4393 - 26.2344i) q^{94} +(158.215 + 13.9164i) q^{95} +(4.89898 + 8.48528i) q^{96} +(24.6424 + 24.6424i) q^{97} +(-66.6997 + 18.7923i) q^{98} -33.7454i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) 0.448288 + 1.67303i 0.149429 + 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −4.09442 2.86979i −0.818884 0.573959i
\(6\) 2.44949 0.408248
\(7\) −3.46105 + 6.08450i −0.494436 + 0.869214i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −5.41887 + 4.54267i −0.541887 + 0.454267i
\(11\) −5.62423 + 9.74146i −0.511294 + 0.885587i 0.488620 + 0.872496i \(0.337500\pi\)
−0.999914 + 0.0130905i \(0.995833\pi\)
\(12\) 0.896575 3.34607i 0.0747146 0.278839i
\(13\) −5.84142 + 5.84142i −0.449340 + 0.449340i −0.895135 0.445795i \(-0.852921\pi\)
0.445795 + 0.895135i \(0.352921\pi\)
\(14\) 7.04475 + 6.95496i 0.503196 + 0.496783i
\(15\) 2.96578 8.13659i 0.197719 0.542440i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 24.8241 6.65160i 1.46024 0.391270i 0.560668 0.828041i \(-0.310544\pi\)
0.899573 + 0.436770i \(0.143878\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) −27.5095 + 15.8826i −1.44787 + 0.835926i −0.998354 0.0573477i \(-0.981736\pi\)
−0.449513 + 0.893274i \(0.648402\pi\)
\(20\) 4.22195 + 9.06505i 0.211098 + 0.453252i
\(21\) −11.7311 3.06284i −0.558624 0.145850i
\(22\) 11.2485 + 11.2485i 0.511294 + 0.511294i
\(23\) −39.8193 10.6696i −1.73127 0.463894i −0.750798 0.660532i \(-0.770331\pi\)
−0.980476 + 0.196638i \(0.936998\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 8.52858 + 23.5003i 0.341143 + 0.940011i
\(26\) 5.84142 + 10.1176i 0.224670 + 0.389140i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 12.0792 7.07761i 0.431400 0.252772i
\(29\) 8.29704i 0.286105i 0.989715 + 0.143052i \(0.0456917\pi\)
−0.989715 + 0.143052i \(0.954308\pi\)
\(30\) −10.0292 7.02953i −0.334308 0.234318i
\(31\) 6.00177 10.3954i 0.193605 0.335334i −0.752837 0.658207i \(-0.771315\pi\)
0.946442 + 0.322873i \(0.104649\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) −18.8190 5.04255i −0.570274 0.152805i
\(34\) 36.3450i 1.06897i
\(35\) 31.6323 14.9800i 0.903779 0.428000i
\(36\) 6.00000 0.166667
\(37\) 6.32737 23.6141i 0.171010 0.638218i −0.826187 0.563396i \(-0.809495\pi\)
0.997197 0.0748217i \(-0.0238388\pi\)
\(38\) 11.6269 + 43.3921i 0.305970 + 1.14190i
\(39\) −12.3915 7.15424i −0.317731 0.183442i
\(40\) 13.9284 2.44926i 0.348211 0.0612314i
\(41\) 42.9567 1.04772 0.523862 0.851803i \(-0.324491\pi\)
0.523862 + 0.851803i \(0.324491\pi\)
\(42\) −8.47781 + 14.9039i −0.201853 + 0.354855i
\(43\) −37.4962 + 37.4962i −0.872005 + 0.872005i −0.992691 0.120685i \(-0.961491\pi\)
0.120685 + 0.992691i \(0.461491\pi\)
\(44\) 19.4829 11.2485i 0.442793 0.255647i
\(45\) 14.9423 + 1.31431i 0.332051 + 0.0292069i
\(46\) −29.1498 + 50.4889i −0.633690 + 1.09758i
\(47\) 9.60246 35.8369i 0.204308 0.762487i −0.785352 0.619050i \(-0.787518\pi\)
0.989659 0.143437i \(-0.0458154\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −25.0423 42.1175i −0.511067 0.859541i
\(50\) 35.2237 3.04855i 0.704473 0.0609710i
\(51\) 22.2567 + 38.5497i 0.436405 + 0.755876i
\(52\) 15.9590 4.27621i 0.306905 0.0822349i
\(53\) −2.96326 11.0590i −0.0559106 0.208661i 0.932320 0.361635i \(-0.117781\pi\)
−0.988230 + 0.152974i \(0.951115\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) 50.9839 23.7452i 0.926981 0.431732i
\(56\) −5.24690 19.0911i −0.0936946 0.340912i
\(57\) −38.9043 38.9043i −0.682531 0.682531i
\(58\) 11.3340 + 3.03693i 0.195413 + 0.0523608i
\(59\) 52.5762 + 30.3549i 0.891121 + 0.514489i 0.874309 0.485370i \(-0.161315\pi\)
0.0168122 + 0.999859i \(0.494648\pi\)
\(60\) −13.2735 + 11.1272i −0.221225 + 0.185454i
\(61\) 18.8287 + 32.6122i 0.308667 + 0.534627i 0.978071 0.208272i \(-0.0667839\pi\)
−0.669404 + 0.742898i \(0.733451\pi\)
\(62\) −12.0035 12.0035i −0.193605 0.193605i
\(63\) −0.134677 20.9996i −0.00213774 0.333326i
\(64\) 8.00000i 0.125000i
\(65\) 40.6809 7.15356i 0.625860 0.110055i
\(66\) −13.7765 + 23.8616i −0.208735 + 0.361539i
\(67\) −78.8176 + 21.1191i −1.17638 + 0.315211i −0.793491 0.608583i \(-0.791738\pi\)
−0.382892 + 0.923793i \(0.625072\pi\)
\(68\) −49.6482 13.3032i −0.730120 0.195635i
\(69\) 71.4020i 1.03481i
\(70\) −8.88486 48.6935i −0.126927 0.695622i
\(71\) 1.19909 0.0168886 0.00844432 0.999964i \(-0.497312\pi\)
0.00844432 + 0.999964i \(0.497312\pi\)
\(72\) 2.19615 8.19615i 0.0305021 0.113835i
\(73\) −18.5123 69.0889i −0.253593 0.946423i −0.968868 0.247579i \(-0.920365\pi\)
0.715274 0.698844i \(-0.246302\pi\)
\(74\) −29.9414 17.2867i −0.404614 0.233604i
\(75\) −35.4935 + 24.8035i −0.473247 + 0.330713i
\(76\) 63.5304 0.835926
\(77\) −39.8061 67.9363i −0.516963 0.882290i
\(78\) −14.3085 + 14.3085i −0.183442 + 0.183442i
\(79\) −71.0156 + 41.0009i −0.898932 + 0.518999i −0.876854 0.480757i \(-0.840362\pi\)
−0.0220786 + 0.999756i \(0.507028\pi\)
\(80\) 1.75241 19.9231i 0.0219051 0.249038i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 15.7232 58.6799i 0.191747 0.715609i
\(83\) 103.192 103.192i 1.24328 1.24328i 0.284651 0.958631i \(-0.408122\pi\)
0.958631 0.284651i \(-0.0918777\pi\)
\(84\) 17.2560 + 17.0361i 0.205429 + 0.202811i
\(85\) −120.729 44.0056i −1.42034 0.517713i
\(86\) 37.4962 + 64.9454i 0.436003 + 0.755179i
\(87\) −13.8812 + 3.71946i −0.159554 + 0.0427524i
\(88\) −8.23445 30.7314i −0.0935733 0.349220i
\(89\) −12.6471 + 7.30178i −0.142102 + 0.0820425i −0.569365 0.822085i \(-0.692811\pi\)
0.427264 + 0.904127i \(0.359478\pi\)
\(90\) 7.26464 19.9305i 0.0807183 0.221450i
\(91\) −15.3247 55.7595i −0.168403 0.612742i
