Properties

Label 210.3.v.a.67.1
Level 210
Weight 3
Character 210.67
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 67.1
Character \(\chi\) \(=\) 210.67
Dual form 210.3.v.a.163.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-4.97092 - 0.538514i) q^{5} -2.44949 q^{6} +(3.26756 - 6.19056i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(-0.448288 - 1.67303i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-4.97092 - 0.538514i) q^{5} -2.44949 q^{6} +(3.26756 - 6.19056i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-2.59808 + 1.50000i) q^{9} +(-2.55510 + 6.59329i) q^{10} +(1.81875 - 3.15016i) q^{11} +(-0.896575 + 3.34607i) q^{12} +(-14.2920 + 14.2920i) q^{13} +(-7.26046 - 6.72947i) q^{14} +(1.32745 + 8.55791i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-20.6697 + 5.53844i) q^{17} +(1.09808 + 4.09808i) q^{18} +(0.949547 - 0.548221i) q^{19} +(8.07136 + 5.90365i) q^{20} +(-11.8218 - 2.69158i) q^{21} +(-3.63749 - 3.63749i) q^{22} +(-24.3662 - 6.52891i) q^{23} +(4.24264 + 2.44949i) q^{24} +(24.4200 + 5.35381i) q^{25} +(14.2920 + 24.7545i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-11.8501 + 7.45481i) q^{28} -1.99080i q^{29} +(12.1762 + 1.31908i) q^{30} +(25.3707 - 43.9434i) q^{31} +(5.46410 - 1.46410i) q^{32} +(-6.08564 - 1.63064i) q^{33} +30.2626i q^{34} +(-19.5765 + 29.0131i) q^{35} +6.00000 q^{36} +(11.8876 - 44.3653i) q^{37} +(-0.401326 - 1.49777i) q^{38} +(30.3179 + 17.5040i) q^{39} +(11.0189 - 8.86480i) q^{40} -18.6962 q^{41} +(-8.00385 + 15.1637i) q^{42} +(-6.49605 + 6.49605i) q^{43} +(-6.30032 + 3.63749i) q^{44} +(13.7226 - 6.05727i) q^{45} +(-17.8373 + 30.8952i) q^{46} +(-0.305039 + 1.13842i) q^{47} +(4.89898 - 4.89898i) q^{48} +(-27.6461 - 40.4560i) q^{49} +(16.2518 - 31.3987i) q^{50} +(18.5320 + 32.0983i) q^{51} +(39.0464 - 10.4625i) q^{52} +(-24.4408 - 91.2143i) q^{53} +(6.36396 - 3.67423i) q^{54} +(-10.7372 + 14.6798i) q^{55} +(5.84601 + 18.9162i) q^{56} +(-1.34286 - 1.34286i) q^{57} +(-2.71948 - 0.728682i) q^{58} +(-95.2246 - 54.9779i) q^{59} +(6.25870 - 16.1502i) q^{60} +(55.8859 + 96.7972i) q^{61} +(-50.7415 - 50.7415i) q^{62} +(0.796482 + 20.9849i) q^{63} -8.00000i q^{64} +(78.7407 - 63.3478i) q^{65} +(-4.45500 + 7.71628i) q^{66} +(11.9349 - 3.19794i) q^{67} +(41.3395 + 11.0769i) q^{68} +43.6923i q^{69} +(32.4672 + 37.3615i) q^{70} +69.2487 q^{71} +(2.19615 - 8.19615i) q^{72} +(-12.4093 - 46.3120i) q^{73} +(-56.2529 - 32.4776i) q^{74} +(-1.99009 - 43.2555i) q^{75} -2.19288 q^{76} +(-13.5584 - 21.5524i) q^{77} +(35.0081 - 35.0081i) q^{78} +(64.8514 - 37.4420i) q^{79} +(-8.07637 - 18.2968i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-6.84327 + 25.5394i) q^{82} +(-28.7564 + 28.7564i) q^{83} +(17.7844 + 16.4838i) q^{84} +(105.730 - 16.4002i) q^{85} +(6.49605 + 11.2515i) q^{86} +(-3.33067 + 0.892450i) q^{87} +(2.66283 + 9.93781i) q^{88} +(24.1801 - 13.9604i) q^{89} +(-3.25157 - 20.9625i) q^{90} +(41.7756 + 135.175i) q^{91} +(35.6746 + 35.6746i) q^{92} +(-84.8922 - 22.7468i) q^{93} +(1.44346 + 0.833383i) q^{94} +(-5.01534 + 2.21382i) q^{95} +(-4.89898 - 8.48528i) q^{96} +(-101.201 - 101.201i) q^{97} +(-65.3832 + 22.9574i) q^{98} +10.9125i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) −0.448288 1.67303i −0.149429 0.557678i
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −4.97092 0.538514i −0.994183 0.107703i
\(6\) −2.44949 −0.408248
\(7\) 3.26756 6.19056i 0.466794 0.884366i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −2.59808 + 1.50000i −0.288675 + 0.166667i
\(10\) −2.55510 + 6.59329i −0.255510 + 0.659329i
\(11\) 1.81875 3.15016i 0.165340 0.286378i −0.771436 0.636307i \(-0.780461\pi\)
0.936776 + 0.349929i \(0.113794\pi\)
\(12\) −0.896575 + 3.34607i −0.0747146 + 0.278839i
\(13\) −14.2920 + 14.2920i −1.09938 + 1.09938i −0.104901 + 0.994483i \(0.533453\pi\)
−0.994483 + 0.104901i \(0.966547\pi\)
\(14\) −7.26046 6.72947i −0.518604 0.480676i
\(15\) 1.32745 + 8.55791i 0.0884966 + 0.570528i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −20.6697 + 5.53844i −1.21587 + 0.325790i −0.809061 0.587724i \(-0.800024\pi\)
−0.406805 + 0.913515i \(0.633357\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) 0.949547 0.548221i 0.0499761 0.0288537i −0.474804 0.880092i \(-0.657481\pi\)
0.524780 + 0.851238i \(0.324148\pi\)
\(20\) 8.07136 + 5.90365i 0.403568 + 0.295182i
\(21\) −11.8218 2.69158i −0.562944 0.128170i
\(22\) −3.63749 3.63749i −0.165340 0.165340i
\(23\) −24.3662 6.52891i −1.05940 0.283866i −0.313270 0.949664i \(-0.601424\pi\)
−0.746132 + 0.665798i \(0.768091\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) 24.4200 + 5.35381i 0.976800 + 0.214153i
\(26\) 14.2920 + 24.7545i 0.549692 + 0.952094i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −11.8501 + 7.45481i −0.423219 + 0.266243i
\(29\) 1.99080i 0.0686481i −0.999411 0.0343241i \(-0.989072\pi\)
0.999411 0.0343241i \(-0.0109278\pi\)
\(30\) 12.1762 + 1.31908i 0.405874 + 0.0439695i
\(31\) 25.3707 43.9434i 0.818411 1.41753i −0.0884411 0.996081i \(-0.528189\pi\)
0.906852 0.421448i \(-0.138478\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) −6.08564 1.63064i −0.184413 0.0494134i
\(34\) 30.2626i 0.890076i
\(35\) −19.5765 + 29.0131i −0.559327 + 0.828947i
\(36\) 6.00000 0.166667
\(37\) 11.8876 44.3653i 0.321288 1.19906i −0.596704 0.802461i \(-0.703523\pi\)
0.917992 0.396600i \(-0.129810\pi\)
\(38\) −0.401326 1.49777i −0.0105612 0.0394149i
\(39\) 30.3179 + 17.5040i 0.777382 + 0.448822i
\(40\) 11.0189 8.86480i 0.275471 0.221620i
\(41\) −18.6962 −0.456004 −0.228002 0.973661i \(-0.573219\pi\)
−0.228002 + 0.973661i \(0.573219\pi\)
\(42\) −8.00385 + 15.1637i −0.190568 + 0.361041i
\(43\) −6.49605 + 6.49605i −0.151071 + 0.151071i −0.778596 0.627525i \(-0.784068\pi\)
0.627525 + 0.778596i \(0.284068\pi\)
\(44\) −6.30032 + 3.63749i −0.143189 + 0.0826702i
\(45\) 13.7226 6.05727i 0.304946 0.134606i
\(46\) −17.8373 + 30.8952i −0.387768 + 0.671634i
