Properties

Label 210.3.v.a.37.7
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.7
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.01909 + 4.57420i) q^{5} -2.44949 q^{6} +(-6.19056 + 3.26756i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.01909 + 4.57420i) q^{5} -2.44949 q^{6} +(-6.19056 + 3.26756i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-4.43240 - 5.50943i) q^{10} +(1.81875 + 3.15016i) q^{11} +(3.34607 - 0.896575i) q^{12} +(-14.2920 + 14.2920i) q^{13} +(7.26046 - 6.72947i) q^{14} +(1.32745 + 8.55791i) q^{15} +(2.00000 - 3.46410i) q^{16} +(5.53844 - 20.6697i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(-0.949547 - 0.548221i) q^{19} +(8.07136 + 5.90365i) q^{20} +(-11.8218 + 2.69158i) q^{21} +(-3.63749 - 3.63749i) q^{22} +(6.52891 + 24.3662i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(-16.8465 + 18.4714i) q^{25} +(14.2920 - 24.7545i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-7.45481 + 11.8501i) q^{28} -1.99080i q^{29} +(-4.94574 - 11.2044i) q^{30} +(25.3707 + 43.9434i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(1.63064 + 6.08564i) q^{33} +30.2626i q^{34} +(-27.4458 - 21.7194i) q^{35} +6.00000 q^{36} +(-44.3653 + 11.8876i) q^{37} +(1.49777 + 0.401326i) q^{38} +(-30.3179 + 17.5040i) q^{39} +(-13.1866 - 5.11021i) q^{40} -18.6962 q^{41} +(15.1637 - 8.00385i) q^{42} +(-6.49605 + 6.49605i) q^{43} +(6.30032 + 3.63749i) q^{44} +(-1.61554 + 14.9127i) q^{45} +(-17.8373 - 30.8952i) q^{46} +(1.13842 - 0.305039i) q^{47} +(4.89898 - 4.89898i) q^{48} +(27.6461 - 40.4560i) q^{49} +(16.2518 - 31.3987i) q^{50} +(18.5320 - 32.0983i) q^{51} +(-10.4625 + 39.0464i) q^{52} +(91.2143 + 24.4408i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(-10.7372 + 14.6798i) q^{55} +(5.84601 - 18.9162i) q^{56} +(-1.34286 - 1.34286i) q^{57} +(0.728682 + 2.71948i) q^{58} +(95.2246 - 54.9779i) q^{59} +(10.8571 + 13.4953i) q^{60} +(55.8859 - 96.7972i) q^{61} +(-50.7415 - 50.7415i) q^{62} +(-20.9849 - 0.796482i) q^{63} -8.00000i q^{64} +(-94.2312 - 36.5175i) q^{65} +(-4.45500 - 7.71628i) q^{66} +(-3.19794 + 11.9349i) q^{67} +(-11.0769 - 41.3395i) q^{68} +43.6923i q^{69} +(45.4414 + 19.6233i) q^{70} +69.2487 q^{71} +(-8.19615 + 2.19615i) q^{72} +(46.3120 + 12.4093i) q^{73} +(56.2529 - 32.4776i) q^{74} +(-36.4653 + 23.3512i) q^{75} -2.19288 q^{76} +(-21.5524 - 13.5584i) q^{77} +(35.0081 - 35.0081i) q^{78} +(-64.8514 - 37.4420i) q^{79} +(19.8837 + 2.15405i) q^{80} +(4.50000 + 7.79423i) q^{81} +(25.5394 - 6.84327i) q^{82} +(-28.7564 + 28.7564i) q^{83} +(-17.7844 + 16.4838i) q^{84} +(105.730 - 16.4002i) q^{85} +(6.49605 - 11.2515i) q^{86} +(0.892450 - 3.33067i) q^{87} +(-9.93781 - 2.66283i) q^{88} +(-24.1801 - 13.9604i) q^{89} +(-3.25157 - 20.9625i) q^{90} +(41.7756 - 135.175i) q^{91} +(35.6746 + 35.6746i) q^{92} +(22.7468 + 84.8922i) q^{93} +(-1.44346 + 0.833383i) q^{94} +(0.590449 - 5.45032i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(-101.201 - 101.201i) q^{97} +(-22.9574 + 65.3832i) q^{98} +10.9125i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 2.01909 + 4.57420i 0.403818 + 0.914839i
\(6\) −2.44949 −0.408248
\(7\) −6.19056 + 3.26756i −0.884366 + 0.466794i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −4.43240 5.50943i −0.443240 0.550943i
\(11\) 1.81875 + 3.15016i 0.165340 + 0.286378i 0.936776 0.349929i \(-0.113794\pi\)
−0.771436 + 0.636307i \(0.780461\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) −14.2920 + 14.2920i −1.09938 + 1.09938i −0.104901 + 0.994483i \(0.533453\pi\)
−0.994483 + 0.104901i \(0.966547\pi\)
\(14\) 7.26046 6.72947i 0.518604 0.480676i
\(15\) 1.32745 + 8.55791i 0.0884966 + 0.570528i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 5.53844 20.6697i 0.325790 1.21587i −0.587724 0.809061i \(-0.699976\pi\)
0.913515 0.406805i \(-0.133357\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) −0.949547 0.548221i −0.0499761 0.0288537i 0.474804 0.880092i \(-0.342519\pi\)
−0.524780 + 0.851238i \(0.675852\pi\)
\(20\) 8.07136 + 5.90365i 0.403568 + 0.295182i
\(21\) −11.8218 + 2.69158i −0.562944 + 0.128170i
\(22\) −3.63749 3.63749i −0.165340 0.165340i
\(23\) 6.52891 + 24.3662i 0.283866 + 1.05940i 0.949664 + 0.313270i \(0.101424\pi\)
−0.665798 + 0.746132i \(0.731909\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) −16.8465 + 18.4714i −0.673862 + 0.738858i
\(26\) 14.2920 24.7545i 0.549692 0.952094i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −7.45481 + 11.8501i −0.266243 + 0.423219i
\(29\) 1.99080i 0.0686481i −0.999411 0.0343241i \(-0.989072\pi\)
0.999411 0.0343241i \(-0.0109278\pi\)
\(30\) −4.94574 11.2044i −0.164858 0.373482i
\(31\) 25.3707 + 43.9434i 0.818411 + 1.41753i 0.906852 + 0.421448i \(0.138478\pi\)
−0.0884411 + 0.996081i \(0.528189\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) 1.63064 + 6.08564i 0.0494134 + 0.184413i
\(34\) 30.2626i 0.890076i
\(35\) −27.4458 21.7194i −0.784165 0.620553i
\(36\) 6.00000 0.166667
\(37\) −44.3653 + 11.8876i −1.19906 + 0.321288i −0.802461 0.596704i \(-0.796477\pi\)
−0.396600 + 0.917992i \(0.629810\pi\)
\(38\) 1.49777 + 0.401326i 0.0394149 + 0.0105612i
\(39\) −30.3179 + 17.5040i −0.777382 + 0.448822i
\(40\) −13.1866 5.11021i −0.329664 0.127755i
\(41\) −18.6962 −0.456004 −0.228002 0.973661i \(-0.573219\pi\)
−0.228002 + 0.973661i \(0.573219\pi\)
\(42\) 15.1637 8.00385i 0.361041 0.190568i
\(43\) −6.49605 + 6.49605i −0.151071 + 0.151071i −0.778596 0.627525i \(-0.784068\pi\)
0.627525 + 0.778596i \(0.284068\pi\)
\(44\) 6.30032 + 3.63749i 0.143189 + 0.0826702i
\(45\) −1.61554 + 14.9127i −0.0359009 + 0.331394i
\(46\) −17.8373 30.8952i −0.387768 0.671634i
\(47\) 1.13842 0.305039i 0.0242218 0.00649020i −0.246688 0.969095i \(-0.579342\pi\)
0.270910 + 0.962605i \(0.412676\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) 27.6461 40.4560i 0.564207 0.825633i
\(50\) 16.2518 31.3987i 0.325036 0.627974i
\(51\) 18.5320 32.0983i 0.363372 0.629379i