\(92\) 58.2995 + 58.2995i 0.633690 + 0.633690i
\(93\) 20.0823 + 5.38104i 0.215939 + 0.0578606i
\(94\) −45.4393 26.2344i −0.483397 0.279090i
\(95\) 158.215 + 13.9164i 1.66542 + 0.146489i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) 24.6424 + 24.6424i 0.254045 + 0.254045i 0.822627 0.568582i \(-0.192508\pi\)
−0.568582 + 0.822627i \(0.692508\pi\)
\(98\) −66.6997 + 18.7923i −0.680609 + 0.191758i
\(99\) 33.7454i 0.340863i
\(100\) 8.72836 49.2323i 0.0872836 0.492323i
\(101\) −80.5667 + 139.546i −0.797690 + 1.38164i 0.123427 + 0.992354i \(0.460612\pi\)
−0.921117 + 0.389286i \(0.872722\pi\)
\(102\) 60.8064 16.2930i 0.596141 0.159735i
\(103\) −65.6221 17.5834i −0.637108 0.170712i −0.0742147 0.997242i \(-0.523645\pi\)
−0.562893 + 0.826530i \(0.690312\pi\)
\(104\) 23.3657i 0.224670i
\(105\) 39.2424 + 46.2064i 0.373737 + 0.440061i
\(106\) −16.1916 −0.152751
\(107\) −7.60901 + 28.3972i −0.0711122 + 0.265394i −0.992324 0.123668i \(-0.960534\pi\)
0.921211 + 0.389062i \(0.127201\pi\)
\(108\) 2.68973 + 10.0382i 0.0249049 + 0.0929463i
\(109\) 147.093 + 84.9242i 1.34948 + 0.779121i 0.988175 0.153327i \(-0.0489989\pi\)
0.361302 + 0.932449i \(0.382332\pi\)
\(110\) −13.7752 78.3367i −0.125229 0.712152i
\(111\) 42.3436 0.381473
\(112\) −27.9994 + 0.179570i −0.249995 + 0.00160330i
\(113\) −79.5633 + 79.5633i −0.704100 + 0.704100i −0.965288 0.261188i \(-0.915886\pi\)
0.261188 + 0.965288i \(0.415886\pi\)
\(114\) −67.3842 + 38.9043i −0.591089 + 0.341265i
\(115\) 132.418 + 157.959i 1.15146 + 1.37355i
\(116\) 8.29704 14.3709i 0.0715262 0.123887i
\(117\) 6.41432 23.9386i 0.0548232 0.204603i
\(118\) 60.7097 60.7097i 0.514489 0.514489i
\(119\) −45.4458 + 174.064i −0.381897 + 1.46272i
\(120\) 10.3416 + 22.2047i 0.0861803 + 0.185040i
\(121\) −2.76398 4.78736i −0.0228428 0.0395649i
\(122\) 51.4409 13.7835i 0.421647 0.112980i
\(123\) 19.2569 + 71.8679i 0.156561 + 0.584292i
\(124\) −20.7907 + 12.0035i −0.167667 + 0.0968027i
\(125\) 32.5214 120.695i 0.260171 0.965563i
\(126\) −28.7352 7.50240i −0.228057 0.0595429i
\(127\) 76.9204 + 76.9204i 0.605673 + 0.605673i 0.941812 0.336140i \(-0.109121\pi\)
−0.336140 + 0.941812i \(0.609121\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) −79.5415 45.9233i −0.616601 0.355995i
\(130\) 5.11828 58.1895i 0.0393714 0.447611i
\(131\) 89.9974 + 155.880i 0.687003 + 1.18992i 0.972803 + 0.231635i \(0.0744074\pi\)
−0.285800 + 0.958289i \(0.592259\pi\)
\(132\) 27.5530 + 27.5530i 0.208735 + 0.208735i
\(133\) −1.42602 222.352i −0.0107219 1.67182i
\(134\) 115.397i 0.861172i
\(135\) 4.49957 + 25.5882i 0.0333302 + 0.189542i
\(136\) −36.3450 + 62.9514i −0.267243 + 0.462878i
\(137\) −226.592 + 60.7150i −1.65395 + 0.443175i −0.960716 0.277534i \(-0.910483\pi\)
−0.693237 + 0.720709i \(0.743816\pi\)
\(138\) −97.5370 26.1350i −0.706790 0.189384i
\(139\) 224.218i 1.61308i 0.591182 + 0.806538i \(0.298661\pi\)
−0.591182 + 0.806538i \(0.701339\pi\)
\(140\) −69.7687 5.68612i −0.498348 0.0406151i
\(141\) 64.2609 0.455751
\(142\) 0.438899 1.63799i 0.00309083 0.0115352i
\(143\) −24.0504 89.7574i −0.168185 0.627674i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) 23.8108 33.9716i 0.164212 0.234287i
\(146\) −101.153 −0.692830
\(147\) 59.2378 60.7773i 0.402978 0.413451i
\(148\) −34.5734 + 34.5734i −0.233604 + 0.233604i
\(149\) 99.1675 57.2544i 0.665554 0.384258i −0.128836 0.991666i \(-0.541124\pi\)
0.794390 + 0.607408i \(0.207791\pi\)
\(150\) 20.8907 + 57.5637i 0.139271 + 0.383758i
\(151\) −48.4855 + 83.9793i −0.321096 + 0.556154i −0.980714 0.195446i \(-0.937385\pi\)
0.659619 + 0.751601i \(0.270718\pi\)
\(152\) 23.2537 86.7841i 0.152985 0.570948i
\(153\) −54.5175 + 54.5175i −0.356324 + 0.356324i
\(154\) −107.373 + 29.5098i −0.697226 + 0.191622i
\(155\) −54.4063 + 25.3392i −0.351008 + 0.163479i
\(156\) 14.3085 + 24.7830i 0.0917211 + 0.158866i
\(157\) 124.509 33.3622i 0.793052 0.212498i 0.160521 0.987032i \(-0.448683\pi\)
0.632531 + 0.774535i \(0.282016\pi\)
\(158\) 30.0147 + 112.017i 0.189967 + 0.708965i
\(159\) 17.1737 9.91526i 0.108011 0.0623602i
\(160\) −26.5740 9.68619i −0.166088 0.0605387i
\(161\) 202.735 205.353i 1.25923 1.27548i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 248.548 + 66.5982i 1.52483 + 0.408578i 0.921329 0.388783i \(-0.127104\pi\)
0.603503 + 0.797360i \(0.293771\pi\)
\(164\) −74.4031 42.9567i −0.453678 0.261931i
\(165\) 62.5820 + 74.6531i 0.379285 + 0.452443i
\(166\) −103.192 178.735i −0.621641 1.07671i
\(167\) −20.8857 20.8857i −0.125064 0.125064i 0.641804 0.766868i \(-0.278186\pi\)
−0.766868 + 0.641804i \(0.778186\pi\)
\(168\) 29.5879 17.3365i 0.176119 0.103194i
\(169\) 100.756i 0.596188i
\(170\) −104.303 + 148.812i −0.613545 + 0.875363i
\(171\) 47.6478 82.5284i 0.278642 0.482622i
\(172\) 102.442 27.4491i 0.595591 0.159588i
\(173\) −208.410 55.8433i −1.20468 0.322794i −0.400009 0.916511i \(-0.630993\pi\)
−0.804673 + 0.593718i \(0.797660\pi\)
\(174\) 20.3235i 0.116802i
\(175\) −172.505 29.4436i −0.985745 0.168249i
\(176\) −44.9939 −0.255647
\(177\) −27.2154 + 101.569i −0.153759 + 0.573838i
\(178\) 5.34528 + 19.9488i 0.0300296 + 0.112072i
\(179\) −132.468 76.4803i −0.740044 0.427264i 0.0820415 0.996629i \(-0.473856\pi\)
−0.822085 + 0.569364i \(0.807189\pi\)
\(180\) −24.5665 17.2188i −0.136481 0.0956598i
\(181\) −61.7819 −0.341336 −0.170668 0.985329i \(-0.554593\pi\)
−0.170668 + 0.985329i \(0.554593\pi\)
\(182\) −81.7781 + 0.524471i −0.449330 + 0.00288171i
\(183\) −46.1206 + 46.1206i −0.252025 + 0.252025i
\(184\) 100.978 58.2995i 0.548792 0.316845i
\(185\) −93.6743 + 78.5276i −0.506348 + 0.424474i
