Properties

Label 210.3.v.a.37.6
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.6
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-2.69832 - 4.20940i) q^{5} -2.44949 q^{6} +(1.39786 + 6.85901i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-2.69832 - 4.20940i) q^{5} -2.44949 q^{6} +(1.39786 + 6.85901i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(5.22672 + 4.76250i) q^{10} +(6.05758 + 10.4920i) q^{11} +(3.34607 - 0.896575i) q^{12} +(12.6272 - 12.6272i) q^{13} +(-4.42009 - 8.85792i) q^{14} +(-2.62735 - 8.25209i) q^{15} +(2.00000 - 3.46410i) q^{16} +(4.41196 - 16.4657i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(30.0470 + 17.3477i) q^{19} +(-8.88303 - 4.59258i) q^{20} +(-0.736136 + 12.1020i) q^{21} +(-12.1152 - 12.1152i) q^{22} +(1.08501 + 4.04932i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(-10.4382 + 22.7166i) q^{25} +(-12.6272 + 21.8710i) q^{26} +(3.67423 + 3.67423i) q^{27} +(9.28018 + 10.4823i) q^{28} -30.5436i q^{29} +(6.60950 + 10.3109i) q^{30} +(11.3001 + 19.5724i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(5.43108 + 20.2691i) q^{33} +24.1074i q^{34} +(25.1004 - 24.3920i) q^{35} +6.00000 q^{36} +(40.8732 - 10.9520i) q^{37} +(-47.3947 - 12.6994i) q^{38} +(26.7864 - 15.4651i) q^{39} +(13.8154 + 3.02217i) q^{40} +68.1394 q^{41} +(-3.42405 - 16.8011i) q^{42} +(-48.6732 + 48.6732i) q^{43} +(20.9841 + 12.1152i) q^{44} +(-0.696328 - 14.9838i) q^{45} +(-2.96431 - 5.13434i) q^{46} +(-58.4823 + 15.6703i) q^{47} +(4.89898 - 4.89898i) q^{48} +(-45.0920 + 19.1759i) q^{49} +(5.94394 - 34.8521i) q^{50} +(14.7627 - 25.5698i) q^{51} +(9.24378 - 34.4983i) q^{52} +(-38.0323 - 10.1907i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(27.8200 - 53.8097i) q^{55} +(-16.5137 - 10.9223i) q^{56} +(42.4929 + 42.4929i) q^{57} +(11.1797 + 41.7234i) q^{58} +(-50.9060 + 29.3906i) q^{59} +(-12.8028 - 11.6657i) q^{60} +(18.7340 - 32.4482i) q^{61} +(-22.6002 - 22.6002i) q^{62} +(-6.65675 + 19.9170i) q^{63} -8.00000i q^{64} +(-87.2254 - 19.0808i) q^{65} +(-14.8380 - 25.7001i) q^{66} +(29.4221 - 109.805i) q^{67} +(-8.82393 - 32.9313i) q^{68} +7.26105i q^{69} +(-25.3598 + 42.5074i) q^{70} -27.4586 q^{71} +(-8.19615 + 2.19615i) q^{72} +(-125.020 - 33.4989i) q^{73} +(-51.8252 + 29.9213i) q^{74} +(-27.6470 + 33.3263i) q^{75} +69.3907 q^{76} +(-63.4973 + 56.2155i) q^{77} +(-30.9303 + 30.9303i) q^{78} +(9.99699 + 5.77176i) q^{79} +(-19.9784 + 0.928438i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-93.0802 + 24.9408i) q^{82} +(-11.4361 + 11.4361i) q^{83} +(10.8270 + 21.6974i) q^{84} +(-81.2155 + 25.8579i) q^{85} +(48.6732 - 84.3044i) q^{86} +(13.6923 - 51.1005i) q^{87} +(-33.0992 - 8.86892i) q^{88} +(29.3971 + 16.9724i) q^{89} +(6.43566 + 20.2134i) q^{90} +(104.261 + 68.9591i) q^{91} +(5.92862 + 5.92862i) q^{92} +(10.1314 + 37.8109i) q^{93} +(74.1526 - 42.8120i) q^{94} +(-8.05311 - 173.290i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(-26.7458 - 26.7458i) q^{97} +(54.5779 - 42.6996i) q^{98} +36.3455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −2.69832 4.20940i −0.539663 0.841881i
\(6\) −2.44949 −0.408248
\(7\) 1.39786 + 6.85901i 0.199695 + 0.979858i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 5.22672 + 4.76250i 0.522672 + 0.476250i
\(11\) 6.05758 + 10.4920i 0.550689 + 0.953822i 0.998225 + 0.0595558i \(0.0189684\pi\)
−0.447536 + 0.894266i \(0.647698\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) 12.6272 12.6272i 0.971326 0.971326i −0.0282743 0.999600i \(-0.509001\pi\)
0.999600 + 0.0282743i \(0.00900118\pi\)
\(14\) −4.42009 8.85792i −0.315721 0.632709i
\(15\) −2.62735 8.25209i −0.175157 0.550140i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 4.41196 16.4657i 0.259527 0.968569i −0.705988 0.708223i \(-0.749497\pi\)
0.965516 0.260345i \(-0.0838364\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) 30.0470 + 17.3477i 1.58142 + 0.913035i 0.994652 + 0.103282i \(0.0329344\pi\)
0.586771 + 0.809753i \(0.300399\pi\)
\(20\) −8.88303 4.59258i −0.444151 0.229629i
\(21\) −0.736136 + 12.1020i −0.0350541 + 0.576285i
\(22\) −12.1152 12.1152i −0.550689 0.550689i
\(23\) 1.08501 + 4.04932i 0.0471745 + 0.176058i 0.985493 0.169713i \(-0.0542841\pi\)
−0.938319 + 0.345771i \(0.887617\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) −10.4382 + 22.7166i −0.417527 + 0.908665i
\(26\) −12.6272 + 21.8710i −0.485663 + 0.841193i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 9.28018 + 10.4823i 0.331435 + 0.374367i
\(29\) 30.5436i 1.05323i −0.850104 0.526614i \(-0.823461\pi\)
0.850104 0.526614i \(-0.176539\pi\)
\(30\) 6.60950 + 10.3109i 0.220317 + 0.343696i
\(31\) 11.3001 + 19.5724i 0.364519 + 0.631366i 0.988699 0.149915i \(-0.0478999\pi\)
−0.624179 + 0.781281i \(0.714567\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) 5.43108 + 20.2691i 0.164578 + 0.614214i
\(34\) 24.1074i 0.709042i
\(35\) 25.1004 24.3920i 0.717156 0.696913i
\(36\) 6.00000 0.166667
\(37\) 40.8732 10.9520i 1.10468 0.295999i 0.340012 0.940421i \(-0.389569\pi\)
0.764670 + 0.644422i \(0.222902\pi\)
\(38\) −47.3947 12.6994i −1.24723 0.334194i
\(39\) 26.7864 15.4651i 0.686831 0.396542i
\(40\) 13.8154 + 3.02217i 0.345386 + 0.0755543i
\(41\) 68.1394 1.66194 0.830969 0.556319i \(-0.187787\pi\)