\(52\) −10.4625 + 39.0464i −0.201201 + 0.750893i
\(53\) 91.2143 + 24.4408i 1.72102 + 0.461147i 0.978084 0.208210i \(-0.0667638\pi\)
0.742941 + 0.669357i \(0.233430\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) −10.7372 + 14.6798i −0.195222 + 0.266905i
\(56\) 5.84601 18.9162i 0.104393 0.337790i
\(57\) −1.34286 1.34286i −0.0235590 0.0235590i
\(58\) 0.728682 + 2.71948i 0.0125635 + 0.0468876i
\(59\) 95.2246 54.9779i 1.61398 0.931830i 0.625540 0.780192i \(-0.284879\pi\)
0.988436 0.151637i \(-0.0484546\pi\)
\(60\) 10.8571 + 13.4953i 0.180952 + 0.224922i
\(61\) 55.8859 96.7972i 0.916162 1.58684i 0.110971 0.993824i \(-0.464604\pi\)
0.805191 0.593016i \(-0.202063\pi\)
\(62\) −50.7415 50.7415i −0.818411 0.818411i
\(63\) −20.9849 0.796482i −0.333093 0.0126426i
\(64\) 8.00000i 0.125000i
\(65\) −94.2312 36.5175i −1.44971 0.561808i
\(66\) −4.45500 7.71628i −0.0675000 0.116913i
\(67\) −3.19794 + 11.9349i −0.0477305 + 0.178133i −0.985676 0.168650i \(-0.946059\pi\)
0.937945 + 0.346783i \(0.112726\pi\)
\(68\) −11.0769 41.3395i −0.162895 0.607933i
\(69\) 43.6923i 0.633222i
\(70\) 45.4414 + 19.6233i 0.649163 + 0.280333i
\(71\) 69.2487 0.975333 0.487667 0.873030i \(-0.337848\pi\)
0.487667 + 0.873030i \(0.337848\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) 46.3120 + 12.4093i 0.634411 + 0.169990i 0.561670 0.827361i \(-0.310159\pi\)
0.0727402 + 0.997351i \(0.476826\pi\)
\(74\) 56.2529 32.4776i 0.760174 0.438887i
\(75\) −36.4653 + 23.3512i −0.486204 + 0.311350i
\(76\) −2.19288 −0.0288537
\(77\) −21.5524 13.5584i −0.279901 0.176083i
\(78\) 35.0081 35.0081i 0.448822 0.448822i
\(79\) −64.8514 37.4420i −0.820904 0.473949i 0.0298240 0.999555i \(-0.490505\pi\)
−0.850728 + 0.525606i \(0.823839\pi\)
\(80\) 19.8837 + 2.15405i 0.248546 + 0.0269257i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 25.5394 6.84327i 0.311457 0.0834546i
\(83\) −28.7564 + 28.7564i −0.346463 + 0.346463i −0.858790 0.512327i \(-0.828783\pi\)
0.512327 + 0.858790i \(0.328783\pi\)
\(84\) −17.7844 + 16.4838i −0.211719 + 0.196235i
\(85\) 105.730 16.4002i 1.24388 0.192943i
\(86\) 6.49605 11.2515i 0.0755354 0.130831i
\(87\) 0.892450 3.33067i 0.0102580 0.0382835i
\(88\) −9.93781 2.66283i −0.112930 0.0302594i
\(89\) −24.1801 13.9604i −0.271687 0.156858i 0.357967 0.933734i \(-0.383470\pi\)
−0.629654 + 0.776876i \(0.716803\pi\)
\(90\) −3.25157 20.9625i −0.0361286 0.232917i
\(91\) 41.7756 135.175i 0.459072 1.48544i
\(92\) 35.6746 + 35.6746i 0.387768 + 0.387768i
\(93\) 22.7468 + 84.8922i 0.244589 + 0.912819i
\(94\) −1.44346 + 0.833383i −0.0153560 + 0.00886578i
\(95\) 0.590449 5.45032i 0.00621525 0.0573718i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) −101.201 101.201i −1.04331 1.04331i −0.999019 0.0442924i \(-0.985897\pi\)
−0.0442924 0.999019i \(-0.514103\pi\)
\(98\) −22.9574 + 65.3832i −0.234259 + 0.667175i
\(99\) 10.9125i 0.110227i
\(100\) −10.7076 + 48.8400i −0.107076 + 0.488400i
\(101\) 1.75437 + 3.03865i 0.0173700 + 0.0300856i 0.874580 0.484882i \(-0.161137\pi\)
−0.857210 + 0.514967i \(0.827804\pi\)
\(102\) −13.5663 + 50.6303i −0.133003 + 0.496375i
\(103\) 6.26644 + 23.3867i 0.0608392 + 0.227055i 0.989651 0.143498i \(-0.0458350\pi\)
−0.928811 + 0.370553i \(0.879168\pi\)
\(104\) 57.1680i 0.549692i
\(105\) −36.1811 48.6408i −0.344582 0.463246i
\(106\) −133.547 −1.25988
\(107\) 103.688 27.7832i 0.969051 0.259656i 0.260624 0.965440i \(-0.416072\pi\)
0.708427 + 0.705784i \(0.249405\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) 23.0692 13.3190i 0.211644 0.122193i −0.390431 0.920632i \(-0.627674\pi\)
0.602075 + 0.798439i \(0.294341\pi\)
\(110\) 9.29417 23.9830i 0.0844924 0.218027i
\(111\) −79.5536 −0.716699
\(112\) −1.06198 + 27.9799i −0.00948192 + 0.249820i
\(113\) 27.1223 27.1223i 0.240021 0.240021i −0.576838 0.816859i \(-0.695714\pi\)
0.816859 + 0.576838i \(0.195714\pi\)
\(114\) 2.32590 + 1.34286i 0.0204027 + 0.0117795i
\(115\) −98.2735 + 79.0622i −0.854552 + 0.687497i
\(116\) −1.99080 3.44816i −0.0171620 0.0297255i
\(117\) −58.5697 + 15.6937i −0.500595 + 0.134134i
\(118\) −109.956 + 109.956i −0.931830 + 0.931830i
\(119\) 33.2535 + 146.054i 0.279441 + 1.22735i
\(120\) −19.7707 14.4609i −0.164756 0.120508i
\(121\) 53.8843 93.3304i 0.445325 0.771326i
\(122\) −40.9113 + 152.683i −0.335339 + 1.25150i
\(123\) −31.2793 8.38127i −0.254303 0.0681404i
\(124\) 87.8869 + 50.7415i 0.708765 + 0.409206i
\(125\) −118.507 39.7639i −0.948054 0.318111i
\(126\) 28.9574 6.59299i 0.229821 0.0523253i
\(127\) 34.8736 + 34.8736i 0.274595 + 0.274595i 0.830947 0.556352i \(-0.187799\pi\)
−0.556352 + 0.830947i \(0.687799\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) −13.7802 + 7.95600i −0.106823 + 0.0616744i
\(130\) 142.089 + 15.3929i 1.09299 + 0.118407i
\(131\) −0.00172369 + 0.00298553i −1.31580e−5 + 2.27903e-5i −0.866032 0.499989i \(-0.833338\pi\)
0.866019 + 0.500011i \(0.166671\pi\)
\(132\) 8.90999 + 8.90999i 0.0675000 + 0.0675000i
\(133\) 7.66957 + 0.291099i 0.0576660 + 0.00218871i
\(134\) 17.4739i 0.130402i
\(135\) −9.38805 + 24.2253i −0.0695411 + 0.179447i
\(136\) 30.2626 + 52.4163i 0.222519 + 0.385414i
\(137\) −56.7868 + 211.931i −0.414502 + 1.54694i 0.371328 + 0.928502i \(0.378902\pi\)
−0.785830 + 0.618442i \(0.787764\pi\)
\(138\) −15.9925 59.6849i −0.115888 0.432499i
\(139\) 228.031i 1.64051i 0.571999 + 0.820254i \(0.306168\pi\)
−0.571999 + 0.820254i \(0.693832\pi\)
\(140\) −69.2568 10.1733i −0.494691 0.0726662i
\(141\) 2.04136 0.0144778
\(142\) −94.5954 + 25.3468i −0.666165 + 0.178498i
\(143\) −71.0155 19.0286i −0.496612 0.133067i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 9.10629 4.01960i 0.0628020 0.0277214i
\(146\) −67.8054 −0.464421
\(147\) 64.3888 55.2908i 0.438019 0.376128i
\(148\) −64.9553 + 64.9553i −0.438887 + 0.438887i
\(149\) 86.2135 + 49.7754i 0.578614 + 0.334063i 0.760582 0.649241i \(-0.224914\pi\)
−0.181968 + 0.983304i \(0.558247\pi\)
\(150\) 41.2654 45.2456i 0.275103 0.301637i
