Properties

Label 210.3.v.a.67.2
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.2
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.a.163.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-1.45729 + 4.78292i) q^{5} -2.44949 q^{6} +(-1.05182 + 6.92053i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-1.45729 + 4.78292i) q^{5} -2.44949 q^{6} +(-1.05182 + 6.92053i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(6.00018 + 3.74136i) q^{10} +(-6.50271 + 11.2630i) q^{11} +(-0.896575 + 3.34607i) q^{12} +(-0.863323 + 0.863323i) q^{13} +(9.06862 + 3.96990i) q^{14} +(8.65526 + 0.293964i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-0.902729 + 0.241886i) q^{17} +(1.09808 + 4.09808i) q^{18} +(-5.84532 + 3.37480i) q^{19} +(7.30701 - 6.82697i) q^{20} +(12.0498 - 1.34266i) q^{21} +(13.0054 + 13.0054i) q^{22} +(14.5886 + 3.90901i) q^{23} +(4.24264 + 2.44949i) q^{24} +(-20.7526 - 13.9402i) q^{25} +(0.863323 + 1.49532i) q^{26} +(3.67423 + 3.67423i) q^{27} +(8.74233 - 10.9349i) q^{28} +31.3119i q^{29} +(3.56961 - 11.7157i) q^{30} +(23.4627 - 40.6387i) q^{31} +(5.46410 - 1.46410i) q^{32} +(21.7585 + 5.83017i) q^{33} +1.32169i q^{34} +(-31.5675 - 15.1160i) q^{35} +6.00000 q^{36} +(-9.80457 + 36.5911i) q^{37} +(2.47052 + 9.22012i) q^{38} +(1.83139 + 1.05735i) q^{39} +(-6.65126 - 12.4804i) q^{40} -64.3783 q^{41} +(2.57642 - 16.9518i) q^{42} +(17.7560 - 17.7560i) q^{43} +(22.5261 - 13.0054i) q^{44} +(-3.38824 - 14.6123i) q^{45} +(10.6796 - 18.4976i) q^{46} +(-12.9084 + 48.1749i) q^{47} +(4.89898 - 4.89898i) q^{48} +(-46.7873 - 14.5583i) q^{49} +(-26.6386 + 23.2462i) q^{50} +(0.809365 + 1.40186i) q^{51} +(2.35864 - 0.631996i) q^{52} +(19.3489 + 72.2110i) q^{53} +(6.36396 - 3.67423i) q^{54} +(-44.3938 - 47.5154i) q^{55} +(-11.7374 - 15.9447i) q^{56} +(8.26653 + 8.26653i) q^{57} +(42.7729 + 11.4610i) q^{58} +(31.0409 + 17.9215i) q^{59} +(-14.6974 - 9.16442i) q^{60} +(-54.5626 - 94.5052i) q^{61} +(-46.9255 - 46.9255i) q^{62} +(-7.64808 - 19.5578i) q^{63} -8.00000i q^{64} +(-2.87110 - 5.38731i) q^{65} +(15.9283 - 27.5887i) q^{66} +(60.4832 - 16.2064i) q^{67} +(1.80546 + 0.483771i) q^{68} -26.1596i q^{69} +(-32.2033 + 37.5892i) q^{70} -74.7760 q^{71} +(2.19615 - 8.19615i) q^{72} +(21.5032 + 80.2512i) q^{73} +(46.3957 + 26.7866i) q^{74} +(-14.0192 + 40.9690i) q^{75} +13.4992 q^{76} +(-71.1064 - 56.8489i) q^{77} +(2.11470 - 2.11470i) q^{78} +(83.9374 - 48.4613i) q^{79} +(-19.4831 + 4.51765i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-23.5641 + 87.9423i) q^{82} +(31.9008 - 31.9008i) q^{83} +(-22.2135 - 9.72423i) q^{84} +(0.158616 - 4.67018i) q^{85} +(-17.7560 - 30.7543i) q^{86} +(52.3859 - 14.0368i) q^{87} +(-9.52063 - 35.5315i) q^{88} +(-44.1998 + 25.5187i) q^{89} +(-21.2010 - 0.720063i) q^{90} +(-5.06659 - 6.88271i) q^{91} +(-21.3592 - 21.3592i) q^{92} +(-78.5079 - 21.0361i) q^{93} +(61.0833 + 35.2664i) q^{94} +(-7.62307 - 32.8757i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(-83.5410 - 83.5410i) q^{97} +(-37.0124 + 58.5840i) q^{98} -39.0163i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) −0.448288 1.67303i −0.149429 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −1.45729 + 4.78292i −0.291457 + 0.956584i
\(6\) −2.44949 −0.408248
\(7\) −1.05182 + 6.92053i −0.150260 + 0.988647i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) 6.00018 + 3.74136i 0.600018 + 0.374136i
\(11\) −6.50271 + 11.2630i −0.591156 + 1.02391i 0.402921 + 0.915235i \(0.367995\pi\)
−0.994077 + 0.108677i \(0.965339\pi\)
\(12\) −0.896575 + 3.34607i −0.0747146 + 0.278839i
\(13\) −0.863323 + 0.863323i −0.0664095 + 0.0664095i −0.739531 0.673122i \(-0.764953\pi\)
0.673122 + 0.739531i \(0.264953\pi\)
\(14\) 9.06862 + 3.96990i 0.647759 + 0.283564i
\(15\) 8.65526 + 0.293964i 0.577018 + 0.0195976i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −0.902729 + 0.241886i −0.0531017 + 0.0142286i −0.285272 0.958447i \(-0.592084\pi\)
0.232170 + 0.972675i \(0.425417\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) −5.84532 + 3.37480i −0.307648 + 0.177621i −0.645874 0.763444i \(-0.723507\pi\)
0.338225 + 0.941065i \(0.390173\pi\)
\(20\) 7.30701 6.82697i 0.365351 0.341349i
\(21\) 12.0498 1.34266i 0.573799 0.0639361i
\(22\) 13.0054 + 13.0054i 0.591156 + 0.591156i
\(23\) 14.5886 + 3.90901i 0.634287 + 0.169957i 0.561615 0.827399i \(-0.310180\pi\)
0.0726729 + 0.997356i \(0.476847\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) −20.7526 13.9402i −0.830105 0.557607i
\(26\) 0.863323 + 1.49532i 0.0332047 + 0.0575123i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 8.74233 10.9349i 0.312226 0.390532i
\(29\) 31.3119i 1.07972i 0.841754 + 0.539861i \(0.181523\pi\)
−0.841754 + 0.539861i \(0.818477\pi\)
\(30\) 3.56961 11.7157i 0.118987 0.390524i
\(31\) 23.4627 40.6387i 0.756863 1.31092i −0.187580 0.982249i \(-0.560064\pi\)
0.944443 0.328675i \(-0.106602\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) 21.7585 + 5.83017i 0.659348 + 0.176672i
\(34\) 1.32169i 0.0388732i
\(35\) −31.5675 15.1160i −0.901929 0.431885i
\(36\) 6.00000 0.166667
\(37\) −9.80457 + 36.5911i −0.264988 + 0.988950i 0.697269 + 0.716809i \(0.254398\pi\)
−0.962258 + 0.272141i \(0.912268\pi\)
\(38\) 2.47052 + 9.22012i 0.0650138 + 0.242635i
\(39\) 1.83139 + 1.05735i 0.0469586 + 0.0271116i
\(40\) −6.65126 12.4804i −0.166282 0.312010i
\(41\) −64.3783 −1.57020 −0.785101 0.619368i \(-0.787389\pi\)
−0.785101 + 0.619368i \(0.787389\pi\)
\(42\) 2.57642 16.9518i 0.0613434 0.403613i
\(43\) 17.7560 17.7560i 0.412931 0.412931i −0.469827 0.882758i \(-0.655684\pi\)
0.882758 + 0.469827i \(0.155684\pi\)
\(44\) 22.5261 13.0054i 0.511956 0.295578i
\(45\) −3.38824 14.6123i −0.0752941 0.324718i
\(46\) 10.6796 18.4976i 0.232165 0.402122i
\(47\) −12.9084 + 48.1749i −0.274647 + 1.02500i 0.681430 + 0.731883i \(0.261358\pi\)
−0.956077 + 0.293114i \(0.905308\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) −46.7873 14.5583i −0.954844 0.297108i