\(186\) 14.7013 25.4633i 0.0790390 0.136900i
\(187\) −74.8202 + 279.233i −0.400108 + 1.49322i
\(188\) −52.4688 + 52.4688i −0.279090 + 0.279090i
\(189\) 35.0726 9.63917i 0.185569 0.0510009i
\(190\) 76.9210 211.032i 0.404847 1.11070i
\(191\) 11.1433 + 19.3007i 0.0583417 + 0.101051i 0.893721 0.448623i \(-0.148085\pi\)
−0.835379 + 0.549674i \(0.814752\pi\)
\(192\) 13.3843 3.58630i 0.0697097 0.0186787i
\(193\) 60.8969 + 227.270i 0.315528 + 1.17757i 0.923497 + 0.383606i \(0.125318\pi\)
−0.607969 + 0.793961i \(0.708016\pi\)
\(194\) 42.6818 24.6424i 0.220009 0.127023i
\(195\) 30.2049 + 64.8536i 0.154897 + 0.332582i
\(196\) 1.25696 + 97.9919i 0.00641308 + 0.499959i
\(197\) −144.812 144.812i −0.735086 0.735086i 0.236537 0.971623i \(-0.423988\pi\)
−0.971623 + 0.236537i \(0.923988\pi\)
\(198\) −46.0971 12.3517i −0.232813 0.0623822i
\(199\) −166.521 96.1408i −0.836787 0.483119i 0.0193836 0.999812i \(-0.493830\pi\)
−0.856171 + 0.516693i \(0.827163\pi\)
\(200\) −64.0577 29.9434i −0.320289 0.149717i
\(201\) −70.6659 122.397i −0.351572 0.608940i
\(202\) 161.133 + 161.133i 0.797690 + 0.797690i
\(203\) −50.4833 28.7165i −0.248686 0.141460i
\(204\) 89.0267i 0.436405i
\(205\) −175.883 123.277i −0.857964 0.601350i
\(206\) −48.0387 + 83.2055i −0.233198 + 0.403910i
\(207\) 119.458 32.0087i 0.577091 0.154631i
\(208\) −31.9181 8.55243i −0.153452 0.0411174i
\(209\) 357.310i 1.70962i
\(210\) 77.4829 36.6934i 0.368966 0.174730i
\(211\) −1.49392 −0.00708017 −0.00354009 0.999994i \(-0.501127\pi\)
−0.00354009 + 0.999994i \(0.501127\pi\)
\(212\) −5.92652 + 22.1181i −0.0279553 + 0.104331i
\(213\) 0.537539 + 2.00612i 0.00252366 + 0.00941841i
\(214\) 36.0062 + 20.7882i 0.168253 + 0.0971411i
\(215\) 261.132 45.9189i 1.21457 0.213576i
\(216\) 14.6969 0.0680414
\(217\) 42.4782 + 72.4966i 0.195752 + 0.334086i
\(218\) 169.848 169.848i 0.779121 0.779121i
\(219\) 107.289 61.9434i 0.489905 0.282847i
\(220\) −112.052 9.85597i −0.509327 0.0447999i
\(221\) −106.153 + 183.863i −0.480331 + 0.831957i
\(222\) 15.4988 57.8424i 0.0698145 0.260551i
\(223\) 186.552 186.552i 0.836555 0.836555i −0.151849 0.988404i \(-0.548523\pi\)
0.988404 + 0.151849i \(0.0485227\pi\)
\(224\) −10.0032 + 38.3137i −0.0446572 + 0.171043i
\(225\) −57.4083 48.2627i −0.255148 0.214501i
\(226\) 79.5633 + 137.808i 0.352050 + 0.609769i
\(227\) −44.7381 + 11.9875i −0.197084 + 0.0528085i −0.356011 0.934482i \(-0.615863\pi\)
0.158927 + 0.987290i \(0.449197\pi\)
\(228\) 28.4799 + 106.288i 0.124912 + 0.466177i
\(229\) −146.091 + 84.3456i −0.637951 + 0.368321i −0.783825 0.620982i \(-0.786734\pi\)
0.145874 + 0.989303i \(0.453401\pi\)
\(230\) 264.244 123.069i 1.14889 0.535082i
\(231\) 95.8151 97.0520i 0.414784 0.420138i
\(232\) −16.5941 16.5941i −0.0715262 0.0715262i
\(233\) 214.579 + 57.4964i 0.920942 + 0.246766i 0.687988 0.725722i \(-0.258494\pi\)
0.232954 + 0.972488i \(0.425161\pi\)
\(234\) −30.3529 17.5242i −0.129713 0.0748899i
\(235\) −142.161 + 119.174i −0.604940 + 0.507124i
\(236\) −60.7097 105.152i −0.257245 0.445561i
\(237\) −100.431 100.431i −0.423761 0.423761i
\(238\) 221.141 + 125.792i 0.929164 + 0.528537i
\(239\) 42.6023i 0.178252i 0.996020 + 0.0891262i \(0.0284074\pi\)
−0.996020 + 0.0891262i \(0.971593\pi\)
\(240\) 34.1175 5.99943i 0.142156 0.0249976i
\(241\) 110.433 191.275i 0.458227 0.793672i −0.540641 0.841254i \(-0.681818\pi\)
0.998867 + 0.0475819i \(0.0151515\pi\)
\(242\) −7.55134 + 2.02337i −0.0312039 + 0.00836105i
\(243\) 15.0573 + 4.03459i 0.0619642 + 0.0166032i
\(244\) 75.3147i 0.308667i
\(245\) −18.3350 + 244.313i −0.0748366 + 0.997196i
\(246\) 105.222 0.427731
\(247\) 67.9174 253.471i 0.274969 1.02620i
\(248\) 8.78719 + 32.7943i 0.0354322 + 0.132235i
\(249\) 218.904 + 126.384i 0.879133 + 0.507568i
\(250\) −152.969 88.6026i −0.611877 0.354410i
\(251\) −165.088 −0.657720 −0.328860 0.944379i \(-0.606664\pi\)
−0.328860 + 0.944379i \(0.606664\pi\)
\(252\) −20.7663 + 36.5070i −0.0824060 + 0.144869i
\(253\) 327.890 327.890i 1.29601 1.29601i
\(254\) 133.230 76.9204i 0.524528 0.302836i
\(255\) 19.5014 221.711i 0.0764762 0.869454i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 32.9883 123.114i 0.128359 0.479042i −0.871578 0.490257i \(-0.836903\pi\)
0.999937 + 0.0112144i \(0.00356974\pi\)
\(258\) −91.8466 + 91.8466i −0.355995 + 0.355995i
\(259\) 121.780 + 120.228i 0.470194 + 0.464202i
\(260\) −77.6149 28.2905i −0.298519 0.108810i
\(261\) −12.4456 21.5563i −0.0476841 0.0825913i
\(262\) 245.877 65.8827i 0.938463 0.251461i
\(263\) −113.007 421.747i −0.429683 1.60360i −0.753479 0.657472i \(-0.771626\pi\)
0.323796 0.946127i \(-0.395041\pi\)
\(264\) 47.7232 27.5530i 0.180770 0.104367i
\(265\) −19.6043 + 53.7843i −0.0739786 + 0.202960i
\(266\) −304.260 79.4384i −1.14384 0.298641i
\(267\) −17.8856 17.8856i −0.0669874 0.0669874i
\(268\) 157.635 + 42.2382i 0.588191 + 0.157605i
\(269\) −8.01022 4.62470i −0.0297778 0.0171922i 0.485037 0.874494i \(-0.338806\pi\)
−0.514815 + 0.857301i \(0.672139\pi\)
\(270\) 36.6010 + 3.21939i 0.135559 + 0.0119237i
\(271\) 48.2949 + 83.6492i 0.178210 + 0.308669i 0.941267 0.337662i \(-0.109636\pi\)
−0.763058 + 0.646331i \(0.776303\pi\)
\(272\) 72.6900 + 72.6900i 0.267243 + 0.267243i
\(273\) 86.4176 50.6350i 0.316548 0.185476i
\(274\) 331.753i 1.21078i
\(275\) −276.894 49.0903i −1.00689 0.178510i
\(276\) −71.4020 + 123.672i −0.258703 + 0.448087i
\(277\) −146.599 + 39.2810i −0.529237 + 0.141809i −0.513536 0.858068i \(-0.671665\pi\)
−0.0157013 + 0.999877i \(0.504998\pi\)
\(278\) 306.287 + 82.0693i 1.10175 + 0.295213i
\(279\) 36.0106i 0.129070i