\(151\) 39.1085 + 67.7378i 0.258996 + 0.448595i 0.965973 0.258642i \(-0.0832749\pi\)
−0.706977 + 0.707237i \(0.749942\pi\)
\(152\) 2.99554 0.802651i 0.0197075 0.00528060i
\(153\) 45.3939 45.3939i 0.296692 0.296692i
\(154\) 34.4038 + 10.6324i 0.223401 + 0.0690416i
\(155\) −149.780 + 204.777i −0.966323 + 1.32114i
\(156\) −35.0081 + 60.6358i −0.224411 + 0.388691i
\(157\) 61.3800 229.073i 0.390956 1.45907i −0.437605 0.899167i \(-0.644173\pi\)
0.828561 0.559899i \(-0.189160\pi\)
\(158\) 102.293 + 27.4094i 0.647427 + 0.173477i
\(159\) 141.648 + 81.7805i 0.890868 + 0.514343i
\(160\) −27.9500 + 4.33543i −0.174688 + 0.0270964i
\(161\) −120.036 129.507i −0.745564 0.804392i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 58.9456 + 219.988i 0.361629 + 1.34962i 0.871933 + 0.489625i \(0.162866\pi\)
−0.510304 + 0.859994i \(0.670467\pi\)
\(164\) −32.3827 + 18.6962i −0.197456 + 0.114001i
\(165\) −24.5445 + 19.7463i −0.148755 + 0.119675i
\(166\) 28.7564 49.8076i 0.173231 0.300046i
\(167\) −8.78950 8.78950i −0.0526318 0.0526318i 0.680301 0.732933i \(-0.261849\pi\)
−0.732933 + 0.680301i \(0.761849\pi\)
\(168\) 18.2605 29.0268i 0.108693 0.172779i
\(169\) 239.522i 1.41729i
\(170\) −138.427 + 61.1029i −0.814277 + 0.359429i
\(171\) −1.64466 2.84864i −0.00961791 0.0166587i
\(172\) −4.75544 + 17.7475i −0.0276479 + 0.103183i
\(173\) −86.7596 323.791i −0.501500 1.87162i −0.490057 0.871690i \(-0.663024\pi\)
−0.0114429 0.999935i \(-0.503642\pi\)
\(174\) 4.87643i 0.0280255i
\(175\) 43.9331 169.396i 0.251046 0.967975i
\(176\) 14.5500 0.0826702
\(177\) 183.960 49.2919i 1.03932 0.278485i
\(178\) 38.1405 + 10.2197i 0.214272 + 0.0574141i
\(179\) −46.9243 + 27.0918i −0.262147 + 0.151351i −0.625314 0.780374i \(-0.715029\pi\)
0.363166 + 0.931724i \(0.381696\pi\)
\(180\) 12.1145 + 27.4452i 0.0673030 + 0.152473i
\(181\) −141.640 −0.782543 −0.391272 0.920275i \(-0.627965\pi\)
−0.391272 + 0.920275i \(0.627965\pi\)
\(182\) −7.58887 + 199.944i −0.0416971 + 1.09859i
\(183\) 136.892 136.892i 0.748043 0.748043i
\(184\) −61.7903 35.6746i −0.335817 0.193884i
\(185\) −143.954 178.933i −0.778129 0.967207i
\(186\) −62.1454 107.639i −0.334115 0.578704i
\(187\) 75.1859 20.1460i 0.402064 0.107733i
\(188\) 1.66677 1.66677i 0.00886578 0.00886578i
\(189\) −34.7514 10.7398i −0.183870 0.0568244i
\(190\) 1.18839 + 7.66140i 0.00625467 + 0.0403231i
\(191\) −103.508 + 179.281i −0.541927 + 0.938645i 0.456866 + 0.889535i \(0.348972\pi\)
−0.998793 + 0.0491099i \(0.984362\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) 124.022 + 33.2316i 0.642601 + 0.172184i 0.565381 0.824830i \(-0.308729\pi\)
0.0772196 + 0.997014i \(0.475396\pi\)
\(194\) 175.286 + 101.201i 0.903534 + 0.521656i
\(195\) −141.281 103.338i −0.724520 0.529937i
\(196\) 7.42848 97.7181i 0.0379004 0.498561i
\(197\) 91.4879 + 91.4879i 0.464405 + 0.464405i 0.900096 0.435691i \(-0.143496\pi\)
−0.435691 + 0.900096i \(0.643496\pi\)
\(198\) −3.99424 14.9067i −0.0201729 0.0752864i
\(199\) −34.4219 + 19.8735i −0.172974 + 0.0998668i −0.583988 0.811763i \(-0.698508\pi\)
0.411013 + 0.911629i \(0.365175\pi\)
\(200\) −3.24980 70.6360i −0.0162490 0.353180i
\(201\) −10.7005 + 18.5339i −0.0532365 + 0.0922083i
\(202\) −3.50873 3.50873i −0.0173700 0.0173700i
\(203\) 6.50504 + 12.3241i 0.0320445 + 0.0607101i
\(204\) 74.1279i 0.363372i
\(205\) −37.7493 85.5200i −0.184143 0.417171i
\(206\) −17.1202 29.6531i −0.0831079 0.143947i
\(207\) −19.5867 + 73.0987i −0.0946219 + 0.353134i
\(208\) 20.9249 + 78.0929i 0.100601 + 0.375447i
\(209\) 3.98830i 0.0190828i
\(210\) 67.2281 + 53.2013i 0.320134 + 0.253340i
\(211\) 295.368 1.39985 0.699924 0.714218i \(-0.253217\pi\)
0.699924 + 0.714218i \(0.253217\pi\)
\(212\) 182.429 48.8816i 0.860512 0.230574i
\(213\) 115.855 + 31.0433i 0.543921 + 0.145743i
\(214\) −131.472 + 75.9052i −0.614353 + 0.354697i
\(215\) −42.8303 16.5981i −0.199211 0.0772004i
\(216\) −14.6969 −0.0680414
\(217\) −300.647 189.134i −1.38547 0.871586i
\(218\) −26.6380 + 26.6380i −0.122193 + 0.122193i
\(219\) 71.9185 + 41.5222i 0.328395 + 0.189599i
\(220\) −3.91768 + 36.1633i −0.0178076 + 0.164379i
\(221\) 216.256 + 374.567i 0.978535 + 1.69487i
\(222\) 108.672 29.1186i 0.489515 0.131165i
\(223\) 144.742 144.742i 0.649068 0.649068i −0.303700 0.952768i \(-0.598222\pi\)
0.952768 + 0.303700i \(0.0982219\pi\)
\(224\) −8.79065 38.6099i −0.0392440 0.172366i
\(225\) −71.4758 + 22.7204i −0.317670 + 0.100980i
\(226\) −27.1223 + 46.9773i −0.120010 + 0.207864i
\(227\) 42.7047 159.376i 0.188126 0.702097i −0.805813 0.592170i \(-0.798272\pi\)
0.993940 0.109927i \(-0.0350618\pi\)
\(228\) −3.66877 0.983043i −0.0160911 0.00431159i
\(229\) −254.836 147.130i −1.11282 0.642487i −0.173262 0.984876i \(-0.555431\pi\)
−0.939559 + 0.342388i \(0.888764\pi\)
\(230\) 105.305 143.972i 0.457849 0.625963i
\(231\) −29.9798 32.3453i −0.129783 0.140023i
\(232\) 3.98159 + 3.98159i 0.0171620 + 0.0171620i
\(233\) 1.77059 + 6.60795i 0.00759912 + 0.0283603i 0.969621 0.244611i \(-0.0786603\pi\)
−0.962022 + 0.272971i \(0.911994\pi\)
\(234\) 74.2634 42.8760i 0.317365 0.183231i
\(235\) 3.69389 + 4.59147i 0.0157187 + 0.0195382i
\(236\) 109.956 190.449i 0.465915 0.806988i
\(237\) −91.7138 91.7138i −0.386978 0.386978i
\(238\) −98.8847 187.342i −0.415482 0.787153i
\(239\) 157.039i 0.657067i 0.944492 + 0.328533i \(0.106554\pi\)
−0.944492 + 0.328533i \(0.893446\pi\)
\(240\) 32.3004 + 12.5174i 0.134585 + 0.0521559i
\(241\) 93.3037 + 161.607i 0.387152 + 0.670567i 0.992065 0.125724i \(-0.0401255\pi\)
−0.604913 + 0.796292i \(0.706792\pi\)
\(242\) −39.4461 + 147.215i −0.163000 + 0.608325i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 223.544i 0.916162i
\(245\) 240.874 + 44.7744i 0.983159 + 0.182753i
\(246\) 45.7961 0.186163
\(247\) 21.4061 5.73574i 0.0866643 0.0232216i
\(248\) −138.628 37.1454i −0.558985 0.149780i
\(249\) −61.0015 + 35.2193i −0.244986 + 0.141443i
\(250\) 176.438 + 10.9420i 0.705751 + 0.0437679i