\(50\) −26.6386 + 23.2462i −0.532772 + 0.464923i
\(51\) 0.809365 + 1.40186i 0.0158699 + 0.0274875i
\(52\) 2.35864 0.631996i 0.0453585 0.0121538i
\(53\) 19.3489 + 72.2110i 0.365073 + 1.36247i 0.867321 + 0.497749i \(0.165840\pi\)
−0.502248 + 0.864724i \(0.667494\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) −44.3938 47.5154i −0.807161 0.863917i
\(56\) −11.7374 15.9447i −0.209597 0.284727i
\(57\) 8.26653 + 8.26653i 0.145027 + 0.145027i
\(58\) 42.7729 + 11.4610i 0.737464 + 0.197603i
\(59\) 31.0409 + 17.9215i 0.526117 + 0.303754i 0.739434 0.673229i \(-0.235093\pi\)
−0.213317 + 0.976983i \(0.568427\pi\)
\(60\) −14.6974 9.16442i −0.244957 0.152740i
\(61\) −54.5626 94.5052i −0.894469 1.54927i −0.834460 0.551068i \(-0.814220\pi\)
−0.0600092 0.998198i \(-0.519113\pi\)
\(62\) −46.9255 46.9255i −0.756863 0.756863i
\(63\) −7.64808 19.5578i −0.121398 0.310441i
\(64\) 8.00000i 0.125000i
\(65\) −2.87110 5.38731i −0.0441707 0.0828818i
\(66\) 15.9283 27.5887i 0.241338 0.418010i
\(67\) 60.4832 16.2064i 0.902734 0.241887i 0.222544 0.974923i \(-0.428564\pi\)
0.680190 + 0.733036i \(0.261897\pi\)
\(68\) 1.80546 + 0.483771i 0.0265509 + 0.00711428i
\(69\) 26.1596i 0.379124i
\(70\) −32.2033 + 37.5892i −0.460047 + 0.536989i
\(71\) −74.7760 −1.05318 −0.526592 0.850118i \(-0.676530\pi\)
−0.526592 + 0.850118i \(0.676530\pi\)
\(72\) 2.19615 8.19615i 0.0305021 0.113835i
\(73\) 21.5032 + 80.2512i 0.294565 + 1.09933i 0.941562 + 0.336839i \(0.109358\pi\)
−0.646997 + 0.762492i \(0.723975\pi\)
\(74\) 46.3957 + 26.7866i 0.626969 + 0.361981i
\(75\) −14.0192 + 40.9690i −0.186923 + 0.546254i
\(76\) 13.4992 0.177621
\(77\) −71.1064 56.8489i −0.923460 0.738297i
\(78\) 2.11470 2.11470i 0.0271116 0.0271116i
\(79\) 83.9374 48.4613i 1.06250 0.613434i 0.136377 0.990657i \(-0.456454\pi\)
0.926122 + 0.377223i \(0.123121\pi\)
\(80\) −19.4831 + 4.51765i −0.243539 + 0.0564706i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −23.5641 + 87.9423i −0.287367 + 1.07247i
\(83\) 31.9008 31.9008i 0.384347 0.384347i −0.488318 0.872666i \(-0.662390\pi\)
0.872666 + 0.488318i \(0.162390\pi\)
\(84\) −22.2135 9.72423i −0.264446 0.115765i
\(85\) 0.158616 4.67018i 0.00186607 0.0549433i
\(86\) −17.7560 30.7543i −0.206465 0.357609i
\(87\) 52.3859 14.0368i 0.602137 0.161342i
\(88\) −9.52063 35.5315i −0.108189 0.403767i
\(89\) −44.1998 + 25.5187i −0.496627 + 0.286727i −0.727319 0.686299i \(-0.759234\pi\)
0.230693 + 0.973027i \(0.425901\pi\)
\(90\) −21.2010 0.720063i −0.235566 0.00800070i
\(91\) −5.06659 6.88271i −0.0556768 0.0756342i
\(92\) −21.3592 21.3592i −0.232165 0.232165i
\(93\) −78.5079 21.0361i −0.844171 0.226195i
\(94\) 61.0833 + 35.2664i 0.649822 + 0.375175i
\(95\) −7.62307 32.8757i −0.0802429 0.346060i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) −83.5410 83.5410i −0.861248 0.861248i 0.130235 0.991483i \(-0.458427\pi\)
−0.991483 + 0.130235i \(0.958427\pi\)
\(98\) −37.0124 + 58.5840i −0.377677 + 0.597796i
\(99\) 39.0163i 0.394104i
\(100\) 22.0044 + 44.8977i 0.220044 + 0.448977i
\(101\) 80.9688 140.242i 0.801671 1.38854i −0.116844 0.993150i \(-0.537278\pi\)
0.918516 0.395385i \(-0.129389\pi\)
\(102\) 2.21123 0.592496i 0.0216787 0.00580879i
\(103\) 80.9886 + 21.7008i 0.786297 + 0.210688i 0.629559 0.776953i \(-0.283236\pi\)
0.156738 + 0.987640i \(0.449902\pi\)
\(104\) 3.45329i 0.0332047i
\(105\) −11.1382 + 59.5898i −0.106078 + 0.567522i
\(106\) 105.724 0.997399
\(107\) −19.2233 + 71.7422i −0.179657 + 0.670488i 0.816055 + 0.577974i \(0.196157\pi\)
−0.995711 + 0.0925131i \(0.970510\pi\)
\(108\) −2.68973 10.0382i −0.0249049 0.0929463i
\(109\) 106.923 + 61.7319i 0.980942 + 0.566347i 0.902554 0.430576i \(-0.141689\pi\)
0.0783878 + 0.996923i \(0.475023\pi\)
\(110\) −81.1565 + 43.2513i −0.737787 + 0.393193i
\(111\) 65.6134 0.591112
\(112\) −26.0770 + 10.1974i −0.232831 + 0.0910486i
\(113\) −41.6631 + 41.6631i −0.368700 + 0.368700i −0.867003 0.498303i \(-0.833957\pi\)
0.498303 + 0.867003i \(0.333957\pi\)
\(114\) 14.3181 8.26653i 0.125597 0.0725134i
\(115\) −39.9563 + 64.0796i −0.347446 + 0.557214i
\(116\) 31.3119 54.2339i 0.269930 0.467533i
\(117\) 0.947995 3.53796i 0.00810252 0.0302390i
\(118\) 35.8429 35.8429i 0.303754 0.303754i
\(119\) −0.724467 6.50178i −0.00608795 0.0546368i
\(120\) −17.8985 + 16.7226i −0.149154 + 0.139355i
\(121\) −24.0705 41.6914i −0.198930 0.344557i
\(122\) −149.068 + 39.9426i −1.22187 + 0.327398i
\(123\) 28.8600 + 107.707i 0.234634 + 0.875666i
\(124\) −81.2773 + 46.9255i −0.655462 + 0.378431i
\(125\) 96.9172 78.9433i 0.775338 0.631547i
\(126\) −29.5158 + 3.28883i −0.234253 + 0.0261018i
\(127\) 105.461 + 105.461i 0.830399 + 0.830399i 0.987571 0.157172i \(-0.0502378\pi\)
−0.157172 + 0.987571i \(0.550238\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) −37.6662 21.7466i −0.291986 0.168578i
\(130\) −8.41010 + 1.95010i −0.0646931 + 0.0150007i
\(131\) 104.890 + 181.676i 0.800690 + 1.38684i 0.919162 + 0.393879i \(0.128867\pi\)
−0.118472 + 0.992957i \(0.537800\pi\)
\(132\) −31.8567 31.8567i −0.241338 0.241338i
\(133\) −17.2071 44.0024i −0.129377 0.330845i
\(134\) 88.5535i 0.660847i
\(135\) −22.9280 + 12.2192i −0.169837 + 0.0905122i
\(136\) 1.32169 2.28923i 0.00971829 0.0168326i
\(137\) 218.804 58.6283i 1.59711 0.427943i 0.652940 0.757410i \(-0.273536\pi\)
0.944167 + 0.329467i \(0.106869\pi\)
\(138\) −35.7347 9.57507i −0.258947 0.0693846i
\(139\) 42.1416i 0.303177i −0.988444 0.151588i \(-0.951561\pi\)
0.988444 0.151588i \(-0.0484389\pi\)
\(140\) 39.5606 + 57.7491i 0.282576 + 0.412494i
\(141\) 86.3848 0.612658
\(142\) −27.3699 + 102.146i −0.192746 + 0.719337i
\(143\) −4.10969 15.3376i −0.0287391 0.107256i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) −149.762 45.6305i −1.03284 0.314693i
\(146\) 117.496 0.804766
\(147\) −3.38231 + 84.8031i −0.0230089 + 0.576892i
\(148\) 53.5732 53.5732i 0.361981 0.361981i
\(149\) 66.4442 38.3616i 0.445934 0.257460i −0.260177 0.965561i \(-0.583781\pi\)