\(47\) −0.305039 + 1.13842i −0.00649020 + 0.0242218i −0.969095 0.246688i \(-0.920658\pi\)
0.962605 + 0.270910i \(0.0873244\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) −27.6461 40.4560i −0.564207 0.825633i
\(50\) 16.2518 31.3987i 0.325036 0.627974i
\(51\) 18.5320 + 32.0983i 0.363372 + 0.629379i
\(52\) 39.0464 10.4625i 0.750893 0.201201i
\(53\) −24.4408 91.2143i −0.461147 1.72102i −0.669357 0.742941i \(-0.733430\pi\)
0.208210 0.978084i \(-0.433236\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) −10.7372 + 14.6798i −0.195222 + 0.266905i
\(56\) 5.84601 + 18.9162i 0.104393 + 0.337790i
\(57\) −1.34286 1.34286i −0.0235590 0.0235590i
\(58\) −2.71948 0.728682i −0.0468876 0.0125635i
\(59\) −95.2246 54.9779i −1.61398 0.931830i −0.988436 0.151637i \(-0.951545\pi\)
−0.625540 0.780192i \(-0.715121\pi\)
\(60\) 6.25870 16.1502i 0.104312 0.269170i
\(61\) 55.8859 + 96.7972i 0.916162 + 1.58684i 0.805191 + 0.593016i \(0.202063\pi\)
0.110971 + 0.993824i \(0.464604\pi\)
\(62\) −50.7415 50.7415i −0.818411 0.818411i
\(63\) 0.796482 + 20.9849i 0.0126426 + 0.333093i
\(64\) 8.00000i 0.125000i
\(65\) 78.7407 63.3478i 1.21140 0.974582i
\(66\) −4.45500 + 7.71628i −0.0675000 + 0.116913i
\(67\) 11.9349 3.19794i 0.178133 0.0477305i −0.168650 0.985676i \(-0.553941\pi\)
0.346783 + 0.937945i \(0.387274\pi\)
\(68\) 41.3395 + 11.0769i 0.607933 + 0.162895i
\(69\) 43.6923i 0.633222i
\(70\) 32.4672 + 37.3615i 0.463817 + 0.533735i
\(71\) 69.2487 0.975333 0.487667 0.873030i \(-0.337848\pi\)
0.487667 + 0.873030i \(0.337848\pi\)
\(72\) 2.19615 8.19615i 0.0305021 0.113835i
\(73\) −12.4093 46.3120i −0.169990 0.634411i −0.997351 0.0727402i \(-0.976826\pi\)
0.827361 0.561670i \(-0.189841\pi\)
\(74\) −56.2529 32.4776i −0.760174 0.438887i
\(75\) −1.99009 43.2555i −0.0265345 0.576740i
\(76\) −2.19288 −0.0288537
\(77\) −13.5584 21.5524i −0.176083 0.279901i
\(78\) 35.0081 35.0081i 0.448822 0.448822i
\(79\) 64.8514 37.4420i 0.820904 0.473949i −0.0298240 0.999555i \(-0.509495\pi\)
0.850728 + 0.525606i \(0.176161\pi\)
\(80\) −8.07637 18.2968i −0.100955 0.228710i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −6.84327 + 25.5394i −0.0834546 + 0.311457i
\(83\) −28.7564 + 28.7564i −0.346463 + 0.346463i −0.858790 0.512327i \(-0.828783\pi\)
0.512327 + 0.858790i \(0.328783\pi\)
\(84\) 17.7844 + 16.4838i 0.211719 + 0.196235i
\(85\) 105.730 16.4002i 1.24388 0.192943i
\(86\) 6.49605 + 11.2515i 0.0755354 + 0.130831i
\(87\) −3.33067 + 0.892450i −0.0382835 + 0.0102580i
\(88\) 2.66283 + 9.93781i 0.0302594 + 0.112930i
\(89\) 24.1801 13.9604i 0.271687 0.156858i −0.357967 0.933734i \(-0.616530\pi\)
0.629654 + 0.776876i \(0.283197\pi\)
\(90\) −3.25157 20.9625i −0.0361286 0.232917i
\(91\) 41.7756 + 135.175i 0.459072 + 1.48544i
\(92\) 35.6746 + 35.6746i 0.387768 + 0.387768i
\(93\) −84.8922 22.7468i −0.912819 0.244589i
\(94\) 1.44346 + 0.833383i 0.0153560 + 0.00886578i
\(95\) −5.01534 + 2.21382i −0.0527931 + 0.0233033i
\(96\) −4.89898 8.48528i −0.0510310 0.0883883i
\(97\) −101.201 101.201i −1.04331 1.04331i −0.999019 0.0442924i \(-0.985897\pi\)
−0.0442924 0.999019i \(-0.514103\pi\)
\(98\) −65.3832 + 22.9574i −0.667175 + 0.234259i
\(99\) 10.9125i 0.110227i
\(100\) −36.9429 33.6931i −0.369429 0.336931i
\(101\) 1.75437 3.03865i 0.0173700 0.0300856i −0.857210 0.514967i \(-0.827804\pi\)
0.874580 + 0.484882i \(0.161137\pi\)
\(102\) 50.6303 13.5663i 0.496375 0.133003i
\(103\) −23.3867 6.26644i −0.227055 0.0608392i 0.143498 0.989651i \(-0.454165\pi\)
−0.370553 + 0.928811i \(0.620832\pi\)
\(104\) 57.1680i 0.549692i
\(105\) 57.3158 + 19.7458i 0.545865 + 0.188055i
\(106\) −133.547 −1.25988
\(107\) −27.7832 + 103.688i −0.259656 + 0.969051i 0.705784 + 0.708427i \(0.250595\pi\)
−0.965440 + 0.260624i \(0.916072\pi\)
\(108\) −2.68973 10.0382i −0.0249049 0.0929463i
\(109\) −23.0692 13.3190i −0.211644 0.122193i 0.390431 0.920632i \(-0.372326\pi\)
−0.602075 + 0.798439i \(0.705659\pi\)
\(110\) 16.1228 + 20.0405i 0.146571 + 0.182186i
\(111\) −79.5536 −0.716699
\(112\) 27.9799 1.06198i 0.249820 0.00948192i
\(113\) 27.1223 27.1223i 0.240021 0.240021i −0.576838 0.816859i \(-0.695714\pi\)
0.816859 + 0.576838i \(0.195714\pi\)
\(114\) −2.32590 + 1.34286i −0.0204027 + 0.0117795i
\(115\) 117.607 + 45.5762i 1.02267 + 0.396315i
\(116\) −1.99080 + 3.44816i −0.0171620 + 0.0297255i
\(117\) 15.6937 58.5697i 0.134134 0.500595i
\(118\) −109.956 + 109.956i −0.931830 + 0.931830i
\(119\) −33.2535 + 146.054i −0.279441 + 1.22735i
\(120\) −19.7707 14.4609i −0.164756 0.120508i
\(121\) 53.8843 + 93.3304i 0.445325 + 0.771326i
\(122\) 152.683 40.9113i 1.25150 0.335339i
\(123\) 8.38127 + 31.2793i 0.0681404 + 0.254303i
\(124\) −87.8869 + 50.7415i −0.708765 + 0.409206i
\(125\) −118.507 39.7639i −0.948054 0.318111i
\(126\) 28.9574 + 6.59299i 0.229821 + 0.0523253i
\(127\) 34.8736 + 34.8736i 0.274595 + 0.274595i 0.830947 0.556352i \(-0.187799\pi\)
−0.556352 + 0.830947i \(0.687799\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) 13.7802 + 7.95600i 0.106823 + 0.0616744i
\(130\) −57.7137 130.749i −0.443951 1.00576i
\(131\) −0.00172369 0.00298553i −1.31580e−5 2.27903e-5i 0.866019 0.500011i \(-0.166671\pi\)
−0.866032 + 0.499989i \(0.833338\pi\)
\(132\) 8.90999 + 8.90999i 0.0675000 + 0.0675000i
\(133\) −0.291099 7.66957i −0.00218871 0.0576660i
\(134\) 17.4739i 0.130402i
\(135\) −16.2857 20.2429i −0.120635 0.149948i
\(136\) 30.2626 52.4163i 0.222519 0.385414i
\(137\) 211.931 56.7868i 1.54694 0.414502i 0.618442 0.785830i \(-0.287764\pi\)
0.928502 + 0.371328i \(0.121098\pi\)
\(138\) 59.6849 + 15.9925i 0.432499 + 0.115888i
\(139\) 228.031i 1.64051i 0.571999 + 0.820254i \(0.306168\pi\)
−0.571999 + 0.820254i \(0.693832\pi\)
\(140\) 62.9206 30.6758i 0.449433 0.219113i
\(141\) 2.04136 0.0144778
\(142\) 25.3468 94.5954i 0.178498 0.666165i
\(143\) 19.0286 + 71.0155i 0.133067 + 0.496612i
\(144\) −10.3923 6.00000i −0.0721688 0.0416667i
\(145\) −1.07207 + 9.89608i −0.00739359 + 0.0682488i
\(146\) −67.8054 −0.464421
\(147\) −55.2908 + 64.3888i −0.376128 + 0.438019i
