Properties

Label 210.3.v.a.67.4
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.4
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.a.163.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.99461 - 0.232109i) q^{5} -2.44949 q^{6} +(6.85901 + 1.39786i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(4.99461 - 0.232109i) q^{5} -2.44949 q^{6} +(6.85901 + 1.39786i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(1.51109 - 6.90772i) q^{10} +(6.05758 - 10.4920i) q^{11} +(-0.896575 + 3.34607i) q^{12} +(12.6272 - 12.6272i) q^{13} +(4.42009 - 8.85792i) q^{14} +(-2.62735 - 8.25209i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-16.4657 + 4.41196i) q^{17} +(1.09808 + 4.09808i) q^{18} +(-30.0470 + 17.3477i) q^{19} +(-8.88303 - 4.59258i) q^{20} +(-0.736136 - 12.1020i) q^{21} +(-12.1152 - 12.1152i) q^{22} +(-4.04932 - 1.08501i) q^{23} +(4.24264 + 2.44949i) q^{24} +(24.8923 - 2.31859i) q^{25} +(-12.6272 - 21.8710i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-10.4823 - 9.28018i) q^{28} -30.5436i q^{29} +(-12.2342 + 0.568550i) q^{30} +(11.3001 - 19.5724i) q^{31} +(5.46410 - 1.46410i) q^{32} +(-20.2691 - 5.43108i) q^{33} +24.1074i q^{34} +(34.5825 + 5.38975i) q^{35} +6.00000 q^{36} +(-10.9520 + 40.8732i) q^{37} +(12.6994 + 47.3947i) q^{38} +(-26.7864 - 15.4651i) q^{39} +(-9.52500 + 10.4534i) q^{40} +68.1394 q^{41} +(-16.8011 - 3.42405i) q^{42} +(-48.6732 + 48.6732i) q^{43} +(-20.9841 + 12.1152i) q^{44} +(-12.6282 + 8.09495i) q^{45} +(-2.96431 + 5.13434i) q^{46} +(15.6703 - 58.4823i) q^{47} +(4.89898 - 4.89898i) q^{48} +(45.0920 + 19.1759i) q^{49} +(5.94394 - 34.8521i) q^{50} +(14.7627 + 25.5698i) q^{51} +(-34.4983 + 9.24378i) q^{52} +(10.1907 + 38.0323i) q^{53} +(6.36396 - 3.67423i) q^{54} +(27.8200 - 53.8097i) q^{55} +(-16.5137 + 10.9223i) q^{56} +(42.4929 + 42.4929i) q^{57} +(-41.7234 - 11.1797i) q^{58} +(50.9060 + 29.3906i) q^{59} +(-3.70139 + 16.9204i) q^{60} +(18.7340 + 32.4482i) q^{61} +(-22.6002 - 22.6002i) q^{62} +(-19.9170 + 6.65675i) q^{63} -8.00000i q^{64} +(60.1372 - 65.9990i) q^{65} +(-14.8380 + 25.7001i) q^{66} +(-109.805 + 29.4221i) q^{67} +(32.9313 + 8.82393i) q^{68} +7.26105i q^{69} +(20.0206 - 45.2678i) q^{70} -27.4586 q^{71} +(2.19615 - 8.19615i) q^{72} +(33.4989 + 125.020i) q^{73} +(51.8252 + 29.9213i) q^{74} +(-15.0380 - 40.6062i) q^{75} +69.3907 q^{76} +(56.2155 - 63.4973i) q^{77} +(-30.9303 + 30.9303i) q^{78} +(-9.99699 + 5.77176i) q^{79} +(10.7933 + 16.8376i) q^{80} +(4.50000 - 7.79423i) q^{81} +(24.9408 - 93.0802i) q^{82} +(-11.4361 + 11.4361i) q^{83} +(-10.8270 + 21.6974i) q^{84} +(-81.2155 + 25.8579i) q^{85} +(48.6732 + 84.3044i) q^{86} +(-51.1005 + 13.6923i) q^{87} +(8.86892 + 33.0992i) q^{88} +(-29.3971 + 16.9724i) q^{89} +(6.43566 + 20.2134i) q^{90} +(104.261 - 68.9591i) q^{91} +(5.92862 + 5.92862i) q^{92} +(-37.8109 - 10.1314i) q^{93} +(-74.1526 - 42.8120i) q^{94} +(-146.047 + 93.6190i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(-26.7458 - 26.7458i) q^{97} +(42.6996 - 54.5779i) q^{98} +36.3455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) −0.448288 1.67303i −0.149429 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 4.99461 0.232109i 0.998922 0.0464219i
\(6\) −2.44949 −0.408248
\(7\) 6.85901 + 1.39786i 0.979858 + 0.199695i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 1.51109 6.90772i 0.151109 0.690772i
\(11\) 6.05758 10.4920i 0.550689 0.953822i −0.447536 0.894266i \(-0.647698\pi\)
0.998225 0.0595558i \(-0.0189684\pi\)
\(12\) −0.896575 + 3.34607i −0.0747146 + 0.278839i
\(13\) 12.6272 12.6272i 0.971326 0.971326i −0.0282743 0.999600i \(-0.509001\pi\)
0.999600 + 0.0282743i \(0.00900118\pi\)
\(14\) 4.42009 8.85792i 0.315721 0.632709i
\(15\) −2.62735 8.25209i −0.175157 0.550140i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −16.4657 + 4.41196i −0.968569 + 0.259527i −0.708223 0.705988i \(-0.750503\pi\)
−0.260345 + 0.965516i \(0.583836\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) −30.0470 + 17.3477i −1.58142 + 0.913035i −0.586771 + 0.809753i \(0.699601\pi\)
−0.994652 + 0.103282i \(0.967066\pi\)
\(20\) −8.88303 4.59258i −0.444151 0.229629i
\(21\) −0.736136 12.1020i −0.0350541 0.576285i
\(22\) −12.1152 12.1152i −0.550689 0.550689i
\(23\) −4.04932 1.08501i −0.176058 0.0471745i 0.169713 0.985493i \(-0.445716\pi\)
−0.345771 + 0.938319i \(0.612383\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) 24.8923 2.31859i 0.995690 0.0927437i
\(26\) −12.6272 21.8710i −0.485663 0.841193i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −10.4823 9.28018i −0.374367 0.331435i
\(29\) 30.5436i 1.05323i −0.850104 0.526614i \(-0.823461\pi\)
0.850104 0.526614i \(-0.176539\pi\)
\(30\) −12.2342 + 0.568550i −0.407808 + 0.0189517i
\(31\) 11.3001 19.5724i 0.364519 0.631366i −0.624179 0.781281i \(-0.714567\pi\)
0.988699 + 0.149915i \(0.0478999\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) −20.2691 5.43108i −0.614214 0.164578i
\(34\) 24.1074i 0.709042i
\(35\) 34.5825 + 5.38975i 0.988072 + 0.153993i
\(36\) 6.00000 0.166667
\(37\) −10.9520 + 40.8732i −0.295999 + 1.10468i 0.644422 + 0.764670i \(0.277098\pi\)
−0.940421 + 0.340012i \(0.889569\pi\)
\(38\) 12.6994 + 47.3947i 0.334194 + 1.24723i
\(39\) −26.7864 15.4651i −0.686831 0.396542i
\(40\) −9.52500 + 10.4534i −0.238125 + 0.261336i
\(41\) 68.1394 1.66194 0.830969 0.556319i \(-0.187787\pi\)
0.830969 + 0.556319i \(0.187787\pi\)
\(42\) −16.8011 3.42405i −0.400025 0.0815251i
\(43\) −48.6732 + 48.6732i −1.13193 + 1.13193i −0.142079 + 0.989855i \(0.545379\pi\)
−0.989855 + 0.142079i \(0.954621\pi\)
\(44\) −20.9841 + 12.1152i −0.476911 + 0.275345i
\(45\) −12.6282 + 8.09495i −0.280627 + 0.179888i
\(46\) −2.96431 + 5.13434i −0.0644415 + 0.111616i
\(47\) 15.6703 58.4823i 0.333410 1.24430i −0.572172 0.820134i \(-0.693899\pi\)
0.905582 0.424171i \(-0.139434\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 45.0920 + 19.1759i 0.920244 + 0.391345i