0.706112 + 0.708101i \(0.250448\pi\)
\(150\) 50.8334 + 34.1463i 0.338889 + 0.227642i
\(151\) 15.4393 26.7416i 0.102247 0.177097i −0.810363 0.585928i \(-0.800730\pi\)
0.912610 + 0.408831i \(0.134064\pi\)
\(152\) 4.94105 18.4402i 0.0325069 0.121317i
\(153\) 1.98253 1.98253i 0.0129577 0.0129577i
\(154\) −103.684 + 76.3250i −0.673271 + 0.495617i
\(155\) 160.179 + 171.443i 1.03342 + 1.10608i
\(156\) −2.11470 3.66277i −0.0135558 0.0234793i
\(157\) −62.1560 + 16.6546i −0.395898 + 0.106081i −0.451275 0.892385i \(-0.649031\pi\)
0.0553769 + 0.998466i \(0.482364\pi\)
\(158\) −35.4761 132.399i −0.224532 0.837967i
\(159\) 112.138 64.7426i 0.705268 0.407186i
\(160\) −0.960084 + 28.2680i −0.00600052 + 0.176675i
\(161\) −42.3970 + 96.8493i −0.263335 + 0.601548i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 90.5074 + 24.2514i 0.555260 + 0.148782i 0.525528 0.850776i \(-0.323868\pi\)
0.0297323 + 0.999558i \(0.490535\pi\)
\(164\) 111.506 + 64.3783i 0.679917 + 0.392550i
\(165\) −59.5936 + 95.5729i −0.361173 + 0.579230i
\(166\) −31.9008 55.2538i −0.192174 0.332854i
\(167\) −30.1240 30.1240i −0.180383 0.180383i 0.611140 0.791523i \(-0.290711\pi\)
−0.791523 + 0.611140i \(0.790711\pi\)
\(168\) −21.4143 + 26.7849i −0.127466 + 0.159434i
\(169\) 167.509i 0.991180i
\(170\) −6.32152 1.92608i −0.0371854 0.0113299i
\(171\) 10.1244 17.5360i 0.0592070 0.102549i
\(172\) −48.5104 + 12.9983i −0.282037 + 0.0755716i
\(173\) 57.0293 + 15.2810i 0.329649 + 0.0883293i 0.419848 0.907595i \(-0.362083\pi\)
−0.0901984 + 0.995924i \(0.528750\pi\)
\(174\) 76.6983i 0.440795i
\(175\) 118.301 128.957i 0.676008 0.736895i
\(176\) −52.0217 −0.295578
\(177\) 16.0679 59.9664i 0.0907794 0.338793i
\(178\) 18.6810 + 69.7185i 0.104950 + 0.391677i
\(179\) 185.470 + 107.081i 1.03615 + 0.598220i 0.918740 0.394864i \(-0.129208\pi\)
0.117408 + 0.993084i \(0.462542\pi\)
\(180\) −8.74372 + 28.6975i −0.0485762 + 0.159431i
\(181\) −265.353 −1.46604 −0.733019 0.680208i \(-0.761890\pi\)
−0.733019 + 0.680208i \(0.761890\pi\)
\(182\) −11.2565 + 4.40184i −0.0618487 + 0.0241860i
\(183\) −133.651 + 133.651i −0.730331 + 0.730331i
\(184\) −36.9952 + 21.3592i −0.201061 + 0.116083i
\(185\) −160.724 100.218i −0.868781 0.541720i
\(186\) −57.4717 + 99.5440i −0.308988 + 0.535183i
\(187\) 3.14582 11.7404i 0.0168226 0.0627828i
\(188\) 70.5329 70.5329i 0.375175 0.375175i
\(189\) −29.2923 + 21.5630i −0.154986 + 0.114090i
\(190\) −47.6993 1.62004i −0.251049 0.00852655i
\(191\) 2.14117 + 3.70861i 0.0112103 + 0.0194168i 0.871576 0.490260i \(-0.163098\pi\)
−0.860366 + 0.509677i \(0.829765\pi\)
\(192\) −13.3843 + 3.58630i −0.0697097 + 0.0186787i
\(193\) 61.2292 + 228.511i 0.317250 + 1.18399i 0.921877 + 0.387484i \(0.126656\pi\)
−0.604627 + 0.796509i \(0.706678\pi\)
\(194\) −144.697 + 83.5410i −0.745862 + 0.430624i
\(195\) −7.72608 + 7.21850i −0.0396209 + 0.0370180i
\(196\) 66.4798 + 72.0031i 0.339183 + 0.367363i
\(197\) 6.11514 + 6.11514i 0.0310413 + 0.0310413i 0.722457 0.691416i \(-0.243013\pi\)
−0.691416 + 0.722457i \(0.743013\pi\)
\(198\) −53.2972 14.2809i −0.269178 0.0721260i
\(199\) −214.306 123.729i −1.07691 0.621756i −0.146851 0.989159i \(-0.546914\pi\)
−0.930062 + 0.367402i \(0.880247\pi\)
\(200\) 69.3856 13.6249i 0.346928 0.0681246i
\(201\) −54.2277 93.9252i −0.269790 0.467289i
\(202\) −161.938 161.938i −0.801671 0.801671i
\(203\) −216.695 32.9345i −1.06746 0.162239i
\(204\) 3.23746i 0.0158699i
\(205\) 93.8176 307.916i 0.457647 1.50203i
\(206\) 59.2878 102.689i 0.287805 0.498492i
\(207\) −43.7658 + 11.7270i −0.211429 + 0.0566523i
\(208\) −4.71729 1.26399i −0.0226793 0.00607689i
\(209\) 87.7813i 0.420006i
\(210\) 77.3243 + 37.0264i 0.368211 + 0.176316i
\(211\) −299.419 −1.41905 −0.709524 0.704681i \(-0.751090\pi\)
−0.709524 + 0.704681i \(0.751090\pi\)
\(212\) 38.6978 144.422i 0.182537 0.681236i
\(213\) 33.5212 + 125.103i 0.157376 + 0.587337i
\(214\) 90.9654 + 52.5189i 0.425072 + 0.245415i
\(215\) 59.0500 + 110.801i 0.274651 + 0.515355i
\(216\) −14.6969 −0.0680414
\(217\) 256.562 + 205.119i 1.18231 + 0.945249i
\(218\) 123.464 123.464i 0.566347 0.566347i
\(219\) 124.623 71.9513i 0.569056 0.328545i
\(220\) 29.3770 + 126.693i 0.133532 + 0.575877i
\(221\) 0.570522 0.988172i 0.00258155 0.00447137i
\(222\) 24.0162 89.6296i 0.108181 0.403737i
\(223\) 151.041 151.041i 0.677313 0.677313i −0.282078 0.959391i \(-0.591024\pi\)
0.959391 + 0.282078i \(0.0910237\pi\)
\(224\) 4.38510 + 39.3544i 0.0195763 + 0.175689i
\(225\) 74.8272 + 5.08868i 0.332565 + 0.0226164i
\(226\) 41.6631 + 72.1626i 0.184350 + 0.319304i
\(227\) 55.4109 14.8473i 0.244101 0.0654066i −0.134694 0.990887i \(-0.543005\pi\)
0.378795 + 0.925481i \(0.376339\pi\)
\(228\) −6.05152 22.5846i −0.0265418 0.0990552i
\(229\) 85.5592 49.3976i 0.373621 0.215710i −0.301418 0.953492i \(-0.597460\pi\)
0.675039 + 0.737782i \(0.264127\pi\)
\(230\) 72.9094 + 78.0360i 0.316997 + 0.339287i
\(231\) −63.2339 + 144.448i −0.273740 + 0.625316i
\(232\) −62.6239 62.6239i −0.269930 0.269930i
\(233\) −416.934 111.717i −1.78942 0.479473i −0.797170 0.603754i \(-0.793671\pi\)
−0.992247 + 0.124281i \(0.960337\pi\)
\(234\) −4.48596 2.58997i −0.0191708 0.0110682i
\(235\) −211.605 131.945i −0.900448 0.561466i
\(236\) −35.8429 62.0818i −0.151877 0.263058i
\(237\) −118.705 118.705i −0.500867 0.500867i
\(238\) −9.14677 1.39018i −0.0384318 0.00584108i
\(239\) 344.565i 1.44169i −0.693094 0.720847i \(-0.743753\pi\)
0.693094 0.720847i \(-0.256247\pi\)
\(240\) 16.2922 + 30.5706i 0.0678842 + 0.127378i
\(241\) 50.1238 86.8170i 0.207983 0.360237i −0.743096 0.669185i \(-0.766644\pi\)
0.951079 + 0.308948i \(0.0999769\pi\)
\(242\) −65.7619 + 17.6209i −0.271744 + 0.0728135i
\(243\) −15.0573 4.03459i −0.0619642 0.0166032i
\(244\) 218.251i 0.894469i
\(245\) 137.814 202.564i 0.562505 0.826794i
\(246\) 157.694 0.641032
\(247\) 2.13286 7.95994i 0.00863506 0.0322265i
\(248\) 34.3518 + 128.203i 0.138515 + 0.516947i