\(148\) −64.9553 + 64.9553i −0.438887 + 0.438887i
\(149\) −86.2135 + 49.7754i −0.578614 + 0.334063i −0.760582 0.649241i \(-0.775086\pi\)
0.181968 + 0.983304i \(0.441753\pi\)
\(150\) −59.8166 13.1141i −0.398777 0.0874274i
\(151\) 39.1085 67.7378i 0.258996 0.448595i −0.706977 0.707237i \(-0.749942\pi\)
0.965973 + 0.258642i \(0.0832749\pi\)
\(152\) −0.802651 + 2.99554i −0.00528060 + 0.0197075i
\(153\) 45.3939 45.3939i 0.296692 0.296692i
\(154\) −34.4038 + 10.6324i −0.223401 + 0.0690416i
\(155\) −149.780 + 204.777i −0.966323 + 1.32114i
\(156\) −35.0081 60.6358i −0.224411 0.388691i
\(157\) −229.073 + 61.3800i −1.45907 + 0.390956i −0.899167 0.437605i \(-0.855827\pi\)
−0.559899 + 0.828561i \(0.689160\pi\)
\(158\) −27.4094 102.293i −0.173477 0.647427i
\(159\) −141.648 + 81.7805i −0.890868 + 0.514343i
\(160\) −27.9500 + 4.33543i −0.174688 + 0.0270964i
\(161\) −120.036 + 129.507i −0.745564 + 0.804392i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −219.988 58.9456i −1.34962 0.361629i −0.489625 0.871933i \(-0.662866\pi\)
−0.859994 + 0.510304i \(0.829533\pi\)
\(164\) 32.3827 + 18.6962i 0.197456 + 0.114001i
\(165\) 29.3731 + 11.3830i 0.178019 + 0.0689878i
\(166\) 28.7564 + 49.8076i 0.173231 + 0.300046i
\(167\) −8.78950 8.78950i −0.0526318 0.0526318i 0.680301 0.732933i \(-0.261849\pi\)
−0.732933 + 0.680301i \(0.761849\pi\)
\(168\) 29.0268 18.2605i 0.172779 0.108693i
\(169\) 239.522i 1.41729i
\(170\) 16.2968 150.433i 0.0958636 0.884899i
\(171\) −1.64466 + 2.84864i −0.00961791 + 0.0166587i
\(172\) 17.7475 4.75544i 0.103183 0.0276479i
\(173\) 323.791 + 86.7596i 1.87162 + 0.501500i 0.999935 + 0.0114429i \(0.00364246\pi\)
0.871690 + 0.490057i \(0.163024\pi\)
\(174\) 4.87643i 0.0280255i
\(175\) 112.937 133.680i 0.645354 0.763884i
\(176\) 14.5500 0.0826702
\(177\) −49.2919 + 183.960i −0.278485 + 1.03932i
\(178\) −10.2197 38.1405i −0.0574141 0.214272i
\(179\) 46.9243 + 27.0918i 0.262147 + 0.151351i 0.625314 0.780374i \(-0.284971\pi\)
−0.363166 + 0.931724i \(0.618304\pi\)
\(180\) −29.8255 3.23108i −0.165697 0.0179505i
\(181\) −141.640 −0.782543 −0.391272 0.920275i \(-0.627965\pi\)
−0.391272 + 0.920275i \(0.627965\pi\)
\(182\) 199.944 7.58887i 1.09859 0.0416971i
\(183\) 136.892 136.892i 0.748043 0.748043i
\(184\) 61.7903 35.6746i 0.335817 0.193884i
\(185\) −82.9838 + 214.134i −0.448561 + 1.15748i
\(186\) −62.1454 + 107.639i −0.334115 + 0.578704i
\(187\) −20.1460 + 75.1859i −0.107733 + 0.402064i
\(188\) 1.66677 1.66677i 0.00886578 0.00886578i
\(189\) 34.7514 10.7398i 0.183870 0.0568244i
\(190\) 1.18839 + 7.66140i 0.00625467 + 0.0403231i
\(191\) −103.508 179.281i −0.541927 0.938645i −0.998793 0.0491099i \(-0.984362\pi\)
0.456866 0.889535i \(-0.348972\pi\)
\(192\) −13.3843 + 3.58630i −0.0697097 + 0.0186787i
\(193\) −33.2316 124.022i −0.172184 0.642601i −0.997014 0.0772196i \(-0.975396\pi\)
0.824830 0.565381i \(-0.191271\pi\)
\(194\) −175.286 + 101.201i −0.903534 + 0.521656i
\(195\) −141.281 103.338i −0.724520 0.529937i
\(196\) 7.42848 + 97.7181i 0.0379004 + 0.498561i
\(197\) 91.4879 + 91.4879i 0.464405 + 0.464405i 0.900096 0.435691i \(-0.143496\pi\)
−0.435691 + 0.900096i \(0.643496\pi\)
\(198\) 14.9067 + 3.99424i 0.0752864 + 0.0201729i
\(199\) 34.4219 + 19.8735i 0.172974 + 0.0998668i 0.583988 0.811763i \(-0.301492\pi\)
−0.411013 + 0.911629i \(0.634825\pi\)
\(200\) −59.5476 + 38.1324i −0.297738 + 0.190662i
\(201\) −10.7005 18.5339i −0.0532365 0.0922083i
\(202\) −3.50873 3.50873i −0.0173700 0.0173700i
\(203\) −12.3241 6.50504i −0.0607101 0.0320445i
\(204\) 74.1279i 0.363372i
\(205\) 92.9371 + 10.0681i 0.453352 + 0.0491129i
\(206\) −17.1202 + 29.6531i −0.0831079 + 0.143947i
\(207\) 73.0987 19.5867i 0.353134 0.0946219i
\(208\) −78.0929 20.9249i −0.375447 0.100601i
\(209\) 3.98830i 0.0190828i
\(210\) 47.9523 71.0674i 0.228344 0.338416i
\(211\) 295.368 1.39985 0.699924 0.714218i \(-0.253217\pi\)
0.699924 + 0.714218i \(0.253217\pi\)
\(212\) −48.8816 + 182.429i −0.230574 + 0.860512i
\(213\) −31.0433 115.855i −0.145743 0.543921i
\(214\) 131.472 + 75.9052i 0.614353 + 0.354697i
\(215\) 35.7895 28.7931i 0.166463 0.133921i
\(216\) −14.6969 −0.0680414
\(217\) −189.134 300.647i −0.871586 1.38547i
\(218\) −26.6380 + 26.6380i −0.122193 + 0.122193i
\(219\) −71.9185 + 41.5222i −0.328395 + 0.189599i
\(220\) 33.2772 14.6888i 0.151260 0.0667675i
\(221\) 216.256 374.567i 0.978535 1.69487i
\(222\) −29.1186 + 108.672i −0.131165 + 0.489515i
\(223\) 144.742 144.742i 0.649068 0.649068i −0.303700 0.952768i \(-0.598222\pi\)
0.952768 + 0.303700i \(0.0982219\pi\)
\(224\) 8.79065 38.6099i 0.0392440 0.172366i
\(225\) −71.4758 + 22.7204i −0.317670 + 0.100980i
\(226\) −27.1223 46.9773i −0.120010 0.207864i
\(227\) −159.376 + 42.7047i −0.702097 + 0.188126i −0.592170 0.805813i \(-0.701728\pi\)
−0.109927 + 0.993940i \(0.535062\pi\)
\(228\) 0.983043 + 3.66877i 0.00431159 + 0.0160911i
\(229\) 254.836 147.130i 1.11282 0.642487i 0.173262 0.984876i \(-0.444569\pi\)
0.939559 + 0.342388i \(0.111236\pi\)
\(230\) 105.305 143.972i 0.457849 0.625963i
\(231\) −29.9798 + 32.3453i −0.129783 + 0.140023i
\(232\) 3.98159 + 3.98159i 0.0171620 + 0.0171620i
\(233\) −6.60795 1.77059i −0.0283603 0.00759912i 0.244611 0.969621i \(-0.421340\pi\)
−0.272971 + 0.962022i \(0.588006\pi\)
\(234\) −74.2634 42.8760i −0.317365 0.183231i
\(235\) 2.12938 5.49474i 0.00906120 0.0233819i
\(236\) 109.956 + 190.449i 0.465915 + 0.806988i
\(237\) −91.7138 91.7138i −0.386978 0.386978i
\(238\) 187.342 + 98.8847i 0.787153 + 0.415482i
\(239\) 157.039i 0.657067i 0.944492 + 0.328533i \(0.106554\pi\)
−0.944492 + 0.328533i \(0.893446\pi\)
\(240\) −26.9906 + 21.7142i −0.112461 + 0.0904760i
\(241\) 93.3037 161.607i 0.387152 0.670567i −0.604913 0.796292i \(-0.706792\pi\)
0.992065 + 0.125724i \(0.0401255\pi\)
\(242\) 147.215 39.4461i 0.608325 0.163000i
\(243\) −15.0573 4.03459i −0.0619642 0.0166032i
\(244\) 223.544i 0.916162i
\(245\) 115.640 + 215.991i 0.472002 + 0.881597i
\(246\) 45.7961 0.186163