\(50\) 5.94394 34.8521i 0.118879 0.697042i
\(51\) 14.7627 + 25.5698i 0.289465 + 0.501368i
\(52\) −34.4983 + 9.24378i −0.663428 + 0.177765i
\(53\) 10.1907 + 38.0323i 0.192278 + 0.717591i 0.992955 + 0.118495i \(0.0378068\pi\)
−0.800677 + 0.599097i \(0.795526\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) 27.8200 53.8097i 0.505817 0.978358i
\(56\) −16.5137 + 10.9223i −0.294888 + 0.195041i
\(57\) 42.4929 + 42.4929i 0.745490 + 0.745490i
\(58\) −41.7234 11.1797i −0.719368 0.192754i
\(59\) 50.9060 + 29.3906i 0.862814 + 0.498146i 0.864954 0.501852i \(-0.167348\pi\)
−0.00213942 + 0.999998i \(0.500681\pi\)
\(60\) −3.70139 + 16.9204i −0.0616899 + 0.282007i
\(61\) 18.7340 + 32.4482i 0.307115 + 0.531938i 0.977730 0.209867i \(-0.0673031\pi\)
−0.670615 + 0.741805i \(0.733970\pi\)
\(62\) −22.6002 22.6002i −0.364519 0.364519i
\(63\) −19.9170 + 6.65675i −0.316143 + 0.105663i
\(64\) 8.00000i 0.125000i
\(65\) 60.1372 65.9990i 0.925188 1.01537i
\(66\) −14.8380 + 25.7001i −0.224818 + 0.389396i
\(67\) −109.805 + 29.4221i −1.63888 + 0.439136i −0.956469 0.291834i \(-0.905735\pi\)
−0.682410 + 0.730970i \(0.739068\pi\)
\(68\) 32.9313 + 8.82393i 0.484284 + 0.129764i
\(69\) 7.26105i 0.105233i
\(70\) 20.0206 45.2678i 0.286009 0.646683i
\(71\) −27.4586 −0.386741 −0.193371 0.981126i \(-0.561942\pi\)
−0.193371 + 0.981126i \(0.561942\pi\)
\(72\) 2.19615 8.19615i 0.0305021 0.113835i
\(73\) 33.4989 + 125.020i 0.458889 + 1.71260i 0.676395 + 0.736539i \(0.263541\pi\)
−0.217506 + 0.976059i \(0.569792\pi\)
\(74\) 51.8252 + 29.9213i 0.700340 + 0.404342i
\(75\) −15.0380 40.6062i −0.200506 0.541415i
\(76\) 69.3907 0.913035
\(77\) 56.2155 63.4973i 0.730071 0.824640i
\(78\) −30.9303 + 30.9303i −0.396542 + 0.396542i
\(79\) −9.99699 + 5.77176i −0.126544 + 0.0730603i −0.561936 0.827181i \(-0.689943\pi\)
0.435392 + 0.900241i \(0.356610\pi\)
\(80\) 10.7933 + 16.8376i 0.134916 + 0.210470i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) 24.9408 93.0802i 0.304156 1.13512i
\(83\) −11.4361 + 11.4361i −0.137784 + 0.137784i −0.772635 0.634851i \(-0.781062\pi\)
0.634851 + 0.772635i \(0.281062\pi\)
\(84\) −10.8270 + 21.6974i −0.128892 + 0.258302i
\(85\) −81.2155 + 25.8579i −0.955477 + 0.304210i
\(86\) 48.6732 + 84.3044i 0.565967 + 0.980284i
\(87\) −51.1005 + 13.6923i −0.587362 + 0.157383i
\(88\) 8.86892 + 33.0992i 0.100783 + 0.376128i
\(89\) −29.3971 + 16.9724i −0.330305 + 0.190701i −0.655976 0.754781i \(-0.727743\pi\)
0.325672 + 0.945483i \(0.394410\pi\)
\(90\) 6.43566 + 20.2134i 0.0715074 + 0.224594i
\(91\) 104.261 68.9591i 1.14573 0.757793i
\(92\) 5.92862 + 5.92862i 0.0644415 + 0.0644415i
\(93\) −37.8109 10.1314i −0.406569 0.108940i
\(94\) −74.1526 42.8120i −0.788858 0.455447i
\(95\) −146.047 + 93.6190i −1.53733 + 0.985463i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) −26.7458 26.7458i −0.275729 0.275729i 0.555672 0.831402i \(-0.312461\pi\)
−0.831402 + 0.555672i \(0.812461\pi\)
\(98\) 42.6996 54.5779i 0.435710 0.556917i
\(99\) 36.3455i 0.367126i
\(100\) −45.4332 20.8763i −0.454332 0.208763i
\(101\) 13.5289 23.4328i 0.133950 0.232008i −0.791246 0.611498i \(-0.790567\pi\)
0.925196 + 0.379490i \(0.123901\pi\)
\(102\) 40.3325 10.8071i 0.395417 0.105952i
\(103\) 89.3037 + 23.9288i 0.867026 + 0.232319i 0.664801 0.747020i \(-0.268516\pi\)
0.202225 + 0.979339i \(0.435183\pi\)
\(104\) 50.5089i 0.485663i
\(105\) −6.48570 60.2738i −0.0617685 0.574037i
\(106\) 55.6832 0.525313
\(107\) −20.5784 + 76.7996i −0.192321 + 0.717753i 0.800623 + 0.599169i \(0.204502\pi\)
−0.992944 + 0.118584i \(0.962164\pi\)
\(108\) −2.68973 10.0382i −0.0249049 0.0929463i
\(109\) 20.4525 + 11.8082i 0.187637 + 0.108333i 0.590876 0.806762i \(-0.298782\pi\)
−0.403239 + 0.915095i \(0.632116\pi\)
\(110\) −63.3226 57.6985i −0.575660 0.524532i
\(111\) 73.2919 0.660287
\(112\) 8.87567 + 26.5560i 0.0792471 + 0.237107i
\(113\) −13.2604 + 13.2604i −0.117349 + 0.117349i −0.763343 0.645994i \(-0.776443\pi\)
0.645994 + 0.763343i \(0.276443\pi\)
\(114\) 73.5999 42.4929i 0.645613 0.372745i
\(115\) −20.4766 4.47933i −0.178058 0.0389507i
\(116\) −30.5436 + 52.9031i −0.263307 + 0.456061i
\(117\) −13.8657 + 51.7474i −0.118510 + 0.442285i
\(118\) 58.7812 58.7812i 0.498146 0.498146i
\(119\) −119.105 + 7.24491i −1.00089 + 0.0608816i
\(120\) 21.7589 + 11.2495i 0.181324 + 0.0937457i
\(121\) −12.8886 22.3237i −0.106517 0.184494i
\(122\) 51.1822 13.7142i 0.419527 0.112412i
\(123\) −30.5461 114.000i −0.248342 0.926825i
\(124\) −39.1447 + 22.6002i −0.315683 + 0.182260i
\(125\) 123.789 17.3582i 0.990311 0.138866i
\(126\) 1.80316 + 29.6437i 0.0143108 + 0.235267i
\(127\) −77.1600 77.1600i −0.607559 0.607559i 0.334749 0.942307i \(-0.391349\pi\)
−0.942307 + 0.334749i \(0.891349\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) 103.251 + 59.6122i 0.800399 + 0.462110i
\(130\) −68.1446 106.306i −0.524189 0.817741i
\(131\) −84.8067 146.890i −0.647380 1.12129i −0.983746 0.179563i \(-0.942531\pi\)
0.336367 0.941731i \(-0.390802\pi\)
\(132\) 29.6760 + 29.6760i 0.224818 + 0.224818i
\(133\) −230.343 + 76.9861i −1.73190 + 0.578843i
\(134\) 160.765i 1.19974i
\(135\) 19.2042 + 17.4985i 0.142253 + 0.129619i
\(136\) 24.1074 41.7553i 0.177260 0.307024i
\(137\) −5.53350 + 1.48270i −0.0403905 + 0.0108226i −0.278958 0.960303i \(-0.589989\pi\)
0.238567 + 0.971126i \(0.423322\pi\)
\(138\) 9.91878 + 2.65773i 0.0718752 + 0.0192589i
\(139\) 18.9621i 0.136418i 0.997671 + 0.0682091i \(0.0217285\pi\)
−0.997671 + 0.0682091i \(0.978271\pi\)
\(140\) −54.5089 43.9178i −0.389350 0.313699i
\(141\) −104.868 −0.743742
\(142\) −10.0506 + 37.5092i −0.0707786 + 0.264149i
\(143\) −55.9950 208.976i −0.391573 1.46137i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) −7.08946 152.553i −0.0488928 1.05209i
\(146\) 183.041 1.25371
\(147\) 11.8678 84.0366i 0.0807332 0.571678i
\(148\) 59.8426 59.8426i 0.404342 0.404342i
\(149\) 15.7808 9.11106i 0.105911 0.0611480i −0.446109 0.894979i \(-0.647190\pi\)