\(251\) 316.826 1.26225 0.631127 0.775680i \(-0.282593\pi\)
0.631127 + 0.775680i \(0.282593\pi\)
\(252\) −37.1434 + 19.6053i −0.147394 + 0.0777990i
\(253\) −64.8831 + 64.8831i −0.256455 + 0.256455i
\(254\) −60.4029 34.8736i −0.237807 0.137298i
\(255\) 184.242 + 19.9594i 0.722517 + 0.0782723i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −173.487 + 46.4857i −0.675047 + 0.180878i −0.580027 0.814597i \(-0.696958\pi\)
−0.0950196 + 0.995475i \(0.530291\pi\)
\(258\) 15.9120 15.9120i 0.0616744 0.0616744i
\(259\) 235.802 218.557i 0.910434 0.843850i
\(260\) −199.731 + 30.9810i −0.768195 + 0.119158i
\(261\) 2.98619 5.17224i 0.0114414 0.0198170i
\(262\) 0.00126183 0.00470922i 4.81615e−6 1.79741e-5i
\(263\) −24.8750 6.66522i −0.0945816 0.0253431i 0.211218 0.977439i \(-0.432257\pi\)
−0.305799 + 0.952096i \(0.598924\pi\)
\(264\) −15.4326 8.90999i −0.0584567 0.0337500i
\(265\) 72.3730 + 466.580i 0.273106 + 1.76068i
\(266\) −10.5834 + 2.40961i −0.0397871 + 0.00905868i
\(267\) −34.1958 34.1958i −0.128074 0.128074i
\(268\) 6.39589 + 23.8698i 0.0238653 + 0.0890663i
\(269\) −372.313 + 214.955i −1.38406 + 0.799088i −0.992638 0.121122i \(-0.961351\pi\)
−0.391424 + 0.920211i \(0.628017\pi\)
\(270\) 3.95725 36.5286i 0.0146565 0.135291i
\(271\) −230.549 + 399.323i −0.850734 + 1.47351i 0.0298124 + 0.999556i \(0.490509\pi\)
−0.880547 + 0.473959i \(0.842824\pi\)
\(272\) −60.5252 60.5252i −0.222519 0.222519i
\(273\) 130.489 207.425i 0.477983 0.759800i
\(274\) 310.289i 1.13244i
\(275\) −88.8275 19.4744i −0.323009 0.0708162i
\(276\) 43.6923 + 75.6774i 0.158306 + 0.274193i
\(277\) 12.6710 47.2888i 0.0457437 0.170718i −0.939275 0.343165i \(-0.888501\pi\)
0.985019 + 0.172448i \(0.0551675\pi\)
\(278\) −83.4650 311.496i −0.300234 1.12049i
\(279\) 152.224i 0.545608i
\(280\) 98.3302 11.4528i 0.351179 0.0409029i
\(281\) −423.445 −1.50692 −0.753461 0.657493i \(-0.771617\pi\)
−0.753461 + 0.657493i \(0.771617\pi\)
\(282\) −2.78855 + 0.747191i −0.00988849 + 0.00264961i
\(283\) −473.906 126.983i −1.67458 0.448702i −0.708239 0.705973i \(-0.750510\pi\)
−0.966339 + 0.257271i \(0.917177\pi\)
\(284\) 119.942 69.2487i 0.422332 0.243833i
\(285\) 3.43115 8.85387i 0.0120391 0.0310662i
\(286\) 103.974 0.363545
\(287\) 115.740 61.0908i 0.403275 0.212860i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −146.282 84.4561i −0.506167 0.292235i
\(290\) −10.9682 + 8.82401i −0.0378212 + 0.0304276i
\(291\) −123.946 214.680i −0.425930 0.737732i
\(292\) 92.6239 24.8185i 0.317205 0.0849949i
\(293\) 227.054 227.054i 0.774928 0.774928i −0.204036 0.978963i \(-0.565406\pi\)
0.978963 + 0.204036i \(0.0654059\pi\)
\(294\) −67.7189 + 99.0966i −0.230337 + 0.337063i
\(295\) 443.747 + 324.570i 1.50423 + 1.10024i
\(296\) 64.9553 112.506i 0.219443 0.380087i
\(297\) −4.89193 + 18.2569i −0.0164711 + 0.0614711i
\(298\) −135.989 36.4381i −0.456338 0.122276i
\(299\) −441.553 254.931i −1.47677 0.852612i
\(300\) −39.8086 + 76.9108i −0.132695 + 0.256369i
\(301\) 18.9880 61.4404i 0.0630830 0.204121i
\(302\) −78.2169 78.2169i −0.258996 0.258996i
\(303\) 1.57292 + 5.87022i 0.00519116 + 0.0193737i
\(304\) −3.79819 + 2.19288i −0.0124940 + 0.00721343i
\(305\) 555.608 + 60.1906i 1.82167 + 0.197346i
\(306\) −45.3939 + 78.6245i −0.148346 + 0.256943i
\(307\) −203.247 203.247i −0.662041 0.662041i 0.293820 0.955861i \(-0.405073\pi\)
−0.955861 + 0.293820i \(0.905073\pi\)
\(308\) −50.8882 1.93146i −0.165221 0.00627098i
\(309\) 41.9358i 0.135715i
\(310\) 129.650 334.553i 0.418225 1.07920i
\(311\) 225.900 + 391.270i 0.726367 + 1.25810i 0.958409 + 0.285398i \(0.0921259\pi\)
−0.232042 + 0.972706i \(0.574541\pi\)
\(312\) 25.6277 95.6439i 0.0821400 0.306551i
\(313\) 137.943 + 514.810i 0.440712 + 1.64476i 0.727016 + 0.686621i \(0.240907\pi\)
−0.286304 + 0.958139i \(0.592427\pi\)
\(314\) 335.387i 1.06811i
\(315\) −38.7271 97.5972i −0.122943 0.309832i
\(316\) −149.768 −0.473949
\(317\) 270.760 72.5500i 0.854134 0.228864i 0.194919 0.980819i \(-0.437556\pi\)
0.659215 + 0.751955i \(0.270889\pi\)
\(318\) −223.429 59.8675i −0.702605 0.188263i
\(319\) 6.27132 3.62075i 0.0196593 0.0113503i
\(320\) 36.5936 16.1527i 0.114355 0.0504773i
\(321\) 185.929 0.579218
\(322\) 211.375 + 132.974i 0.656443 + 0.412962i
\(323\) −16.5906 + 16.5906i −0.0513640 + 0.0513640i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) −23.2230 504.764i −0.0714555 1.55312i
\(326\) −161.042 278.934i −0.493995 0.855624i
\(327\) 44.5663 11.9415i 0.136288 0.0365183i
\(328\) 37.3923 37.3923i 0.114001 0.114001i
\(329\) −6.05074 + 5.60823i −0.0183913 + 0.0170463i
\(330\) 26.3007 35.9579i 0.0796992 0.108963i
\(331\) −132.918 + 230.221i −0.401565 + 0.695530i −0.993915 0.110150i \(-0.964867\pi\)
0.592350 + 0.805681i \(0.298200\pi\)
\(332\) −21.0511 + 78.5640i −0.0634071 + 0.236638i
\(333\) −133.096 35.6629i −0.399687 0.107096i
\(334\) 15.2239 + 8.78950i 0.0455804 + 0.0263159i
\(335\) −61.0495 + 9.46961i −0.182237 + 0.0282675i
\(336\) −14.3197 + 46.3351i −0.0426183 + 0.137902i
\(337\) 33.9686 + 33.9686i 0.100797 + 0.100797i 0.755707 0.654910i \(-0.227293\pi\)
−0.654910 + 0.755707i \(0.727293\pi\)
\(338\) 87.6711 + 327.193i 0.259382 + 0.968027i
\(339\) 57.5352 33.2179i 0.169720 0.0979880i
\(340\) 166.730 134.136i 0.490381 0.394518i
\(341\) −92.2858 + 159.844i −0.270633 + 0.468750i
\(342\) 3.28933 + 3.28933i 0.00961791 + 0.00961791i
\(343\) −38.9527 + 340.781i −0.113565 + 0.993531i
\(344\) 25.9842i 0.0755354i
\(345\) −199.857 + 88.2188i −0.579297 + 0.255707i
\(346\) 237.032 + 410.551i 0.685062 + 1.18656i
\(347\) 139.223 519.589i 0.401220 1.49737i −0.409702 0.912219i \(-0.634367\pi\)
0.810922 0.585154i \(-0.198966\pi\)
\(348\) −1.78490 6.66133i −0.00512902 0.0191418i
\(349\) 3.32034i 0.00951388i −0.999989 0.00475694i \(-0.998486\pi\)
0.999989 0.00475694i \(-0.00151419\pi\)
\(350\) 1.98940 + 247.479i 0.00568399 + 0.707084i
\(351\) −105.024 −0.299214
\(352\) −19.8756 + 5.32566i −0.0564648 + 0.0151297i