\(247\) −5.73574 + 21.4061i −0.0232216 + 0.0866643i
\(248\) 37.1454 + 138.628i 0.149780 + 0.558985i
\(249\) 61.0015 + 35.2193i 0.244986 + 0.141443i
\(250\) −97.6949 + 147.329i −0.390780 + 0.589314i
\(251\) 316.826 1.26225 0.631127 0.775680i \(-0.282593\pi\)
0.631127 + 0.775680i \(0.282593\pi\)
\(252\) 19.6053 37.1434i 0.0777990 0.147394i
\(253\) −64.8831 + 64.8831i −0.256455 + 0.256455i
\(254\) 60.4029 34.8736i 0.237807 0.137298i
\(255\) −74.8355 169.538i −0.293473 0.664854i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 46.4857 173.487i 0.180878 0.675047i −0.814597 0.580027i \(-0.803042\pi\)
0.995475 0.0950196i \(-0.0302914\pi\)
\(258\) 15.9120 15.9120i 0.0616744 0.0616744i
\(259\) −235.802 218.557i −0.910434 0.843850i
\(260\) −199.731 + 30.9810i −0.768195 + 0.119158i
\(261\) 2.98619 + 5.17224i 0.0114414 + 0.0198170i
\(262\) −0.00470922 + 0.00126183i −1.79741e−5 + 4.81615e-6i
\(263\) 6.66522 + 24.8750i 0.0253431 + 0.0945816i 0.977439 0.211218i \(-0.0677430\pi\)
−0.952096 + 0.305799i \(0.901076\pi\)
\(264\) 15.4326 8.90999i 0.0584567 0.0337500i
\(265\) 72.3730 + 466.580i 0.273106 + 1.76068i
\(266\) −10.5834 2.40961i −0.0397871 0.00905868i
\(267\) −34.1958 34.1958i −0.128074 0.128074i
\(268\) −23.8698 6.39589i −0.0890663 0.0238653i
\(269\) 372.313 + 214.955i 1.38406 + 0.799088i 0.992638 0.121122i \(-0.0386493\pi\)
0.391424 + 0.920211i \(0.371983\pi\)
\(270\) −33.6133 + 14.8372i −0.124494 + 0.0549527i
\(271\) −230.549 399.323i −0.850734 1.47351i −0.880547 0.473959i \(-0.842824\pi\)
0.0298124 0.999556i \(-0.490509\pi\)
\(272\) −60.5252 60.5252i −0.222519 0.222519i
\(273\) 207.425 130.489i 0.759800 0.477983i
\(274\) 310.289i 1.13244i
\(275\) 61.2791 67.1897i 0.222833 0.244326i
\(276\) 43.6923 75.6774i 0.158306 0.274193i
\(277\) −47.2888 + 12.6710i −0.170718 + 0.0457437i −0.343165 0.939275i \(-0.611499\pi\)
0.172448 + 0.985019i \(0.444832\pi\)
\(278\) 311.496 + 83.4650i 1.12049 + 0.300234i
\(279\) 152.224i 0.545608i
\(280\) −18.8734 97.1792i −0.0674049 0.347069i
\(281\) −423.445 −1.50692 −0.753461 0.657493i \(-0.771617\pi\)
−0.753461 + 0.657493i \(0.771617\pi\)
\(282\) 0.747191 2.78855i 0.00264961 0.00988849i
\(283\) 126.983 + 473.906i 0.448702 + 1.67458i 0.705973 + 0.708239i \(0.250510\pi\)
−0.257271 + 0.966339i \(0.582823\pi\)
\(284\) −119.942 69.2487i −0.422332 0.243833i
\(285\) 5.95210 + 7.39840i 0.0208846 + 0.0259593i
\(286\) 103.974 0.363545
\(287\) −61.0908 + 115.740i −0.212860 + 0.403275i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 146.282 84.4561i 0.506167 0.292235i
\(290\) 13.1259 + 5.08669i 0.0452617 + 0.0175403i
\(291\) −123.946 + 214.680i −0.425930 + 0.737732i
\(292\) −24.8185 + 92.6239i −0.0849949 + 0.317205i
\(293\) 227.054 227.054i 0.774928 0.774928i −0.204036 0.978963i \(-0.565406\pi\)
0.978963 + 0.204036i \(0.0654059\pi\)
\(294\) 67.7189 + 99.0966i 0.230337 + 0.337063i
\(295\) 443.747 + 324.570i 1.50423 + 1.10024i
\(296\) 64.9553 + 112.506i 0.219443 + 0.380087i
\(297\) 18.2569 4.89193i 0.0614711 0.0164711i
\(298\) 36.4381 + 135.989i 0.122276 + 0.456338i
\(299\) 441.553 254.931i 1.47677 0.852612i
\(300\) −39.8086 + 76.9108i −0.132695 + 0.256369i
\(301\) 18.9880 + 61.4404i 0.0630830 + 0.204121i
\(302\) −78.2169 78.2169i −0.258996 0.258996i
\(303\) −5.87022 1.57292i −0.0193737 0.00519116i
\(304\) 3.79819 + 2.19288i 0.0124940 + 0.00721343i
\(305\) −225.677 511.266i −0.739926 1.67628i
\(306\) −45.3939 78.6245i −0.148346 0.256943i
\(307\) −203.247 203.247i −0.662041 0.662041i 0.293820 0.955861i \(-0.405073\pi\)
−0.955861 + 0.293820i \(0.905073\pi\)
\(308\) 1.93146 + 50.8882i 0.00627098 + 0.165221i
\(309\) 41.9358i 0.135715i
\(310\) 224.907 + 279.557i 0.725506 + 0.901796i
\(311\) 225.900 391.270i 0.726367 1.25810i −0.232042 0.972706i \(-0.574541\pi\)
0.958409 0.285398i \(-0.0921259\pi\)
\(312\) −95.6439 + 25.6277i −0.306551 + 0.0821400i
\(313\) −514.810 137.943i −1.64476 0.440712i −0.686621 0.727016i \(-0.740907\pi\)
−0.958139 + 0.286304i \(0.907573\pi\)
\(314\) 335.387i 1.06811i
\(315\) 7.34141 104.743i 0.0233061 0.332518i
\(316\) −149.768 −0.473949
\(317\) −72.5500 + 270.760i −0.228864 + 0.854134i 0.751955 + 0.659215i \(0.229111\pi\)
−0.980819 + 0.194919i \(0.937556\pi\)
\(318\) 59.8675 + 223.429i 0.188263 + 0.702605i
\(319\) −6.27132 3.62075i −0.0196593 0.0113503i
\(320\) −4.30811 + 39.7673i −0.0134628 + 0.124273i
\(321\) 185.929 0.579218
\(322\) 132.974 + 211.375i 0.412962 + 0.656443i
\(323\) −16.5906 + 16.5906i −0.0513640 + 0.0513640i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −425.527 + 272.494i −1.30931 + 0.838443i
\(326\) −161.042 + 278.934i −0.493995 + 0.855624i
\(327\) −11.9415 + 44.5663i −0.0365183 + 0.136288i
\(328\) 37.3923 37.3923i 0.114001 0.114001i
\(329\) 6.05074 + 5.60823i 0.0183913 + 0.0170463i
\(330\) 26.3007 35.9579i 0.0796992 0.108963i
\(331\) −132.918 230.221i −0.401565 0.695530i 0.592350 0.805681i \(-0.298200\pi\)
−0.993915 + 0.110150i \(0.964867\pi\)
\(332\) 78.5640 21.0511i 0.236638 0.0634071i
\(333\) 35.6629 + 133.096i 0.107096 + 0.399687i
\(334\) −15.2239 + 8.78950i −0.0455804 + 0.0263159i
\(335\) −61.0495 + 9.46961i −0.182237 + 0.0282675i
\(336\) −14.3197 46.3351i −0.0426183 0.137902i
\(337\) 33.9686 + 33.9686i 0.100797 + 0.100797i 0.755707 0.654910i \(-0.227293\pi\)
−0.654910 + 0.755707i \(0.727293\pi\)
\(338\) −327.193 87.6711i −0.968027 0.259382i
\(339\) −57.5352 33.2179i −0.169720 0.0979880i
\(340\) −199.530 77.3241i −0.586853 0.227424i
\(341\) −92.2858 159.844i −0.270633 0.468750i
\(342\) 3.28933 + 3.28933i 0.00961791 + 0.00961791i
\(343\) −340.781 + 38.9527i −0.993531 + 0.113565i
\(344\) 25.9842i 0.0755354i
\(345\) 23.5289 217.191i 0.0681998 0.629539i
\(346\) 237.032 410.551i 0.685062 1.18656i
\(347\) −519.589 + 139.223i −1.49737 + 0.401220i −0.912219 0.409702i \(-0.865633\pi\)
−0.585154 + 0.810922i \(0.698966\pi\)
\(348\) 6.66133 + 1.78490i 0.0191418 + 0.00512902i
\(349\) 3.32034i 0.00951388i −0.999989 0.00475694i \(-0.998486\pi\)