\(249\) −67.6719 39.0704i −0.271775 0.156909i
\(250\) −72.3644 161.287i −0.289458 0.645147i
\(251\) 404.247 1.61054 0.805272 0.592905i \(-0.202019\pi\)
0.805272 + 0.592905i \(0.202019\pi\)
\(252\) −6.31092 + 41.5232i −0.0250433 + 0.164774i
\(253\) −138.893 + 138.893i −0.548983 + 0.548983i
\(254\) 182.663 105.461i 0.719147 0.415200i
\(255\) −7.88446 + 1.82821i −0.0309195 + 0.00716946i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 9.03579 33.7220i 0.0351587 0.131214i −0.946116 0.323828i \(-0.895030\pi\)
0.981275 + 0.192614i \(0.0616966\pi\)
\(258\) −43.4932 + 43.4932i −0.168578 + 0.168578i
\(259\) −242.917 106.340i −0.937905 0.410579i
\(260\) −0.414431 + 12.2022i −0.00159397 + 0.0469315i
\(261\) −46.9679 81.3508i −0.179954 0.311689i
\(262\) 286.566 76.7851i 1.09376 0.293073i
\(263\) −53.2792 198.841i −0.202583 0.756049i −0.990173 0.139849i \(-0.955338\pi\)
0.787590 0.616199i \(-0.211328\pi\)
\(264\) −55.1773 + 31.8567i −0.209005 + 0.120669i
\(265\) −373.576 12.6880i −1.40972 0.0478793i
\(266\) −66.4066 + 7.39941i −0.249649 + 0.0278173i
\(267\) 62.5079 + 62.5079i 0.234112 + 0.234112i
\(268\) −120.966 32.4128i −0.451367 0.120943i
\(269\) −124.603 71.9393i −0.463206 0.267432i 0.250185 0.968198i \(-0.419509\pi\)
−0.713392 + 0.700766i \(0.752842\pi\)
\(270\) 8.29945 + 35.7927i 0.0307387 + 0.132566i
\(271\) 95.3473 + 165.146i 0.351835 + 0.609396i 0.986571 0.163333i \(-0.0522245\pi\)
−0.634736 + 0.772729i \(0.718891\pi\)
\(272\) −2.64337 2.64337i −0.00971829 0.00971829i
\(273\) −9.24371 + 11.5620i −0.0338597 + 0.0423517i
\(274\) 320.351i 1.16916i
\(275\) 291.957 143.089i 1.06166 0.520322i
\(276\) −26.1596 + 45.3097i −0.0947811 + 0.164166i
\(277\) 47.5729 12.7471i 0.171743 0.0460185i −0.171923 0.985110i \(-0.554998\pi\)
0.343666 + 0.939092i \(0.388331\pi\)
\(278\) −57.5665 15.4249i −0.207074 0.0554852i
\(279\) 140.776i 0.504575i
\(280\) 93.3669 32.9031i 0.333453 0.117511i
\(281\) −343.443 −1.22222 −0.611109 0.791546i \(-0.709276\pi\)
−0.611109 + 0.791546i \(0.709276\pi\)
\(282\) 31.6190 118.004i 0.112124 0.418453i
\(283\) −28.4135 106.040i −0.100401 0.374701i 0.897382 0.441255i \(-0.145466\pi\)
−0.997783 + 0.0665533i \(0.978800\pi\)
\(284\) 129.516 + 74.7760i 0.456042 + 0.263296i
\(285\) −51.5849 + 27.4914i −0.181000 + 0.0964612i
\(286\) −22.4558 −0.0785167
\(287\) 67.7143 445.531i 0.235938 1.55237i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −249.525 + 144.063i −0.863408 + 0.498489i
\(290\) −117.149 + 187.877i −0.403963 + 0.647853i
\(291\) −102.316 + 177.217i −0.351603 + 0.608994i
\(292\) 43.0065 160.502i 0.147282 0.549666i
\(293\) −24.9404 + 24.9404i −0.0851209 + 0.0851209i −0.748385 0.663264i \(-0.769171\pi\)
0.663264 + 0.748385i \(0.269171\pi\)
\(294\) 114.605 + 35.6604i 0.389813 + 0.121294i
\(295\) −130.952 + 122.349i −0.443906 + 0.414744i
\(296\) −53.5732 92.7914i −0.180990 0.313485i
\(297\) −65.2755 + 17.4905i −0.219783 + 0.0588906i
\(298\) −28.0826 104.806i −0.0942370 0.351697i
\(299\) −15.9694 + 9.21995i −0.0534094 + 0.0308360i
\(300\) 65.2510 56.9412i 0.217503 0.189804i
\(301\) 104.205 + 141.557i 0.346196 + 0.470290i
\(302\) −30.8785 30.8785i −0.102247 0.102247i
\(303\) −270.927 72.5946i −0.894148 0.239586i
\(304\) −23.3813 13.4992i −0.0769121 0.0444052i
\(305\) 531.524 123.247i 1.74270 0.404090i
\(306\) −1.98253 3.43384i −0.00647886 0.0112217i
\(307\) 311.194 + 311.194i 1.01366 + 1.01366i 0.999905 + 0.0137553i \(0.00437859\pi\)
0.0137553 + 0.999905i \(0.495621\pi\)
\(308\) 66.3110 + 169.572i 0.215296 + 0.550557i
\(309\) 145.225i 0.469983i
\(310\) 292.825 156.057i 0.944596 0.503409i
\(311\) −226.533 + 392.367i −0.728403 + 1.26163i 0.229155 + 0.973390i \(0.426404\pi\)
−0.957558 + 0.288241i \(0.906929\pi\)
\(312\) −5.77747 + 1.54807i −0.0185175 + 0.00496176i
\(313\) 325.203 + 87.1378i 1.03899 + 0.278396i 0.737693 0.675136i \(-0.235915\pi\)
0.301293 + 0.953532i \(0.402582\pi\)
\(314\) 91.0027i 0.289817i
\(315\) 104.689 8.07885i 0.332345 0.0256471i
\(316\) −193.845 −0.613434
\(317\) −131.216 + 489.707i −0.413932 + 1.54482i 0.373033 + 0.927818i \(0.378318\pi\)
−0.786965 + 0.616998i \(0.788349\pi\)
\(318\) −47.3949 176.880i −0.149041 0.556227i
\(319\) −352.667 203.613i −1.10554 0.638284i
\(320\) 38.2634 + 11.6583i 0.119573 + 0.0364322i
\(321\) 128.645 0.400762
\(322\) 116.780 + 93.3646i 0.362671 + 0.289952i
\(323\) 4.46043 4.46043i 0.0138094 0.0138094i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) 29.9511 5.88135i 0.0921572 0.0180965i
\(326\) 66.2560 114.759i 0.203239 0.352021i
\(327\) 55.3473 206.559i 0.169258 0.631678i
\(328\) 128.757 128.757i 0.392550 0.392550i
\(329\) −319.818 140.004i −0.972091 0.425545i
\(330\) 108.742 + 116.389i 0.329522 + 0.352692i
\(331\) 88.2204 + 152.802i 0.266527 + 0.461638i 0.967963 0.251095i \(-0.0807906\pi\)
−0.701436 + 0.712733i \(0.747457\pi\)
\(332\) −87.1547 + 23.3530i −0.262514 + 0.0703404i
\(333\) −29.4137 109.773i −0.0883294 0.329650i
\(334\) −52.1762 + 30.1240i −0.156216 + 0.0901915i
\(335\) −10.6274 + 312.904i −0.0317234 + 0.934040i
\(336\) 28.7507 + 39.0564i 0.0855675 + 0.116239i
\(337\) 93.6762 + 93.6762i 0.277971 + 0.277971i 0.832299 0.554328i \(-0.187025\pi\)
−0.554328 + 0.832299i \(0.687025\pi\)
\(338\) 228.822 + 61.3127i 0.676988 + 0.181398i
\(339\) 88.3808 + 51.0267i 0.260710 + 0.150521i
\(340\) −4.94491 + 7.93037i −0.0145438 + 0.0233246i
\(341\) 305.143 + 528.523i 0.894847 + 1.54992i
\(342\) −20.2488 20.2488i −0.0592070 0.0592070i
\(343\) 149.963 308.480i 0.437210 0.899360i
\(344\) 71.0241i 0.206465i
\(345\) 125.119 + 38.1220i 0.362664 + 0.110499i
\(346\) 41.7484 72.3103i 0.120660 0.208989i
\(347\) 462.828 124.014i 1.33380 0.357390i 0.479668 0.877450i \(-0.340757\pi\)
0.854130 + 0.520060i \(0.174090\pi\)
\(348\) −104.772 28.0735i −0.301068 0.0806710i
\(349\) 529.116i 1.51609i 0.652201 + 0.758046i \(0.273846\pi\)
−0.652201 + 0.758046i \(0.726154\pi\)
\(350\) −132.857 208.804i −0.379590 0.596583i
\(351\) −6.34410 −0.0180744