0.830969 + 0.556319i \(0.187787\pi\)
\(42\) −3.42405 16.8011i −0.0815251 0.400025i
\(43\) −48.6732 + 48.6732i −1.13193 + 1.13193i −0.142079 + 0.989855i \(0.545379\pi\)
−0.989855 + 0.142079i \(0.954621\pi\)
\(44\) 20.9841 + 12.1152i 0.476911 + 0.275345i
\(45\) −0.696328 14.9838i −0.0154740 0.332974i
\(46\) −2.96431 5.13434i −0.0644415 0.111616i
\(47\) −58.4823 + 15.6703i −1.24430 + 0.333410i −0.820134 0.572172i \(-0.806101\pi\)
−0.424171 + 0.905582i \(0.639434\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) −45.0920 + 19.1759i −0.920244 + 0.391345i
\(50\) 5.94394 34.8521i 0.118879 0.697042i
\(51\) 14.7627 25.5698i 0.289465 0.501368i
\(52\) 9.24378 34.4983i 0.177765 0.663428i
\(53\) −38.0323 10.1907i −0.717591 0.192278i −0.118495 0.992955i \(-0.537807\pi\)
−0.599097 + 0.800677i \(0.704474\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) 27.8200 53.8097i 0.505817 0.978358i
\(56\) −16.5137 10.9223i −0.294888 0.195041i
\(57\) 42.4929 + 42.4929i 0.745490 + 0.745490i
\(58\) 11.1797 + 41.7234i 0.192754 + 0.719368i
\(59\) −50.9060 + 29.3906i −0.862814 + 0.498146i −0.864954 0.501852i \(-0.832652\pi\)
0.00213942 + 0.999998i \(0.499319\pi\)
\(60\) −12.8028 11.6657i −0.213380 0.194428i
\(61\) 18.7340 32.4482i 0.307115 0.531938i −0.670615 0.741805i \(-0.733970\pi\)
0.977730 + 0.209867i \(0.0673031\pi\)
\(62\) −22.6002 22.6002i −0.364519 0.364519i
\(63\) −6.65675 + 19.9170i −0.105663 + 0.316143i
\(64\) 8.00000i 0.125000i
\(65\) −87.2254 19.0808i −1.34193 0.293552i
\(66\) −14.8380 25.7001i −0.224818 0.389396i
\(67\) 29.4221 109.805i 0.439136 1.63888i −0.291834 0.956469i \(-0.594265\pi\)
0.730970 0.682410i \(-0.239068\pi\)
\(68\) −8.82393 32.9313i −0.129764 0.484284i
\(69\) 7.26105i 0.105233i
\(70\) −25.3598 + 42.5074i −0.362283 + 0.607249i
\(71\) −27.4586 −0.386741 −0.193371 0.981126i \(-0.561942\pi\)
−0.193371 + 0.981126i \(0.561942\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) −125.020 33.4989i −1.71260 0.458889i −0.736539 0.676395i \(-0.763541\pi\)
−0.976059 + 0.217506i \(0.930208\pi\)
\(74\) −51.8252 + 29.9213i −0.700340 + 0.404342i
\(75\) −27.6470 + 33.3263i −0.368626 + 0.444351i
\(76\) 69.3907 0.913035
\(77\) −63.4973 + 56.2155i −0.824640 + 0.730071i
\(78\) −30.9303 + 30.9303i −0.396542 + 0.396542i
\(79\) 9.99699 + 5.77176i 0.126544 + 0.0730603i 0.561936 0.827181i \(-0.310057\pi\)
−0.435392 + 0.900241i \(0.643390\pi\)
\(80\) −19.9784 + 0.928438i −0.249730 + 0.0116055i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −93.0802 + 24.9408i −1.13512 + 0.304156i
\(83\) −11.4361 + 11.4361i −0.137784 + 0.137784i −0.772635 0.634851i \(-0.781062\pi\)
0.634851 + 0.772635i \(0.281062\pi\)
\(84\) 10.8270 + 21.6974i 0.128892 + 0.258302i
\(85\) −81.2155 + 25.8579i −0.955477 + 0.304210i
\(86\) 48.6732 84.3044i 0.565967 0.980284i
\(87\) 13.6923 51.1005i 0.157383 0.587362i
\(88\) −33.0992 8.86892i −0.376128 0.100783i
\(89\) 29.3971 + 16.9724i 0.330305 + 0.190701i 0.655976 0.754781i \(-0.272257\pi\)
−0.325672 + 0.945483i \(0.605590\pi\)
\(90\) 6.43566 + 20.2134i 0.0715074 + 0.224594i
\(91\) 104.261 + 68.9591i 1.14573 + 0.757793i
\(92\) 5.92862 + 5.92862i 0.0644415 + 0.0644415i
\(93\) 10.1314 + 37.8109i 0.108940 + 0.406569i
\(94\) 74.1526 42.8120i 0.788858 0.455447i
\(95\) −8.05311 173.290i −0.0847696 1.82410i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) −26.7458 26.7458i −0.275729 0.275729i 0.555672 0.831402i \(-0.312461\pi\)
−0.831402 + 0.555672i \(0.812461\pi\)
\(98\) 54.5779 42.6996i 0.556917 0.435710i
\(99\) 36.3455i 0.367126i
\(100\) 4.63718 + 49.7845i 0.0463718 + 0.497845i
\(101\) 13.5289 + 23.4328i 0.133950 + 0.232008i 0.925196 0.379490i \(-0.123901\pi\)
−0.791246 + 0.611498i \(0.790567\pi\)
\(102\) −10.8071 + 40.3325i −0.105952 + 0.395417i
\(103\) −23.9288 89.3037i −0.232319 0.867026i −0.979339 0.202225i \(-0.935183\pi\)
0.747020 0.664801i \(-0.231484\pi\)
\(104\) 50.5089i 0.485663i
\(105\) 52.9285 29.5563i 0.504081 0.281489i
\(106\) 55.6832 0.525313
\(107\) 76.7996 20.5784i 0.717753 0.192321i 0.118584 0.992944i \(-0.462164\pi\)
0.599169 + 0.800623i \(0.295498\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) −20.4525 + 11.8082i −0.187637 + 0.108333i −0.590876 0.806762i \(-0.701218\pi\)
0.403239 + 0.915095i \(0.367884\pi\)
\(110\) −18.3071 + 83.6882i −0.166428 + 0.760802i
\(111\) 73.2919 0.660287
\(112\) 26.5560 + 8.87567i 0.237107 + 0.0792471i
\(113\) −13.2604 + 13.2604i −0.117349 + 0.117349i −0.763343 0.645994i \(-0.776443\pi\)
0.645994 + 0.763343i \(0.276443\pi\)
\(114\) −73.5999 42.4929i −0.645613 0.372745i
\(115\) 14.1175 15.4936i 0.122761 0.134727i
\(116\) −30.5436 52.9031i −0.263307 0.456061i
\(117\) 51.7474 13.8657i 0.442285 0.118510i
\(118\) 58.7812 58.7812i 0.498146 0.498146i
\(119\) 119.105 + 7.24491i 1.00089 + 0.0608816i
\(120\) 21.7589 + 11.2495i 0.181324 + 0.0937457i
\(121\) −12.8886 + 22.3237i −0.106517 + 0.184494i
\(122\) −13.7142 + 51.1822i −0.112412 + 0.419527i
\(123\) 114.000 + 30.5461i 0.926825 + 0.248342i
\(124\) 39.1447 + 22.6002i 0.315683 + 0.182260i
\(125\) 123.789 17.3582i 0.990311 0.138866i
\(126\) 1.80316 29.6437i 0.0143108 0.235267i
\(127\) −77.1600 77.1600i −0.607559 0.607559i 0.334749 0.942307i \(-0.391349\pi\)