0.552020 + 0.833831i \(0.313857\pi\)
\(150\) −60.9733 + 5.67937i −0.406489 + 0.0378624i
\(151\) −82.8541 + 143.507i −0.548703 + 0.950381i 0.449661 + 0.893199i \(0.351545\pi\)
−0.998364 + 0.0571815i \(0.981789\pi\)
\(152\) 25.3987 94.7894i 0.167097 0.623615i
\(153\) 36.1611 36.1611i 0.236347 0.236347i
\(154\) −66.1626 100.033i −0.429628 0.649567i
\(155\) 51.8967 100.379i 0.334817 0.647607i
\(156\) 30.9303 + 53.5728i 0.198271 + 0.343416i
\(157\) 60.8870 16.3146i 0.387815 0.103915i −0.0596426 0.998220i \(-0.518996\pi\)
0.447458 + 0.894305i \(0.352329\pi\)
\(158\) 4.22522 + 15.7688i 0.0267419 + 0.0998022i
\(159\) 59.0610 34.0989i 0.371453 0.214458i
\(160\) 26.9512 8.58089i 0.168445 0.0536305i
\(161\) −26.2576 13.1025i −0.163091 0.0813821i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −108.823 29.1591i −0.667628 0.178890i −0.0909421 0.995856i \(-0.528988\pi\)
−0.576686 + 0.816966i \(0.695654\pi\)
\(164\) −118.021 68.1394i −0.719640 0.415484i
\(165\) −102.497 22.4215i −0.621192 0.135888i
\(166\) 11.4361 + 19.8079i 0.0688921 + 0.119325i
\(167\) 84.0997 + 84.0997i 0.503591 + 0.503591i 0.912552 0.408961i \(-0.134109\pi\)
−0.408961 + 0.912552i \(0.634109\pi\)
\(168\) 25.6762 + 22.7317i 0.152835 + 0.135308i
\(169\) 149.894i 0.886948i
\(170\) 5.59556 + 120.407i 0.0329150 + 0.708277i
\(171\) 52.0430 90.1411i 0.304345 0.527141i
\(172\) 132.978 35.6312i 0.773126 0.207158i
\(173\) −240.768 64.5135i −1.39172 0.372910i −0.516356 0.856374i \(-0.672712\pi\)
−0.875364 + 0.483464i \(0.839379\pi\)
\(174\) 74.8163i 0.429979i
\(175\) 173.977 + 18.8928i 0.994155 + 0.107959i
\(176\) 48.4607 0.275345
\(177\) 26.3509 98.3429i 0.148875 0.555610i
\(178\) 12.4247 + 46.3695i 0.0698016 + 0.260503i
\(179\) 53.9933 + 31.1731i 0.301639 + 0.174151i 0.643179 0.765716i \(-0.277615\pi\)
−0.341540 + 0.939867i \(0.610949\pi\)
\(180\) 29.9677 1.39266i 0.166487 0.00773698i
\(181\) 191.846 1.05992 0.529961 0.848022i \(-0.322206\pi\)
0.529961 + 0.848022i \(0.322206\pi\)
\(182\) −56.0376 167.665i −0.307899 0.921234i
\(183\) 45.8887 45.8887i 0.250758 0.250758i
\(184\) 10.2687 5.92862i 0.0558080 0.0322208i
\(185\) −45.2137 + 206.688i −0.244398 + 1.11723i
\(186\) −27.6795 + 47.9423i −0.148814 + 0.257754i
\(187\) −53.4517 + 199.484i −0.285838 + 1.06676i
\(188\) −85.6241 + 85.6241i −0.455447 + 0.455447i
\(189\) 20.0655 + 30.3377i 0.106167 + 0.160517i
\(190\) 74.4292 + 233.770i 0.391732 + 1.23037i
\(191\) −31.8872 55.2302i −0.166949 0.289163i 0.770397 0.637564i \(-0.220058\pi\)
−0.937346 + 0.348401i \(0.886725\pi\)
\(192\) −13.3843 + 3.58630i −0.0697097 + 0.0186787i
\(193\) 77.8735 + 290.628i 0.403490 + 1.50584i 0.806825 + 0.590791i \(0.201184\pi\)
−0.403335 + 0.915052i \(0.632149\pi\)
\(194\) −46.3250 + 26.7458i −0.238789 + 0.137865i
\(195\) −137.377 71.0250i −0.704499 0.364231i
\(196\) −58.9256 78.3056i −0.300641 0.399518i
\(197\) −90.9660 90.9660i −0.461756 0.461756i 0.437475 0.899231i \(-0.355873\pi\)
−0.899231 + 0.437475i \(0.855873\pi\)
\(198\) 49.6489 + 13.3034i 0.250752 + 0.0671888i
\(199\) −74.3886 42.9483i −0.373812 0.215821i 0.301310 0.953526i \(-0.402576\pi\)
−0.675123 + 0.737706i \(0.735909\pi\)
\(200\) −45.1473 + 54.4217i −0.225737 + 0.272108i
\(201\) 98.4484 + 170.518i 0.489793 + 0.848346i
\(202\) −27.0578 27.0578i −0.133950 0.133950i
\(203\) 42.6958 209.499i 0.210324 1.03201i
\(204\) 59.0509i 0.289465i
\(205\) 340.330 15.8158i 1.66015 0.0771503i
\(206\) 65.3748 113.233i 0.317353 0.549672i
\(207\) 12.1480 3.25504i 0.0586859 0.0157248i
\(208\) 68.9965 + 18.4876i 0.331714 + 0.0888825i
\(209\) 420.340i 2.01119i
\(210\) −84.7095 13.2021i −0.403379 0.0628673i
\(211\) −150.591 −0.713702 −0.356851 0.934161i \(-0.616150\pi\)
−0.356851 + 0.934161i \(0.616150\pi\)
\(212\) 20.3815 76.0647i 0.0961390 0.358796i
\(213\) 12.3094 + 45.9392i 0.0577905 + 0.215677i
\(214\) 97.3779 + 56.2212i 0.455037 + 0.262716i
\(215\) −231.806 + 254.401i −1.07817 + 1.18326i
\(216\) −14.6969 −0.0680414
\(217\) 104.867 118.451i 0.483258 0.545857i
\(218\) 23.6165 23.6165i 0.108333 0.108333i
\(219\) 194.145 112.090i 0.886506 0.511824i
\(220\) −101.995 + 65.3811i −0.463615 + 0.297187i
\(221\) −152.205 + 263.627i −0.688710 + 1.19288i
\(222\) 26.8267 100.119i 0.120841 0.450985i
\(223\) 166.002 166.002i 0.744402 0.744402i −0.229019 0.973422i \(-0.573552\pi\)
0.973422 + 0.229019i \(0.0735519\pi\)
\(224\) 39.5249 2.40421i 0.176451 0.0107331i
\(225\) −61.1941 + 43.3623i −0.271974 + 0.192721i
\(226\) 13.2604 + 22.9677i 0.0586744 + 0.101627i
\(227\) −26.3308 + 7.05532i −0.115995 + 0.0310807i −0.316349 0.948643i \(-0.602457\pi\)
0.200355 + 0.979723i \(0.435791\pi\)
\(228\) −31.1070 116.093i −0.136434 0.509179i
\(229\) 248.400 143.414i 1.08471 0.626260i 0.152550 0.988296i \(-0.451251\pi\)
0.932164 + 0.362036i \(0.117918\pi\)
\(230\) −13.6138 + 26.3321i −0.0591906 + 0.114487i
\(231\) −131.434 65.5852i −0.568977 0.283919i
\(232\) 61.0872 + 61.0872i 0.263307 + 0.263307i
\(233\) −14.3335 3.84066i −0.0615173 0.0164835i 0.227929 0.973678i \(-0.426805\pi\)
−0.289446 + 0.957194i \(0.593471\pi\)
\(234\) 65.6130 + 37.8817i 0.280398 + 0.161888i
\(235\) 64.6927 295.734i 0.275288 1.25844i
\(236\) −58.7812 101.812i −0.249073 0.431407i
\(237\) 14.1379 + 14.1379i 0.0596535 + 0.0596535i
\(238\) −33.6989 + 165.353i −0.141592 + 0.694760i
\(239\) 327.821i 1.37164i −0.727772 0.685819i \(-0.759444\pi\)
0.727772 0.685819i \(-0.240556\pi\)
\(240\) 23.3314 25.6056i 0.0972141 0.106690i
\(241\) 179.078 310.172i 0.743062 1.28702i −0.208033 0.978122i \(-0.566706\pi\)
0.951095 0.308899i \(-0.0999606\pi\)
\(242\) −35.2123 + 9.43512i −0.145506 + 0.0389881i
\(243\) −15.0573 4.03459i −0.0619642 0.0166032i
\(244\) 74.9360i 0.307115i
\(245\) 229.668 + 85.3100i 0.937419 + 0.348204i
\(246\) −166.907 −0.678483
\(247\) −160.358 + 598.464i −0.649223 + 2.42293i
\(248\) 16.5445 + 61.7449i 0.0667117 + 0.248971i