\(352\) −19.0413 + 71.0630i −0.0540945 + 0.201883i
\(353\) −42.6410 159.138i −0.120796 0.450817i 0.878859 0.477082i \(-0.158305\pi\)
−0.999655 + 0.0262647i \(0.991639\pi\)
\(354\) −76.0343 43.8984i −0.214786 0.124007i
\(355\) 108.970 357.648i 0.306958 1.00746i
\(356\) 102.075 0.286727
\(357\) −10.5529 + 4.12672i −0.0295600 + 0.0115595i
\(358\) 214.163 214.163i 0.598220 0.598220i
\(359\) −308.088 + 177.875i −0.858184 + 0.495473i −0.863404 0.504513i \(-0.831672\pi\)
0.00521959 + 0.999986i \(0.498339\pi\)
\(360\) 36.0011 + 22.4482i 0.100003 + 0.0623560i
\(361\) −157.721 + 273.182i −0.436902 + 0.756736i
\(362\) −97.1260 + 362.479i −0.268304 + 1.00132i
\(363\) −58.9605 + 58.9605i −0.162426 + 0.162426i
\(364\) 1.89288 + 16.9878i 0.00520022 + 0.0466698i
\(365\) −415.171 14.1007i −1.13746 0.0386322i
\(366\) 133.651 + 231.490i 0.365166 + 0.632485i
\(367\) −367.501 + 98.4715i −1.00136 + 0.268315i −0.722017 0.691875i \(-0.756785\pi\)
−0.279347 + 0.960190i \(0.590118\pi\)
\(368\) 15.6360 + 58.3544i 0.0424892 + 0.158572i
\(369\) 167.260 96.5674i 0.453278 0.261700i
\(370\) −195.730 + 182.871i −0.529000 + 0.494247i
\(371\) −520.090 + 57.9515i −1.40186 + 0.156203i
\(372\) 114.943 + 114.943i 0.308988 + 0.308988i
\(373\) 323.837 + 86.7718i 0.868195 + 0.232632i 0.665307 0.746570i \(-0.268301\pi\)
0.202888 + 0.979202i \(0.434967\pi\)
\(374\) −14.8862 8.59455i −0.0398027 0.0229801i
\(375\) −175.522 126.756i −0.468058 0.338017i
\(376\) −70.5329 122.167i −0.187587 0.324911i
\(377\) −27.0323 27.0323i −0.0717038 0.0717038i
\(378\) 18.7339 + 47.9066i 0.0495606 + 0.126737i
\(379\) 674.043i 1.77848i 0.457443 + 0.889239i \(0.348765\pi\)
−0.457443 + 0.889239i \(0.651235\pi\)
\(380\) −19.6722 + 64.5655i −0.0517689 + 0.169909i
\(381\) 129.162 223.716i 0.339009 0.587181i
\(382\) 5.84978 1.56744i 0.0153136 0.00410326i
\(383\) −30.9124 8.28295i −0.0807112 0.0216265i 0.218237 0.975896i \(-0.429969\pi\)
−0.298949 + 0.954269i \(0.596636\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 375.526 257.251i 0.975392 0.668184i
\(386\) 334.563 0.866743
\(387\) −19.4975 + 72.7655i −0.0503811 + 0.188025i
\(388\) 61.1563 + 228.238i 0.157619 + 0.588243i
\(389\) −486.253 280.738i −1.25001 0.721692i −0.278897 0.960321i \(-0.589969\pi\)
−0.971111 + 0.238629i \(0.923302\pi\)
\(390\) 7.03272 + 13.1962i 0.0180326 + 0.0338363i
\(391\) −14.1151 −0.0361000
\(392\) 122.691 64.4581i 0.312988 0.164434i
\(393\) 256.928 256.928i 0.653761 0.653761i
\(394\) 10.5917 6.11514i 0.0268826 0.0155207i
\(395\) 109.466 + 472.088i 0.277128 + 1.19516i
\(396\) −39.0163 + 67.5782i −0.0985259 + 0.170652i
\(397\) −116.982 + 436.584i −0.294666 + 1.09971i 0.646817 + 0.762645i \(0.276100\pi\)
−0.941483 + 0.337062i \(0.890567\pi\)
\(398\) −247.459 + 247.459i −0.621756 + 0.621756i
\(399\) −65.9036 + 48.5138i −0.165172 + 0.121589i
\(400\) 6.78491 99.7696i 0.0169623 0.249424i
\(401\) 77.9394 + 134.995i 0.194363 + 0.336646i 0.946691 0.322142i \(-0.104403\pi\)
−0.752329 + 0.658788i \(0.771070\pi\)
\(402\) −148.153 + 39.6975i −0.368540 + 0.0987499i
\(403\) 14.8284 + 55.3402i 0.0367950 + 0.137321i
\(404\) −280.484 + 161.938i −0.694268 + 0.400836i
\(405\) 30.7214 + 32.8816i 0.0758552 + 0.0811890i
\(406\) −124.305 + 283.956i −0.306171 + 0.699399i
\(407\) −348.371 348.371i −0.855948 0.855948i
\(408\) −4.42245 1.18499i −0.0108393 0.00290439i
\(409\) 109.690 + 63.3296i 0.268191 + 0.154840i 0.628065 0.778161i \(-0.283847\pi\)
−0.359874 + 0.933001i \(0.617180\pi\)
\(410\) −386.281 240.862i −0.942150 0.587469i
\(411\) −196.174 339.783i −0.477309 0.826723i
\(412\) −118.576 118.576i −0.287805 0.287805i
\(413\) −156.675 + 195.969i −0.379359 + 0.474502i
\(414\) 64.0776i 0.154777i
\(415\) 106.090 + 199.068i 0.255640 + 0.479681i
\(416\) −3.45329 + 5.98128i −0.00830118 + 0.0143781i
\(417\) −70.5043 + 18.8916i −0.169075 + 0.0453035i
\(418\) −119.912 32.1302i −0.286870 0.0768665i
\(419\) 768.293i 1.83363i 0.399307 + 0.916817i \(0.369251\pi\)
−0.399307 + 0.916817i \(0.630749\pi\)
\(420\) 78.8816 92.0743i 0.187813 0.219225i
\(421\) 557.422 1.32404 0.662021 0.749485i \(-0.269699\pi\)
0.662021 + 0.749485i \(0.269699\pi\)
\(422\) −109.595 + 409.014i −0.259704 + 0.969228i
\(423\) −38.7252 144.525i −0.0915490 0.341666i
\(424\) −183.120 105.724i −0.431886 0.249350i
\(425\) 22.1059 + 7.56444i 0.0520140 + 0.0177987i
\(426\) 183.163 0.429960
\(427\) 711.416 278.200i 1.66608 0.651521i
\(428\) 105.038 105.038i 0.245415 0.245415i
\(429\) −23.8179 + 13.7513i −0.0555197 + 0.0320543i
\(430\) 172.971 40.1077i 0.402258 0.0932738i
\(431\) −60.4377 + 104.681i −0.140227 + 0.242880i −0.927582 0.373620i \(-0.878116\pi\)
0.787355 + 0.616500i \(0.211450\pi\)
\(432\) −5.37945 + 20.0764i −0.0124524 + 0.0464731i
\(433\) 301.713 301.713i 0.696797 0.696797i −0.266921 0.963718i \(-0.586006\pi\)
0.963718 + 0.266921i \(0.0860063\pi\)
\(434\) 374.106 275.392i 0.861996 0.634543i
\(435\) −9.20460 + 271.013i −0.0211600 + 0.623018i
\(436\) −123.464 213.845i −0.283174 0.490471i
\(437\) −98.4672 + 26.3842i −0.225325 + 0.0603758i
\(438\) −52.6720 196.574i −0.120256 0.448800i
\(439\) 428.223 247.234i 0.975450 0.563176i 0.0745567 0.997217i \(-0.476246\pi\)
0.900893 + 0.434040i \(0.142912\pi\)
\(440\) 183.818 + 6.24315i 0.417769 + 0.0141890i
\(441\) 143.395 32.3575i 0.325158 0.0733729i
\(442\) −1.14104 1.14104i −0.00258155 0.00258155i
\(443\) −451.126 120.879i −1.01834 0.272864i −0.289231 0.957259i \(-0.593400\pi\)
−0.729111 + 0.684395i \(0.760066\pi\)
\(444\) −113.646 65.6134i −0.255959 0.147778i
\(445\) −57.6424 248.592i −0.129533 0.558634i
\(446\) −151.041 261.610i −0.338657 0.586571i
\(447\) −93.9663 93.9663i −0.210215 0.210215i
\(448\) 55.3642 + 8.41456i 0.123581 + 0.0187825i
\(449\) 542.409i 1.20804i −0.796970 0.604019i \(-0.793565\pi\)
0.796970 0.604019i \(-0.206435\pi\)
\(450\) 34.3399 100.353i 0.0763109 0.223007i
\(451\) 418.633 725.094i 0.928233 1.60775i
\(452\) 113.826 30.4995i 0.251827 0.0674768i