\(353\) 236.007 + 63.2380i 0.668576 + 0.179144i 0.577113 0.816664i \(-0.304179\pi\)
0.0914627 + 0.995809i \(0.470846\pi\)
\(354\) −233.252 + 134.668i −0.658903 + 0.380418i
\(355\) 139.819 + 316.757i 0.393857 + 0.892273i
\(356\) −55.8416 −0.156858
\(357\) −9.84025 + 259.261i −0.0275637 + 0.726221i
\(358\) 54.1836 54.1836i 0.151351 0.151351i
\(359\) −33.4790 19.3291i −0.0932563 0.0538415i 0.452647 0.891690i \(-0.350480\pi\)
−0.545903 + 0.837848i \(0.683813\pi\)
\(360\) −26.5944 33.0566i −0.0738734 0.0918238i
\(361\) −179.899 311.594i −0.498335 0.863141i
\(362\) 193.484 51.8440i 0.534487 0.143215i
\(363\) 131.989 131.989i 0.363606 0.363606i
\(364\) −62.8179 275.906i −0.172577 0.757984i
\(365\) 36.7457 + 236.895i 0.100673 + 0.649029i
\(366\) −136.892 + 237.104i −0.374022 + 0.647824i
\(367\) 14.8253 55.3289i 0.0403960 0.150760i −0.942782 0.333410i \(-0.891801\pi\)
0.983178 + 0.182650i \(0.0584675\pi\)
\(368\) 97.4650 + 26.1157i 0.264850 + 0.0709665i
\(369\) −48.5741 28.0443i −0.131637 0.0760007i
\(370\) 262.139 + 191.737i 0.708483 + 0.518207i
\(371\) −644.530 + 146.746i −1.73728 + 0.395541i
\(372\) 124.291 + 124.291i 0.334115 + 0.334115i
\(373\) 75.5069 + 281.795i 0.202431 + 0.755484i 0.990217 + 0.139535i \(0.0445606\pi\)
−0.787786 + 0.615949i \(0.788773\pi\)
\(374\) −95.3320 + 55.0399i −0.254898 + 0.147166i
\(375\) −180.440 119.651i −0.481173 0.319070i
\(376\) −1.66677 + 2.88692i −0.00443289 + 0.00767799i
\(377\) 28.4524 + 28.4524i 0.0754707 + 0.0754707i
\(378\) 51.4023 + 1.95097i 0.135985 + 0.00516131i
\(379\) 482.698i 1.27361i 0.771026 + 0.636804i \(0.219744\pi\)
−0.771026 + 0.636804i \(0.780256\pi\)
\(380\) −4.42763 10.0307i −0.0116517 0.0263965i
\(381\) 42.7113 + 73.9781i 0.112103 + 0.194168i
\(382\) 75.7732 282.789i 0.198359 0.740286i
\(383\) −99.2824 370.527i −0.259223 0.967433i −0.965692 0.259690i \(-0.916380\pi\)
0.706469 0.707744i \(-0.250287\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 18.5026 125.960i 0.0480586 0.327170i
\(386\) −181.581 −0.470416
\(387\) −26.6213 + 7.13316i −0.0687889 + 0.0184319i
\(388\) −276.487 74.0844i −0.712595 0.190939i
\(389\) 389.346 224.789i 1.00089 0.577864i 0.0923783 0.995724i \(-0.470553\pi\)
0.908511 + 0.417860i \(0.137220\pi\)
\(390\) 230.818 + 89.4493i 0.591842 + 0.229357i
\(391\) 539.804 1.38057
\(392\) 25.6198 + 136.204i 0.0653566 + 0.347460i
\(393\) −0.00422217 + 0.00422217i −1.07434e−5 + 1.07434e-5i
\(394\) −158.462 91.4879i −0.402187 0.232203i
\(395\) 40.3260 372.242i 0.102091 0.942385i
\(396\) 10.9125 + 18.9010i 0.0275567 + 0.0477297i
\(397\) −252.884 + 67.7600i −0.636987 + 0.170680i −0.562838 0.826567i \(-0.690291\pi\)
−0.0741488 + 0.997247i \(0.523624\pi\)
\(398\) 39.7470 39.7470i 0.0998668 0.0998668i
\(399\) 12.7009 + 3.92519i 0.0318319 + 0.00983757i
\(400\) 30.2939 + 95.3010i 0.0757347 + 0.238253i
\(401\) 18.2259 31.5681i 0.0454510 0.0787235i −0.842405 0.538845i \(-0.818861\pi\)
0.887856 + 0.460122i \(0.152194\pi\)
\(402\) 7.83333 29.2344i 0.0194859 0.0727224i
\(403\) −990.637 265.440i −2.45816 0.658661i
\(404\) 6.07730 + 3.50873i 0.0150428 + 0.00868498i
\(405\) −26.5664 + 36.3211i −0.0655961 + 0.0896818i
\(406\) −13.3970 14.4541i −0.0329975 0.0356012i
\(407\) −118.137 118.137i −0.290263 0.290263i
\(408\) 27.1327 + 101.261i 0.0665017 + 0.248188i
\(409\) 288.799 166.738i 0.706110 0.407673i −0.103509 0.994629i \(-0.533007\pi\)
0.809619 + 0.586956i \(0.199674\pi\)
\(410\) 82.8690 + 103.005i 0.202119 + 0.251232i
\(411\) −190.012 + 329.111i −0.462317 + 0.800757i
\(412\) 34.2404 + 34.2404i 0.0831079 + 0.0831079i
\(413\) −409.850 + 651.496i −0.992373 + 1.57747i
\(414\) 107.024i 0.258512i
\(415\) −189.599 73.4756i −0.456866 0.177050i
\(416\) −57.1680 99.0178i −0.137423 0.238024i
\(417\) −102.223 + 381.503i −0.245140 + 0.914875i
\(418\) 1.45982 + 5.44811i 0.00349239 + 0.0130338i
\(419\) 393.755i 0.939750i −0.882733 0.469875i \(-0.844299\pi\)
0.882733 0.469875i \(-0.155701\pi\)
\(420\) −111.308 48.0672i −0.265020 0.114446i
\(421\) 96.8808 0.230121 0.115060 0.993359i \(-0.463294\pi\)
0.115060 + 0.993359i \(0.463294\pi\)
\(422\) −403.480 + 108.112i −0.956114 + 0.256190i
\(423\) 3.41527 + 0.915118i 0.00807392 + 0.00216340i
\(424\) −231.310 + 133.547i −0.545543 + 0.314969i
\(425\) 288.496 + 450.516i 0.678815 + 1.06004i
\(426\) −169.624 −0.398178
\(427\) −29.6747 + 781.839i −0.0694958 + 1.83101i
\(428\) 151.810 151.810i 0.354697 0.354697i
\(429\) −110.281 63.6708i −0.257065 0.148417i
\(430\) 64.5826 + 6.99642i 0.150192 + 0.0162708i
\(431\) 12.0003 + 20.7851i 0.0278429 + 0.0482253i 0.879611 0.475694i \(-0.157803\pi\)
−0.851768 + 0.523919i \(0.824470\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) −526.458 + 526.458i −1.21584 + 1.21584i −0.246763 + 0.969076i \(0.579367\pi\)
−0.969076 + 0.246763i \(0.920633\pi\)
\(434\) 479.919 + 148.318i 1.10580 + 0.341746i
\(435\) 17.0371 2.64268i 0.0391657 0.00607513i
\(436\) 26.6380 46.1384i 0.0610964 0.105822i
\(437\) 7.15858 26.7162i 0.0163812 0.0611354i
\(438\) −113.441 30.3963i −0.258997 0.0693980i
\(439\) −75.0330 43.3203i −0.170918 0.0986796i 0.412101 0.911138i \(-0.364795\pi\)
−0.583019 + 0.812459i \(0.698129\pi\)
\(440\) −7.88505 50.8340i −0.0179206 0.115532i
\(441\) 132.511 63.6387i 0.300478 0.144305i
\(442\) −432.513 432.513i −0.978535 0.978535i
\(443\) −228.846 854.066i −0.516583 1.92791i −0.319926 0.947443i \(-0.603658\pi\)
−0.196657 0.980472i \(-0.563009\pi\)
\(444\) −137.791 + 79.5536i −0.310340 + 0.179175i
\(445\) 15.0357 138.792i 0.0337881 0.311892i
\(446\) −144.742 + 250.701i −0.324534 + 0.562110i
\(447\) 121.924 + 121.924i 0.272761 + 0.272761i
\(448\) 26.1405 + 49.5245i 0.0583492 + 0.110546i
\(449\) 2.64560i 0.00589220i 0.999996 + 0.00294610i \(0.000937774\pi\)
−0.999996 + 0.00294610i \(0.999062\pi\)
\(450\) 89.3215 57.1986i 0.198492 0.127108i
\(451\) −34.0036 58.8959i −0.0753960 0.130590i
\(452\) 19.8549 74.0996i 0.0439268 0.163937i
\(453\) 35.0637 + 130.859i 0.0774033 + 0.288873i