\(280\) −33.3045 + 93.2245i −0.118945 + 0.332945i
\(281\) −52.8654 −0.188133 −0.0940665 0.995566i \(-0.529987\pi\)
−0.0940665 + 0.995566i \(0.529987\pi\)
\(282\) 23.5211 87.7821i 0.0834083 0.311284i
\(283\) 42.6656 + 159.230i 0.150762 + 0.562651i 0.999431 + 0.0337273i \(0.0107378\pi\)
−0.848669 + 0.528924i \(0.822596\pi\)
\(284\) −2.07689 1.19909i −0.00731299 0.00422216i
\(285\) 47.6433 + 270.938i 0.167169 + 0.950658i
\(286\) −131.414 −0.459489
\(287\) −148.675 + 261.370i −0.518032 + 0.910696i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 321.711 185.740i 1.11319 0.642698i
\(290\) −37.6907 44.9606i −0.129968 0.155037i
\(291\) −30.1806 + 52.2744i −0.103713 + 0.179637i
\(292\) −37.0246 + 138.178i −0.126797 + 0.473212i
\(293\) −251.280 + 251.280i −0.857612 + 0.857612i −0.991056 0.133445i \(-0.957396\pi\)
0.133445 + 0.991056i \(0.457396\pi\)
\(294\) −61.3408 103.166i −0.208642 0.350906i
\(295\) −128.157 275.168i −0.434430 0.932774i
\(296\) 34.5734 + 59.8828i 0.116802 + 0.202307i
\(297\) 56.4571 15.1276i 0.190091 0.0509348i
\(298\) −41.9131 156.422i −0.140648 0.524906i
\(299\) 294.926 170.276i 0.986376 0.569484i
\(300\) 86.2800 7.46739i 0.287600 0.0248913i
\(301\) −98.3695 357.922i −0.326809 1.18911i
\(302\) 96.9710 + 96.9710i 0.321096 + 0.321096i
\(303\) −269.581 72.2341i −0.889708 0.238396i
\(304\) −110.038 63.5304i −0.361967 0.208982i
\(305\) 16.4978 187.563i 0.0540911 0.614959i
\(306\) 54.5175 + 94.4271i 0.178162 + 0.308585i
\(307\) 279.604 + 279.604i 0.910762 + 0.910762i 0.996332 0.0855701i \(-0.0272712\pi\)
−0.0855701 + 0.996332i \(0.527271\pi\)
\(308\) 1.00994 + 157.475i 0.00327903 + 0.511283i
\(309\) 117.670i 0.380810i
\(310\) 14.6999 + 83.5952i 0.0474189 + 0.269662i
\(311\) 215.478 373.218i 0.692854 1.20006i −0.278045 0.960568i \(-0.589686\pi\)
0.970899 0.239490i \(-0.0769803\pi\)
\(312\) 39.0915 10.4745i 0.125293 0.0335722i
\(313\) −162.483 43.5371i −0.519114 0.139096i −0.0102571 0.999947i \(-0.503265\pi\)
−0.508857 + 0.860851i \(0.669932\pi\)
\(314\) 182.294i 0.580555i
\(315\) −59.7130 + 86.3676i −0.189565 + 0.274183i
\(316\) 164.004 0.518999
\(317\) 44.9330 167.692i 0.141744 0.528997i −0.858134 0.513425i \(-0.828376\pi\)
0.999879 0.0155721i \(-0.00495695\pi\)
\(318\) −7.25848 27.0890i −0.0228254 0.0851856i
\(319\) −80.8252 46.6645i −0.253371 0.146284i
\(320\) −22.9583 + 32.7554i −0.0717448 + 0.102361i
\(321\) −50.9205 −0.158631
\(322\) −206.311 352.106i −0.640716 1.09350i
\(323\) −577.253 + 577.253i −1.78716 + 1.78716i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −187.094 87.4560i −0.575674 0.269095i
\(326\) 181.950 315.146i 0.558128 0.966705i
\(327\) −76.1410 + 284.162i −0.232847 + 0.868997i
\(328\) −85.9133 + 85.9133i −0.261931 + 0.261931i
\(329\) 184.815 + 182.459i 0.561747 + 0.554588i
\(330\) 124.885 58.1637i 0.378438 0.176254i
\(331\) −201.616 349.209i −0.609112 1.05501i −0.991387 0.130964i \(-0.958193\pi\)
0.382275 0.924048i \(-0.375141\pi\)
\(332\) −281.927 + 75.5421i −0.849178 + 0.227536i
\(333\) 18.9821 + 70.8422i 0.0570033 + 0.212739i
\(334\) −36.1751 + 20.8857i −0.108309 + 0.0625320i
\(335\) 383.320 + 139.720i 1.14424 + 0.417074i
\(336\) −12.8522 46.7635i −0.0382507 0.139177i
\(337\) −140.687 140.687i −0.417468 0.417468i 0.466862 0.884330i \(-0.345385\pi\)
−0.884330 + 0.466862i \(0.845385\pi\)
\(338\) 137.635 + 36.8792i 0.407204 + 0.109110i
\(339\) −168.779 97.4448i −0.497874 0.287448i
\(340\) 165.103 + 196.949i 0.485598 + 0.579261i
\(341\) 67.5106 + 116.932i 0.197978 + 0.342909i
\(342\) −95.2956 95.2956i −0.278642 0.278642i
\(343\) 342.937 6.59883i 0.999815 0.0192386i
\(344\) 149.985i 0.436003i
\(345\) −204.909 + 292.350i −0.593939 + 0.847391i
\(346\) −152.567 + 264.253i −0.440944 + 0.763738i
\(347\) −425.251 + 113.946i −1.22551 + 0.328373i −0.812828 0.582503i \(-0.802073\pi\)
−0.412678 + 0.910877i \(0.635407\pi\)
\(348\) 27.7624 + 7.43892i 0.0797771 + 0.0213762i
\(349\) 283.692i 0.812870i 0.913680 + 0.406435i \(0.133228\pi\)
−0.913680 + 0.406435i \(0.866772\pi\)
\(350\) −103.362 + 224.870i −0.295320 + 0.642484i
\(351\) 42.9255 0.122295
\(352\) −16.4689 + 61.4628i −0.0467866 + 0.174610i
\(353\) −14.1270 52.7227i −0.0400199 0.149356i 0.943025 0.332722i \(-0.107967\pi\)
−0.983045 + 0.183366i \(0.941301\pi\)
\(354\) 128.785 + 74.3539i 0.363799 + 0.210039i
\(355\) −4.90959 3.44115i −0.0138298 0.00969338i
\(356\) 29.2071 0.0820425
\(357\) −311.587 + 1.99831i −0.872793 + 0.00559752i
\(358\) −152.961 + 152.961i −0.427264 + 0.427264i
\(359\) −255.462 + 147.491i −0.711594 + 0.410839i −0.811651 0.584143i \(-0.801431\pi\)
0.100057 + 0.994982i \(0.468097\pi\)
\(360\) −32.5132 + 27.2560i −0.0903145 + 0.0757111i
\(361\) 324.014 561.209i 0.897546 1.55459i
\(362\) −22.6137 + 84.3956i −0.0624689 + 0.233137i
\(363\) 6.77034 6.77034i 0.0186511 0.0186511i
\(364\) −29.2164 + 111.903i −0.0802649 + 0.307426i
\(365\) −122.474 + 336.006i −0.335544 + 0.920563i
\(366\) 46.1206 + 79.8833i 0.126013 + 0.218260i
\(367\) −9.37230 + 2.51130i −0.0255376 + 0.00684278i −0.271565 0.962420i \(-0.587541\pi\)
0.246028 + 0.969263i \(0.420875\pi\)
\(368\) −42.6782 159.277i −0.115973 0.432819i
\(369\) −111.605 + 64.4350i −0.302452 + 0.174621i
\(370\) 72.9836 + 156.705i 0.197253 + 0.423526i
\(371\) 77.5447 + 20.2459i 0.209015 + 0.0545712i
\(372\) −29.4025 29.4025i −0.0790390 0.0790390i
\(373\) 11.8859 + 3.18482i 0.0318658 + 0.00853840i 0.274717 0.961525i \(-0.411416\pi\)
−0.242851 + 0.970064i \(0.578083\pi\)
\(374\) 354.053 + 204.413i 0.946666 + 0.546558i
\(375\) 216.506 + 0.303090i 0.577350 + 0.000808239i