0.999989 0.00475694i \(-0.00151419\pi\)
\(350\) −141.272 203.205i −0.403635 0.580585i
\(351\) −105.024 −0.299214
\(352\) 5.32566 19.8756i 0.0151297 0.0564648i
\(353\) −63.2380 236.007i −0.179144 0.668576i −0.995809 0.0914627i \(-0.970846\pi\)
0.816664 0.577113i \(-0.195821\pi\)
\(354\) 233.252 + 134.668i 0.658903 + 0.380418i
\(355\) −344.229 37.2914i −0.969660 0.105046i
\(356\) −55.8416 −0.156858
\(357\) 259.261 9.84025i 0.726221 0.0275637i
\(358\) 54.1836 54.1836i 0.151351 0.151351i
\(359\) 33.4790 19.3291i 0.0932563 0.0538415i −0.452647 0.891690i \(-0.649520\pi\)
0.545903 + 0.837848i \(0.316187\pi\)
\(360\) −15.3306 + 39.5597i −0.0425851 + 0.109888i
\(361\) −179.899 + 311.594i −0.498335 + 0.863141i
\(362\) −51.8440 + 193.484i −0.143215 + 0.534487i
\(363\) 131.989 131.989i 0.363606 0.363606i
\(364\) 62.8179 275.906i 0.172577 0.757984i
\(365\) 36.7457 + 236.895i 0.100673 + 0.649029i
\(366\) −136.892 237.104i −0.374022 0.647824i
\(367\) −55.3289 + 14.8253i −0.150760 + 0.0403960i −0.333410 0.942782i \(-0.608199\pi\)
0.182650 + 0.983178i \(0.441533\pi\)
\(368\) −26.1157 97.4650i −0.0709665 0.264850i
\(369\) 48.5741 28.0443i 0.131637 0.0760007i
\(370\) 262.139 + 191.737i 0.708483 + 0.518207i
\(371\) −644.530 146.746i −1.73728 0.395541i
\(372\) 124.291 + 124.291i 0.334115 + 0.334115i
\(373\) −281.795 75.5069i −0.755484 0.202431i −0.139535 0.990217i \(-0.544561\pi\)
−0.615949 + 0.787786i \(0.711227\pi\)
\(374\) 95.3320 + 55.0399i 0.254898 + 0.147166i
\(375\) −13.4011 + 216.091i −0.0357364 + 0.576243i
\(376\) −1.66677 2.88692i −0.00443289 0.00767799i
\(377\) 28.4524 + 28.4524i 0.0754707 + 0.0754707i
\(378\) −1.95097 51.4023i −0.00516131 0.135985i
\(379\) 482.698i 1.27361i 0.771026 + 0.636804i \(0.219744\pi\)
−0.771026 + 0.636804i \(0.780256\pi\)
\(380\) 10.9006 + 1.18090i 0.0286859 + 0.00310763i
\(381\) 42.7113 73.9781i 0.112103 0.194168i
\(382\) −282.789 + 75.7732i −0.740286 + 0.198359i
\(383\) 370.527 + 99.2824i 0.967433 + 0.259223i 0.707744 0.706469i \(-0.249713\pi\)
0.259690 + 0.965692i \(0.416380\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 55.7914 + 114.436i 0.144913 + 0.297238i
\(386\) −181.581 −0.470416
\(387\) 7.13316 26.6213i 0.0184319 0.0687889i
\(388\) 74.0844 + 276.487i 0.190939 + 0.712595i
\(389\) −389.346 224.789i −1.00089 0.577864i −0.0923783 0.995724i \(-0.529447\pi\)
−0.908511 + 0.417860i \(0.862780\pi\)
\(390\) −192.875 + 155.170i −0.494550 + 0.397871i
\(391\) 539.804 1.38057
\(392\) 136.204 + 25.6198i 0.347460 + 0.0653566i
\(393\) −0.00422217 + 0.00422217i −1.07434e−5 + 1.07434e-5i
\(394\) 158.462 91.4879i 0.402187 0.232203i
\(395\) −342.534 + 151.198i −0.867175 + 0.382779i
\(396\) 10.9125 18.9010i 0.0275567 0.0477297i
\(397\) 67.7600 252.884i 0.170680 0.636987i −0.826567 0.562838i \(-0.809709\pi\)
0.997247 0.0741488i \(-0.0236240\pi\)
\(398\) 39.7470 39.7470i 0.0998668 0.0998668i
\(399\) −12.7009 + 3.92519i −0.0318319 + 0.00983757i
\(400\) 30.2939 + 95.3010i 0.0757347 + 0.238253i
\(401\) 18.2259 + 31.5681i 0.0454510 + 0.0787235i 0.887856 0.460122i \(-0.152194\pi\)
−0.842405 + 0.538845i \(0.818861\pi\)
\(402\) −29.2344 + 7.83333i −0.0727224 + 0.0194859i
\(403\) 265.440 + 990.637i 0.658661 + 2.45816i
\(404\) −6.07730 + 3.50873i −0.0150428 + 0.00868498i
\(405\) −26.5664 + 36.3211i −0.0655961 + 0.0896818i
\(406\) −13.3970 + 14.4541i −0.0329975 + 0.0356012i
\(407\) −118.137 118.137i −0.290263 0.290263i
\(408\) −101.261 27.1327i −0.248188 0.0665017i
\(409\) −288.799 166.738i −0.706110 0.407673i 0.103509 0.994629i \(-0.466993\pi\)
−0.809619 + 0.586956i \(0.800326\pi\)
\(410\) 47.7707 123.269i 0.116514 0.300657i
\(411\) −190.012 329.111i −0.462317 0.800757i
\(412\) 34.2404 + 34.2404i 0.0831079 + 0.0831079i
\(413\) −651.496 + 409.850i −1.57747 + 0.992373i
\(414\) 107.024i 0.258512i
\(415\) 158.431 127.460i 0.381762 0.307132i
\(416\) −57.1680 + 99.0178i −0.137423 + 0.238024i
\(417\) 381.503 102.223i 0.914875 0.245140i
\(418\) −5.44811 1.45982i −0.0130338 0.00349239i
\(419\) 393.755i 0.939750i −0.882733 0.469875i \(-0.844299\pi\)
0.882733 0.469875i \(-0.155701\pi\)
\(420\) −79.5281 91.5166i −0.189353 0.217897i
\(421\) 96.8808 0.230121 0.115060 0.993359i \(-0.463294\pi\)
0.115060 + 0.993359i \(0.463294\pi\)
\(422\) 108.112 403.480i 0.256190 0.956114i
\(423\) −0.915118 3.41527i −0.00216340 0.00807392i
\(424\) 231.310 + 133.547i 0.545543 + 0.314969i
\(425\) −534.407 + 24.5868i −1.25743 + 0.0578513i
\(426\) −169.624 −0.398178
\(427\) 781.839 29.6747i 1.83101 0.0694958i
\(428\) 151.810 151.810i 0.354697 0.354697i
\(429\) 110.281 63.6708i 0.257065 0.148417i
\(430\) −26.2322 59.4284i −0.0610052 0.138206i
\(431\) 12.0003 20.7851i 0.0278429 0.0482253i −0.851768 0.523919i \(-0.824470\pi\)
0.879611 + 0.475694i \(0.157803\pi\)
\(432\) −5.37945 + 20.0764i −0.0124524 + 0.0464731i
\(433\) −526.458 + 526.458i −1.21584 + 1.21584i −0.246763 + 0.969076i \(0.579367\pi\)
−0.969076 + 0.246763i \(0.920633\pi\)
\(434\) −479.919 + 148.318i −1.10580 + 0.341746i
\(435\) 17.0371 2.64268i 0.0391657 0.00607513i
\(436\) 26.6380 + 46.1384i 0.0610964 + 0.105822i
\(437\) −26.7162 + 7.15858i −0.0611354 + 0.0163812i
\(438\) 30.3963 + 113.441i 0.0693980 + 0.258997i
\(439\) 75.0330 43.3203i 0.170918 0.0986796i −0.412101 0.911138i \(-0.635205\pi\)
0.583019 + 0.812459i \(0.301871\pi\)
\(440\) −7.88505 50.8340i −0.0179206 0.115532i
\(441\) 132.511 + 63.6387i 0.300478 + 0.144305i
\(442\) −432.513 432.513i −0.978535 0.978535i
\(443\) 854.066 + 228.846i 1.92791 + 0.516583i 0.980472 + 0.196657i \(0.0630086\pi\)
0.947443 + 0.319926i \(0.103658\pi\)
\(444\) 137.791 + 79.5536i 0.310340 + 0.179175i
\(445\) −127.715 + 56.3746i −0.287000 + 0.126685i
\(446\) −144.742 250.701i −0.324534 0.562110i
\(447\) 121.924 + 121.924i 0.272761 + 0.272761i
\(448\) −49.5245 26.1405i −0.110546 0.0583492i
\(449\) 2.64560i 0.00589220i 0.999996 + 0.00294610i \(0.000937774\pi\)
−0.999996 + 0.00294610i \(0.999062\pi\)
\(450\) 4.87469 + 105.954i 0.0108327 + 0.235453i