\(454\) 233.343i 0.513970i
\(455\) 702.667 81.8417i 1.54432 0.179872i
\(456\) 5.37145 0.0117795
\(457\) 610.649 163.623i 1.33621 0.358037i 0.481185 0.876619i \(-0.340207\pi\)
0.855028 + 0.518582i \(0.173540\pi\)
\(458\) 401.966 + 107.706i 0.877654 + 0.235167i
\(459\) 96.2950 55.5959i 0.209793 0.121124i
\(460\) −91.1525 + 235.213i −0.198158 + 0.511333i
\(461\) 602.272 1.30645 0.653223 0.757166i \(-0.273416\pi\)
0.653223 + 0.757166i \(0.273416\pi\)
\(462\) 52.7923 + 33.2112i 0.114269 + 0.0718856i
\(463\) 352.346 352.346i 0.761006 0.761006i −0.215498 0.976504i \(-0.569138\pi\)
0.976504 + 0.215498i \(0.0691376\pi\)
\(464\) −6.89632 3.98159i −0.0148628 0.00858102i
\(465\) −342.386 + 275.453i −0.736313 + 0.592373i
\(466\) −4.83735 8.37854i −0.0103806 0.0179797i
\(467\) 178.537 47.8388i 0.382305 0.102438i −0.0625476 0.998042i \(-0.519923\pi\)
0.444853 + 0.895604i \(0.353256\pi\)
\(468\) −85.7519 + 85.7519i −0.183231 + 0.183231i
\(469\) −19.2009 84.3332i −0.0409400 0.179815i
\(470\) −6.72654 4.92000i −0.0143118 0.0104681i
\(471\) 205.382 355.731i 0.436054 0.755268i
\(472\) −80.4933 + 300.405i −0.170537 + 0.636451i
\(473\) −32.2782 8.64893i −0.0682415 0.0182853i
\(474\) 158.853 + 91.7138i 0.335133 + 0.193489i
\(475\) 26.1230 8.30387i 0.0549958 0.0174818i
\(476\) 203.651 + 219.720i 0.427839 + 0.461597i
\(477\) 200.321 + 200.321i 0.419959 + 0.419959i
\(478\) −57.4803 214.519i −0.120252 0.448785i
\(479\) −125.111 + 72.2330i −0.261193 + 0.150800i −0.624878 0.780722i \(-0.714851\pi\)
0.363686 + 0.931522i \(0.381518\pi\)
\(480\) −48.7048 5.27634i −0.101468 0.0109924i
\(481\) 464.170 803.966i 0.965010 1.67145i
\(482\) −186.607 186.607i −0.387152 0.387152i
\(483\) −142.767 270.480i −0.295584 0.560000i
\(484\) 215.537i 0.445325i
\(485\) 258.580 667.248i 0.533154 1.37577i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) −127.065 + 474.214i −0.260914 + 0.973745i 0.703790 + 0.710408i \(0.251490\pi\)
−0.964704 + 0.263337i \(0.915177\pi\)
\(488\) 81.8226 + 305.366i 0.167669 + 0.625750i
\(489\) 394.472i 0.806690i
\(490\) −345.428 + 27.0030i −0.704956 + 0.0551081i
\(491\) −638.815 −1.30105 −0.650524 0.759485i \(-0.725451\pi\)
−0.650524 + 0.759485i \(0.725451\pi\)
\(492\) −62.5586 + 16.7625i −0.127152 + 0.0340702i
\(493\) −41.1492 11.0259i −0.0834670 0.0223649i
\(494\) −27.1418 + 15.6703i −0.0549430 + 0.0317213i
\(495\) −49.9158 + 22.0333i −0.100840 + 0.0445117i
\(496\) 202.966 0.409206
\(497\) −428.688 + 226.274i −0.862552 + 0.455280i
\(498\) 70.4385 70.4385i 0.141443 0.141443i
\(499\) −312.961 180.688i −0.627177 0.362101i 0.152481 0.988306i \(-0.451274\pi\)
−0.779658 + 0.626205i \(0.784607\pi\)
\(500\) −245.023 + 49.6337i −0.490047 + 0.0992673i
\(501\) −10.7649 18.6454i −0.0214868 0.0372163i
\(502\) −432.792 + 115.966i −0.862135 + 0.231008i
\(503\) 697.152 697.152i 1.38599 1.38599i 0.552425 0.833563i \(-0.313703\pi\)
0.833563 0.552425i \(-0.186297\pi\)
\(504\) 43.5627 40.3768i 0.0864340 0.0801127i
\(505\) −10.3572 + 14.1601i −0.0205092 + 0.0280398i
\(506\) 64.8831 112.381i 0.128227 0.222096i
\(507\) 107.375 400.728i 0.211784 0.790390i
\(508\) 95.2765 + 25.5293i 0.187552 + 0.0502544i
\(509\) −355.643 205.331i −0.698710 0.403400i 0.108157 0.994134i \(-0.465505\pi\)
−0.806867 + 0.590733i \(0.798839\pi\)
\(510\) −258.985 + 40.1721i −0.507813 + 0.0787687i
\(511\) −327.245 + 74.5067i −0.640401 + 0.145806i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −1.47456 5.50315i −0.00287439 0.0107274i
\(514\) 219.973 127.001i 0.427962 0.247084i
\(515\) −94.3227 + 75.8837i −0.183151 + 0.147347i
\(516\) −15.9120 + 27.5604i −0.0308372 + 0.0534116i
\(517\) 3.03142 + 3.03142i 0.00586349 + 0.00586349i
\(518\) −242.115 + 384.864i −0.467403 + 0.742982i
\(519\) 580.606i 1.11870i
\(520\) 261.497 115.427i 0.502880 0.221976i
\(521\) −177.594 307.602i −0.340872 0.590408i 0.643723 0.765259i \(-0.277389\pi\)
−0.984595 + 0.174851i \(0.944056\pi\)
\(522\) −2.18605 + 8.15843i −0.00418783 + 0.0156292i
\(523\) 64.8508 + 242.026i 0.123998 + 0.462766i 0.999802 0.0199007i \(-0.00633502\pi\)
−0.875804 + 0.482666i \(0.839668\pi\)
\(524\) 0.00689478i 1.31580e-5i
\(525\) 149.439 263.710i 0.284647 0.502304i
\(526\) 36.4195 0.0692385
\(527\) 1048.81 281.029i 1.99016 0.533261i
\(528\) 24.3426 + 6.52257i 0.0461033 + 0.0123534i
\(529\) −92.9594 + 53.6701i −0.175727 + 0.101456i
\(530\) −269.644 610.870i −0.508762 1.15259i
\(531\) 329.868 0.621220
\(532\) 13.5752 7.16537i 0.0255173 0.0134687i
\(533\) 267.206 267.206i 0.501324 0.501324i
\(534\) 59.2289 + 34.1958i 0.110916 + 0.0640371i
\(535\) 336.442 + 418.194i 0.628864 + 0.781672i
\(536\) −17.4739 30.2657i −0.0326005 0.0564658i
\(537\) −90.6509 + 24.2898i −0.168810 + 0.0452325i
\(538\) 429.909 429.909i 0.799088 0.799088i
\(539\) 177.724 + 13.5105i 0.329730 + 0.0250659i
\(540\) 7.96470 + 51.3475i 0.0147494 + 0.0950879i
\(541\) −262.569 + 454.783i −0.485340 + 0.840634i −0.999858 0.0168458i \(-0.994638\pi\)
0.514518 + 0.857480i \(0.327971\pi\)
\(542\) 168.774 629.872i 0.311390 1.16212i
\(543\) −236.969 63.4956i −0.436407 0.116935i
\(544\) 104.833 + 60.5252i 0.192707 + 0.111260i
\(545\) 107.503 + 78.6308i 0.197252 + 0.144277i
\(546\) −102.329 + 331.111i −0.187415 + 0.606430i
\(547\) −559.961 559.961i −1.02369 1.02369i −0.999712 0.0239824i \(-0.992365\pi\)
−0.0239824 0.999712i \(-0.507635\pi\)
\(548\) 113.574 + 423.863i 0.207251 + 0.773472i
\(549\) 290.392 167.658i 0.528946 0.305387i
\(550\) 128.469 5.91055i 0.233580 0.0107465i
\(551\) −1.09140 + 1.89035i −0.00198076 + 0.00343077i
\(552\) −87.3847 87.3847i −0.158306 0.158306i
\(553\) 523.811 + 19.8812i 0.947216 + 0.0359516i
\(554\) 69.2356i 0.124974i
\(555\) −160.626 363.894i −0.289416 0.655665i
\(556\) 228.031 + 394.961i 0.410127 + 0.710361i
\(557\) −24.6092 + 91.8429i −0.0441817 + 0.164888i −0.984492 0.175430i \(-0.943868\pi\)
0.940310 + 0.340319i \(0.110535\pi\)
\(558\) −55.7180 207.943i −0.0998531 0.372657i
\(559\) 185.683i 0.332170i