\(376\) 52.4688 + 90.8787i 0.139545 + 0.241699i
\(377\) −48.4665 48.4665i −0.128558 0.128558i
\(378\) −0.329891 51.4382i −0.000872727 0.136080i
\(379\) 287.766i 0.759278i −0.925135 0.379639i \(-0.876048\pi\)
0.925135 0.379639i \(-0.123952\pi\)
\(380\) −260.120 182.319i −0.684527 0.479787i
\(381\) −94.2079 + 163.173i −0.247265 + 0.428275i
\(382\) 30.4440 8.15744i 0.0796963 0.0213546i
\(383\) 625.764 + 167.673i 1.63385 + 0.437788i 0.955028 0.296516i \(-0.0958249\pi\)
0.678820 + 0.734305i \(0.262492\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −31.9800 + 392.395i −0.0830651 + 1.01921i
\(386\) 332.747 0.862038
\(387\) 41.1737 153.662i 0.106392 0.397060i
\(388\) −18.0395 67.3242i −0.0464935 0.173516i
\(389\) −117.516 67.8481i −0.302099 0.174417i 0.341287 0.939959i \(-0.389137\pi\)
−0.643385 + 0.765543i \(0.722471\pi\)
\(390\) 99.6474 17.5226i 0.255506 0.0449297i
\(391\) −1059.45 −2.70959
\(392\) 134.320 + 34.1505i 0.342652 + 0.0871186i
\(393\) −220.448 + 220.448i −0.560936 + 0.560936i
\(394\) −250.822 + 144.812i −0.636603 + 0.367543i
\(395\) 408.432 + 35.9252i 1.03401 + 0.0909500i
\(396\) −33.7454 + 58.4487i −0.0852156 + 0.147598i
\(397\) −89.9718 + 335.779i −0.226629 + 0.845791i 0.755116 + 0.655591i \(0.227580\pi\)
−0.981745 + 0.190200i \(0.939086\pi\)
\(398\) −192.282 + 192.282i −0.483119 + 0.483119i
\(399\) 371.363 102.063i 0.930733 0.255798i
\(400\) −64.3502 + 76.5444i −0.160876 + 0.191361i
\(401\) 103.629 + 179.491i 0.258427 + 0.447609i 0.965821 0.259211i \(-0.0834624\pi\)
−0.707394 + 0.706820i \(0.750129\pi\)
\(402\) −193.063 + 51.7311i −0.480256 + 0.128684i
\(403\) 25.6648 + 95.7824i 0.0636844 + 0.237674i
\(404\) 279.091 161.133i 0.690820 0.398845i
\(405\) −40.7927 + 18.9988i −0.100723 + 0.0469106i
\(406\) −57.7056 + 58.4506i −0.142132 + 0.143967i
\(407\) 194.449 + 194.449i 0.477761 + 0.477761i
\(408\) −121.613 32.5860i −0.298070 0.0798677i
\(409\) 226.963 + 131.037i 0.554921 + 0.320384i 0.751105 0.660183i \(-0.229521\pi\)
−0.196183 + 0.980567i \(0.562855\pi\)
\(410\) −232.777 + 195.138i −0.567748 + 0.475946i
\(411\) −203.156 351.877i −0.494298 0.856149i
\(412\) 96.0774 + 96.0774i 0.233198 + 0.233198i
\(413\) −366.663 + 214.840i −0.887803 + 0.520193i
\(414\) 174.899i 0.422460i
\(415\) −718.654 + 126.372i −1.73170 + 0.304512i
\(416\) −23.3657 + 40.4705i −0.0561675 + 0.0972849i
\(417\) −375.123 + 100.514i −0.899576 + 0.241041i
\(418\) −488.094 130.784i −1.16769 0.312881i
\(419\) 143.688i 0.342931i 0.985190 + 0.171465i \(0.0548502\pi\)
−0.985190 + 0.171465i \(0.945150\pi\)
\(420\) −21.7634 119.274i −0.0518176 0.283986i
\(421\) 305.872 0.726537 0.363269 0.931684i \(-0.381661\pi\)
0.363269 + 0.931684i \(0.381661\pi\)
\(422\) −0.546811 + 2.04073i −0.00129576 + 0.00483585i
\(423\) 28.8074 + 107.511i 0.0681026 + 0.254162i
\(424\) 28.0446 + 16.1916i 0.0661429 + 0.0381876i
\(425\) 368.029 + 526.645i 0.865950 + 1.23916i
\(426\) 2.93717 0.00689476
\(427\) −263.596 + 1.69053i −0.617321 + 0.00395909i
\(428\) 41.5764 41.5764i 0.0971411 0.0971411i
\(429\) 139.386 80.4743i 0.324908 0.187586i
\(430\) 32.8544 373.520i 0.0764056 0.868651i
\(431\) 314.493 544.718i 0.729683 1.26385i −0.227334 0.973817i \(-0.573001\pi\)
0.957017 0.290031i \(-0.0936656\pi\)
\(432\) 5.37945 20.0764i 0.0124524 0.0464731i
\(433\) 215.672 215.672i 0.498087 0.498087i −0.412755 0.910842i \(-0.635433\pi\)
0.910842 + 0.412755i \(0.135433\pi\)
\(434\) 114.580 31.4907i 0.264010 0.0725591i
\(435\) 67.5096 + 24.6072i 0.155195 + 0.0565682i
\(436\) −169.848 294.186i −0.389561 0.674739i
\(437\) 1264.87 338.920i 2.89444 0.775562i
\(438\) −45.3457 169.233i −0.103529 0.386376i
\(439\) 356.713 205.949i 0.812559 0.469131i −0.0352848 0.999377i \(-0.511234\pi\)
0.847844 + 0.530246i \(0.177901\pi\)
\(440\) −54.4774 + 149.458i −0.123812 + 0.339678i
\(441\) 128.238 + 71.8611i 0.290789 + 0.162950i
\(442\) 212.306 + 212.306i 0.480331 + 0.480331i
\(443\) 403.971 + 108.244i 0.911898 + 0.244342i 0.684119 0.729370i \(-0.260187\pi\)
0.227779 + 0.973713i \(0.426854\pi\)
\(444\) −73.3412 42.3436i −0.165183 0.0953684i
\(445\) 72.7370 + 6.39786i 0.163454 + 0.0143772i
\(446\) −186.552 323.117i −0.418277 0.724478i
\(447\) 140.244 + 140.244i 0.313745 + 0.313745i
\(448\) 48.6760 + 27.6884i 0.108652 + 0.0618045i
\(449\) 142.091i 0.316460i 0.987402 + 0.158230i \(0.0505788\pi\)
−0.987402 + 0.158230i \(0.949421\pi\)
\(450\) −86.9409 + 60.7559i −0.193202 + 0.135013i
\(451\) −241.598 + 418.460i −0.535695 + 0.927850i
\(452\) 217.371 58.2444i 0.480909 0.128859i
\(453\) −162.236 43.4709i −0.358136 0.0959622i
\(454\) 65.5011i 0.144275i
\(455\) −97.2727 + 272.282i −0.213786 + 0.598421i
\(456\) 155.617 0.341265
\(457\) 18.3636 68.5338i 0.0401829 0.149965i −0.942920 0.333020i \(-0.891932\pi\)
0.983103 + 0.183056i \(0.0585989\pi\)
\(458\) 61.7452 + 230.436i 0.134815 + 0.503136i
\(459\) −115.649 66.7700i −0.251959 0.145468i
\(460\) −71.3952 406.010i −0.155207 0.882631i
\(461\) 75.0514 0.162801 0.0814007 0.996681i \(-0.474061\pi\)
0.0814007 + 0.996681i \(0.474061\pi\)
\(462\) −97.5047 166.409i −0.211049 0.360193i
\(463\) 345.058 345.058i 0.745267 0.745267i −0.228320 0.973586i \(-0.573323\pi\)
0.973586 + 0.228320i \(0.0733231\pi\)
\(464\) −28.7418 + 16.5941i −0.0619435 + 0.0357631i
\(465\) −66.7829 79.6643i −0.143619 0.171321i
\(466\) 157.083 272.076i 0.337088 0.583854i
\(467\) 156.462 583.925i 0.335037 1.25037i −0.568792 0.822481i \(-0.692589\pi\)
0.903829 0.427894i \(-0.140744\pi\)
\(468\) −35.0485 + 35.0485i −0.0748899 + 0.0748899i
\(469\) 144.292 552.660i 0.307660 1.17838i
\(470\) 110.760 + 237.816i 0.235661 + 0.505992i