\(453\) −51.6608 13.8425i −0.114041 0.0305573i
\(454\) 81.1271i 0.178694i
\(455\) 40.3029 14.2030i 0.0885779 0.0312154i
\(456\) −33.0661 −0.0725134
\(457\) −113.360 + 423.064i −0.248052 + 0.925742i 0.723773 + 0.690038i \(0.242406\pi\)
−0.971825 + 0.235704i \(0.924261\pi\)
\(458\) −36.1616 134.957i −0.0789554 0.294665i
\(459\) −4.20558 2.42809i −0.00916249 0.00528997i
\(460\) 133.286 71.0329i 0.289752 0.154419i
\(461\) 418.754 0.908360 0.454180 0.890910i \(-0.349932\pi\)
0.454180 + 0.890910i \(0.349932\pi\)
\(462\) 174.174 + 139.251i 0.377001 + 0.301408i
\(463\) 571.669 571.669i 1.23471 1.23471i 0.272572 0.962135i \(-0.412126\pi\)
0.962135 0.272572i \(-0.0878742\pi\)
\(464\) −108.468 + 62.6239i −0.233767 + 0.134965i
\(465\) 215.023 344.841i 0.462414 0.741594i
\(466\) −305.217 + 528.651i −0.654972 + 1.13445i
\(467\) 114.030 425.564i 0.244175 0.911273i −0.729622 0.683851i \(-0.760304\pi\)
0.973796 0.227422i \(-0.0730295\pi\)
\(468\) −5.17994 + 5.17994i −0.0110682 + 0.0110682i
\(469\) 48.5395 + 435.622i 0.103496 + 0.928831i
\(470\) −257.692 + 240.763i −0.548282 + 0.512262i
\(471\) 55.7275 + 96.5229i 0.118317 + 0.204932i
\(472\) −97.9247 + 26.2388i −0.207468 + 0.0555908i
\(473\) 84.5243 + 315.449i 0.178698 + 0.666911i
\(474\) −205.604 + 118.705i −0.433763 + 0.250433i
\(475\) 168.351 + 11.4488i 0.354423 + 0.0241028i
\(476\) −5.24697 + 11.9859i −0.0110230 + 0.0251804i
\(477\) −158.586 158.586i −0.332466 0.332466i
\(478\) −470.684 126.120i −0.984696 0.263848i
\(479\) 418.951 + 241.882i 0.874638 + 0.504972i 0.868887 0.495011i \(-0.164836\pi\)
0.00575111 + 0.999983i \(0.498169\pi\)
\(480\) 47.7236 11.0659i 0.0994242 0.0230540i
\(481\) −23.1255 40.0545i −0.0480779 0.0832734i
\(482\) −100.248 100.248i −0.207983 0.207983i
\(483\) 181.038 + 27.5152i 0.374820 + 0.0569672i
\(484\) 96.2822i 0.198930i
\(485\) 521.313 277.827i 1.07487 0.572839i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) −575.465 + 154.195i −1.18165 + 0.316623i −0.795582 0.605846i \(-0.792835\pi\)
−0.386071 + 0.922469i \(0.626168\pi\)
\(488\) 298.136 + 79.8852i 0.610934 + 0.163699i
\(489\) 162.293i 0.331888i
\(490\) −226.265 262.401i −0.461765 0.535512i
\(491\) −493.037 −1.00415 −0.502074 0.864824i \(-0.667430\pi\)
−0.502074 + 0.864824i \(0.667430\pi\)
\(492\) 57.7200 215.414i 0.117317 0.437833i
\(493\) −7.57390 28.2662i −0.0153629 0.0573351i
\(494\) −10.0928 5.82708i −0.0204308 0.0117957i
\(495\) 186.612 + 56.8579i 0.376993 + 0.114864i
\(496\) 187.702 0.378431
\(497\) 78.6509 517.489i 0.158251 1.04123i
\(498\) −78.1407 + 78.1407i −0.156909 + 0.156909i
\(499\) 327.714 189.206i 0.656741 0.379170i −0.134293 0.990942i \(-0.542876\pi\)
0.791034 + 0.611772i \(0.209543\pi\)
\(500\) −246.809 + 39.8166i −0.493618 + 0.0796332i
\(501\) −36.8942 + 63.9026i −0.0736410 + 0.127550i
\(502\) 147.965 552.211i 0.294750 1.10002i
\(503\) −458.146 + 458.146i −0.910826 + 0.910826i −0.996337 0.0855108i \(-0.972748\pi\)
0.0855108 + 0.996337i \(0.472748\pi\)
\(504\) 54.4117 + 23.8194i 0.107960 + 0.0472607i
\(505\) 552.772 + 591.640i 1.09460 + 1.17156i
\(506\) 138.893 + 240.569i 0.274492 + 0.475434i
\(507\) 280.249 75.0924i 0.552759 0.148111i
\(508\) −77.2026 288.124i −0.151974 0.567173i
\(509\) 602.762 348.005i 1.18421 0.683703i 0.227224 0.973843i \(-0.427035\pi\)
0.956984 + 0.290140i \(0.0937017\pi\)
\(510\) −0.388529 + 11.4396i −0.000761822 + 0.0224305i
\(511\) −577.998 + 64.4039i −1.13111 + 0.126035i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −33.8769 9.07728i −0.0660368 0.0176945i
\(514\) −42.7578 24.6862i −0.0831864 0.0480277i
\(515\) −221.817 + 355.738i −0.430712 + 0.690753i
\(516\) 43.4932 + 75.3324i 0.0842892 + 0.145993i
\(517\) −458.655 458.655i −0.887147 0.887147i
\(518\) −234.177 + 292.908i −0.452079 + 0.565460i
\(519\) 102.262i 0.197037i
\(520\) 16.5168 + 5.03244i 0.0317631 + 0.00967777i
\(521\) −46.9311 + 81.2870i −0.0900788 + 0.156021i −0.907544 0.419957i \(-0.862045\pi\)
0.817465 + 0.575978i \(0.195379\pi\)
\(522\) −128.319 + 34.3829i −0.245821 + 0.0658676i
\(523\) −696.690 186.678i −1.33210 0.356936i −0.478605 0.878030i \(-0.658857\pi\)
−0.853499 + 0.521094i \(0.825524\pi\)
\(524\) 419.562i 0.800690i
\(525\) −268.782 140.112i −0.511965 0.266881i
\(526\) −291.123 −0.553466
\(527\) −11.3506 + 42.3610i −0.0215381 + 0.0803814i
\(528\) 23.3207 + 87.0340i 0.0441680 + 0.164837i
\(529\) −260.580 150.446i −0.492590 0.284397i
\(530\) −154.071 + 505.671i −0.290699 + 0.954096i
\(531\) −107.529 −0.202502
\(532\) −14.1987 + 93.4215i −0.0266893 + 0.175604i
\(533\) 55.5792 55.5792i 0.104276 0.104276i
\(534\) 108.267 62.5079i 0.202747 0.117056i
\(535\) −315.123 196.492i −0.589015 0.367275i
\(536\) −88.5535 + 153.379i −0.165212 + 0.286155i
\(537\) 96.0065 358.301i 0.178783 0.667228i
\(538\) −143.879 + 143.879i −0.267432 + 0.267432i
\(539\) 468.215 432.299i 0.868674 0.802039i
\(540\) 51.9316 + 1.76379i 0.0961696 + 0.00326627i
\(541\) −501.633 868.854i −0.927233 1.60601i −0.787930 0.615765i \(-0.788847\pi\)
−0.139303 0.990250i \(-0.544486\pi\)
\(542\) 260.494 69.7990i 0.480615 0.128781i
\(543\) 118.955 + 443.944i 0.219069 + 0.817577i
\(544\) −4.57846 + 2.64337i −0.00841628 + 0.00485914i
\(545\) −451.076 + 421.442i −0.827662 + 0.773287i
\(546\) 12.4106 + 16.8591i 0.0227300 + 0.0308775i
\(547\) −188.091 188.091i −0.343860 0.343860i 0.513957 0.857816i \(-0.328179\pi\)
−0.857816 + 0.513957i \(0.828179\pi\)
\(548\) −437.607 117.257i −0.798553 0.213972i
\(549\) 283.516 + 163.688i 0.516422 + 0.298156i
\(550\) −88.5989 451.195i −0.161089 0.820354i
\(551\) −105.671 183.028i −0.191781 0.332175i
\(552\) 52.3192 + 52.3192i 0.0947811 + 0.0947811i
\(553\) 247.091 + 631.864i 0.446818 + 1.14261i
\(554\) 69.6516i 0.125725i
\(555\) −95.6176 + 313.824i −0.172284 + 0.565448i
\(556\) −42.1416 + 72.9914i −0.0757942 + 0.131279i
\(557\) 535.638 143.524i 0.961648 0.257673i 0.256350 0.966584i \(-0.417480\pi\)
0.705298 + 0.708911i \(0.250813\pi\)