\(560\) −130.130 + 51.6362i −0.232374 + 0.0922075i
\(561\) 134.820 0.240320
\(562\) 578.437 154.992i 1.02925 0.275786i
\(563\) 108.324 + 29.0254i 0.192405 + 0.0515549i 0.353735 0.935346i \(-0.384912\pi\)
−0.161329 + 0.986901i \(0.551578\pi\)
\(564\) 3.53575 2.04136i 0.00626905 0.00361944i
\(565\) 178.825 + 69.3004i 0.316505 + 0.122656i
\(566\) 693.846 1.22588
\(567\) −53.3256 33.5467i −0.0940487 0.0591652i
\(568\) −138.497 + 138.497i −0.243833 + 0.243833i
\(569\) −367.280 212.049i −0.645483 0.372670i 0.141240 0.989975i \(-0.454891\pi\)
−0.786724 + 0.617305i \(0.788224\pi\)
\(570\) −1.44630 + 13.3505i −0.00253737 + 0.0234219i
\(571\) −111.431 193.003i −0.195150 0.338010i 0.751800 0.659391i \(-0.229186\pi\)
−0.946950 + 0.321382i \(0.895853\pi\)
\(572\) −142.031 + 38.0571i −0.248306 + 0.0665334i
\(573\) −253.542 + 253.542i −0.442482 + 0.442482i
\(574\) −135.743 + 125.815i −0.236486 + 0.219190i
\(575\) −560.069 289.888i −0.974033 0.504154i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 86.1350 321.460i 0.149281 0.557123i −0.850247 0.526384i \(-0.823547\pi\)
0.999527 0.0307388i \(-0.00978602\pi\)
\(578\) 230.738 + 61.8261i 0.399201 + 0.106966i
\(579\) 192.595 + 111.195i 0.332635 + 0.192047i
\(580\) 11.7530 16.0684i 0.0202637 0.0277042i
\(581\) 84.0551 271.982i 0.144673 0.468127i
\(582\) 247.891 + 247.891i 0.425930 + 0.425930i
\(583\) 88.9032 + 331.791i 0.152493 + 0.569110i
\(584\) −117.442 + 67.8054i −0.201100 + 0.116105i
\(585\) −190.044 236.222i −0.324861 0.403798i
\(586\) −227.054 + 393.269i −0.387464 + 0.671107i
\(587\) −162.867 162.867i −0.277456 0.277456i 0.554636 0.832093i \(-0.312857\pi\)
−0.832093 + 0.554636i \(0.812857\pi\)
\(588\) 56.2339 160.155i 0.0956359 0.272373i
\(589\) 55.6351i 0.0944569i
\(590\) −724.971 280.949i −1.22876 0.476184i
\(591\) 112.049 + 194.075i 0.189593 + 0.328384i
\(592\) −47.5506 + 177.461i −0.0803219 + 0.299765i
\(593\) −105.998 395.591i −0.178749 0.667101i −0.995883 0.0906523i \(-0.971105\pi\)
0.817133 0.576449i \(-0.195562\pi\)
\(594\) 26.7300i 0.0450000i
\(595\) −600.940 + 447.005i −1.00998 + 0.751269i
\(596\) 199.102 0.334063
\(597\) −66.4980 + 17.8181i −0.111387 + 0.0298460i
\(598\) 696.484 + 186.622i 1.16469 + 0.312077i
\(599\) 630.056 363.763i 1.05185 0.607284i 0.128681 0.991686i \(-0.458926\pi\)
0.923166 + 0.384402i \(0.125592\pi\)
\(600\) 26.2282 119.633i 0.0437137 0.199389i
\(601\) −421.513 −0.701353 −0.350676 0.936497i \(-0.614048\pi\)
−0.350676 + 0.936497i \(0.614048\pi\)
\(602\) −3.44932 + 90.8792i −0.00572977 + 0.150962i
\(603\) −26.2108 + 26.2108i −0.0434674 + 0.0434674i
\(604\) 135.476 + 78.2169i 0.224297 + 0.129498i
\(605\) 535.709 + 58.0349i 0.885469 + 0.0959255i
\(606\) −4.29730 7.44314i −0.00709125 0.0122824i
\(607\) −383.491 + 102.756i −0.631780 + 0.169285i −0.560477 0.828170i \(-0.689382\pi\)
−0.0713028 + 0.997455i \(0.522716\pi\)
\(608\) 4.38577 4.38577i 0.00721343 0.00721343i
\(609\) 5.35838 + 23.5348i 0.00879865 + 0.0386450i
\(610\) −781.006 + 121.145i −1.28034 + 0.198598i
\(611\) −11.9107 + 20.6299i −0.0194938 + 0.0337642i
\(612\) 33.2306 124.018i 0.0542984 0.202644i
\(613\) −878.449 235.380i −1.43303 0.383980i −0.542944 0.839769i \(-0.682691\pi\)
−0.890088 + 0.455789i \(0.849357\pi\)
\(614\) 352.033 + 203.247i 0.573344 + 0.331021i
\(615\) −24.8182 160.000i −0.0403548 0.260163i
\(616\) 70.2216 15.9880i 0.113996 0.0259545i
\(617\) 646.295 + 646.295i 1.04748 + 1.04748i 0.998815 + 0.0486646i \(0.0154965\pi\)
0.0486646 + 0.998815i \(0.484503\pi\)
\(618\) −15.3496 57.2854i −0.0248375 0.0926948i
\(619\) −16.3039 + 9.41306i −0.0263391 + 0.0152069i −0.513112 0.858322i \(-0.671507\pi\)
0.486773 + 0.873529i \(0.338174\pi\)
\(620\) −54.6500 + 504.463i −0.0881451 + 0.813651i
\(621\) −65.5385 + 113.516i −0.105537 + 0.182796i
\(622\) −451.800 451.800i −0.726367 0.726367i
\(623\) 195.305 + 7.41280i 0.313491 + 0.0118985i
\(624\) 140.032i 0.224411i
\(625\) −57.3881 622.360i −0.0918210 0.995776i
\(626\) −376.867 652.753i −0.602024 1.04274i
\(627\) 1.78790 6.67255i 0.00285152 0.0106420i
\(628\) −122.760 458.147i −0.195478 0.729533i
\(629\) 982.857i 1.56257i
\(630\) 88.6253 + 119.145i 0.140675 + 0.189119i
\(631\) 254.417 0.403197 0.201598 0.979468i \(-0.435386\pi\)
0.201598 + 0.979468i \(0.435386\pi\)
\(632\) 204.587 54.8189i 0.323713 0.0867387i
\(633\) 494.160 + 132.410i 0.780664 + 0.209178i
\(634\) −343.310 + 198.210i −0.541499 + 0.312635i
\(635\) −89.1057 + 229.932i −0.140324 + 0.362097i
\(636\) 327.122 0.514343
\(637\) 183.079 + 973.316i 0.287408 + 1.52797i
\(638\) −7.24150 + 7.24150i −0.0113503 + 0.0113503i
\(639\) 179.913 + 103.873i 0.281554 + 0.162556i
\(640\) −44.0754 + 35.4592i −0.0688679 + 0.0554050i
\(641\) −42.3676 73.3828i −0.0660960 0.114482i 0.831084 0.556147i \(-0.187721\pi\)
−0.897180 + 0.441666i \(0.854388\pi\)
\(642\) −253.984 + 68.0547i −0.395613 + 0.106004i
\(643\) 817.400 817.400i 1.27123 1.27123i 0.325786 0.945444i \(-0.394371\pi\)
0.945444 0.325786i \(-0.105629\pi\)
\(644\) −337.415 104.277i −0.523937 0.161921i
\(645\) −64.2158 46.9694i −0.0995594 0.0728208i
\(646\) 16.5906 28.7357i 0.0256820 0.0444826i
\(647\) 20.6511 77.0710i 0.0319183 0.119121i −0.948129 0.317887i \(-0.897027\pi\)
0.980047 + 0.198766i \(0.0636935\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) 346.379 + 199.982i 0.533711 + 0.308138i
\(650\) 216.480 + 681.020i 0.333046 + 1.04772i
\(651\) −418.205 451.204i −0.642405 0.693094i
\(652\) 322.085 + 322.085i 0.493995 + 0.493995i
\(653\) 210.447 + 785.398i 0.322277 + 1.20275i 0.917021 + 0.398838i \(0.130587\pi\)
−0.594744 + 0.803915i \(0.702747\pi\)
\(654\) −56.5078 + 32.6248i −0.0864033 + 0.0498850i
\(655\) −0.0171367 0.00185647i −2.61629e−5 2.83430e-6i
\(656\) −37.3923 + 64.7654i −0.0570005 + 0.0987278i
\(657\) 101.708 + 101.708i 0.154807 + 0.154807i
\(658\) 6.21272 9.87571i 0.00944182 0.0150087i
\(659\) 728.123i 1.10489i 0.833549 + 0.552446i \(0.186305\pi\)