\(451\) −34.0036 + 58.8959i −0.0753960 + 0.130590i
\(452\) −74.0996 + 19.8549i −0.163937 + 0.0439268i
\(453\) −130.859 35.0637i −0.288873 0.0774033i
\(454\) 233.343i 0.513970i
\(455\) −134.869 694.442i −0.296415 1.52625i
\(456\) 5.37145 0.0117795
\(457\) −163.623 + 610.649i −0.358037 + 1.33621i 0.518582 + 0.855028i \(0.326460\pi\)
−0.876619 + 0.481185i \(0.840207\pi\)
\(458\) −107.706 401.966i −0.235167 0.877654i
\(459\) −96.2950 55.5959i −0.209793 0.121124i
\(460\) −158.124 196.547i −0.343749 0.427276i
\(461\) 602.272 1.30645 0.653223 0.757166i \(-0.273416\pi\)
0.653223 + 0.757166i \(0.273416\pi\)
\(462\) 33.2112 + 52.7923i 0.0718856 + 0.114269i
\(463\) 352.346 352.346i 0.761006 0.761006i −0.215498 0.976504i \(-0.569138\pi\)
0.976504 + 0.215498i \(0.0691376\pi\)
\(464\) 6.89632 3.98159i 0.0148628 0.00858102i
\(465\) 409.742 + 158.788i 0.881166 + 0.341480i
\(466\) −4.83735 + 8.37854i −0.0103806 + 0.0179797i
\(467\) −47.8388 + 178.537i −0.102438 + 0.382305i −0.998042 0.0625476i \(-0.980077\pi\)
0.895604 + 0.444853i \(0.146744\pi\)
\(468\) −85.7519 + 85.7519i −0.183231 + 0.183231i
\(469\) 19.2009 84.3332i 0.0409400 0.179815i
\(470\) −6.72654 4.92000i −0.0143118 0.0104681i
\(471\) 205.382 + 355.731i 0.436054 + 0.755268i
\(472\) 300.405 80.4933i 0.636451 0.170537i
\(473\) 8.64893 + 32.2782i 0.0182853 + 0.0682415i
\(474\) −158.853 + 91.7138i −0.335133 + 0.193489i
\(475\) 26.1230 8.30387i 0.0549958 0.0174818i
\(476\) 203.651 219.720i 0.427839 0.461597i
\(477\) 200.321 + 200.321i 0.419959 + 0.419959i
\(478\) 214.519 + 57.4803i 0.448785 + 0.120252i
\(479\) 125.111 + 72.2330i 0.261193 + 0.150800i 0.624878 0.780722i \(-0.285149\pi\)
−0.363686 + 0.931522i \(0.618482\pi\)
\(480\) 19.7830 + 44.8178i 0.0412145 + 0.0933704i
\(481\) 464.170 + 803.966i 0.965010 + 1.67145i
\(482\) −186.607 186.607i −0.387152 0.387152i
\(483\) 270.480 + 142.767i 0.560000 + 0.295584i
\(484\) 215.537i 0.445325i
\(485\) 448.564 + 557.561i 0.924875 + 1.14961i
\(486\) −11.0227 + 19.0919i −0.0226805 + 0.0392837i
\(487\) 474.214 127.065i 0.973745 0.260914i 0.263337 0.964704i \(-0.415177\pi\)
0.710408 + 0.703790i \(0.248510\pi\)
\(488\) −305.366 81.8226i −0.625750 0.167669i
\(489\) 394.472i 0.806690i
\(490\) 337.377 78.9095i 0.688525 0.161040i
\(491\) −638.815 −1.30105 −0.650524 0.759485i \(-0.725451\pi\)
−0.650524 + 0.759485i \(0.725451\pi\)
\(492\) 16.7625 62.5586i 0.0340702 0.127152i
\(493\) 11.0259 + 41.1492i 0.0223649 + 0.0834670i
\(494\) 27.1418 + 15.6703i 0.0549430 + 0.0317213i
\(495\) 5.87652 54.2450i 0.0118717 0.109586i
\(496\) 202.966 0.409206
\(497\) 226.274 428.688i 0.455280 0.862552i
\(498\) 70.4385 70.4385i 0.141443 0.141443i
\(499\) 312.961 180.688i 0.627177 0.362101i −0.152481 0.988306i \(-0.548726\pi\)
0.779658 + 0.626205i \(0.215393\pi\)
\(500\) 165.496 + 187.380i 0.330991 + 0.374759i
\(501\) −10.7649 + 18.6454i −0.0214868 + 0.0372163i
\(502\) 115.966 432.792i 0.231008 0.862135i
\(503\) 697.152 697.152i 1.38599 1.38599i 0.552425 0.833563i \(-0.313703\pi\)
0.833563 0.552425i \(-0.186297\pi\)
\(504\) −43.5627 40.3768i −0.0864340 0.0801127i
\(505\) −10.3572 + 14.1601i −0.0205092 + 0.0280398i
\(506\) 64.8831 + 112.381i 0.128227 + 0.222096i
\(507\) −400.728 + 107.375i −0.790390 + 0.211784i
\(508\) −25.5293 95.2765i −0.0502544 0.187552i
\(509\) 355.643 205.331i 0.698710 0.403400i −0.108157 0.994134i \(-0.534495\pi\)
0.806867 + 0.590733i \(0.201161\pi\)
\(510\) −258.985 + 40.1721i −0.507813 + 0.0787687i
\(511\) −327.245 74.5067i −0.640401 0.145806i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 5.50315 + 1.47456i 0.0107274 + 0.00287439i
\(514\) −219.973 127.001i −0.427962 0.247084i
\(515\) 112.879 + 43.7440i 0.219182 + 0.0849397i
\(516\) −15.9120 27.5604i −0.0308372 0.0534116i
\(517\) 3.03142 + 3.03142i 0.00586349 + 0.00586349i
\(518\) −384.864 + 242.115i −0.742982 + 0.467403i
\(519\) 580.606i 1.11870i
\(520\) −30.7857 + 284.177i −0.0592033 + 0.546494i
\(521\) −177.594 + 307.602i −0.340872 + 0.590408i −0.984595 0.174851i \(-0.944056\pi\)
0.643723 + 0.765259i \(0.277389\pi\)
\(522\) 8.15843 2.18605i 0.0156292 0.00418783i
\(523\) −242.026 64.8508i −0.462766 0.123998i 0.0199007 0.999802i \(-0.493665\pi\)
−0.482666 + 0.875804i \(0.660332\pi\)
\(524\) 0.00689478i 1.31580e-5i
\(525\) −274.279 129.020i −0.522436 0.245753i
\(526\) 36.4195 0.0692385
\(527\) −281.029 + 1048.81i −0.533261 + 1.99016i
\(528\) −6.52257 24.3426i −0.0123534 0.0461033i
\(529\) 92.9594 + 53.6701i 0.175727 + 0.101456i
\(530\) 663.851 + 71.9169i 1.25255 + 0.135692i
\(531\) 329.868 0.621220
\(532\) −7.16537 + 13.5752i −0.0134687 + 0.0255173i
\(533\) 267.206 267.206i 0.501324 0.501324i
\(534\) −59.2289 + 34.1958i −0.110916 + 0.0640371i
\(535\) 193.946 500.465i 0.362515 0.935448i
\(536\) −17.4739 + 30.2657i −0.0326005 + 0.0564658i
\(537\) 24.2898 90.6509i 0.0452325 0.168810i
\(538\) 429.909 429.909i 0.799088 0.799088i
\(539\) −177.724 + 13.5105i −0.329730 + 0.0250659i
\(540\) 7.96470 + 51.3475i 0.0147494 + 0.0950879i
\(541\) −262.569 454.783i −0.485340 0.840634i 0.514518 0.857480i \(-0.327971\pi\)
−0.999858 + 0.0168458i \(0.994638\pi\)
\(542\) −629.872 + 168.774i −1.16212 + 0.311390i
\(543\) 63.4956 + 236.969i 0.116935 + 0.436407i
\(544\) −104.833 + 60.5252i −0.192707 + 0.111260i
\(545\) 107.503 + 78.6308i 0.197252 + 0.144277i
\(546\) −102.329 331.111i −0.187415 0.606430i
\(547\) −559.961 559.961i −1.02369 1.02369i −0.999712 0.0239824i \(-0.992365\pi\)
−0.0239824 0.999712i \(-0.507635\pi\)
\(548\) −423.863 113.574i −0.773472 0.207251i
\(549\) −290.392 167.658i −0.528946 0.305387i
\(550\) −69.3531 108.302i −0.126097 0.196913i
\(551\) −1.09140 1.89035i −0.00198076 0.00343077i
\(552\) −87.3847 87.3847i −0.158306 0.158306i
\(553\) −19.8812 523.811i −0.0359516 0.947216i
\(554\) 69.2356i 0.124974i
\(555\) 395.454 + 42.8407i 0.712530 + 0.0771905i
\(556\) 228.031 394.961i 0.410127 0.710361i
\(557\) 91.8429 24.6092i 0.164888 0.0441817i −0.175430 0.984492i \(-0.556132\pi\)