−0.942307 + 0.334749i \(0.891349\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) −103.251 + 59.6122i −0.800399 + 0.462110i
\(130\) 126.136 5.86180i 0.970279 0.0450908i
\(131\) −84.8067 + 146.890i −0.647380 + 1.12129i 0.336367 + 0.941731i \(0.390802\pi\)
−0.983746 + 0.179563i \(0.942531\pi\)
\(132\) 29.6760 + 29.6760i 0.224818 + 0.224818i
\(133\) −76.9861 + 230.343i −0.578843 + 1.73190i
\(134\) 160.765i 1.19974i
\(135\) 5.55209 25.3806i 0.0411266 0.188004i
\(136\) 24.1074 + 41.7553i 0.177260 + 0.307024i
\(137\) 1.48270 5.53350i 0.0108226 0.0403905i −0.960303 0.278958i \(-0.910011\pi\)
0.971126 + 0.238567i \(0.0766777\pi\)
\(138\) −2.65773 9.91878i −0.0192589 0.0718752i
\(139\) 18.9621i 0.136418i 0.997671 + 0.0682091i \(0.0217285\pi\)
−0.997671 + 0.0682091i \(0.978271\pi\)
\(140\) 19.0833 67.3486i 0.136309 0.481061i
\(141\) −104.868 −0.743742
\(142\) 37.5092 10.0506i 0.264149 0.0707786i
\(143\) 208.976 + 55.9950i 1.46137 + 0.391573i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) −128.570 + 82.4164i −0.886693 + 0.568389i
\(146\) 183.041 1.25371
\(147\) −84.0366 + 11.8678i −0.571678 + 0.0807332i
\(148\) 59.8426 59.8426i 0.404342 0.404342i
\(149\) −15.7808 9.11106i −0.105911 0.0611480i 0.446109 0.894979i \(-0.352810\pi\)
−0.552020 + 0.833831i \(0.686143\pi\)
\(150\) 25.5682 55.6441i 0.170455 0.370961i
\(151\) −82.8541 143.507i −0.548703 0.950381i −0.998364 0.0571815i \(-0.981789\pi\)
0.449661 0.893199i \(-0.351545\pi\)
\(152\) −94.7894 + 25.3987i −0.623615 + 0.167097i
\(153\) 36.1611 36.1611i 0.236347 0.236347i
\(154\) 66.1626 100.033i 0.429628 0.649567i
\(155\) 51.8967 100.379i 0.334817 0.647607i
\(156\) 30.9303 53.5728i 0.198271 0.343416i
\(157\) −16.3146 + 60.8870i −0.103915 + 0.387815i −0.998220 0.0596426i \(-0.981004\pi\)
0.894305 + 0.447458i \(0.147671\pi\)
\(158\) −15.7688 4.22522i −0.0998022 0.0267419i
\(159\) −59.0610 34.0989i −0.371453 0.214458i
\(160\) 26.9512 8.58089i 0.168445 0.0536305i
\(161\) −26.2576 + 13.1025i −0.163091 + 0.0813821i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 29.1591 + 108.823i 0.178890 + 0.667628i 0.995856 + 0.0909421i \(0.0289878\pi\)
−0.816966 + 0.576686i \(0.804346\pi\)
\(164\) 118.021 68.1394i 0.719640 0.415484i
\(165\) 70.6659 77.5540i 0.428278 0.470024i
\(166\) 11.4361 19.8079i 0.0688921 0.119325i
\(167\) 84.0997 + 84.0997i 0.503591 + 0.503591i 0.912552 0.408961i \(-0.134109\pi\)
−0.408961 + 0.912552i \(0.634109\pi\)
\(168\) −22.7317 25.6762i −0.135308 0.152835i
\(169\) 149.894i 0.886948i
\(170\) 101.478 65.0495i 0.596929 0.382644i
\(171\) 52.0430 + 90.1411i 0.304345 + 0.527141i
\(172\) −35.6312 + 132.978i −0.207158 + 0.773126i
\(173\) 64.5135 + 240.768i 0.372910 + 1.39172i 0.856374 + 0.516356i \(0.172712\pi\)
−0.483464 + 0.875364i \(0.660621\pi\)
\(174\) 74.8163i 0.429979i
\(175\) −170.405 39.8407i −0.973740 0.227661i
\(176\) 48.4607 0.275345
\(177\) −98.3429 + 26.3509i −0.555610 + 0.148875i
\(178\) −46.3695 12.4247i −0.260503 0.0698016i
\(179\) −53.9933 + 31.1731i −0.301639 + 0.174151i −0.643179 0.765716i \(-0.722385\pi\)
0.341540 + 0.939867i \(0.389051\pi\)
\(180\) −16.1899 25.2564i −0.0899439 0.140313i
\(181\) 191.846 1.05992 0.529961 0.848022i \(-0.322206\pi\)
0.529961 + 0.848022i \(0.322206\pi\)
\(182\) −167.665 56.0376i −0.921234 0.307899i
\(183\) 45.8887 45.8887i 0.250758 0.250758i
\(184\) −10.2687 5.92862i −0.0558080 0.0322208i
\(185\) −156.390 142.500i −0.845352 0.770271i
\(186\) −27.6795 47.9423i −0.148814 0.257754i
\(187\) 199.484 53.4517i 1.06676 0.285838i
\(188\) −85.6241 + 85.6241i −0.455447 + 0.455447i
\(189\) −20.0655 + 30.3377i −0.106167 + 0.160517i
\(190\) 74.4292 + 233.770i 0.391732 + 1.23037i
\(191\) −31.8872 + 55.2302i −0.166949 + 0.289163i −0.937346 0.348401i \(-0.886725\pi\)
0.770397 + 0.637564i \(0.220058\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) −290.628 77.8735i −1.50584 0.403490i −0.590791 0.806825i \(-0.701184\pi\)
−0.915052 + 0.403335i \(0.867851\pi\)
\(194\) 46.3250 + 26.7458i 0.238789 + 0.137865i
\(195\) −137.377 71.0250i −0.704499 0.364231i
\(196\) −58.9256 + 78.3056i −0.300641 + 0.399518i
\(197\) −90.9660 90.9660i −0.461756 0.461756i 0.437475 0.899231i \(-0.355873\pi\)
−0.899231 + 0.437475i \(0.855873\pi\)
\(198\) −13.3034 49.6489i −0.0671888 0.250752i
\(199\) 74.3886 42.9483i 0.373812 0.215821i −0.301310 0.953526i \(-0.597424\pi\)
0.675123 + 0.737706i \(0.264091\pi\)
\(200\) −24.5569 66.3096i −0.122785 0.331548i
\(201\) 98.4484 170.518i 0.489793 0.848346i
\(202\) −27.0578 27.0578i −0.133950 0.133950i
\(203\) 209.499 42.6958i 1.03201 0.210324i
\(204\) 59.0509i 0.289465i
\(205\) −183.862 286.826i −0.896887 1.39915i
\(206\) 65.3748 + 113.233i 0.317353 + 0.549672i
\(207\) −3.25504 + 12.1480i −0.0157248 + 0.0586859i
\(208\) −18.4876 68.9965i −0.0888825 0.331714i
\(209\) 420.340i 2.01119i
\(210\) −61.4833 + 59.7478i −0.292778 + 0.284514i
\(211\) −150.591 −0.713702 −0.356851 0.934161i \(-0.616150\pi\)
−0.356851 + 0.934161i \(0.616150\pi\)
\(212\) −76.0647 + 20.3815i −0.358796 + 0.0961390i
\(213\) −45.9392 12.3094i −0.215677 0.0577905i
\(214\) −97.3779 + 56.2212i −0.455037 + 0.262716i
\(215\) 336.221 + 73.5494i 1.56382 + 0.342090i
\(216\) −14.6969 −0.0680414
\(217\) −118.451 + 104.867i −0.545857 + 0.483258i
\(218\) 23.6165 23.6165i 0.108333 0.108333i