\(471\) 111.632 + 193.352i 0.237010 + 0.410514i
\(472\) −165.862 + 44.4426i −0.351403 + 0.0941580i
\(473\) −154.380 576.155i −0.326386 1.21809i
\(474\) −173.952 + 100.431i −0.366988 + 0.211880i
\(475\) −607.862 511.024i −1.27971 1.07584i
\(476\) 252.778 256.041i 0.531046 0.537902i
\(477\) 24.2873 + 24.2873i 0.0509169 + 0.0509169i
\(478\) 58.1958 + 15.5935i 0.121749 + 0.0326224i
\(479\) −485.140 280.096i −1.01282 0.584751i −0.100803 0.994906i \(-0.532141\pi\)
−0.912016 + 0.410155i \(0.865474\pi\)
\(480\) 4.29251 48.8014i 0.00894274 0.101670i
\(481\) 100.979 + 174.900i 0.209935 + 0.363618i
\(482\) −220.865 220.865i −0.458227 0.458227i
\(483\) 434.446 + 247.126i 0.899473 + 0.511648i
\(484\) 11.0559i 0.0228428i
\(485\) −30.1777 171.615i −0.0622221 0.353845i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) −676.511 + 181.271i −1.38914 + 0.372219i −0.874433 0.485147i \(-0.838766\pi\)
−0.514707 + 0.857366i \(0.672099\pi\)
\(488\) −102.882 27.5671i −0.210823 0.0564899i
\(489\) 445.684i 0.911419i
\(490\) 327.027 + 114.471i 0.667401 + 0.233614i
\(491\) 285.090 0.580632 0.290316 0.956931i \(-0.406240\pi\)
0.290316 + 0.956931i \(0.406240\pi\)
\(492\) 38.5139 143.736i 0.0782803 0.292146i
\(493\) 55.1886 + 205.966i 0.111944 + 0.417782i
\(494\) −321.389 185.554i −0.650584 0.375615i
\(495\) −96.8423 + 138.168i −0.195641 + 0.279127i
\(496\) 48.0141 0.0968027
\(497\) −4.15012 + 7.29588i −0.00835034 + 0.0146798i
\(498\) 252.769 252.769i 0.507568 0.507568i
\(499\) −659.973 + 381.035i −1.32259 + 0.763598i −0.984141 0.177387i \(-0.943236\pi\)
−0.338449 + 0.940985i \(0.609902\pi\)
\(500\) −177.024 + 176.529i −0.354048 + 0.353058i
\(501\) 25.5797 44.3053i 0.0510572 0.0884337i
\(502\) −60.4263 + 225.514i −0.120371 + 0.449231i
\(503\) −242.900 + 242.900i −0.482902 + 0.482902i −0.906057 0.423155i \(-0.860922\pi\)
0.423155 + 0.906057i \(0.360922\pi\)
\(504\) 42.2685 + 41.7298i 0.0838661 + 0.0827972i
\(505\) 730.341 340.149i 1.44622 0.673562i
\(506\) −327.890 567.922i −0.648004 1.12238i
\(507\) −168.568 + 45.1676i −0.332480 + 0.0890879i
\(508\) −56.3097 210.150i −0.110846 0.413682i
\(509\) −110.550 + 63.8262i −0.217191 + 0.125395i −0.604649 0.796492i \(-0.706687\pi\)
0.387458 + 0.921887i \(0.373353\pi\)
\(510\) −295.724 107.791i −0.579852 0.211355i
\(511\) 484.443 + 126.482i 0.948030 + 0.247518i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 159.433 + 42.7198i 0.310785 + 0.0832746i
\(514\) −156.102 90.1256i −0.303701 0.175342i
\(515\) 218.224 + 260.316i 0.423736 + 0.505467i
\(516\) 91.8466 + 159.083i 0.177997 + 0.308300i
\(517\) 295.097 + 295.097i 0.570787 + 0.570787i
\(518\) 208.810 122.348i 0.403107 0.236194i
\(519\) 373.711i 0.720059i
\(520\) −67.0546 + 95.6689i −0.128951 + 0.183979i
\(521\) −371.561 + 643.563i −0.713170 + 1.23525i 0.250492 + 0.968119i \(0.419408\pi\)
−0.963661 + 0.267127i \(0.913926\pi\)
\(522\) −34.0019 + 9.11078i −0.0651377 + 0.0174536i
\(523\) 907.753 + 243.232i 1.73566 + 0.465070i 0.981476 0.191587i \(-0.0613636\pi\)
0.754189 + 0.656657i \(0.228030\pi\)
\(524\) 359.990i 0.687003i
\(525\) −28.0720 301.806i −0.0534704 0.574869i
\(526\) −617.480 −1.17392
\(527\) 79.8426 297.977i 0.151504 0.565421i
\(528\) −20.1702 75.2762i −0.0382011 0.142569i
\(529\) 1013.61 + 585.208i 1.91609 + 1.10625i
\(530\) 66.2951 + 46.4664i 0.125085 + 0.0876725i
\(531\) −182.129 −0.342993
\(532\) −219.882 + 386.551i −0.413312 + 0.726599i
\(533\) −250.928 + 250.928i −0.470784 + 0.470784i
\(534\) −30.9788 + 17.8856i −0.0580128 + 0.0334937i
\(535\) 112.649 94.4338i 0.210558 0.176512i
\(536\) 115.397 199.873i 0.215293 0.372898i
\(537\) 68.5704 255.908i 0.127692 0.476552i
\(538\) −9.24940 + 9.24940i −0.0171922 + 0.0171922i
\(539\) 551.129 7.06945i 1.02250 0.0131159i
\(540\) 17.7947 48.8196i 0.0329531 0.0904066i
\(541\) 151.264 + 261.997i 0.279600 + 0.484282i 0.971285 0.237917i \(-0.0764647\pi\)
−0.691685 + 0.722199i \(0.743131\pi\)
\(542\) 131.944 35.3543i 0.243439 0.0652294i
\(543\) −27.6960 103.363i −0.0510056 0.190356i
\(544\) 125.903 72.6900i 0.231439 0.133621i
\(545\) −358.546 769.842i −0.657883 1.41255i
\(546\) −37.5376 136.582i −0.0687502 0.250151i
\(547\) −471.627 471.627i −0.862206 0.862206i 0.129388 0.991594i \(-0.458699\pi\)
−0.991594 + 0.129388i \(0.958699\pi\)
\(548\) 453.183 + 121.430i 0.826977 + 0.221588i
\(549\) −97.8367 56.4860i −0.178209 0.102889i
\(550\) −168.409 + 360.276i −0.306198 + 0.655046i
\(551\) −131.779 228.247i −0.239163 0.414242i
\(552\) 142.804 + 142.804i 0.258703 + 0.258703i
\(553\) −3.68126 574.001i −0.00665690 1.03798i
\(554\) 214.635i 0.387429i
\(555\) −173.372 121.517i −0.312383 0.218950i
\(556\) 224.218 388.356i 0.403269 0.698482i
\(557\) −42.8563 + 11.4833i −0.0769413 + 0.0206164i −0.297084 0.954851i \(-0.596014\pi\)
0.220143 + 0.975468i \(0.429348\pi\)
\(558\) 49.1914 + 13.1808i 0.0881566 + 0.0236215i
\(559\) 438.062i 0.783653i
\(560\) 115.157 + 79.6173i 0.205637 + 0.142174i
\(561\) −500.707 −0.892526
\(562\) −19.3501 + 72.2154i −0.0344307 + 0.128497i
\(563\) −21.4182 79.9337i −0.0380429 0.141978i 0.944292 0.329108i \(-0.106748\pi\)
−0.982335 + 0.187130i \(0.940081\pi\)
\(564\) −111.303 64.2609i −0.197346 0.113938i
\(565\) 554.096 97.4355i 0.980701 0.172452i
\(566\) 233.129 0.411889
\(567\) 31.8493 + 54.3565i 0.0561715 + 0.0958668i
\(568\) −2.39819 + 2.39819i −0.00422216 + 0.00422216i
\(569\) −497.115 + 287.010i −0.873665 + 0.504410i −0.868564 0.495577i \(-0.834957\pi\)
−0.00510028 + 0.999987i \(0.501623\pi\)
\(570\) 387.546 + 34.0881i 0.679906 + 0.0598038i