\(249\) 24.2596 + 14.0063i 0.0974281 + 0.0562501i
\(250\) 21.5982 175.452i 0.0863926 0.701809i
\(251\) −477.586 −1.90273 −0.951366 0.308063i \(-0.900319\pi\)
−0.951366 + 0.308063i \(0.900319\pi\)
\(252\) 41.1540 + 8.38719i 0.163310 + 0.0332825i
\(253\) −35.9131 + 35.9131i −0.141949 + 0.141949i
\(254\) −133.645 + 77.1600i −0.526161 + 0.303779i
\(255\) 79.6690 + 124.284i 0.312427 + 0.487390i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −118.565 + 442.491i −0.461343 + 1.72175i 0.207396 + 0.978257i \(0.433501\pi\)
−0.668739 + 0.743497i \(0.733166\pi\)
\(258\) 119.224 119.224i 0.462110 0.462110i
\(259\) −132.255 + 265.041i −0.510636 + 1.02332i
\(260\) −170.160 + 54.1764i −0.654461 + 0.208371i
\(261\) 45.8154 + 79.3546i 0.175538 + 0.304041i
\(262\) −231.696 + 62.0828i −0.884337 + 0.236957i
\(263\) 48.6732 + 181.651i 0.185069 + 0.690687i 0.994616 + 0.103632i \(0.0330464\pi\)
−0.809547 + 0.587056i \(0.800287\pi\)
\(264\) 51.4003 29.6760i 0.194698 0.112409i
\(265\) 59.7264 + 187.591i 0.225383 + 0.707892i
\(266\) 20.8537 + 342.833i 0.0783974 + 1.28884i
\(267\) 41.5738 + 41.5738i 0.155707 + 0.155707i
\(268\) 219.610 + 58.8443i 0.819439 + 0.219568i
\(269\) 22.6983 + 13.1049i 0.0843803 + 0.0487170i 0.541596 0.840639i \(-0.317820\pi\)
−0.457216 + 0.889356i \(0.651153\pi\)
\(270\) 30.9327 19.8285i 0.114565 0.0734389i
\(271\) −26.6444 46.1495i −0.0983188 0.170293i 0.812670 0.582724i \(-0.198013\pi\)
−0.910989 + 0.412431i \(0.864680\pi\)
\(272\) −48.2148 48.2148i −0.177260 0.177260i
\(273\) −162.110 143.519i −0.593810 0.525712i
\(274\) 8.10160i 0.0295679i
\(275\) 126.460 275.216i 0.459855 1.00078i
\(276\) 7.26105 12.5765i 0.0263082 0.0455671i
\(277\) 21.9696 5.88673i 0.0793125 0.0212517i −0.218945 0.975737i \(-0.570261\pi\)
0.298257 + 0.954486i \(0.403595\pi\)
\(278\) 25.9028 + 6.94062i 0.0931754 + 0.0249663i
\(279\) 67.8006i 0.243013i
\(280\) −79.9445 + 58.3855i −0.285516 + 0.208520i
\(281\) 68.0224 0.242073 0.121036 0.992648i \(-0.461378\pi\)
0.121036 + 0.992648i \(0.461378\pi\)
\(282\) −38.3842 + 143.252i −0.136114 + 0.507985i
\(283\) 89.2935 + 333.248i 0.315525 + 1.17755i 0.923500 + 0.383598i \(0.125315\pi\)
−0.607975 + 0.793956i \(0.708018\pi\)
\(284\) 47.5597 + 27.4586i 0.167464 + 0.0966853i
\(285\) 222.099 + 202.373i 0.779293 + 0.710079i
\(286\) −305.962 −1.06980
\(287\) 467.369 + 95.2497i 1.62846 + 0.331880i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 1.37152 0.791849i 0.00474575 0.00273996i
\(290\) −210.987 46.1540i −0.727541 0.159152i
\(291\) −32.7567 + 56.7363i −0.112566 + 0.194970i
\(292\) 66.9978 250.039i 0.229445 0.856299i
\(293\) 139.189 139.189i 0.475046 0.475046i −0.428497 0.903543i \(-0.640957\pi\)
0.903543 + 0.428497i \(0.140957\pi\)
\(294\) −110.452 46.9712i −0.375688 0.159766i
\(295\) 261.078 + 134.979i 0.885009 + 0.457556i
\(296\) −59.8426 103.650i −0.202171 0.350170i
\(297\) 60.8072 16.2932i 0.204738 0.0548594i
\(298\) −6.66976 24.8919i −0.0223817 0.0835298i
\(299\) −64.8325 + 37.4311i −0.216831 + 0.125187i
\(300\) −14.5596 + 85.3699i −0.0485321 + 0.284566i
\(301\) −401.888 + 265.811i −1.33518 + 0.883094i
\(302\) 165.708 + 165.708i 0.548703 + 0.548703i
\(303\) −45.2686 12.1297i −0.149401 0.0400320i
\(304\) −120.188 69.3907i −0.395356 0.228259i
\(305\) 101.101 + 157.718i 0.331477 + 0.517108i
\(306\) −36.1611 62.6329i −0.118174 0.204683i
\(307\) −97.3846 97.3846i −0.317214 0.317214i 0.530482 0.847696i \(-0.322011\pi\)
−0.847696 + 0.530482i \(0.822011\pi\)
\(308\) −160.865 + 53.7651i −0.522290 + 0.174562i
\(309\) 160.135i 0.518236i
\(310\) −118.125 107.633i −0.381048 0.347205i
\(311\) 108.765 188.387i 0.349727 0.605745i −0.636474 0.771298i \(-0.719608\pi\)
0.986201 + 0.165553i \(0.0529410\pi\)
\(312\) 84.5031 22.6425i 0.270843 0.0725723i
\(313\) −57.7185 15.4656i −0.184404 0.0494110i 0.165435 0.986221i \(-0.447097\pi\)
−0.349839 + 0.936810i \(0.613764\pi\)
\(314\) 89.1448i 0.283901i
\(315\) −97.9326 + 37.8708i −0.310897 + 0.120225i
\(316\) 23.0871 0.0730603
\(317\) −42.9238 + 160.194i −0.135406 + 0.505343i 0.864590 + 0.502479i \(0.167578\pi\)
−0.999996 + 0.00286449i \(0.999088\pi\)
\(318\) −24.9621 93.1598i −0.0784972 0.292955i
\(319\) −320.465 185.020i −1.00459 0.580001i
\(320\) −1.85688 39.9569i −0.00580274 0.124865i
\(321\) 137.713 0.429013
\(322\) −27.5093 + 31.0728i −0.0854327 + 0.0964992i
\(323\) 418.207 418.207i 1.29476 1.29476i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) 285.043 343.598i 0.877055 1.05722i
\(326\) −79.6643 + 137.983i −0.244369 + 0.423259i
\(327\) 10.5870 39.5112i 0.0323761 0.120829i
\(328\) −136.279 + 136.279i −0.415484 + 0.415484i
\(329\) 189.233 379.226i 0.575176 1.15266i
\(330\) −68.1447 + 131.806i −0.206499 + 0.399413i
\(331\) −62.9012 108.948i −0.190034 0.329148i 0.755227 0.655463i \(-0.227526\pi\)
−0.945261 + 0.326315i \(0.894193\pi\)
\(332\) 31.2440 8.37179i 0.0941083 0.0252162i
\(333\) −32.8559 122.620i −0.0986662 0.368227i
\(334\) 145.665 84.0997i 0.436123 0.251796i
\(335\) −541.603 + 172.439i −1.61673 + 0.514743i
\(336\) 40.4502 26.7540i 0.120388 0.0796251i
\(337\) −250.321 250.321i −0.742792 0.742792i 0.230322 0.973114i \(-0.426022\pi\)
−0.973114 + 0.230322i \(0.926022\pi\)
\(338\) −204.759 54.8651i −0.605797 0.162323i
\(339\) 28.1296 + 16.2406i 0.0829782 + 0.0479075i
\(340\) 166.527 + 36.4284i 0.489786 + 0.107142i
\(341\) −136.903 237.122i −0.401474 0.695373i
\(342\) −104.086 104.086i −0.304345 0.304345i
\(343\) 282.481 + 194.560i 0.823559 + 0.567231i
\(344\) 194.693i 0.565967i
\(345\) 1.68536 + 36.2661i 0.00488510 + 0.105119i
\(346\) −176.254 + 305.281i −0.509405 + 0.882315i
\(347\) 265.494 71.1389i 0.765113 0.205011i 0.144901 0.989446i \(-0.453714\pi\)
0.620211 + 0.784435i \(0.287047\pi\)
\(348\) 102.201 + 27.3847i 0.293681 + 0.0786915i
\(349\) 561.168i 1.60793i −0.594675 0.803966i \(-0.702719\pi\)
0.594675 0.803966i \(-0.297281\pi\)
\(350\) 89.4881 230.742i 0.255680 0.659263i