\(219\) −194.145 112.090i −0.886506 0.511824i
\(220\) −5.62409 121.021i −0.0255640 0.550096i
\(221\) −152.205 263.627i −0.688710 1.19288i
\(222\) −100.119 + 26.8267i −0.450985 + 0.120841i
\(223\) 166.002 166.002i 0.744402 0.744402i −0.229019 0.973422i \(-0.573552\pi\)
0.973422 + 0.229019i \(0.0735519\pi\)
\(224\) −39.5249 2.40421i −0.176451 0.0107331i
\(225\) −61.1941 + 43.3623i −0.271974 + 0.192721i
\(226\) 13.2604 22.9677i 0.0586744 0.101627i
\(227\) 7.05532 26.3308i 0.0310807 0.115995i −0.948643 0.316349i \(-0.897543\pi\)
0.979723 + 0.200355i \(0.0642095\pi\)
\(228\) 116.093 + 31.1070i 0.509179 + 0.136434i
\(229\) −248.400 143.414i −1.08471 0.626260i −0.152550 0.988296i \(-0.548749\pi\)
−0.932164 + 0.362036i \(0.882082\pi\)
\(230\) −13.6138 + 26.3321i −0.0591906 + 0.114487i
\(231\) −131.434 + 65.5852i −0.568977 + 0.283919i
\(232\) 61.0872 + 61.0872i 0.263307 + 0.263307i
\(233\) 3.84066 + 14.3335i 0.0164835 + 0.0615173i 0.973678 0.227929i \(-0.0731955\pi\)
−0.957194 + 0.289446i \(0.906529\pi\)
\(234\) −65.6130 + 37.8817i −0.280398 + 0.161888i
\(235\) 223.766 + 203.892i 0.952198 + 0.867627i
\(236\) −58.7812 + 101.812i −0.249073 + 0.431407i
\(237\) 14.1379 + 14.1379i 0.0596535 + 0.0596535i
\(238\) −165.353 + 33.6989i −0.694760 + 0.141592i
\(239\) 327.821i 1.37164i −0.727772 0.685819i \(-0.759444\pi\)
0.727772 0.685819i \(-0.240556\pi\)
\(240\) −33.8408 7.40278i −0.141003 0.0308449i
\(241\) 179.078 + 310.172i 0.743062 + 1.28702i 0.951095 + 0.308899i \(0.0999606\pi\)
−0.208033 + 0.978122i \(0.566706\pi\)
\(242\) 9.43512 35.2123i 0.0389881 0.145506i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 74.9360i 0.307115i
\(245\) 202.392 + 138.068i 0.826088 + 0.563541i
\(246\) −166.907 −0.678483
\(247\) 598.464 160.358i 2.42293 0.649223i
\(248\) −61.7449 16.5445i −0.248971 0.0667117i
\(249\) −24.2596 + 14.0063i −0.0974281 + 0.0562501i
\(250\) −162.745 + 69.0216i −0.650981 + 0.276086i
\(251\) −477.586 −1.90273 −0.951366 0.308063i \(-0.900319\pi\)
−0.951366 + 0.308063i \(0.900319\pi\)
\(252\) 8.38719 + 41.1540i 0.0332825 + 0.163310i
\(253\) −35.9131 + 35.9131i −0.141949 + 0.141949i
\(254\) 133.645 + 77.1600i 0.526161 + 0.303779i
\(255\) −147.468 + 6.85313i −0.578306 + 0.0268750i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 442.491 118.565i 1.72175 0.461343i 0.743497 0.668739i \(-0.233166\pi\)
0.978257 + 0.207396i \(0.0664989\pi\)
\(258\) 119.224 119.224i 0.462110 0.462110i
\(259\) 132.255 + 265.041i 0.510636 + 1.02332i
\(260\) −170.160 + 54.1764i −0.654461 + 0.208371i
\(261\) 45.8154 79.3546i 0.175538 0.304041i
\(262\) 62.0828 231.696i 0.236957 0.884337i
\(263\) −181.651 48.6732i −0.690687 0.185069i −0.103632 0.994616i \(-0.533046\pi\)
−0.587056 + 0.809547i \(0.699713\pi\)
\(264\) −51.4003 29.6760i −0.194698 0.112409i
\(265\) 59.7264 + 187.591i 0.225383 + 0.707892i
\(266\) 20.8537 342.833i 0.0783974 1.28884i
\(267\) 41.5738 + 41.5738i 0.155707 + 0.155707i
\(268\) −58.8443 219.610i −0.219568 0.819439i
\(269\) −22.6983 + 13.1049i −0.0843803 + 0.0487170i −0.541596 0.840639i \(-0.682180\pi\)
0.457216 + 0.889356i \(0.348847\pi\)
\(270\) 1.70565 + 36.7027i 0.00631722 + 0.135936i
\(271\) −26.6444 + 46.1495i −0.0983188 + 0.170293i −0.910989 0.412431i \(-0.864680\pi\)
0.812670 + 0.582724i \(0.198013\pi\)
\(272\) −48.2148 48.2148i −0.177260 0.177260i
\(273\) 143.519 + 162.110i 0.525712 + 0.593810i
\(274\) 8.10160i 0.0295679i
\(275\) −301.574 + 28.0901i −1.09663 + 0.102146i
\(276\) 7.26105 + 12.5765i 0.0263082 + 0.0455671i
\(277\) −5.88673 + 21.9696i −0.0212517 + 0.0793125i −0.975737 0.218945i \(-0.929739\pi\)
0.954486 + 0.298257i \(0.0964053\pi\)
\(278\) −6.94062 25.9028i −0.0249663 0.0931754i
\(279\) 67.8006i 0.243013i
\(280\) −1.41699 + 98.9848i −0.00506069 + 0.353517i
\(281\) 68.0224 0.242073 0.121036 0.992648i \(-0.461378\pi\)
0.121036 + 0.992648i \(0.461378\pi\)
\(282\) 143.252 38.3842i 0.507985 0.136114i
\(283\) −333.248 89.2935i −1.17755 0.315525i −0.383598 0.923500i \(-0.625315\pi\)
−0.793956 + 0.607975i \(0.791982\pi\)
\(284\) −47.5597 + 27.4586i −0.167464 + 0.0966853i
\(285\) 64.2105 293.529i 0.225300 1.02993i
\(286\) −305.962 −1.06980
\(287\) 95.2497 + 467.369i 0.331880 + 1.62846i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −1.37152 0.791849i −0.00474575 0.00273996i
\(290\) 145.464 159.643i 0.501600 0.550493i
\(291\) −32.7567 56.7363i −0.112566 0.194970i
\(292\) −250.039 + 66.9978i −0.856299 + 0.229445i
\(293\) 139.189 139.189i 0.475046 0.475046i −0.428497 0.903543i \(-0.640957\pi\)
0.903543 + 0.428497i \(0.140957\pi\)
\(294\) 110.452 46.9712i 0.375688 0.159766i
\(295\) 261.078 + 134.979i 0.885009 + 0.457556i
\(296\) −59.8426 + 103.650i −0.202171 + 0.350170i
\(297\) −16.2932 + 60.8072i −0.0548594 + 0.204738i
\(298\) 24.8919 + 6.66976i 0.0835298 + 0.0223817i
\(299\) 64.8325 + 37.4311i 0.216831 + 0.125187i
\(300\) −14.5596 + 85.3699i −0.0485321 + 0.284566i
\(301\) −401.888 265.811i −1.33518 0.883094i
\(302\) 165.708 + 165.708i 0.548703 + 0.548703i
\(303\) 12.1297 + 45.2686i 0.0400320 + 0.149401i
\(304\) 120.188 69.3907i 0.395356 0.228259i
\(305\) −187.138 + 8.69668i −0.613567 + 0.0285137i
\(306\) −36.1611 + 62.6329i −0.118174 + 0.204683i
\(307\) −97.3846 97.3846i −0.317214 0.317214i 0.530482 0.847696i \(-0.322011\pi\)