−0.833549 + 0.552446i \(0.813695\pi\)
\(660\) −22.7660 + 58.7462i −0.0344939 + 0.0890093i
\(661\) −340.123 589.111i −0.514558 0.891241i −0.999857 0.0168930i \(-0.994623\pi\)
0.485299 0.874348i \(-0.338711\pi\)
\(662\) 97.3027 363.138i 0.146983 0.548548i
\(663\) 193.890 + 723.608i 0.292444 + 1.09141i
\(664\) 115.026i 0.173231i
\(665\) 14.1540 + 35.6699i 0.0212842 + 0.0536389i
\(666\) 194.866 0.292591
\(667\) 48.5082 12.9977i 0.0727260 0.0194869i
\(668\) −24.0134 6.43436i −0.0359482 0.00963228i
\(669\) 307.045 177.272i 0.458961 0.264981i
\(670\) 79.9290 35.2814i 0.119297 0.0526588i
\(671\) 406.569 0.605915
\(672\) 2.60130 68.5364i 0.00387098 0.101989i
\(673\) 344.983 344.983i 0.512605 0.512605i −0.402719 0.915324i \(-0.631935\pi\)
0.915324 + 0.402719i \(0.131935\pi\)
\(674\) −58.8353 33.9686i −0.0872927 0.0503985i
\(675\) −129.767 + 5.97026i −0.192247 + 0.00884483i
\(676\) −239.522 414.864i −0.354322 0.613704i
\(677\) −893.624 + 239.446i −1.31998 + 0.353686i −0.848969 0.528443i \(-0.822776\pi\)
−0.471007 + 0.882130i \(0.656109\pi\)
\(678\) −66.4359 + 66.4359i −0.0979880 + 0.0979880i
\(679\) 957.173 + 295.812i 1.40968 + 0.435658i
\(680\) −178.660 + 244.260i −0.262735 + 0.359206i
\(681\) 142.893 247.497i 0.209828 0.363432i
\(682\) 67.5579 252.130i 0.0990585 0.369692i
\(683\) −467.914 125.377i −0.685086 0.183568i −0.100545 0.994932i \(-0.532059\pi\)
−0.584541 + 0.811364i \(0.698725\pi\)
\(684\) −5.69728 3.28933i −0.00832936 0.00480896i
\(685\) −1084.07 + 168.155i −1.58259 + 0.245481i
\(686\) −71.5241 479.773i −0.104262 0.699378i
\(687\) −360.392 360.392i −0.524589 0.524589i
\(688\) 9.51088 + 35.4951i 0.0138239 + 0.0515917i
\(689\) −1652.94 + 954.326i −2.39904 + 1.38509i
\(690\) 240.720 193.662i 0.348869 0.280670i
\(691\) 453.622 785.696i 0.656471 1.13704i −0.325051 0.945696i \(-0.605382\pi\)
0.981523 0.191346i \(-0.0612851\pi\)
\(692\) −474.063 474.063i −0.685062 0.685062i
\(693\) −35.6571 67.5543i −0.0514533 0.0974810i
\(694\) 760.731i 1.09615i
\(695\) −1043.06 + 460.415i −1.50080 + 0.662467i
\(696\) 4.87643 + 8.44623i 0.00700637 + 0.0121354i
\(697\) −103.548 + 386.445i −0.148562 + 0.554440i
\(698\) 1.21533 + 4.53567i 0.00174116 + 0.00649810i
\(699\) 11.8491i 0.0169514i
\(700\) −93.3013 337.335i −0.133288 0.481907i
\(701\) −734.664 −1.04802 −0.524011 0.851711i \(-0.675565\pi\)
−0.524011 + 0.851711i \(0.675565\pi\)
\(702\) 143.466 38.4415i 0.204367 0.0547600i
\(703\) 48.6439 + 13.0341i 0.0691948 + 0.0185407i
\(704\) 25.2013 14.5500i 0.0357973 0.0206676i
\(705\) 4.12170 + 9.33760i 0.00584638 + 0.0132448i
\(706\) −345.539 −0.489432
\(707\) −20.7895 13.0785i −0.0294052 0.0184985i
\(708\) 269.336 269.336i 0.380418 0.380418i
\(709\) 806.709 + 465.754i 1.13781 + 0.656916i 0.945888 0.324494i \(-0.105194\pi\)
0.191924 + 0.981410i \(0.438527\pi\)
\(710\) −306.938 381.521i −0.432307 0.537353i
\(711\) −112.326 194.554i −0.157983 0.273635i
\(712\) 76.2810 20.4394i 0.107136 0.0287071i
\(713\) −905.093 + 905.093i −1.26941 + 1.26941i
\(714\) −81.4541 357.759i −0.114081 0.501063i
\(715\) −56.3465 363.259i −0.0788063 0.508055i
\(716\) −54.1836 + 93.8487i −0.0756754 + 0.131074i
\(717\) −70.3987 + 262.731i −0.0981850 + 0.366431i
\(718\) 52.8081 + 14.1499i 0.0735489 + 0.0197074i
\(719\) 647.341 + 373.743i 0.900336 + 0.519809i 0.877309 0.479926i \(-0.159336\pi\)
0.0230265 + 0.999735i \(0.492670\pi\)
\(720\) 48.4282 + 35.4219i 0.0672614 + 0.0491971i
\(721\) −115.210 124.301i −0.159792 0.172400i
\(722\) 359.798 + 359.798i 0.498335 + 0.498335i
\(723\) 83.6538 + 312.200i 0.115704 + 0.431812i
\(724\) −245.328 + 141.640i −0.338851 + 0.195636i
\(725\) 36.7729 + 33.5380i 0.0507212 + 0.0462594i
\(726\) −131.989 + 228.612i −0.181803 + 0.314892i
\(727\) 621.725 + 621.725i 0.855192 + 0.855192i 0.990767 0.135575i \(-0.0432881\pi\)
−0.135575 + 0.990767i \(0.543288\pi\)
\(728\) 186.800 + 353.902i 0.256593 + 0.486129i
\(729\) 27.0000i 0.0370370i
\(730\) −136.905 310.155i −0.187542 0.424870i
\(731\) 98.2936 + 170.250i 0.134465 + 0.232900i
\(732\) 100.212 373.996i 0.136901 0.510923i
\(733\) 13.4676 + 50.2618i 0.0183733 + 0.0685700i 0.974504 0.224371i \(-0.0720327\pi\)
−0.956131 + 0.292941i \(0.905366\pi\)
\(734\) 81.0071i 0.110364i
\(735\) 382.918 + 182.890i 0.520977 + 0.248830i
\(736\) −142.699 −0.193884
\(737\) −43.4130 + 11.6325i −0.0589051 + 0.0157836i
\(738\) 76.6183 + 20.5298i 0.103819 + 0.0278182i
\(739\) 546.157 315.324i 0.739048 0.426690i −0.0826749 0.996577i \(-0.526346\pi\)
0.821723 + 0.569887i \(0.193013\pi\)
\(740\) −428.269 165.968i −0.578742 0.224280i
\(741\) 38.3843 0.0518007
\(742\) 826.731 436.373i 1.11419 0.588103i
\(743\) −813.107 + 813.107i −1.09436 + 1.09436i −0.0992988 + 0.995058i \(0.531660\pi\)
−0.995058 + 0.0992988i \(0.968340\pi\)
\(744\) −215.278 124.291i −0.289352 0.167057i
\(745\) −53.6094 + 494.858i −0.0719590 + 0.664239i
\(746\) −206.289 357.302i −0.276526 0.478957i
\(747\) −117.846 + 31.5767i −0.157759 + 0.0422714i
\(748\) 110.080 110.080i 0.147166 0.147166i
\(749\) −551.106 + 510.802i −0.735790 + 0.681978i
\(750\) 290.281 + 97.4012i 0.387041 + 0.129868i
\(751\) 38.7799 67.1687i 0.0516377 0.0894390i −0.839051 0.544052i \(-0.816889\pi\)
0.890689 + 0.454613i \(0.150223\pi\)
\(752\) 1.22016 4.55369i 0.00162255 0.00605544i
\(753\) 530.060 + 142.029i 0.703931 + 0.188618i
\(754\) −49.2811 28.4524i −0.0653595 0.0377353i
\(755\) −230.883 + 315.659i −0.305805 + 0.418091i
\(756\) −70.9309 + 16.1495i −0.0938240 + 0.0213617i
\(757\) −622.305 622.305i −0.822068 0.822068i 0.164337 0.986404i \(-0.447452\pi\)
−0.986404 + 0.164337i \(0.947452\pi\)
\(758\) −176.680 659.377i −0.233087 0.869891i
\(759\) −137.638 + 79.4652i −0.181341 + 0.104697i
\(760\) 9.71974 + 12.0815i 0.0127891 + 0.0158968i
\(761\) 42.2518 73.1823i 0.0555215 0.0961660i −0.836929 0.547312i \(-0.815651\pi\)
0.892450 + 0.451146i \(0.148985\pi\)
\(762\) −85.4226 85.4226i −0.112103 0.112103i
\(763\) −99.2907 + 157.832i −0.130132 + 0.206857i