\(351\) 92.7909 0.264361
\(352\) 17.7378 66.1985i 0.0503916 0.188064i
\(353\) −138.382 516.450i −0.392018 1.46303i −0.826800 0.562495i \(-0.809841\pi\)
0.434782 0.900535i \(-0.356825\pi\)
\(354\) −124.694 71.9920i −0.352242 0.203367i
\(355\) −137.145 + 6.37341i −0.386324 + 0.0179533i
\(356\) 67.8897 0.190701
\(357\) 65.5145 + 196.020i 0.183514 + 0.549074i
\(358\) 62.3461 62.3461i 0.174151 0.174151i
\(359\) 322.888 186.419i 0.899409 0.519274i 0.0224006 0.999749i \(-0.492869\pi\)
0.877008 + 0.480475i \(0.159536\pi\)
\(360\) 9.06652 41.4463i 0.0251848 0.115129i
\(361\) 421.383 729.857i 1.16727 2.02176i
\(362\) 70.2205 262.067i 0.193979 0.723941i
\(363\) −31.5705 + 31.5705i −0.0869711 + 0.0869711i
\(364\) −249.545 + 15.1793i −0.685564 + 0.0417013i
\(365\) 196.332 + 616.649i 0.537896 + 1.68945i
\(366\) −45.8887 79.4816i −0.125379 0.217163i
\(367\) −353.945 + 94.8393i −0.964428 + 0.258418i −0.706473 0.707740i \(-0.749715\pi\)
−0.257954 + 0.966157i \(0.583048\pi\)
\(368\) −4.34005 16.1973i −0.0117936 0.0440144i
\(369\) −177.031 + 102.209i −0.479760 + 0.276990i
\(370\) 265.792 + 137.416i 0.718356 + 0.371395i
\(371\) 16.7343 + 275.109i 0.0451058 + 0.741535i
\(372\) 55.3590 + 55.3590i 0.148814 + 0.148814i
\(373\) −264.910 70.9825i −0.710215 0.190302i −0.114414 0.993433i \(-0.536499\pi\)
−0.595802 + 0.803132i \(0.703166\pi\)
\(374\) 252.936 + 146.033i 0.676299 + 0.390462i
\(375\) −84.5339 199.321i −0.225424 0.531524i
\(376\) 85.6241 + 148.305i 0.227724 + 0.394429i
\(377\) −385.681 385.681i −1.02303 1.02303i
\(378\) 48.7865 16.3056i 0.129065 0.0431366i
\(379\) 68.5108i 0.180767i 0.995907 + 0.0903836i \(0.0288093\pi\)
−0.995907 + 0.0903836i \(0.971191\pi\)
\(380\) 346.579 16.1062i 0.912051 0.0423848i
\(381\) −94.5013 + 163.681i −0.248035 + 0.429609i
\(382\) −87.1174 + 23.3430i −0.228056 + 0.0611074i
\(383\) 596.199 + 159.751i 1.55665 + 0.417104i 0.931602 0.363479i \(-0.118411\pi\)
0.625052 + 0.780583i \(0.285078\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 266.036 330.192i 0.691002 0.857643i
\(386\) 425.509 1.10235
\(387\) 53.4469 199.466i 0.138106 0.515417i
\(388\) 19.5793 + 73.0708i 0.0504620 + 0.188327i
\(389\) −83.7313 48.3423i −0.215248 0.124273i 0.388500 0.921449i \(-0.372993\pi\)
−0.603748 + 0.797175i \(0.706327\pi\)
\(390\) −147.306 + 161.664i −0.377706 + 0.414523i
\(391\) 71.4619 0.182767
\(392\) −128.536 + 51.8321i −0.327897 + 0.132225i
\(393\) −207.733 + 207.733i −0.528583 + 0.528583i
\(394\) −157.558 + 90.9660i −0.399893 + 0.230878i
\(395\) −48.5914 + 31.1481i −0.123016 + 0.0788559i
\(396\) 36.3455 62.9522i 0.0917816 0.158970i
\(397\) −45.0833 + 168.253i −0.113560 + 0.423811i −0.999175 0.0406085i \(-0.987070\pi\)
0.885615 + 0.464420i \(0.153737\pi\)
\(398\) −85.8966 + 85.8966i −0.215821 + 0.215821i
\(399\) 232.060 + 350.859i 0.581604 + 0.879345i
\(400\) 57.8163 + 81.5921i 0.144541 + 0.203980i
\(401\) −61.8259 107.086i −0.154179 0.267046i 0.778581 0.627545i \(-0.215940\pi\)
−0.932760 + 0.360498i \(0.882607\pi\)
\(402\) 268.966 72.0692i 0.669069 0.179277i
\(403\) −104.456 389.834i −0.259195 0.967330i
\(404\) −46.8656 + 27.0578i −0.116004 + 0.0669749i
\(405\) 20.6666 39.9736i 0.0510287 0.0987003i
\(406\) −270.553 135.005i −0.666387 0.332526i
\(407\) 362.501 + 362.501i 0.890667 + 0.890667i
\(408\) −80.6650 21.6141i −0.197708 0.0529758i
\(409\) −355.908 205.484i −0.870191 0.502405i −0.00277929 0.999996i \(-0.500885\pi\)
−0.867412 + 0.497591i \(0.834218\pi\)
\(410\) 102.965 470.688i 0.251133 1.14802i
\(411\) 4.96120 + 8.59305i 0.0120710 + 0.0209077i
\(412\) −130.750 130.750i −0.317353 0.317353i
\(413\) 308.081 + 272.750i 0.745958 + 0.660412i
\(414\) 17.7859i 0.0429610i
\(415\) −54.4643 + 59.7732i −0.131239 + 0.144032i
\(416\) 50.5089 87.4841i 0.121416 0.210298i
\(417\) 31.7243 8.50049i 0.0760774 0.0203849i
\(418\) 574.195 + 153.855i 1.37367 + 0.368074i
\(419\) 138.311i 0.330097i −0.986285 0.165049i \(-0.947222\pi\)
0.986285 0.165049i \(-0.0527781\pi\)
\(420\) −49.0403 + 110.883i −0.116763 + 0.264007i
\(421\) −701.115 −1.66536 −0.832678 0.553757i \(-0.813193\pi\)
−0.832678 + 0.553757i \(0.813193\pi\)
\(422\) −55.1202 + 205.711i −0.130616 + 0.487467i
\(423\) 47.0109 + 175.447i 0.111137 + 0.414768i
\(424\) −96.4461 55.6832i −0.227467 0.131328i
\(425\) −399.638 + 148.001i −0.940325 + 0.348237i
\(426\) 67.2596 0.157886
\(427\) 83.1384 + 248.750i 0.194704 + 0.582553i
\(428\) 112.442 112.442i 0.262716 0.262716i
\(429\) −324.522 + 187.363i −0.756461 + 0.436743i
\(430\) 262.671 + 409.770i 0.610864 + 0.952954i
\(431\) −192.097 + 332.722i −0.445702 + 0.771978i −0.998101 0.0616020i \(-0.980379\pi\)
0.552399 + 0.833580i \(0.313712\pi\)
\(432\) −5.37945 + 20.0764i −0.0124524 + 0.0464731i
\(433\) 151.538 151.538i 0.349973 0.349973i −0.510126 0.860099i \(-0.670401\pi\)
0.860099 + 0.510126i \(0.170401\pi\)
\(434\) −123.423 186.607i −0.284385 0.429970i
\(435\) −252.049 + 80.2487i −0.579422 + 0.184480i
\(436\) −23.6165 40.9050i −0.0541663 0.0938187i
\(437\) 140.493 37.6449i 0.321493 0.0861439i
\(438\) −82.0552 306.234i −0.187341 0.699165i
\(439\) −168.789 + 97.4502i −0.384485 + 0.221982i −0.679768 0.733428i \(-0.737919\pi\)
0.295283 + 0.955410i \(0.404586\pi\)
\(440\) 51.9794 + 163.259i 0.118135 + 0.371044i
\(441\) −145.916 + 17.8174i −0.330876 + 0.0404023i
\(442\) 304.410 + 304.410i 0.688710 + 0.688710i
\(443\) −540.156 144.734i −1.21931 0.326714i −0.408904 0.912577i \(-0.634089\pi\)
−0.810410 + 0.585863i \(0.800756\pi\)
\(444\) −126.945 73.2919i −0.285913 0.165072i
\(445\) −142.888 + 91.5940i −0.321096 + 0.205829i
\(446\) −166.002 287.523i −0.372201 0.644671i
\(447\) −22.3174 22.3174i −0.0499272 0.0499272i
\(448\) 11.1829 54.8721i 0.0249619 0.122482i
\(449\) 329.193i 0.733170i −0.930385 0.366585i \(-0.880527\pi\)
0.930385 0.366585i \(-0.119473\pi\)
\(450\) 36.8354 + 99.4643i 0.0818563 + 0.221032i
\(451\) 412.760 714.922i 0.915211 1.58519i
\(452\) 36.2282 9.70730i 0.0801508 0.0214763i