−0.847696 + 0.530482i \(0.822011\pi\)
\(308\) −53.7651 + 160.865i −0.174562 + 0.522290i
\(309\) 160.135i 0.518236i
\(310\) −34.1509 + 156.116i −0.110164 + 0.503600i
\(311\) 108.765 + 188.387i 0.349727 + 0.605745i 0.986201 0.165553i \(-0.0529410\pi\)
−0.636474 + 0.771298i \(0.719608\pi\)
\(312\) −22.6425 + 84.5031i −0.0725723 + 0.270843i
\(313\) 15.4656 + 57.7185i 0.0494110 + 0.184404i 0.986221 0.165435i \(-0.0529028\pi\)
−0.936810 + 0.349839i \(0.886236\pi\)
\(314\) 89.1448i 0.283901i
\(315\) 101.801 25.7215i 0.323177 0.0816555i
\(316\) 23.0871 0.0730603
\(317\) 160.194 42.9238i 0.505343 0.135406i 0.00286449 0.999996i \(-0.499088\pi\)
0.502479 + 0.864590i \(0.332422\pi\)
\(318\) 93.1598 + 24.9621i 0.292955 + 0.0784972i
\(319\) 320.465 185.020i 1.00459 0.580001i
\(320\) −33.6752 + 21.5865i −0.105235 + 0.0674579i
\(321\) 137.713 0.429013
\(322\) 31.0728 27.5093i 0.0964992 0.0854327i
\(323\) 418.207 418.207i 1.29476 1.29476i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 155.043 + 418.653i 0.477055 + 1.28816i
\(326\) −79.6643 137.983i −0.244369 0.423259i
\(327\) −39.5112 + 10.5870i −0.120829 + 0.0323761i
\(328\) −136.279 + 136.279i −0.415484 + 0.415484i
\(329\) −189.233 379.226i −0.575176 1.15266i
\(330\) −68.1447 + 131.806i −0.206499 + 0.399413i
\(331\) −62.9012 + 108.948i −0.190034 + 0.329148i −0.945261 0.326315i \(-0.894193\pi\)
0.755227 + 0.655463i \(0.227526\pi\)
\(332\) −8.37179 + 31.2440i −0.0252162 + 0.0941083i
\(333\) 122.620 + 32.8559i 0.368227 + 0.0986662i
\(334\) −145.665 84.0997i −0.436123 0.251796i
\(335\) −541.603 + 172.439i −1.61673 + 0.514743i
\(336\) 40.4502 + 26.7540i 0.120388 + 0.0796251i
\(337\) −250.321 250.321i −0.742792 0.742792i 0.230322 0.973114i \(-0.426022\pi\)
−0.973114 + 0.230322i \(0.926022\pi\)
\(338\) 54.8651 + 204.759i 0.162323 + 0.605797i
\(339\) −28.1296 + 16.2406i −0.0829782 + 0.0479075i
\(340\) −114.812 + 126.003i −0.337681 + 0.370596i
\(341\) −136.903 + 237.122i −0.401474 + 0.695373i
\(342\) −104.086 104.086i −0.304345 0.304345i
\(343\) −194.560 282.481i −0.567231 0.823559i
\(344\) 194.693i 0.565967i
\(345\) 30.5647 19.5926i 0.0885933 0.0567902i
\(346\) −176.254 305.281i −0.509405 0.882315i
\(347\) −71.1389 + 265.494i −0.205011 + 0.765113i 0.784435 + 0.620211i \(0.212953\pi\)
−0.989446 + 0.144901i \(0.953714\pi\)
\(348\) −27.3847 102.201i −0.0786915 0.293681i
\(349\) 561.168i 1.60793i −0.594675 0.803966i \(-0.702719\pi\)
0.594675 0.803966i \(-0.297281\pi\)
\(350\) 247.360 7.94899i 0.706742 0.0227114i
\(351\) 92.7909 0.264361
\(352\) −66.1985 + 17.7378i −0.188064 + 0.0503916i
\(353\) 516.450 + 138.382i 1.46303 + 0.392018i 0.900535 0.434782i \(-0.143175\pi\)
0.562495 + 0.826800i \(0.309841\pi\)
\(354\) 124.694 71.9920i 0.352242 0.203367i
\(355\) 74.0921 + 115.584i 0.208710 + 0.325590i
\(356\) 67.8897 0.190701
\(357\) 196.020 + 65.5145i 0.549074 + 0.183514i
\(358\) 62.3461 62.3461i 0.174151 0.174151i
\(359\) −322.888 186.419i −0.899409 0.519274i −0.0224006 0.999749i \(-0.507131\pi\)
−0.877008 + 0.480475i \(0.840464\pi\)
\(360\) 31.3603 + 28.5750i 0.0871120 + 0.0793750i
\(361\) 421.383 + 729.857i 1.16727 + 2.02176i
\(362\) −262.067 + 70.2205i −0.723941 + 0.193979i
\(363\) −31.5705 + 31.5705i −0.0869711 + 0.0869711i
\(364\) 249.545 + 15.1793i 0.685564 + 0.0417013i
\(365\) 196.332 + 616.649i 0.537896 + 1.68945i
\(366\) −45.8887 + 79.4816i −0.125379 + 0.217163i
\(367\) 94.8393 353.945i 0.258418 0.964428i −0.707740 0.706473i \(-0.750285\pi\)
0.966157 0.257954i \(-0.0830484\pi\)
\(368\) 16.1973 + 4.34005i 0.0440144 + 0.0117936i
\(369\) 177.031 + 102.209i 0.479760 + 0.276990i
\(370\) 265.792 + 137.416i 0.718356 + 0.371395i
\(371\) 16.7343 275.109i 0.0451058 0.741535i
\(372\) 55.3590 + 55.3590i 0.148814 + 0.148814i
\(373\) 70.9825 + 264.910i 0.190302 + 0.710215i 0.993433 + 0.114414i \(0.0364989\pi\)
−0.803132 + 0.595802i \(0.796834\pi\)
\(374\) −252.936 + 146.033i −0.676299 + 0.390462i
\(375\) 214.884 + 26.4522i 0.573025 + 0.0705393i
\(376\) 85.6241 148.305i 0.227724 0.394429i
\(377\) −385.681 385.681i −1.02303 1.02303i
\(378\) 16.3056 48.7865i 0.0431366 0.129065i
\(379\) 68.5108i 0.180767i 0.995907 + 0.0903836i \(0.0288093\pi\)
−0.995907 + 0.0903836i \(0.971191\pi\)
\(380\) −187.238 292.093i −0.492732 0.768667i
\(381\) −94.5013 163.681i −0.248035 0.429609i
\(382\) 23.3430 87.1174i 0.0611074 0.228056i
\(383\) −159.751 596.199i −0.417104 1.55665i −0.780583 0.625052i \(-0.785078\pi\)
0.363479 0.931602i \(-0.381589\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 407.969 + 115.599i 1.05966 + 0.300256i
\(386\) 425.509 1.10235
\(387\) −199.466 + 53.4469i −0.515417 + 0.138106i
\(388\) −73.0708 19.5793i −0.188327 0.0504620i
\(389\) 83.7313 48.3423i 0.215248 0.124273i −0.388500 0.921449i \(-0.627007\pi\)
0.603748 + 0.797175i \(0.293673\pi\)
\(390\) 213.658 + 46.7383i 0.547841 + 0.119842i
\(391\) 71.4619 0.182767
\(392\) 51.8321 128.536i 0.132225 0.327897i
\(393\) −207.733 + 207.733i −0.528583 + 0.528583i
\(394\) 157.558 + 90.9660i 0.399893 + 0.230878i
\(395\) −2.67936 57.6554i −0.00678319 0.145963i
\(396\) 36.3455 + 62.9522i 0.0917816 + 0.158970i
\(397\) 168.253 45.0833i 0.423811 0.113560i −0.0406085 0.999175i \(-0.512930\pi\)
0.464420 + 0.885615i \(0.346263\pi\)