\(571\) −231.337 + 400.688i −0.405144 + 0.701730i −0.994338 0.106261i \(-0.966112\pi\)
0.589194 + 0.807992i \(0.299445\pi\)
\(572\) −48.1008 + 179.515i −0.0840924 + 0.313837i
\(573\) −27.2953 + 27.2953i −0.0476358 + 0.0476358i
\(574\) 302.619 + 298.762i 0.527211 + 0.520491i
\(575\) −88.8645 1026.76i −0.154547 1.78567i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 200.509 53.7263i 0.347503 0.0931131i −0.0808459 0.996727i \(-0.525762\pi\)
0.428349 + 0.903614i \(0.359095\pi\)
\(578\) −135.971 507.450i −0.235244 0.877942i
\(579\) −352.931 + 203.765i −0.609553 + 0.351926i
\(580\) −75.2131 + 35.0297i −0.129678 + 0.0603961i
\(581\) 270.720 + 985.028i 0.465955 + 1.69540i
\(582\) 60.3612 + 60.3612i 0.103713 + 0.103713i
\(583\) 124.397 + 33.3321i 0.213374 + 0.0571735i
\(584\) 175.202 + 101.153i 0.300004 + 0.173207i
\(585\) −94.9617 + 79.6068i −0.162328 + 0.136080i
\(586\) 251.280 + 435.230i 0.428806 + 0.742714i
\(587\) 275.657 + 275.657i 0.469603 + 0.469603i 0.901786 0.432183i \(-0.142256\pi\)
−0.432183 + 0.901786i \(0.642256\pi\)
\(588\) −163.380 + 46.0315i −0.277858 + 0.0782849i
\(589\) 381.295i 0.647359i
\(590\) −422.795 + 74.3468i −0.716603 + 0.126012i
\(591\) 177.358 307.192i 0.300098 0.519784i
\(592\) 94.4562 25.3095i 0.159554 0.0427525i
\(593\) −233.497 62.5653i −0.393755 0.105506i 0.0565081 0.998402i \(-0.482003\pi\)
−0.450264 + 0.892896i \(0.648670\pi\)
\(594\) 82.6590i 0.139157i
\(595\) 685.601 582.270i 1.15227 0.978605i
\(596\) −229.018 −0.384258
\(597\) 86.1974 321.693i 0.144384 0.538850i
\(598\) −124.651 465.202i −0.208446 0.777930i
\(599\) −678.246 391.586i −1.13230 0.653732i −0.187786 0.982210i \(-0.560131\pi\)
−0.944512 + 0.328478i \(0.893464\pi\)
\(600\) 21.3800 120.594i 0.0356334 0.200990i
\(601\) −970.347 −1.61455 −0.807277 0.590172i \(-0.799060\pi\)
−0.807277 + 0.590172i \(0.799060\pi\)
\(602\) −524.936 + 3.36660i −0.871987 + 0.00559235i
\(603\) 173.096 173.096i 0.287057 0.287057i
\(604\) 167.959 96.9710i 0.278077 0.160548i
\(605\) −2.42182 + 27.5335i −0.00400300 + 0.0455099i
\(606\) −197.347 + 341.816i −0.325656 + 0.564052i
\(607\) −4.32679 + 16.1478i −0.00712816 + 0.0266027i −0.969398 0.245493i \(-0.921050\pi\)
0.962270 + 0.272096i \(0.0877168\pi\)
\(608\) −127.061 + 127.061i −0.208982 + 0.208982i
\(609\) 25.4125 97.3335i 0.0417283 0.159825i
\(610\) −250.177 91.1891i −0.410126 0.149490i
\(611\) 153.246 + 265.430i 0.250812 + 0.434419i
\(612\) 148.945 39.9096i 0.243373 0.0652117i
\(613\) −231.054 862.305i −0.376923 1.40670i −0.850514 0.525952i \(-0.823709\pi\)
0.473591 0.880745i \(-0.342958\pi\)
\(614\) 484.288 279.604i 0.788743 0.455381i
\(615\) 127.400 349.521i 0.207154 0.568327i
\(616\) 215.485 + 56.2603i 0.349813 + 0.0913317i
\(617\) 698.494 + 698.494i 1.13208 + 1.13208i 0.989831 + 0.142251i \(0.0454339\pi\)
0.142251 + 0.989831i \(0.454566\pi\)
\(618\) −160.741 43.0703i −0.260098 0.0696931i
\(619\) −637.279 367.933i −1.02953 0.594399i −0.112679 0.993631i \(-0.535943\pi\)
−0.916850 + 0.399232i \(0.869277\pi\)
\(620\) 119.574 + 10.5176i 0.192861 + 0.0169638i
\(621\) 107.103 + 185.508i 0.172469 + 0.298725i
\(622\) −430.955 430.955i −0.692854 0.692854i
\(623\) −0.655590 102.223i −0.00105231 0.164082i
\(624\) 57.2340i 0.0917211i
\(625\) −479.527 + 400.848i −0.767243 + 0.641357i
\(626\) −118.946 + 206.020i −0.190009 + 0.329105i
\(627\) 597.791 160.178i 0.953414 0.255467i
\(628\) −249.018 66.7243i −0.396526 0.106249i
\(629\) 628.285i 0.998863i
\(630\) 96.1238 + 113.182i 0.152578 + 0.179654i
\(631\) 395.464 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(632\) 60.0295 224.033i 0.0949834 0.354483i
\(633\) −0.669704 2.49937i −0.00105798 0.00394845i
\(634\) −212.625 122.759i −0.335371 0.193626i
\(635\) −94.1989 535.690i −0.148345 0.843607i
\(636\) −39.6611 −0.0623602
\(637\) 392.308 + 99.7436i 0.615868 + 0.156583i
\(638\) −93.3290 + 93.3290i −0.146284 + 0.146284i
\(639\) −3.11534 + 1.79864i −0.00487533 + 0.00281477i
\(640\) 36.3413 + 43.3510i 0.0567833 + 0.0677359i
\(641\) −99.9972 + 173.200i −0.156002 + 0.270203i −0.933423 0.358777i \(-0.883194\pi\)
0.777421 + 0.628980i \(0.216527\pi\)
\(642\) −18.6382 + 69.5587i −0.0290314 + 0.108347i
\(643\) −854.979 + 854.979i −1.32967 + 1.32967i −0.424019 + 0.905653i \(0.639381\pi\)
−0.905653 + 0.424019i \(0.860619\pi\)
\(644\) −556.501 + 152.946i −0.864132 + 0.237494i
\(645\) 193.886 + 416.297i 0.300599 + 0.645422i
\(646\) 577.253 + 999.832i 0.893581 + 1.54773i
\(647\) 487.329 130.579i 0.753213 0.201823i 0.138270 0.990395i \(-0.455846\pi\)
0.614943 + 0.788572i \(0.289179\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) −591.401 + 341.446i −0.911250 + 0.526110i
\(650\) −187.948 + 223.564i −0.289151 + 0.343944i
\(651\) −102.247 + 103.567i −0.157061 + 0.159089i
\(652\) −363.899 363.899i −0.558128 0.558128i
\(653\) 357.612 + 95.8220i 0.547645 + 0.146741i 0.522024 0.852931i \(-0.325177\pi\)
0.0256211 + 0.999672i \(0.491844\pi\)
\(654\) 360.303 + 208.021i 0.550922 + 0.318075i
\(655\) 78.8562 896.512i 0.120391 1.36872i
\(656\) 85.9133 + 148.806i 0.130965 + 0.226839i
\(657\) 151.730 + 151.730i 0.230943 + 0.230943i
\(658\) 316.891 185.677i 0.481597 0.282184i
\(659\) 328.877i 0.499055i 0.968368 + 0.249528i \(0.0802753\pi\)
−0.968368 + 0.249528i \(0.919725\pi\)
\(660\) −33.7422 191.885i −0.0511245 0.290735i
\(661\) −174.842 + 302.835i −0.264511 + 0.458147i −0.967435 0.253118i \(-0.918544\pi\)
0.702924 + 0.711265i \(0.251877\pi\)
\(662\) −550.825 + 147.593i −0.832062 + 0.222950i
\(663\) −355.195 95.1743i −0.535739 0.143551i
\(664\) 412.770i 0.621641i