\(453\) 277.235 + 74.2849i 0.611998 + 0.163984i
\(454\) 38.5510i 0.0849141i
\(455\) 504.739 368.624i 1.10932 0.810163i
\(456\) −169.972 −0.372745
\(457\) 86.2773 321.991i 0.188791 0.704576i −0.804997 0.593280i \(-0.797833\pi\)
0.993787 0.111297i \(-0.0355004\pi\)
\(458\) −104.986 391.813i −0.229227 0.855487i
\(459\) −76.7093 44.2881i −0.167123 0.0964883i
\(460\) 30.9872 + 28.2351i 0.0673636 + 0.0613806i
\(461\) 106.453 0.230918 0.115459 0.993312i \(-0.463166\pi\)
0.115459 + 0.993312i \(0.463166\pi\)
\(462\) −137.699 + 155.536i −0.298050 + 0.336658i
\(463\) −104.785 + 104.785i −0.226318 + 0.226318i −0.811153 0.584835i \(-0.801159\pi\)
0.584835 + 0.811153i \(0.301159\pi\)
\(464\) 105.806 61.0872i 0.228031 0.131654i
\(465\) −191.202 41.8261i −0.411187 0.0899486i
\(466\) −10.4929 + 18.1742i −0.0225169 + 0.0390004i
\(467\) 169.811 633.744i 0.363622 1.35705i −0.505658 0.862734i \(-0.668750\pi\)
0.869280 0.494320i \(-0.164583\pi\)
\(468\) 75.7634 75.7634i 0.161888 0.161888i
\(469\) −794.281 + 48.3143i −1.69356 + 0.103015i
\(470\) −380.300 196.618i −0.809150 0.418336i
\(471\) −54.5898 94.5523i −0.115902 0.200748i
\(472\) −160.593 + 43.0309i −0.340240 + 0.0911671i
\(473\) 215.839 + 805.523i 0.456320 + 1.70301i
\(474\) 24.4875 14.1379i 0.0516614 0.0298267i
\(475\) −707.716 + 501.489i −1.48993 + 1.05577i
\(476\) 213.542 + 106.557i 0.448617 + 0.223859i
\(477\) −83.5248 83.5248i −0.175104 0.175104i
\(478\) −447.812 119.991i −0.936846 0.251027i
\(479\) 520.647 + 300.596i 1.08695 + 0.627549i 0.932762 0.360493i \(-0.117392\pi\)
0.154184 + 0.988042i \(0.450725\pi\)
\(480\) −26.4380 41.2436i −0.0550792 0.0859241i
\(481\) 377.823 + 654.409i 0.785495 + 1.36052i
\(482\) −358.156 358.156i −0.743062 0.743062i
\(483\) −10.1500 + 49.8036i −0.0210144 + 0.103113i
\(484\) 51.5545i 0.106517i
\(485\) −139.793 127.377i −0.288232 0.262632i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) 809.396 216.877i 1.66200 0.445333i 0.699066 0.715057i \(-0.253599\pi\)
0.962938 + 0.269724i \(0.0869326\pi\)
\(488\) −102.364 27.4285i −0.209763 0.0562059i
\(489\) 195.137i 0.399053i
\(490\) 200.600 282.506i 0.409387 0.576543i
\(491\) −825.672 −1.68161 −0.840806 0.541336i \(-0.817919\pi\)
−0.840806 + 0.541336i \(0.817919\pi\)
\(492\) −61.0922 + 227.999i −0.124171 + 0.463413i
\(493\) 134.757 + 502.921i 0.273341 + 1.02012i
\(494\) 758.822 + 438.106i 1.53608 + 0.886855i
\(495\) 8.43613 + 181.532i 0.0170427 + 0.366730i
\(496\) 90.4008 0.182260
\(497\) −188.339 38.3834i −0.378952 0.0772303i
\(498\) 28.0126 28.0126i 0.0562501 0.0562501i
\(499\) 152.486 88.0381i 0.305584 0.176429i −0.339365 0.940655i \(-0.610212\pi\)
0.644949 + 0.764226i \(0.276879\pi\)
\(500\) −231.767 93.7236i −0.463534 0.187447i
\(501\) 103.001 178.402i 0.205590 0.356093i
\(502\) −174.809 + 652.394i −0.348224 + 1.29959i
\(503\) −355.137 + 355.137i −0.706038 + 0.706038i −0.965700 0.259662i \(-0.916389\pi\)
0.259662 + 0.965700i \(0.416389\pi\)
\(504\) 26.5205 53.1475i 0.0526201 0.105451i
\(505\) 62.1327 120.178i 0.123035 0.237976i
\(506\) 35.9131 + 62.2033i 0.0709745 + 0.122932i
\(507\) −250.778 + 67.1957i −0.494631 + 0.132536i
\(508\) 56.4850 + 210.805i 0.111191 + 0.414970i
\(509\) −285.339 + 164.741i −0.560588 + 0.323656i −0.753382 0.657584i \(-0.771579\pi\)
0.192793 + 0.981239i \(0.438245\pi\)
\(510\) 198.937 63.3386i 0.390072 0.124193i
\(511\) 55.0088 + 904.338i 0.107649 + 1.76974i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −174.139 46.6605i −0.339453 0.0909561i
\(514\) 561.056 + 323.926i 1.09155 + 0.630206i
\(515\) 451.591 + 98.7870i 0.876876 + 0.191819i
\(516\) −119.224 206.503i −0.231055 0.400199i
\(517\) −518.675 518.675i −1.00324 1.00324i
\(518\) 313.643 + 277.675i 0.605489 + 0.536052i
\(519\) 431.733i 0.831855i
\(520\) 11.7236 + 252.272i 0.0225454 + 0.485139i
\(521\) −431.739 + 747.794i −0.828674 + 1.43530i 0.0704056 + 0.997518i \(0.477571\pi\)
−0.899079 + 0.437786i \(0.855763\pi\)
\(522\) 125.170 33.5392i 0.239789 0.0642514i
\(523\) −88.4675 23.7048i −0.169154 0.0453246i 0.173248 0.984878i \(-0.444574\pi\)
−0.342402 + 0.939554i \(0.611240\pi\)
\(524\) 339.227i 0.647380i
\(525\) −46.3837 299.539i −0.0883498 0.570550i
\(526\) 265.955 0.505618
\(527\) −99.7113 + 372.128i −0.189205 + 0.706124i
\(528\) −21.7243 81.0763i −0.0411445 0.153554i
\(529\) −442.908 255.713i −0.837255 0.483389i
\(530\) 278.116 12.9246i 0.524747 0.0243860i
\(531\) −176.344 −0.332097
\(532\) 475.951 + 96.9987i 0.894645 + 0.182328i
\(533\) 860.413 860.413i 1.61428 1.61428i
\(534\) 72.0079 41.5738i 0.134846 0.0778535i
\(535\) −84.9551 + 388.360i −0.158795 + 0.725907i
\(536\) 160.765 278.454i 0.299936 0.519504i
\(537\) 27.9490 104.307i 0.0520466 0.194240i
\(538\) 26.2097 26.2097i 0.0487170 0.0487170i
\(539\) 474.343 356.947i 0.880042 0.662239i
\(540\) −15.7641 49.5126i −0.0291928 0.0916899i
\(541\) −258.544 447.811i −0.477900 0.827746i 0.521779 0.853080i \(-0.325268\pi\)
−0.999679 + 0.0253341i \(0.991935\pi\)
\(542\) −72.7939 + 19.5051i −0.134306 + 0.0359872i
\(543\) −86.0022 320.965i −0.158383 0.591095i
\(544\) −83.5105 + 48.2148i −0.153512 + 0.0886302i
\(545\) 104.893 + 54.2304i 0.192464 + 0.0995053i
\(546\) −255.387 + 168.915i −0.467742 + 0.309368i
\(547\) −306.919 306.919i −0.561095 0.561095i 0.368523 0.929619i \(-0.379863\pi\)
−0.929619 + 0.368523i \(0.879863\pi\)
\(548\) 11.0670 + 2.96539i 0.0201952 + 0.00541130i
\(549\) −97.3447 56.2020i −0.177313 0.102372i
\(550\) −329.664 273.484i −0.599389 0.497243i
\(551\) 529.860 + 917.745i 0.961634 + 1.66560i
\(552\) −14.5221 14.5221i −0.0263082 0.0263082i
\(553\) −76.6375 + 25.6141i −0.138585 + 0.0463185i
\(554\) 32.1657i 0.0580608i
\(555\) 366.064 17.0117i 0.659576 0.0306518i
\(556\) 18.9621 32.8434i 0.0341046 0.0590708i
\(557\) 150.269 40.2644i 0.269783 0.0722880i −0.121392 0.992605i \(-0.538736\pi\)
0.391174 + 0.920317i \(0.372069\pi\)
\(558\) 92.6174 + 24.8167i 0.165981 + 0.0444745i