0.340319 + 0.940310i \(0.389465\pi\)
\(558\) 207.943 + 55.7180i 0.372657 + 0.0998531i
\(559\) 185.683i 0.332170i
\(560\) −139.657 9.78854i −0.249388 0.0174795i
\(561\) 134.820 0.240320
\(562\) −154.992 + 578.437i −0.275786 + 1.02925i
\(563\) −29.0254 108.324i −0.0515549 0.192405i 0.935346 0.353735i \(-0.115088\pi\)
−0.986901 + 0.161329i \(0.948422\pi\)
\(564\) −3.53575 2.04136i −0.00626905 0.00361944i
\(565\) −149.429 + 120.217i −0.264475 + 0.212774i
\(566\) 693.846 1.22588
\(567\) −33.5467 53.3256i −0.0591652 0.0940487i
\(568\) −138.497 + 138.497i −0.243833 + 0.243833i
\(569\) 367.280 212.049i 0.645483 0.372670i −0.141240 0.989975i \(-0.545109\pi\)
0.786724 + 0.617305i \(0.211776\pi\)
\(570\) 12.2850 5.42272i 0.0215527 0.00951354i
\(571\) −111.431 + 193.003i −0.195150 + 0.338010i −0.946950 0.321382i \(-0.895853\pi\)
0.751800 + 0.659391i \(0.229186\pi\)
\(572\) 38.0571 142.031i 0.0665334 0.248306i
\(573\) −253.542 + 253.542i −0.442482 + 0.442482i
\(574\) 135.743 + 125.815i 0.236486 + 0.219190i
\(575\) −560.069 289.888i −0.974033 0.504154i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −321.460 + 86.1350i −0.557123 + 0.149281i −0.526384 0.850247i \(-0.676453\pi\)
−0.0307388 + 0.999527i \(0.509786\pi\)
\(578\) −61.8261 230.738i −0.106966 0.399201i
\(579\) −192.595 + 111.195i −0.332635 + 0.192047i
\(580\) 11.7530 16.0684i 0.0202637 0.0277042i
\(581\) 84.0551 + 271.982i 0.144673 + 0.468127i
\(582\) 247.891 + 247.891i 0.425930 + 0.425930i
\(583\) −331.791 88.9032i −0.569110 0.152493i
\(584\) 117.442 + 67.8054i 0.201100 + 0.116105i
\(585\) −109.553 + 282.694i −0.187269 + 0.483237i
\(586\) −227.054 393.269i −0.387464 0.671107i
\(587\) −162.867 162.867i −0.277456 0.277456i 0.554636 0.832093i \(-0.312857\pi\)
−0.832093 + 0.554636i \(0.812857\pi\)
\(588\) 160.155 56.2339i 0.272373 0.0956359i
\(589\) 55.6351i 0.0944569i
\(590\) 605.794 487.369i 1.02677 0.826049i
\(591\) 112.049 194.075i 0.189593 0.328384i
\(592\) 177.461 47.5506i 0.299765 0.0803219i
\(593\) 395.591 + 105.998i 0.667101 + 0.178749i 0.576449 0.817133i \(-0.304438\pi\)
0.0906523 + 0.995883i \(0.471105\pi\)
\(594\) 26.7300i 0.0450000i
\(595\) 243.953 708.117i 0.410004 1.19011i
\(596\) 199.102 0.334063
\(597\) 17.8181 66.4980i 0.0298460 0.111387i
\(598\) −186.622 696.484i −0.312077 1.16469i
\(599\) −630.056 363.763i −1.05185 0.607284i −0.128681 0.991686i \(-0.541074\pi\)
−0.923166 + 0.384402i \(0.874408\pi\)
\(600\) 90.4912 + 82.5309i 0.150819 + 0.137551i
\(601\) −421.513 −0.701353 −0.350676 0.936497i \(-0.614048\pi\)
−0.350676 + 0.936497i \(0.614048\pi\)
\(602\) 90.8792 3.44932i 0.150962 0.00572977i
\(603\) −26.2108 + 26.2108i −0.0434674 + 0.0434674i
\(604\) −135.476 + 78.2169i −0.224297 + 0.129498i
\(605\) −217.595 492.955i −0.359661 0.814802i
\(606\) −4.29730 + 7.44314i −0.00709125 + 0.0122824i
\(607\) 102.756 383.491i 0.169285 0.631780i −0.828170 0.560477i \(-0.810618\pi\)
0.997455 0.0713028i \(-0.0227157\pi\)
\(608\) 4.38577 4.38577i 0.00721343 0.00721343i
\(609\) −5.35838 + 23.5348i −0.00879865 + 0.0386450i
\(610\) −781.006 + 121.145i −1.28034 + 0.198598i
\(611\) −11.9107 20.6299i −0.0194938 0.0337642i
\(612\) −124.018 + 33.2306i −0.202644 + 0.0542984i
\(613\) 235.380 + 878.449i 0.383980 + 1.43303i 0.839769 + 0.542944i \(0.182691\pi\)
−0.455789 + 0.890088i \(0.650643\pi\)
\(614\) −352.033 + 203.247i −0.573344 + 0.331021i
\(615\) −24.8182 160.000i −0.0403548 0.260163i
\(616\) 70.2216 + 15.9880i 0.113996 + 0.0259545i
\(617\) 646.295 + 646.295i 1.04748 + 1.04748i 0.998815 + 0.0486646i \(0.0154965\pi\)
0.0486646 + 0.998815i \(0.484503\pi\)
\(618\) 57.2854 + 15.3496i 0.0926948 + 0.0248375i
\(619\) 16.3039 + 9.41306i 0.0263391 + 0.0152069i 0.513112 0.858322i \(-0.328493\pi\)
−0.486773 + 0.873529i \(0.661826\pi\)
\(620\) 464.203 204.903i 0.748715 0.330489i
\(621\) −65.5385 113.516i −0.105537 0.182796i
\(622\) −451.800 451.800i −0.726367 0.726367i
\(623\) −7.41280 195.305i −0.0118985 0.313491i
\(624\) 140.032i 0.224411i
\(625\) 567.673 + 261.480i 0.908277 + 0.418368i
\(626\) −376.867 + 652.753i −0.602024 + 1.04274i
\(627\) −6.67255 + 1.78790i −0.0106420 + 0.00285152i
\(628\) 458.147 + 122.760i 0.729533 + 0.195478i
\(629\) 982.857i 1.56257i
\(630\) −140.395 48.3672i −0.222848 0.0767733i
\(631\) 254.417 0.403197 0.201598 0.979468i \(-0.435386\pi\)
0.201598 + 0.979468i \(0.435386\pi\)
\(632\) −54.8189 + 204.587i −0.0867387 + 0.323713i
\(633\) −132.410 494.160i −0.209178 0.780664i
\(634\) 343.310 + 198.210i 0.541499 + 0.312635i
\(635\) −154.574 192.134i −0.243423 0.302573i
\(636\) 327.122 0.514343
\(637\) 973.316 + 183.079i 1.52797 + 0.287408i
\(638\) −7.24150 + 7.24150i −0.0113503 + 0.0113503i
\(639\) −179.913 + 103.873i −0.281554 + 0.162556i
\(640\) 52.7463 + 20.4408i 0.0824161 + 0.0319388i
\(641\) −42.3676 + 73.3828i −0.0660960 + 0.114482i −0.897180 0.441666i \(-0.854388\pi\)
0.831084 + 0.556147i \(0.187721\pi\)
\(642\) 68.0547 253.984i 0.106004 0.395613i
\(643\) 817.400 817.400i 1.27123 1.27123i 0.325786 0.945444i \(-0.394371\pi\)
0.945444 0.325786i \(-0.105629\pi\)
\(644\) 337.415 104.277i 0.523937 0.161921i
\(645\) −64.2158 46.9694i −0.0995594 0.0728208i
\(646\) 16.5906 + 28.7357i 0.0256820 + 0.0444826i
\(647\) −77.0710 + 20.6511i −0.119121 + 0.0319183i −0.317887 0.948129i \(-0.602973\pi\)
0.198766 + 0.980047i \(0.436307\pi\)
\(648\) 6.58846 + 24.5885i 0.0101674 + 0.0379452i
\(649\) −346.379 + 199.982i −0.533711 + 0.308138i
\(650\) 216.480 + 681.020i 0.333046 + 1.04772i
\(651\) −418.205 + 451.204i −0.642405 + 0.693094i
\(652\) 322.085 + 322.085i 0.493995 + 0.493995i
\(653\) −785.398 210.447i −1.20275 0.322277i −0.398838 0.917021i \(-0.630587\pi\)
−0.803915 + 0.594744i \(0.797253\pi\)
\(654\) 56.5078 + 32.6248i 0.0864033 + 0.0498850i
\(655\) 0.00696059 + 0.0157690i 1.06269e−5 + 2.40749e-5i
\(656\) −37.3923 64.7654i −0.0570005 0.0987278i
\(657\) 101.708 + 101.708i 0.154807 + 0.154807i
\(658\) 9.87571 6.21272i 0.0150087 0.00944182i