\(558\) 192.304 + 51.5278i 0.344631 + 0.0923437i
\(559\) 30.6584i 0.0548450i
\(560\) −10.7718 139.585i −0.0192354 0.249259i
\(561\) −21.0523 −0.0375263
\(562\) −125.709 + 469.152i −0.223681 + 0.834791i
\(563\) −153.153 571.577i −0.272031 1.01523i −0.957805 0.287419i \(-0.907203\pi\)
0.685774 0.727815i \(-0.259464\pi\)
\(564\) −149.623 86.3848i −0.265289 0.153165i
\(565\) −138.556 259.986i −0.245232 0.460153i
\(566\) −155.254 −0.274300
\(567\) 49.2070 + 39.3405i 0.0867848 + 0.0693836i
\(568\) 149.552 149.552i 0.263296 0.263296i
\(569\) −337.893 + 195.083i −0.593837 + 0.342852i −0.766613 0.642109i \(-0.778060\pi\)
0.172776 + 0.984961i \(0.444726\pi\)
\(570\) 18.6726 + 80.5288i 0.0327590 + 0.141279i
\(571\) 5.20468 9.01477i 0.00911502 0.0157877i −0.861432 0.507873i \(-0.830432\pi\)
0.870547 + 0.492085i \(0.163765\pi\)
\(572\) −8.21938 + 30.6752i −0.0143695 + 0.0536279i
\(573\) 5.24477 5.24477i 0.00915318 0.00915318i
\(574\) −583.822 255.575i −1.01711 0.445253i
\(575\) −248.260 284.490i −0.431756 0.494765i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −575.421 + 154.184i −0.997263 + 0.267216i −0.720299 0.693664i \(-0.755995\pi\)
−0.276965 + 0.960880i \(0.589329\pi\)
\(578\) 105.462 + 393.588i 0.182460 + 0.680948i
\(579\) 354.857 204.877i 0.612880 0.353846i
\(580\) 213.766 + 228.797i 0.368562 + 0.394477i
\(581\) 187.217 + 254.324i 0.322232 + 0.437736i
\(582\) 204.633 + 204.633i 0.351603 + 0.351603i
\(583\) −939.135 251.640i −1.61087 0.431630i
\(584\) −203.509 117.496i −0.348474 0.201192i
\(585\) 15.5403 + 9.69001i 0.0265646 + 0.0165641i
\(586\) 24.9404 + 43.1981i 0.0425605 + 0.0737169i
\(587\) −57.7749 57.7749i −0.0984239 0.0984239i 0.656180 0.754604i \(-0.272171\pi\)
−0.754604 + 0.656180i \(0.772171\pi\)
\(588\) 90.6614 143.501i 0.154186 0.244049i
\(589\) 316.728i 0.537739i
\(590\) 119.200 + 223.667i 0.202035 + 0.379097i
\(591\) 7.48949 12.9722i 0.0126726 0.0219495i
\(592\) −146.365 + 39.2183i −0.247237 + 0.0662471i
\(593\) 901.848 + 241.650i 1.52082 + 0.407503i 0.920013 0.391888i \(-0.128178\pi\)
0.600810 + 0.799392i \(0.294845\pi\)
\(594\) 95.5700i 0.160892i
\(595\) 32.1532 + 6.00989i 0.0540391 + 0.0101007i
\(596\) −153.446 −0.257460
\(597\) −110.933 + 414.007i −0.185817 + 0.693479i
\(598\) 6.74947 + 25.1894i 0.0112867 + 0.0421227i
\(599\) −811.636 468.598i −1.35498 0.782301i −0.366042 0.930598i \(-0.619287\pi\)
−0.988943 + 0.148297i \(0.952621\pi\)
\(600\) −53.8996 109.976i −0.0898327 0.183294i
\(601\) 89.1175 0.148282 0.0741410 0.997248i \(-0.476379\pi\)
0.0741410 + 0.997248i \(0.476379\pi\)
\(602\) 231.512 90.5330i 0.384572 0.150387i
\(603\) −132.830 + 132.830i −0.220282 + 0.220282i
\(604\) −53.4832 + 30.8785i −0.0885483 + 0.0511234i
\(605\) 234.484 54.3711i 0.387577 0.0898696i
\(606\) −198.332 + 343.521i −0.327281 + 0.566867i
\(607\) 214.931 802.135i 0.354088 1.32147i −0.527540 0.849530i \(-0.676886\pi\)
0.881628 0.471945i \(-0.156448\pi\)
\(608\) −26.9984 + 26.9984i −0.0444052 + 0.0444052i
\(609\) 42.0412 + 377.302i 0.0690332 + 0.619544i
\(610\) 26.1923 771.187i 0.0429383 1.26424i
\(611\) −30.4463 52.7346i −0.0498303 0.0863087i
\(612\) −5.41637 + 1.45131i −0.00885029 + 0.00237143i
\(613\) 259.965 + 970.204i 0.424087 + 1.58271i 0.765909 + 0.642949i \(0.222289\pi\)
−0.341822 + 0.939765i \(0.611044\pi\)
\(614\) 539.004 311.194i 0.877856 0.506830i
\(615\) −557.211 18.9249i −0.906034 0.0307722i
\(616\) 255.911 28.5151i 0.415439 0.0462907i
\(617\) 92.1769 + 92.1769i 0.149395 + 0.149395i 0.777848 0.628453i \(-0.216311\pi\)
−0.628453 + 0.777848i \(0.716311\pi\)
\(618\) −198.381 53.1560i −0.321004 0.0860129i
\(619\) 420.450 + 242.747i 0.679241 + 0.392160i 0.799569 0.600574i \(-0.205061\pi\)
−0.120328 + 0.992734i \(0.538395\pi\)
\(620\) −105.996 457.127i −0.170962 0.737301i
\(621\) 39.2394 + 67.9646i 0.0631874 + 0.109444i
\(622\) 453.067 + 453.067i 0.728403 + 0.728403i
\(623\) −130.113 332.727i −0.208849 0.534072i
\(624\) 8.45881i 0.0135558i
\(625\) 236.343 + 578.590i 0.378149 + 0.925745i
\(626\) 238.065 412.341i 0.380295 0.658691i
\(627\) −146.861 + 39.3513i −0.234228 + 0.0627612i
\(628\) 124.312 + 33.3093i 0.197949 + 0.0530403i
\(629\) 35.4035i 0.0562853i
\(630\) 27.2828 145.965i 0.0433061 0.231690i
\(631\) 204.708 0.324418 0.162209 0.986756i \(-0.448138\pi\)
0.162209 + 0.986756i \(0.448138\pi\)
\(632\) −70.9523 + 264.797i −0.112266 + 0.418983i
\(633\) 134.226 + 500.938i 0.212047 + 0.791372i
\(634\) 620.923 + 358.490i 0.979374 + 0.565442i
\(635\) −658.096 + 350.723i −1.03637 + 0.552320i
\(636\) −258.971 −0.407186
\(637\) 52.9611 27.8241i 0.0831415 0.0436799i
\(638\) −407.225 + 407.225i −0.638284 + 0.638284i
\(639\) 194.274 112.164i 0.304028 0.175531i
\(640\) 29.9309 48.0015i 0.0467670 0.0750023i
\(641\) 587.986 1018.42i 0.917295 1.58880i 0.113788 0.993505i \(-0.463701\pi\)
0.803506 0.595296i \(-0.202965\pi\)
\(642\) 47.0872 175.732i 0.0733445 0.273725i
\(643\) 395.839 395.839i 0.615612 0.615612i −0.328791 0.944403i \(-0.606641\pi\)
0.944403 + 0.328791i \(0.106641\pi\)
\(644\) 170.283 125.351i 0.264415 0.194644i
\(645\) 158.903 148.463i 0.246361 0.230176i
\(646\) −4.46043 7.72569i −0.00690468 0.0119593i
\(647\) −445.523 + 119.378i −0.688598 + 0.184509i −0.586118 0.810226i \(-0.699344\pi\)
−0.102480 + 0.994735i \(0.532678\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) −403.700 + 233.076i −0.622034 + 0.359131i
\(650\) 2.92878 43.0667i 0.00450582 0.0662564i
\(651\) 228.157 521.189i 0.350472 0.800598i
\(652\) −132.512 132.512i −0.203239 0.203239i
\(653\) 242.537 + 64.9876i 0.371419 + 0.0995215i 0.439700 0.898145i \(-0.355085\pi\)
−0.0682808 + 0.997666i \(0.521751\pi\)
\(654\) −261.906 151.212i −0.400468 0.231210i
\(655\) −1021.79 + 236.929i −1.55999 + 0.361724i
\(656\) −128.757 223.013i −0.196275 0.339959i
\(657\) −176.244 176.244i −0.268255 0.268255i
\(658\) −308.311 + 385.634i −0.468558 + 0.586071i
\(659\) 524.406i 0.795760i 0.917437 + 0.397880i \(0.130254\pi\)