\(559\) 1229.22i 2.19895i
\(560\) 50.4944 + 130.577i 0.0901686 + 0.233173i
\(561\) 357.705 0.637621
\(562\) 24.8979 92.9204i 0.0443024 0.165339i
\(563\) 66.3747 + 247.714i 0.117895 + 0.439989i 0.999487 0.0320225i \(-0.0101948\pi\)
−0.881592 + 0.472011i \(0.843528\pi\)
\(564\) 181.636 + 104.868i 0.322050 + 0.185936i
\(565\) −63.1528 + 69.3085i −0.111775 + 0.122670i
\(566\) 487.909 0.862029
\(567\) 41.7608 47.1703i 0.0736522 0.0831927i
\(568\) 54.9173 54.9173i 0.0966853 0.0966853i
\(569\) 585.078 337.795i 1.02826 0.593664i 0.111771 0.993734i \(-0.464348\pi\)
0.916485 + 0.400070i \(0.131014\pi\)
\(570\) 357.740 229.319i 0.627614 0.402314i
\(571\) 243.726 422.146i 0.426840 0.739309i −0.569750 0.821818i \(-0.692960\pi\)
0.996590 + 0.0825088i \(0.0262932\pi\)
\(572\) −111.990 + 417.952i −0.195787 + 0.730685i
\(573\) −78.1073 + 78.1073i −0.136313 + 0.136313i
\(574\) 301.182 603.574i 0.524708 1.05152i
\(575\) −103.312 17.6197i −0.179674 0.0306429i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 288.947 77.4230i 0.500774 0.134182i 0.000414833 1.00000i \(-0.499868\pi\)
0.500359 + 0.865818i \(0.333201\pi\)
\(578\) −0.579673 2.16337i −0.00100290 0.00374286i
\(579\) 451.320 260.570i 0.779482 0.450034i
\(580\) −140.274 + 271.320i −0.241852 + 0.467793i
\(581\) −94.4263 + 62.4541i −0.162524 + 0.107494i
\(582\) 65.5134 + 65.5134i 0.112566 + 0.112566i
\(583\) 460.768 + 123.462i 0.790340 + 0.211771i
\(584\) −317.037 183.041i −0.542872 0.313427i
\(585\) −57.2425 + 261.676i −0.0978505 + 0.447310i
\(586\) −139.189 241.082i −0.237523 0.411402i
\(587\) −125.644 125.644i −0.214044 0.214044i 0.591939 0.805983i \(-0.298363\pi\)
−0.805983 + 0.591939i \(0.798363\pi\)
\(588\) −104.592 + 133.688i −0.177878 + 0.227360i
\(589\) 784.122i 1.33128i
\(590\) 279.946 307.233i 0.474484 0.520734i
\(591\) −111.410 + 192.968i −0.188511 + 0.326511i
\(592\) −163.493 + 43.8078i −0.276171 + 0.0739997i
\(593\) −1089.38 291.900i −1.83707 0.492242i −0.838463 0.544958i \(-0.816546\pi\)
−0.998610 + 0.0527158i \(0.983212\pi\)
\(594\) 89.0279i 0.149879i
\(595\) −593.204 + 63.8310i −0.996981 + 0.107279i
\(596\) −36.4442 −0.0611480
\(597\) −38.5064 + 143.708i −0.0644998 + 0.240717i
\(598\) 27.4014 + 102.264i 0.0458218 + 0.171009i
\(599\) −603.096 348.197i −1.00684 0.581298i −0.0965732 0.995326i \(-0.530788\pi\)
−0.910264 + 0.414028i \(0.864122\pi\)
\(600\) 111.288 + 51.1364i 0.185480 + 0.0852273i
\(601\) 525.606 0.874553 0.437277 0.899327i \(-0.355943\pi\)
0.437277 + 0.899327i \(0.355943\pi\)
\(602\) 216.004 + 646.283i 0.358810 + 1.07356i
\(603\) 241.148 241.148i 0.399914 0.399914i
\(604\) 287.015 165.708i 0.475190 0.274351i
\(605\) −69.5551 108.507i −0.114967 0.179350i
\(606\) −33.1390 + 57.3983i −0.0546847 + 0.0947167i
\(607\) −20.4046 + 76.1512i −0.0336156 + 0.125455i −0.980695 0.195545i \(-0.937352\pi\)
0.947079 + 0.321000i \(0.104019\pi\)
\(608\) −138.781 + 138.781i −0.228259 + 0.228259i
\(609\) −369.638 + 22.4843i −0.606960 + 0.0369200i
\(610\) 252.452 80.3772i 0.413856 0.131766i
\(611\) −540.598 936.343i −0.884775 1.53248i
\(612\) −98.7940 + 26.4718i −0.161428 + 0.0432545i
\(613\) 87.3327 + 325.930i 0.142468 + 0.531696i 0.999855 + 0.0170249i \(0.00541945\pi\)
−0.857387 + 0.514672i \(0.827914\pi\)
\(614\) −168.675 + 97.3846i −0.274715 + 0.158607i
\(615\) −179.026 562.293i −0.291099 0.914298i
\(616\) 14.5637 + 239.426i 0.0236424 + 0.388678i
\(617\) 170.931 + 170.931i 0.277036 + 0.277036i 0.831925 0.554889i \(-0.187239\pi\)
−0.554889 + 0.831925i \(0.687239\pi\)
\(618\) −218.748 58.6135i −0.353962 0.0948438i
\(619\) 625.195 + 360.957i 1.01001 + 0.583129i 0.911194 0.411977i \(-0.135162\pi\)
0.0988144 + 0.995106i \(0.468495\pi\)
\(620\) −190.267 + 121.965i −0.306882 + 0.196718i
\(621\) −10.8916 18.8648i −0.0175388 0.0303780i
\(622\) −217.530 217.530i −0.349727 0.349727i
\(623\) −225.360 + 75.3208i −0.361734 + 0.120900i
\(624\) 123.721i 0.198271i
\(625\) 614.248 115.430i 0.982797 0.184688i
\(626\) −42.2529 + 73.1841i −0.0674966 + 0.116908i
\(627\) 703.242 188.433i 1.12160 0.300531i
\(628\) −121.774 32.6293i −0.193908 0.0519574i
\(629\) 721.325i 1.14678i
\(630\) 15.8866 + 147.640i 0.0252169 + 0.234349i
\(631\) 413.045 0.654588 0.327294 0.944923i \(-0.393863\pi\)
0.327294 + 0.944923i \(0.393863\pi\)
\(632\) 8.45045 31.5375i 0.0133710 0.0499011i
\(633\) 67.5081 + 251.944i 0.106648 + 0.398015i
\(634\) 203.118 + 117.270i 0.320375 + 0.184968i
\(635\) −403.293 367.474i −0.635108 0.578700i
\(636\) −136.395 −0.214458
\(637\) 811.526 327.248i 1.27398 0.513733i
\(638\) −370.041 + 370.041i −0.580001 + 0.580001i
\(639\) 71.3396 41.1879i 0.111643 0.0644569i
\(640\) −55.2618 12.0887i −0.0863465 0.0188886i
\(641\) −109.748 + 190.088i −0.171213 + 0.296550i −0.938844 0.344342i \(-0.888102\pi\)
0.767631 + 0.640892i \(0.221435\pi\)
\(642\) 50.4065 188.120i 0.0785149 0.293021i
\(643\) 400.432 400.432i 0.622756 0.622756i −0.323480 0.946235i \(-0.604853\pi\)
0.946235 + 0.323480i \(0.104853\pi\)
\(644\) 32.3771 + 48.9519i 0.0502749 + 0.0760122i
\(645\) 529.537 + 273.774i 0.820988 + 0.424456i
\(646\) −418.207 724.356i −0.647380 1.12129i
\(647\) −214.164 + 57.3850i −0.331010 + 0.0886939i −0.420497 0.907294i \(-0.638144\pi\)
0.0894864 + 0.995988i \(0.471477\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) 616.735 356.072i 0.950285 0.548647i
\(650\) −365.030 515.141i −0.561585 0.792525i
\(651\) −245.183 122.346i −0.376625 0.187935i
\(652\) 159.329 + 159.329i 0.244369 + 0.244369i
\(653\) −866.282 232.119i −1.32662 0.355466i −0.475165 0.879897i \(-0.657612\pi\)
−0.851453 + 0.524431i \(0.824278\pi\)
\(654\) −50.0981 28.9242i −0.0766027 0.0442266i
\(655\) −457.671 713.972i −0.698734 1.09003i
\(656\) 136.279 + 236.042i 0.207742 + 0.359820i
\(657\) −274.562 274.562i −0.417903 0.417903i
\(658\) −448.768 397.303i −0.682018 0.603804i
\(659\) 822.019i 1.24737i 0.781675 + 0.623686i \(0.214366\pi\)