\(659\) 728.123i 1.10489i 0.833549 + 0.552446i \(0.186305\pi\)
−0.833549 + 0.552446i \(0.813695\pi\)
\(660\) −39.4927 49.0890i −0.0598374 0.0743773i
\(661\) −340.123 + 589.111i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168930i \(0.994623\pi\)
\(662\) −363.138 + 97.3027i −0.548548 + 0.146983i
\(663\) −723.608 193.890i −1.09141 0.292444i
\(664\) 115.026i 0.173231i
\(665\) −2.68314 + 38.2816i −0.00403480 + 0.0575662i
\(666\) 194.866 0.292591
\(667\) −12.9977 + 48.5082i −0.0194869 + 0.0727260i
\(668\) 6.43436 + 24.0134i 0.00963228 + 0.0359482i
\(669\) −307.045 177.272i −0.458961 0.264981i
\(670\) −9.40993 + 86.8612i −0.0140447 + 0.129644i
\(671\) 406.569 0.605915
\(672\) −68.5364 + 2.60130i −0.101989 + 0.00387098i
\(673\) 344.983 344.983i 0.512605 0.512605i −0.402719 0.915324i \(-0.631935\pi\)
0.915324 + 0.402719i \(0.131935\pi\)
\(674\) 58.8353 33.9686i 0.0872927 0.0503985i
\(675\) 70.0537 + 109.396i 0.103783 + 0.162068i
\(676\) −239.522 + 414.864i −0.354322 + 0.613704i
\(677\) 239.446 893.624i 0.353686 1.31998i −0.528443 0.848969i \(-0.677224\pi\)
0.882130 0.471007i \(-0.156109\pi\)
\(678\) −66.4359 + 66.4359i −0.0979880 + 0.0979880i
\(679\) −957.173 + 295.812i −1.40968 + 0.435658i
\(680\) −178.660 + 244.260i −0.262735 + 0.359206i
\(681\) 142.893 + 247.497i 0.209828 + 0.363432i
\(682\) −252.130 + 67.5579i −0.369692 + 0.0990585i
\(683\) 125.377 + 467.914i 0.183568 + 0.685086i 0.994932 + 0.100545i \(0.0320587\pi\)
−0.811364 + 0.584541i \(0.801275\pi\)
\(684\) 5.69728 3.28933i 0.00832936 0.00480896i
\(685\) −1084.07 + 168.155i −1.58259 + 0.245481i
\(686\) −71.5241 + 479.773i −0.104262 + 0.699378i
\(687\) −360.392 360.392i −0.524589 0.524589i
\(688\) −35.4951 9.51088i −0.0515917 0.0138239i
\(689\) 1652.94 + 954.326i 2.39904 + 1.38509i
\(690\) −288.076 111.639i −0.417502 0.161795i
\(691\) 453.622 + 785.696i 0.656471 + 1.13704i 0.981523 + 0.191346i \(0.0612851\pi\)
−0.325051 + 0.945696i \(0.605382\pi\)
\(692\) −474.063 474.063i −0.685062 0.685062i
\(693\) 67.5543 + 35.6571i 0.0974810 + 0.0514533i
\(694\) 760.731i 1.09615i
\(695\) 122.798 1133.52i 0.176687 1.63097i
\(696\) 4.87643 8.44623i 0.00700637 0.0121354i
\(697\) 386.445 103.548i 0.554440 0.148562i
\(698\) −4.53567 1.21533i −0.00649810 0.00174116i
\(699\) 11.8491i 0.0169514i
\(700\) −329.292 + 118.603i −0.470417 + 0.169433i
\(701\) −734.664 −1.04802 −0.524011 0.851711i \(-0.675565\pi\)
−0.524011 + 0.851711i \(0.675565\pi\)
\(702\) −38.4415 + 143.466i −0.0547600 + 0.204367i
\(703\) −13.0341 48.6439i −0.0185407 0.0691948i
\(704\) −25.2013 14.5500i −0.0357973 0.0206676i
\(705\) −10.1474 1.09930i −0.0143935 0.00155929i
\(706\) −345.539 −0.489432
\(707\) −13.0785 20.7895i −0.0184985 0.0294052i
\(708\) 269.336 269.336i 0.380418 0.380418i
\(709\) −806.709 + 465.754i −1.13781 + 0.656916i −0.945888 0.324494i \(-0.894806\pi\)
−0.191924 + 0.981410i \(0.561473\pi\)
\(710\) −176.938 + 456.576i −0.249208 + 0.643065i
\(711\) −112.326 + 194.554i −0.157983 + 0.273635i
\(712\) −20.4394 + 76.2810i −0.0287071 + 0.107136i
\(713\) −905.093 + 905.093i −1.26941 + 1.26941i
\(714\) 81.4541 357.759i 0.114081 0.501063i
\(715\) −56.3465 363.259i −0.0788063 0.508055i
\(716\) −54.1836 93.8487i −0.0756754 0.131074i
\(717\) 262.731 70.3987i 0.366431 0.0981850i
\(718\) −14.1499 52.8081i −0.0197074 0.0735489i
\(719\) −647.341 + 373.743i −0.900336 + 0.519809i −0.877309 0.479926i \(-0.840664\pi\)
−0.0230265 + 0.999735i \(0.507330\pi\)
\(720\) 48.4282 + 35.4219i 0.0672614 + 0.0491971i
\(721\) −115.210 + 124.301i −0.159792 + 0.172400i
\(722\) 359.798 + 359.798i 0.498335 + 0.498335i
\(723\) −312.200 83.6538i −0.431812 0.115704i
\(724\) 245.328 + 141.640i 0.338851 + 0.195636i
\(725\) 10.6584 48.6153i 0.0147012 0.0670555i
\(726\) −131.989 228.612i −0.181803 0.314892i
\(727\) 621.725 + 621.725i 0.855192 + 0.855192i 0.990767 0.135575i \(-0.0432881\pi\)
−0.135575 + 0.990767i \(0.543288\pi\)
\(728\) −353.902 186.800i −0.486129 0.256593i
\(729\) 27.0000i 0.0370370i
\(730\) 337.055 + 36.5142i 0.461719 + 0.0500194i
\(731\) 98.2936 170.250i 0.134465 0.232900i
\(732\) −373.996 + 100.212i −0.510923 + 0.136901i
\(733\) −50.2618 13.4676i −0.0685700 0.0183733i 0.224371 0.974504i \(-0.427967\pi\)
−0.292941 + 0.956131i \(0.594634\pi\)
\(734\) 81.0071i 0.110364i
\(735\) 309.520 290.297i 0.421116 0.394961i
\(736\) −142.699 −0.193884
\(737\) 11.6325 43.4130i 0.0157836 0.0589051i
\(738\) −20.5298 76.6183i −0.0278182 0.103819i
\(739\) −546.157 315.324i −0.739048 0.426690i 0.0826749 0.996577i \(-0.473654\pi\)
−0.821723 + 0.569887i \(0.806987\pi\)
\(740\) 357.866 287.908i 0.483603 0.389065i
\(741\) 38.3843 0.0518007
\(742\) −436.373 + 826.731i −0.588103 + 1.11419i
\(743\) −813.107 + 813.107i −1.09436 + 1.09436i −0.0992988 + 0.995058i \(0.531660\pi\)
−0.995058 + 0.0992988i \(0.968340\pi\)
\(744\) 215.278 124.291i 0.289352 0.167057i
\(745\) 455.365 201.002i 0.611228 0.269801i
\(746\) −206.289 + 357.302i −0.276526 + 0.478957i
\(747\) 31.5767 117.846i 0.0422714 0.157759i
\(748\) 110.080 110.080i 0.147166 0.147166i
\(749\) 551.106 + 510.802i 0.735790 + 0.681978i
\(750\) 290.281 + 97.4012i 0.387041 + 0.129868i
\(751\) 38.7799 + 67.1687i 0.0516377 + 0.0894390i 0.890689 0.454613i \(-0.150223\pi\)
−0.839051 + 0.544052i \(0.816889\pi\)
\(752\) −4.55369 + 1.22016i −0.00605544 + 0.00162255i
\(753\) −142.029 530.060i −0.188618 0.703931i
\(754\) 49.2811 28.4524i 0.0653595 0.0377353i
\(755\) −230.883 + 315.659i −0.305805 + 0.418091i
\(756\) −70.9309 16.1495i −0.0938240 0.0213617i
\(757\) −622.305 622.305i −0.822068 0.822068i 0.164337 0.986404i \(-0.447452\pi\)
−0.986404 + 0.164337i \(0.947452\pi\)
\(758\) 659.377 + 176.680i 0.869891 + 0.233087i
\(759\) 137.638 + 79.4652i 0.181341 + 0.104697i
\(760\) 5.60305 14.4583i 0.00737243 0.0190241i
\(761\) 42.2518 + 73.1823i 0.0555215 + 0.0961660i 0.892450 0.451146i \(-0.148985\pi\)
−0.836929 + 0.547312i \(0.815651\pi\)
\(762\) −85.4226 85.4226i −0.112103 0.112103i
\(763\) −157.832 + 99.2907i