\(665\) −632.265 + 914.495i −0.950774 + 1.37518i
\(666\) 103.720 0.155736
\(667\) 88.5257 330.382i 0.132722 0.495326i
\(668\) 15.2894 + 57.0608i 0.0228883 + 0.0854203i
\(669\) 395.736 + 228.478i 0.591533 + 0.341522i
\(670\) 331.166 472.484i 0.494277 0.705200i
\(671\) −423.587 −0.631278
\(672\) −68.5843 + 0.439855i −0.102060 + 0.000654545i
\(673\) −861.883 + 861.883i −1.28066 + 1.28066i −0.340364 + 0.940294i \(0.610550\pi\)
−0.940294 + 0.340364i \(0.889450\pi\)
\(674\) −243.677 + 140.687i −0.361538 + 0.208734i
\(675\) 55.0096 117.682i 0.0814957 0.174343i
\(676\) 100.756 174.514i 0.149047 0.258157i
\(677\) −255.699 + 954.281i −0.377694 + 1.40957i 0.471674 + 0.881773i \(0.343650\pi\)
−0.849368 + 0.527801i \(0.823017\pi\)
\(678\) −194.890 + 194.890i −0.287448 + 0.287448i
\(679\) −235.225 + 64.6480i −0.346428 + 0.0952106i
\(680\) 329.469 153.447i 0.484513 0.225657i
\(681\) −40.1110 69.4744i −0.0589002 0.102018i
\(682\) 184.443 49.4212i 0.270444 0.0724651i
\(683\) −142.519 531.889i −0.208666 0.778753i −0.988301 0.152518i \(-0.951262\pi\)
0.779634 0.626235i \(-0.215405\pi\)
\(684\) −165.057 + 95.2956i −0.241311 + 0.139321i
\(685\) 1102.00 + 401.678i 1.60876 + 0.586391i
\(686\) 116.509 470.875i 0.169839 0.686407i
\(687\) −206.604 206.604i −0.300733 0.300733i
\(688\) −204.883 54.8983i −0.297795 0.0797940i
\(689\) 81.9101 + 47.2908i 0.118883 + 0.0686369i
\(690\) 324.356 + 386.919i 0.470081 + 0.560751i
\(691\) 81.0298 + 140.348i 0.117265 + 0.203108i 0.918683 0.394996i \(-0.129254\pi\)
−0.801418 + 0.598104i \(0.795921\pi\)
\(692\) 305.133 + 305.133i 0.440944 + 0.440944i
\(693\) 205.324 + 116.794i 0.296283 + 0.168535i
\(694\) 622.610i 0.897133i
\(695\) 643.458 918.041i 0.925839 1.32092i
\(696\) 20.3235 35.2014i 0.0292004 0.0505767i
\(697\) 1066.36 285.730i 1.52993 0.409943i
\(698\) 387.530 + 103.838i 0.555201 + 0.148766i
\(699\) 384.773i 0.550462i
\(700\) 269.344 + 223.503i 0.384778 + 0.319290i
\(701\) −106.422 −0.151815 −0.0759076 0.997115i \(-0.524185\pi\)
−0.0759076 + 0.997115i \(0.524185\pi\)
\(702\) 15.7118 58.6373i 0.0223815 0.0835289i
\(703\) 200.990 + 750.105i 0.285903 + 1.06701i
\(704\) 77.9317 + 44.9939i 0.110698 + 0.0639117i
\(705\) −263.111 184.416i −0.373208 0.261582i
\(706\) −77.1914 −0.109336
\(707\) −570.220 973.182i −0.806534 1.37650i
\(708\) 148.708 148.708i 0.210039 0.210039i
\(709\) −517.345 + 298.689i −0.729682 + 0.421282i −0.818306 0.574783i \(-0.805087\pi\)
0.0886236 + 0.996065i \(0.471753\pi\)
\(710\) −6.49773 + 5.44708i −0.00915174 + 0.00767194i
\(711\) 123.003 213.047i 0.173000 0.299644i
\(712\) 10.6906 39.8977i 0.0150148 0.0560361i
\(713\) −349.900 + 349.900i −0.490743 + 0.490743i
\(714\) −111.319 + 426.367i −0.155909 + 0.597153i
\(715\) −159.113 + 436.524i −0.222535 + 0.610523i
\(716\) 152.961 + 264.936i 0.213632 + 0.370022i
\(717\) −71.2751 + 19.0981i −0.0994073 + 0.0266361i
\(718\) 107.971 + 402.953i 0.150377 + 0.561216i
\(719\) −781.019 + 450.921i −1.08626 + 0.627151i −0.932577 0.360970i \(-0.882446\pi\)
−0.153680 + 0.988121i \(0.549112\pi\)
\(720\) 25.3317 + 54.3903i 0.0351829 + 0.0755421i
\(721\) 334.107 338.421i 0.463394 0.469377i
\(722\) −648.028 648.028i −0.897546 0.897546i
\(723\) 369.515 + 99.0112i 0.511085 + 0.136945i
\(724\) 107.009 + 61.7819i 0.147803 + 0.0853341i
\(725\) −194.983 + 70.7619i −0.268942 + 0.0976027i
\(726\) −6.77034 11.7266i −0.00932554 0.0161523i
\(727\) 985.007 + 985.007i 1.35489 + 1.35489i 0.880095 + 0.474798i \(0.157479\pi\)
0.474798 + 0.880095i \(0.342521\pi\)
\(728\) 142.168 + 80.8697i 0.195286 + 0.111085i
\(729\) 27.0000i 0.0370370i
\(730\) 414.164 + 290.289i 0.567347 + 0.397656i
\(731\) −681.400 + 1180.22i −0.932148 + 1.61453i
\(732\) 126.004 33.7627i 0.172137 0.0461238i
\(733\) −1105.78 296.294i −1.50857 0.404220i −0.592611 0.805489i \(-0.701903\pi\)
−0.915960 + 0.401269i \(0.868569\pi\)
\(734\) 13.7220i 0.0186948i
\(735\) −416.963 + 78.8475i −0.567296 + 0.107276i
\(736\) −233.198 −0.316845
\(737\) 237.558 886.577i 0.322331 1.20295i
\(738\) 47.1697 + 176.040i 0.0639156 + 0.238536i
\(739\) 1074.61 + 620.424i 1.45413 + 0.839545i 0.998712 0.0507308i \(-0.0161550\pi\)
0.455422 + 0.890276i \(0.349488\pi\)
\(740\) 240.776 42.3395i 0.325373 0.0572156i
\(741\) 454.512 0.613377
\(742\) 56.0398 98.5175i 0.0755253 0.132773i
\(743\) 452.213 452.213i 0.608631 0.608631i −0.333957 0.942588i \(-0.608384\pi\)
0.942588 + 0.333957i \(0.108384\pi\)
\(744\) −50.9267 + 29.4025i −0.0684498 + 0.0395195i
\(745\) −570.342 50.1666i −0.765560 0.0673378i
\(746\) 8.70110 15.0708i 0.0116637 0.0202021i
\(747\) −113.313 + 422.890i −0.151691 + 0.566118i
\(748\) 408.825 408.825i 0.546558 0.546558i
\(749\) −146.448 144.581i −0.195524 0.193032i
\(750\) 79.6608 295.642i 0.106214 0.394189i
\(751\) −169.151 292.978i −0.225234 0.390118i 0.731155 0.682211i \(-0.238981\pi\)
−0.956390 + 0.292093i \(0.905648\pi\)
\(752\) 143.348 38.4098i 0.190622 0.0510769i
\(753\) −74.0068 276.197i −0.0982826 0.366796i
\(754\) −83.9464 + 48.4665i −0.111335 + 0.0642791i
\(755\) 439.523 204.703i 0.582150 0.271130i
\(756\) −70.3867 18.3771i −0.0931041 0.0243083i
\(757\) 295.501 + 295.501i 0.390357 + 0.390357i 0.874815 0.484457i \(-0.160983\pi\)
−0.484457 + 0.874815i \(0.660983\pi\)
\(758\) −393.096 105.330i −0.518597 0.138958i
\(759\) 695.560 + 401.582i 0.916416 + 0.529093i
\(760\) −344.263 + 288.597i −0.452978 + 0.379733i
\(761\) −43.0586 74.5798i −0.0565817 0.0980023i 0.836347 0.548200i \(-0.184687\pi\)
−0.892929 + 0.450198i \(0.851353\pi\)
\(762\) 188.416 + 188.416i 0.247265 + 0.247265i
\(763\) −1025.82 + 601.061i −1.34445 + 0.787760i