−0.781675 + 0.623686i \(0.785634\pi\)
\(660\) 155.108 + 141.332i 0.235012 + 0.214139i
\(661\) 262.359 454.420i 0.396913 0.687473i −0.596430 0.802665i \(-0.703415\pi\)
0.993343 + 0.115191i \(0.0367482\pi\)
\(662\) −171.849 + 46.0469i −0.259591 + 0.0695572i
\(663\) 509.288 + 136.463i 0.768157 + 0.205827i
\(664\) 45.7443i 0.0688921i
\(665\) −1132.60 + 437.980i −1.70316 + 0.658617i
\(666\) −179.528 −0.269561
\(667\) −33.1402 + 123.681i −0.0496855 + 0.185429i
\(668\) −61.5653 229.765i −0.0921636 0.343959i
\(669\) −352.143 203.310i −0.526372 0.303901i
\(670\) 37.3152 + 802.961i 0.0556943 + 1.19845i
\(671\) 453.931 0.676499
\(672\) −21.7409 65.0487i −0.0323525 0.0967987i
\(673\) −593.572 + 593.572i −0.881979 + 0.881979i −0.993736 0.111756i \(-0.964352\pi\)
0.111756 + 0.993736i \(0.464352\pi\)
\(674\) −433.569 + 250.321i −0.643277 + 0.371396i
\(675\) 99.9790 + 82.9409i 0.148117 + 0.122875i
\(676\) −149.894 + 259.624i −0.221737 + 0.384060i
\(677\) 66.0690 246.573i 0.0975909 0.364214i −0.899809 0.436285i \(-0.856294\pi\)
0.997400 + 0.0720706i \(0.0229607\pi\)
\(678\) 32.4813 32.4813i 0.0479075 0.0479075i
\(679\) −146.062 220.836i −0.215114 0.325237i
\(680\) 110.715 214.147i 0.162817 0.314922i
\(681\) 23.6076 + 40.8895i 0.0346660 + 0.0600433i
\(682\) −374.025 + 100.220i −0.548424 + 0.146950i
\(683\) −29.1966 108.963i −0.0427475 0.159536i 0.941253 0.337703i \(-0.109650\pi\)
−0.984000 + 0.178167i \(0.942983\pi\)
\(684\) −180.282 + 104.086i −0.263571 + 0.152173i
\(685\) −27.2935 + 8.68986i −0.0398445 + 0.0126859i
\(686\) 369.169 314.662i 0.538148 0.458691i
\(687\) −351.290 351.290i −0.511339 0.511339i
\(688\) −265.955 71.2625i −0.386563 0.103579i
\(689\) 608.924 + 351.563i 0.883780 + 0.510250i
\(690\) 50.1573 + 10.9721i 0.0726918 + 0.0159016i
\(691\) 478.996 + 829.646i 0.693193 + 1.20065i 0.970786 + 0.239947i \(0.0771300\pi\)
−0.277593 + 0.960699i \(0.589537\pi\)
\(692\) 352.508 + 352.508i 0.509405 + 0.509405i
\(693\) −50.8061 + 249.294i −0.0733132 + 0.359732i
\(694\) 388.710i 0.560101i
\(695\) 4.40129 + 94.7085i 0.00633279 + 0.136271i
\(696\) 74.8163 129.586i 0.107495 0.186186i
\(697\) −1121.96 + 300.629i −1.60970 + 0.431318i
\(698\) −766.570 205.402i −1.09824 0.294272i
\(699\) 25.7022i 0.0367699i
\(700\) −282.445 206.700i −0.403492 0.295286i
\(701\) 1384.85 1.97554 0.987769 0.155922i \(-0.0498347\pi\)
0.987769 + 0.155922i \(0.0498347\pi\)
\(702\) 33.9638 126.755i 0.0483815 0.180562i
\(703\) −379.982 1418.11i −0.540514 2.01723i
\(704\) −83.9363 48.4607i −0.119228 0.0688362i
\(705\) −523.773 + 24.3408i −0.742940 + 0.0345259i
\(706\) −756.135 −1.07101
\(707\) 125.551 141.814i 0.177582 0.200586i
\(708\) −143.984 + 143.984i −0.203367 + 0.203367i
\(709\) 208.798 120.550i 0.294497 0.170028i −0.345471 0.938429i \(-0.612281\pi\)
0.639968 + 0.768401i \(0.278948\pi\)
\(710\) −41.4924 + 189.677i −0.0584400 + 0.267150i
\(711\) 17.3153 29.9910i 0.0243534 0.0421814i
\(712\) 24.8494 92.7391i 0.0349008 0.130251i
\(713\) −66.9940 + 66.9940i −0.0939608 + 0.0939608i
\(714\) 291.748 17.7463i 0.408610 0.0248548i
\(715\) −328.178 1030.76i −0.458991 1.44162i
\(716\) −62.3461 107.987i −0.0870756 0.150819i
\(717\) −548.456 + 146.958i −0.764932 + 0.204963i
\(718\) −136.468 509.307i −0.190067 0.709342i
\(719\) 147.138 84.9500i 0.204642 0.118150i −0.394177 0.919035i \(-0.628970\pi\)
0.598819 + 0.800884i \(0.295637\pi\)
\(720\) −53.2982 27.5555i −0.0740252 0.0382715i
\(721\) 579.085 + 288.962i 0.803169 + 0.400780i
\(722\) −842.766 842.766i −1.16727 1.16727i
\(723\) −599.206 160.557i −0.828778 0.222070i
\(724\) −332.287 191.846i −0.458960 0.264981i
\(725\) −70.8182 760.299i −0.0976802 1.04869i
\(726\) 31.5705 + 54.6818i 0.0434856 + 0.0753192i
\(727\) 400.461 + 400.461i 0.550841 + 0.550841i 0.926683 0.375843i \(-0.122647\pi\)
−0.375843 + 0.926683i \(0.622647\pi\)
\(728\) −70.6047 + 346.441i −0.0969844 + 0.475881i
\(729\) 27.0000i 0.0370370i
\(730\) 914.221 42.4856i 1.25236 0.0581995i
\(731\) 586.692 1016.18i 0.802589 1.39012i
\(732\) −125.370 + 33.5929i −0.171271 + 0.0458919i
\(733\) −832.935 223.184i −1.13634 0.304480i −0.358859 0.933392i \(-0.616834\pi\)
−0.777477 + 0.628911i \(0.783501\pi\)
\(734\) 518.211i 0.706010i
\(735\) 39.7692 422.485i 0.0541078 0.574809i
\(736\) −23.7145 −0.0322208
\(737\) −356.454 + 1330.30i −0.483655 + 1.80503i
\(738\) 74.8223 + 279.241i 0.101385 + 0.378375i
\(739\) 141.888 + 81.9191i 0.192000 + 0.110851i 0.592919 0.805262i \(-0.297976\pi\)
−0.400918 + 0.916114i \(0.631309\pi\)
\(740\) 285.000 312.780i 0.385136 0.422676i
\(741\) 1073.14 1.44823
\(742\) 381.932 + 77.8376i 0.514733 + 0.104902i
\(743\) 362.720 362.720i 0.488183 0.488183i −0.419550 0.907732i \(-0.637812\pi\)
0.907732 + 0.419550i \(0.137812\pi\)
\(744\) 95.8846 55.3590i 0.128877 0.0744072i
\(745\) 76.7042 49.1690i 0.102959 0.0659987i
\(746\) −193.928 + 335.893i −0.259957 + 0.450258i
\(747\) 12.5577 46.8659i 0.0168108 0.0627389i
\(748\) 292.065 292.065i 0.390462 0.390462i
\(749\) −248.503 + 498.003i −0.331779 + 0.664890i
\(750\) −303.220 + 42.5187i −0.404293 + 0.0566916i
\(751\) 424.168 + 734.681i 0.564804 + 0.978270i 0.997068 + 0.0765226i \(0.0243817\pi\)
−0.432263 + 0.901747i \(0.642285\pi\)
\(752\) 233.929 62.6812i 0.311076 0.0833526i
\(753\) 214.096 + 799.017i 0.284324 + 1.06111i
\(754\) −668.020 + 385.681i −0.885968 + 0.511514i
\(755\) −380.514 + 735.995i −0.503993 + 0.974828i
\(756\) −4.41682 72.6119i −0.00584235 0.0960475i
\(757\) −507.330 507.330i −0.670185 0.670185i 0.287574 0.957758i \(-0.407151\pi\)
−0.957758 + 0.287574i \(0.907151\pi\)
\(758\) 93.5875 + 25.0767i 0.123466 + 0.0330827i
\(759\) 76.1832 + 43.9844i 0.100373 + 0.0579505i
\(760\) 104.855 479.331i 0.137968 0.630699i
\(761\) −189.748 328.654i −0.249341 0.431871i 0.714002 0.700143i \(-0.246881\pi\)
−0.963343 + 0.268272i \(0.913547\pi\)
\(762\) 189.003 + 189.003i 0.248035 + 0.248035i
\(763\) 123.777 + 109.583i 0.162225 + 0.143621i