\(398\) −85.8966 + 85.8966i −0.215821 + 0.215821i
\(399\) −232.060 + 350.859i −0.581604 + 0.879345i
\(400\) 57.8163 + 81.5921i 0.144541 + 0.203980i
\(401\) −61.8259 + 107.086i −0.154179 + 0.267046i −0.932760 0.360498i \(-0.882607\pi\)
0.778581 + 0.627545i \(0.215940\pi\)
\(402\) −72.0692 + 268.966i −0.179277 + 0.669069i
\(403\) 389.834 + 104.456i 0.967330 + 0.259195i
\(404\) 46.8656 + 27.0578i 0.116004 + 0.0669749i
\(405\) 20.6666 39.9736i 0.0510287 0.0987003i
\(406\) −270.553 + 135.005i −0.666387 + 0.332526i
\(407\) 362.501 + 362.501i 0.890667 + 0.890667i
\(408\) 21.6141 + 80.6650i 0.0529758 + 0.197708i
\(409\) 355.908 205.484i 0.870191 0.502405i 0.00277929 0.999996i \(-0.499115\pi\)
0.867412 + 0.497591i \(0.165782\pi\)
\(410\) 356.146 + 324.514i 0.868648 + 0.791498i
\(411\) 4.96120 8.59305i 0.0120710 0.0209077i
\(412\) −130.750 130.750i −0.317353 0.317353i
\(413\) −272.750 308.081i −0.660412 0.745958i
\(414\) 17.7859i 0.0429610i
\(415\) 78.9973 + 17.2809i 0.190355 + 0.0416408i
\(416\) 50.5089 + 87.4841i 0.121416 + 0.210298i
\(417\) −8.50049 + 31.7243i −0.0203849 + 0.0760774i
\(418\) −153.855 574.195i −0.368074 1.37367i
\(419\) 138.311i 0.330097i −0.986285 0.165049i \(-0.947222\pi\)
0.986285 0.165049i \(-0.0527781\pi\)
\(420\) 62.1185 104.122i 0.147901 0.247908i
\(421\) −701.115 −1.66536 −0.832678 0.553757i \(-0.813193\pi\)
−0.832678 + 0.553757i \(0.813193\pi\)
\(422\) 205.711 55.1202i 0.487467 0.130616i
\(423\) −175.447 47.0109i −0.414768 0.111137i
\(424\) 96.4461 55.6832i 0.227467 0.131328i
\(425\) 327.992 + 272.096i 0.771745 + 0.640226i
\(426\) 67.2596 0.157886
\(427\) 248.750 + 83.1384i 0.582553 + 0.194704i
\(428\) 112.442 112.442i 0.262716 0.262716i
\(429\) 324.522 + 187.363i 0.756461 + 0.436743i
\(430\) −486.207 + 22.5950i −1.13071 + 0.0525465i
\(431\) −192.097 332.722i −0.445702 0.771978i 0.552399 0.833580i \(-0.313712\pi\)
−0.998101 + 0.0616020i \(0.980379\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) 151.538 151.538i 0.349973 0.349973i −0.510126 0.860099i \(-0.670401\pi\)
0.860099 + 0.510126i \(0.170401\pi\)
\(434\) 123.423 186.607i 0.284385 0.429970i
\(435\) −252.049 + 80.2487i −0.579422 + 0.184480i
\(436\) −23.6165 + 40.9050i −0.0541663 + 0.0938187i
\(437\) −37.6449 + 140.493i −0.0861439 + 0.321493i
\(438\) 306.234 + 82.0552i 0.699165 + 0.187341i
\(439\) 168.789 + 97.4502i 0.384485 + 0.221982i 0.679768 0.733428i \(-0.262081\pi\)
−0.295283 + 0.955410i \(0.595414\pi\)
\(440\) 51.9794 + 163.259i 0.118135 + 0.371044i
\(441\) −145.916 17.8174i −0.330876 0.0404023i
\(442\) 304.410 + 304.410i 0.688710 + 0.688710i
\(443\) 144.734 + 540.156i 0.326714 + 1.21931i 0.912577 + 0.408904i \(0.134089\pi\)
−0.585863 + 0.810410i \(0.699244\pi\)
\(444\) 126.945 73.2919i 0.285913 0.165072i
\(445\) −7.87892 169.541i −0.0177054 0.380992i
\(446\) −166.002 + 287.523i −0.372201 + 0.644671i
\(447\) −22.3174 22.3174i −0.0499272 0.0499272i
\(448\) 54.8721 11.1829i 0.122482 0.0249619i
\(449\) 329.193i 0.733170i −0.930385 0.366585i \(-0.880527\pi\)
0.930385 0.366585i \(-0.119473\pi\)
\(450\) 67.7210 81.6325i 0.150491 0.181406i
\(451\) 412.760 + 714.922i 0.915211 + 1.58519i
\(452\) −9.70730 + 36.2282i −0.0214763 + 0.0801508i
\(453\) −74.2849 277.235i −0.163984 0.611998i
\(454\) 38.5510i 0.0849141i
\(455\) 8.94635 624.952i 0.0196623 1.37352i
\(456\) −169.972 −0.372745
\(457\) −321.991 + 86.2773i −0.704576 + 0.188791i −0.593280 0.804997i \(-0.702167\pi\)
−0.111297 + 0.993787i \(0.535500\pi\)
\(458\) 391.813 + 104.986i 0.855487 + 0.229227i
\(459\) 76.7093 44.2881i 0.167123 0.0964883i
\(460\) 8.95866 40.9533i 0.0194754 0.0890288i
\(461\) 106.453 0.230918 0.115459 0.993312i \(-0.463166\pi\)
0.115459 + 0.993312i \(0.463166\pi\)
\(462\) 155.536 137.699i 0.336658 0.298050i
\(463\) −104.785 + 104.785i −0.226318 + 0.226318i −0.811153 0.584835i \(-0.801159\pi\)
0.584835 + 0.811153i \(0.301159\pi\)
\(464\) −105.806 61.0872i −0.228031 0.131654i
\(465\) 131.824 144.673i 0.283492 0.311125i
\(466\) −10.4929 18.1742i −0.0225169 0.0390004i
\(467\) −633.744 + 169.811i −1.35705 + 0.363622i −0.862734 0.505658i \(-0.831250\pi\)
−0.494320 + 0.869280i \(0.664583\pi\)
\(468\) 75.7634 75.7634i 0.161888 0.161888i
\(469\) 794.281 + 48.3143i 1.69356 + 0.103015i
\(470\) −380.300 196.618i −0.809150 0.418336i
\(471\) −54.5898 + 94.5523i −0.115902 + 0.200748i
\(472\) 43.0309 160.593i 0.0911671 0.340240i
\(473\) −805.523 215.839i −1.70301 0.456320i
\(474\) −24.4875 14.1379i −0.0516614 0.0298267i
\(475\) −707.716 + 501.489i −1.48993 + 1.05577i
\(476\) 213.542 106.557i 0.448617 0.223859i
\(477\) −83.5248 83.5248i −0.175104 0.175104i
\(478\) 119.991 + 447.812i 0.251027 + 0.936846i
\(479\) −520.647 + 300.596i −1.08695 + 0.627549i −0.932762 0.360493i \(-0.882608\pi\)
−0.154184 + 0.988042i \(0.549275\pi\)
\(480\) 48.9370 2.27420i 0.101952 0.00473791i
\(481\) 377.823 654.409i 0.785495 1.36052i
\(482\) −358.156 358.156i −0.743062 0.743062i
\(483\) −49.8036 + 10.1500i −0.103113 + 0.0210144i
\(484\) 51.5545i 0.106517i
\(485\) −40.4152 + 184.752i −0.0833302 + 0.380932i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) −216.877 + 809.396i −0.445333 + 1.66200i 0.269724 + 0.962938i \(0.413067\pi\)
−0.715057 + 0.699066i \(0.753599\pi\)
\(488\) 27.4285 + 102.364i 0.0562059 + 0.209763i