−0.917437 + 0.397880i \(0.869746\pi\)
\(660\) 198.792 105.944i 0.301200 0.160520i
\(661\) 148.475 257.165i 0.224621 0.389055i −0.731585 0.681751i \(-0.761219\pi\)
0.956206 + 0.292696i \(0.0945522\pi\)
\(662\) 241.023 64.5818i 0.364082 0.0975556i
\(663\) −1.90900 0.511516i −0.00287934 0.000771517i
\(664\) 127.603i 0.192174i
\(665\) 235.536 18.1763i 0.354189 0.0273328i
\(666\) −160.719 −0.241321
\(667\) −122.399 + 456.798i −0.183506 + 0.684854i
\(668\) 22.0523 + 82.3002i 0.0330124 + 0.123204i
\(669\) −320.406 184.987i −0.478933 0.276512i
\(670\) 423.544 + 129.048i 0.632156 + 0.192609i
\(671\) 1419.22 2.11508
\(672\) 63.8755 24.9785i 0.0950528 0.0371704i
\(673\) −41.9638 + 41.9638i −0.0623533 + 0.0623533i −0.737596 0.675243i \(-0.764039\pi\)
0.675243 + 0.737596i \(0.264039\pi\)
\(674\) 162.252 93.6762i 0.240730 0.138985i
\(675\) −25.0306 127.469i −0.0370823 0.188844i
\(676\) 167.509 290.135i 0.247795 0.429193i
\(677\) −255.227 + 952.520i −0.376997 + 1.40697i 0.473408 + 0.880843i \(0.343024\pi\)
−0.850405 + 0.526129i \(0.823643\pi\)
\(678\) 102.053 102.053i 0.150521 0.150521i
\(679\) 666.018 490.278i 0.980880 0.722058i
\(680\) 9.02312 + 9.65759i 0.0132693 + 0.0142023i
\(681\) −49.6800 86.0483i −0.0729516 0.126356i
\(682\) 833.666 223.380i 1.22238 0.327537i
\(683\) 107.123 + 399.787i 0.156841 + 0.585339i 0.998941 + 0.0460170i \(0.0146528\pi\)
−0.842099 + 0.539322i \(0.818680\pi\)
\(684\) −35.0719 + 20.2488i −0.0512747 + 0.0296035i
\(685\) −38.4454 + 1131.96i −0.0561247 + 1.65249i
\(686\) −366.502 317.765i −0.534259 0.463214i
\(687\) −120.999 120.999i −0.176127 0.176127i
\(688\) 97.0207 + 25.9966i 0.141019 + 0.0377858i
\(689\) −79.0458 45.6371i −0.114725 0.0662367i
\(690\) 97.8724 156.962i 0.141844 0.227482i
\(691\) 455.346 + 788.682i 0.658966 + 1.14136i 0.980884 + 0.194595i \(0.0623393\pi\)
−0.321917 + 0.946768i \(0.604327\pi\)
\(692\) −83.4967 83.4967i −0.120660 0.120660i
\(693\) 270.013 + 41.0381i 0.389629 + 0.0592180i
\(694\) 677.627i 0.976408i
\(695\) 201.560 + 61.4124i 0.290014 + 0.0883632i
\(696\) −76.6983 + 132.845i −0.110199 + 0.190870i
\(697\) 58.1161 15.5722i 0.0833804 0.0223417i
\(698\) 722.786 + 193.670i 1.03551 + 0.277464i
\(699\) 747.626i 1.06957i
\(700\) −333.860 + 105.058i −0.476944 + 0.150083i
\(701\) 295.328 0.421296 0.210648 0.977562i \(-0.432443\pi\)
0.210648 + 0.977562i \(0.432443\pi\)
\(702\) −2.32210 + 8.66621i −0.00330784 + 0.0123450i
\(703\) −66.1769 246.975i −0.0941349 0.351316i
\(704\) 90.1042 + 52.0217i 0.127989 + 0.0738945i
\(705\) −125.887 + 413.172i −0.178564 + 0.586059i
\(706\) −232.995 −0.330021
\(707\) 885.384 + 707.856i 1.25231 + 1.00121i
\(708\) −87.7969 + 87.7969i −0.124007 + 0.124007i
\(709\) 754.639 435.691i 1.06437 0.614515i 0.137733 0.990469i \(-0.456019\pi\)
0.926638 + 0.375955i \(0.122685\pi\)
\(710\) −448.670 279.764i −0.631929 0.394034i
\(711\) −145.384 + 251.812i −0.204478 + 0.354166i
\(712\) 37.3620 139.437i 0.0524748 0.195838i
\(713\) 501.146 501.146i 0.702869 0.702869i
\(714\) 1.77457 + 15.9260i 0.00248540 + 0.0223054i
\(715\) 79.3474 + 2.69493i 0.110975 + 0.00376913i
\(716\) −214.163 370.941i −0.299110 0.518074i
\(717\) −576.468 + 154.464i −0.804001 + 0.215431i
\(718\) 130.213 + 485.963i 0.181356 + 0.676829i
\(719\) −783.472 + 452.338i −1.08967 + 0.629121i −0.933488 0.358607i \(-0.883252\pi\)
−0.156181 + 0.987728i \(0.549918\pi\)
\(720\) 43.8421 40.9618i 0.0608918 0.0568914i
\(721\) −235.367 + 537.658i −0.326445 + 0.745712i
\(722\) 315.443 + 315.443i 0.436902 + 0.436902i
\(723\) −167.718 44.9398i −0.231975 0.0621574i
\(724\) 459.605 + 265.353i 0.634813 + 0.366510i
\(725\) 436.494 649.805i 0.602060 0.896283i
\(726\) 58.9605 + 102.123i 0.0812129 + 0.140665i
\(727\) −155.082 155.082i −0.213318 0.213318i 0.592357 0.805675i \(-0.298197\pi\)
−0.805675 + 0.592357i \(0.798197\pi\)
\(728\) 23.8986 + 3.63224i 0.0328277 + 0.00498934i
\(729\) 27.0000i 0.0370370i
\(730\) −171.225 + 561.973i −0.234555 + 0.769827i
\(731\) −11.7340 + 20.3238i −0.0160519 + 0.0278027i
\(732\) 365.140 97.8390i 0.498825 0.133660i
\(733\) −297.763 79.7853i −0.406225 0.108848i 0.0499198 0.998753i \(-0.484103\pi\)
−0.456145 + 0.889906i \(0.650770\pi\)
\(734\) 538.058i 0.733049i
\(735\) −400.677 139.760i −0.545139 0.190149i
\(736\) 85.4368 0.116083
\(737\) −210.771 + 786.609i −0.285986 + 1.06731i
\(738\) −70.6922 263.827i −0.0957889 0.357489i
\(739\) 204.986 + 118.349i 0.277383 + 0.160147i 0.632238 0.774774i \(-0.282136\pi\)
−0.354855 + 0.934921i \(0.615470\pi\)
\(740\) 178.165 + 334.308i 0.240763 + 0.451767i
\(741\) −14.2734 −0.0192623
\(742\) −111.203 + 731.668i −0.149869 + 0.986075i
\(743\) 605.403 605.403i 0.814809 0.814809i −0.170541 0.985351i \(-0.554552\pi\)
0.985351 + 0.170541i \(0.0545516\pi\)
\(744\) 199.088 114.943i 0.267591 0.154494i
\(745\) 86.6521 + 373.701i 0.116312 + 0.501612i
\(746\) 237.065 410.609i 0.317781 0.550414i
\(747\) −35.0295 + 130.732i −0.0468936 + 0.175009i
\(748\) −17.1891 + 17.1891i −0.0229801 + 0.0229801i
\(749\) −476.274 208.495i −0.635880 0.278364i
\(750\) −237.398 + 193.371i −0.316530 + 0.257828i
\(751\) −426.169 738.147i −0.567469 0.982886i −0.996815 0.0797456i \(-0.974589\pi\)
0.429346 0.903140i \(-0.358744\pi\)
\(752\) −192.699 + 51.6337i −0.256249 + 0.0686618i
\(753\) −181.219 676.318i −0.240662 0.898164i
\(754\) −46.8214 + 27.0323i −0.0620973 + 0.0358519i
\(755\) 105.403 + 112.815i 0.139607 + 0.149424i
\(756\) 72.2987 8.05595i 0.0956332 0.0106560i
\(757\) −61.7687 61.7687i −0.0815967 0.0815967i 0.665130 0.746727i \(-0.268376\pi\)
−0.746727 + 0.665130i \(0.768376\pi\)
\(758\) 920.760 + 246.717i 1.21472 + 0.325484i
\(759\) 294.636 + 170.108i 0.388190 + 0.224122i
\(760\) 80.9976 + 50.5053i 0.106576 + 0.0664544i
\(761\) 46.4211 + 80.4037i 0.0610002 + 0.105655i 0.894913 0.446241i \(-0.147238\pi\)
−0.833913 + 0.551897i \(0.813904\pi\)
\(762\) −258.325 258.325i −0.339009 0.339009i
\(763\) −539.680 + 675.031i −0.707314 +