\(489\) 195.137i 0.399053i
\(490\) −327.008 114.523i −0.667364 0.233721i
\(491\) −825.672 −1.68161 −0.840806 0.541336i \(-0.817919\pi\)
−0.840806 + 0.541336i \(0.817919\pi\)
\(492\) 227.999 61.0922i 0.463413 0.124171i
\(493\) −502.921 134.757i −1.02012 0.273341i
\(494\) −758.822 + 438.106i −1.53608 + 0.886855i
\(495\) 152.993 98.0717i 0.309077 0.198125i
\(496\) 90.4008 0.182260
\(497\) −38.3834 188.339i −0.0772303 0.378952i
\(498\) 28.0126 28.0126i 0.0562501 0.0562501i
\(499\) −152.486 88.0381i −0.305584 0.176429i 0.339365 0.940655i \(-0.389788\pi\)
−0.644949 + 0.764226i \(0.723121\pi\)
\(500\) 197.050 153.854i 0.394101 0.307708i
\(501\) 103.001 + 178.402i 0.205590 + 0.356093i
\(502\) 652.394 174.809i 1.29959 0.348224i
\(503\) −355.137 + 355.137i −0.706038 + 0.706038i −0.965700 0.259662i \(-0.916389\pi\)
0.259662 + 0.965700i \(0.416389\pi\)
\(504\) −26.5205 53.1475i −0.0526201 0.105451i
\(505\) 62.1327 120.178i 0.123035 0.237976i
\(506\) 35.9131 62.2033i 0.0709745 0.122932i
\(507\) 67.1957 250.778i 0.132536 0.494631i
\(508\) −210.805 56.4850i −0.414970 0.111191i
\(509\) 285.339 + 164.741i 0.560588 + 0.323656i 0.753382 0.657584i \(-0.228421\pi\)
−0.192793 + 0.981239i \(0.561755\pi\)
\(510\) 198.937 63.3386i 0.390072 0.124193i
\(511\) 55.0088 904.338i 0.107649 1.76974i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 46.6605 + 174.139i 0.0909561 + 0.339453i
\(514\) −561.056 + 323.926i −1.09155 + 0.630206i
\(515\) −311.348 + 341.696i −0.604558 + 0.663487i
\(516\) −119.224 + 206.503i −0.231055 + 0.400199i
\(517\) −518.675 518.675i −1.00324 1.00324i
\(518\) −277.675 313.643i −0.536052 0.605489i
\(519\) 431.733i 0.831855i
\(520\) 212.613 136.289i 0.408870 0.262095i
\(521\) −431.739 747.794i −0.828674 1.43530i −0.899079 0.437786i \(-0.855763\pi\)
0.0704056 0.997518i \(-0.477571\pi\)
\(522\) −33.5392 + 125.170i −0.0642514 + 0.239789i
\(523\) 23.7048 + 88.4675i 0.0453246 + 0.169154i 0.984878 0.173248i \(-0.0554262\pi\)
−0.939554 + 0.342402i \(0.888760\pi\)
\(524\) 339.227i 0.647380i
\(525\) −267.232 143.045i −0.509014 0.272467i
\(526\) 265.955 0.505618
\(527\) 372.128 99.7113i 0.706124 0.189205i
\(528\) 81.0763 + 21.7243i 0.153554 + 0.0411445i
\(529\) 442.908 255.713i 0.837255 0.483389i
\(530\) −150.251 234.393i −0.283492 0.442251i
\(531\) −176.344 −0.332097
\(532\) 96.9987 + 475.951i 0.182328 + 0.894645i
\(533\) 860.413 860.413i 1.61428 1.61428i
\(534\) −72.0079 41.5738i −0.134846 0.0778535i
\(535\) −293.852 267.753i −0.549257 0.500474i
\(536\) 160.765 + 278.454i 0.299936 + 0.519504i
\(537\) −104.307 + 27.9490i −0.194240 + 0.0520466i
\(538\) 26.2097 26.2097i 0.0487170 0.0487170i
\(539\) −474.343 356.947i −0.880042 0.662239i
\(540\) −15.7641 49.5126i −0.0291928 0.0916899i
\(541\) −258.544 + 447.811i −0.477900 + 0.827746i −0.999679 0.0253341i \(-0.991935\pi\)
0.521779 + 0.853080i \(0.325268\pi\)
\(542\) 19.5051 72.7939i 0.0359872 0.134306i
\(543\) 320.965 + 86.0022i 0.591095 + 0.158383i
\(544\) 83.5105 + 48.2148i 0.153512 + 0.0886302i
\(545\) 104.893 + 54.2304i 0.192464 + 0.0995053i
\(546\) −255.387 168.915i −0.467742 0.309368i
\(547\) −306.919 306.919i −0.561095 0.561095i 0.368523 0.929619i \(-0.379863\pi\)
−0.929619 + 0.368523i \(0.879863\pi\)
\(548\) −2.96539 11.0670i −0.00541130 0.0201952i
\(549\) 97.3447 56.2020i 0.177313 0.102372i
\(550\) 401.676 148.755i 0.730319 0.270464i
\(551\) 529.860 917.745i 0.961634 1.66560i
\(552\) −14.5221 14.5221i −0.0263082 0.0263082i
\(553\) −25.6141 + 76.6375i −0.0463185 + 0.138585i
\(554\) 32.1657i 0.0580608i
\(555\) −197.765 308.515i −0.356333 0.555883i
\(556\) 18.9621 + 32.8434i 0.0341046 + 0.0590708i
\(557\) −40.2644 + 150.269i −0.0722880 + 0.269783i −0.992605 0.121392i \(-0.961264\pi\)
0.920317 + 0.391174i \(0.127931\pi\)
\(558\) −24.8167 92.6174i −0.0444745 0.165981i
\(559\) 1229.22i 2.19895i
\(560\) −34.2953 135.734i −0.0612416 0.242383i
\(561\) 357.705 0.637621
\(562\) −92.9204 + 24.8979i −0.165339 + 0.0443024i
\(563\) −247.714 66.3747i −0.439989 0.117895i 0.0320225 0.999487i \(-0.489805\pi\)
−0.472011 + 0.881592i \(0.656472\pi\)
\(564\) −181.636 + 104.868i −0.322050 + 0.185936i
\(565\) 91.5993 + 20.0377i 0.162123 + 0.0354649i
\(566\) 487.909 0.862029
\(567\) −47.1703 + 41.7608i −0.0831927 + 0.0736522i
\(568\) 54.9173 54.9173i 0.0966853 0.0966853i
\(569\) −585.078 337.795i −1.02826 0.593664i −0.111771 0.993734i \(-0.535652\pi\)
−0.916485 + 0.400070i \(0.868986\pi\)
\(570\) 19.7260 + 424.471i 0.0346071 + 0.744686i
\(571\) 243.726 + 422.146i 0.426840 + 0.739309i 0.996590 0.0825088i \(-0.0262932\pi\)
−0.569750 + 0.821818i \(0.692960\pi\)
\(572\) 417.952 111.990i 0.730685 0.195787i
\(573\) −78.1073 + 78.1073i −0.136313 + 0.136313i
\(574\) −301.182 603.574i −0.524708 1.05152i
\(575\) −103.312 17.6197i −0.179674 0.0306429i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −77.4230 + 288.947i −0.134182 + 0.500774i 0.865818 + 0.500359i \(0.166799\pi\)
−1.00000 0.000414833i \(0.999868\pi\)
\(578\) 2.16337 + 0.579673i 0.00374286 + 0.00100290i
\(579\) −451.320 260.570i −0.779482 0.450034i
\(580\) −140.274 + 271.320i −0.241852 + 0.467793i
\(581\) −94.4263 62.4541i −0.162524 0.107494i
\(582\) 65.5134 + 65.5134i 0.112566 + 0.112566i
\(583\) −123.462 460.768i −0.211771 0.790340i
\(584\) 317.037 183.041i 0.542872 0.313427i
\(585\) −197.997 180.412i −0.338457 0.308396i
\(586\) −139.189 + 241.082i −0.237523 + 0.411402i
\(587\) −125.644 125.644i −0.214044 0.214044i 0.591939 0.805983i \(-0.298363\pi\)
−0.805983 + 0.591939i \(0.798363\pi\)
\(588\) −133.688 + 104.592i −0.227360 + 0.177878i
\(589\) 784.122i 1.33128i
\(590\) −406.044 88.8235i −0.688211 0.150548i
\(591\) −111.410 192.968i −0.188511 0.326511i
\(592\) 43.8078 163.493i 0.0739997 0.276171i
\(593\) 291.900 + 1089.38i 0.492242 + 1.83707i 0.544958 + 0.838463i \(0.316546\pi\)
−0.0527158 + 0.998610i \(0.516788\pi\)
\(594\) 89.0279i 0.149879i
\(595\) −290.888 520.912i −0.488887 0.875483i
\(596\) −36.4442 −0.0611480
\(597\) 143.708 38.5064i 0.240717 0.0644998i
\(598\) −102.264 27.4014i −0.171009 0.0458218i
\(599\) 603.096 348.197i 1.00684 0.581298i 0.0965732 0.995326i \(-0.469212\pi\)
0.910264 + 0.414028i \(0.135878\pi\)
\(600\) −11.3587 121.947i −0.0189312 0.203244i
\(601\) 525.606 0.874553 0.437277 0.899327i \(-0.355943\pi\)
0.437277 + 0.899327i \(0.355943\pi\)
\(602\) 646.283 + 216.004i 1.07356 + 0.358810i
\(603\) 241.148 241.148i 0.399914 0.399914i
\(604\) −287.015 165.708i −0.475190 0.274351i
\(605\) 128.747 5.98314i 0.212805 0.00988948i
\(606\) −33.1390 57.3983i −0.0546847 0.0947167i
\(607\) 76.1512 20.4046i 0.125455 0.0336156i −0.195545 0.980695i \(-0.562648\pi\)
0.321000 + 0.947079i \(0.395981\pi\)
\(608\) −138.781 + 138.781i −0.228259 + 0.228259i
\(609\) 369.638 + 22.4843i 0.606960 + 0.0369200i
\(610\) 252.452 80.3772i 0.413856 0.131766i
\(611\) −540.598 + 936.343i −0.884775 + 1.53248i
\(612\) 26.4718 98.7940i 0.0432545 0.161428i
\(613\) −325.930 87.3327i −0.531696 0.142468i −0.0170249 0.999855i \(-0.505419\pi\)
−0.514672 + 0.857387i \(0.672086\pi\)
\(614\) 168.675 + 97.3846i 0.274715 + 0.158607i
\(615\) −179.026 562.293i −0.291099 0.914298i
\(616\) 14.5637 239.426i 0.0236424 0.388678i
\(617\) 170.931 + 170.931i 0.277036 + 0.277036i 0.831925 0.554889i \(-0.187239\pi\)
−0.554889 + 0.831925i \(0.687239\pi\)
\(618\) 58.6135 + 218.748i 0.0948438 + 0.353962i
\(619\) −625.195 + 360.957i −1.01001 + 0.583129i −0.911194 0.411977i \(-0.864838\pi\)
−0.0988144 + 0.995106i \(0.531505\pi\)
\(620\) −10.4914 225.758i −0.0169217 0.364126i
\(621\) −10.8916 + 18.8648i −0.0175388 + 0.0303780i
\(622\) −217.530 217.530i −0.349727 0.349727i
\(623\) −75.3208 + 225.360i −0.120900 + 0.361734i
\(624\) 123.721i 0.198271i
\(625\) −407.089 474.240i −0.651343 0.758783i
\(626\) −42.2529 73.1841i −0.0674966 0.116908i
\(627\) −188.433 + 703.242i −0.300531 + 1.12160i
\(628\) 32.6293 + 121.774i 0.0519574 + 0.193908i
\(629\) 721.325i 1.14678i
\(630\) −129.648 + 72.3979i −0.205790 + 0.114917i
\(631\) 413.045 0.654588 0.327294 0.944923i \(-0.393863\pi\)
0.327294 + 0.944923i \(0.393863\pi\)
\(632\) −31.5375 + 8.45045i −0.0499011 + 0.0133710i
\(633\) −251.944 67.5081i −0.398015 0.106648i
\(634\) −203.118 + 117.270i −0.320375 + 0.184968i
\(635\) −116.595 + 532.999i −0.183615 + 0.839369i
\(636\) −136.395 −0.214458
\(637\) −327.248 + 811.526i −0.513733 + 1.27398i
\(638\) −370.041 + 370.041i −0.580001 + 0.580001i
\(639\) −71.3396 41.1879i −0.111643 0.0644569i
\(640\) 38.1000 41.8138i 0.0595313 0.0653340i
\(641\) −109.748 190.088i −0.171213 0.296550i 0.767631 0.640892i \(-0.221435\pi\)
−0.938844 + 0.344342i \(0.888102\pi\)
\(642\) −188.120 + 50.4065i −0.293021 + 0.0785149i
\(643\) 400.432 400.432i 0.622756 0.622756i −0.323480 0.946235i \(-0.604853\pi\)
0.946235 + 0.323480i \(0.104853\pi\)
\(644\) −32.3771 + 48.9519i −0.0502749 + 0.0760122i
\(645\) 529.537 + 273.774i 0.820988 + 0.424456i
\(646\) −418.207 + 724.356i −0.647380 + 1.12129i
\(647\) 57.3850 214.164i 0.0886939 0.331010i −0.907294 0.420497i \(-0.861856\pi\)
0.995988 + 0.0894864i \(0.0285226\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) −616.735 356.072i −0.950285 0.548647i
\(650\) −365.030 515.141i −0.561585 0.792525i
\(651\) −245.183 + 122.346i −0.376625 + 0.187935i
\(652\) 159.329 + 159.329i 0.244369 + 0.244369i
\(653\) 232.119 + 866.282i 0.355466 + 1.32662i 0.879897 + 0.475165i \(0.157612\pi\)
−0.524431 + 0.851453i \(0.675722\pi\)
\(654\) 50.0981 28.9242i 0.0766027 0.0442266i
\(655\) 847.153 39.3689i 1.29336 0.0601052i
\(656\) 136.279 236.042i 0.207742 0.359820i
\(657\) −274.562 274.562i −0.417903 0.417903i
\(658\) 397.303 + 448.768i 0.603804 + 0.682018i
\(659\) 822.019i 1.24737i 0.781675 + 0.623686i \(0.214366\pi\)
−0.781675 + 0.623686i \(0.785634\pi\)
\(660\) 44.8430 204.993i 0.0679439 0.310596i
\(661\) 262.359 + 454.420i 0.396913 + 0.687473i 0.993343 0.115191i \(-0.0367482\pi\)
−0.596430 + 0.802665i \(0.703415\pi\)
\(662\) 46.0469 171.849i 0.0695572 0.259591i
\(663\) −136.463 509.288i −0.205827 0.768157i
\(664\) 45.7443i 0.0688921i
\(665\) 1177.34 297.472i 1.77043 0.447326i
\(666\) −179.528 −0.269561
\(667\) 123.681 33.1402i 0.185429 0.0496855i
\(668\) 229.765 + 61.5653i 0.343959 + 0.0921636i
\(669\) 352.143 203.310i 0.526372 0.303901i
\(670\) 676.727 433.796i 1.01004 0.647457i
\(671\) 453.931 0.676499
\(672\) −65.0487 21.7409i −0.0967987 0.0323525i
\(673\) −593.572 + 593.572i −0.881979 + 0.881979i −0.993736 0.111756i \(-0.964352\pi\)
0.111756 + 0.993736i \(0.464352\pi\)
\(674\) 433.569 + 250.321i 0.643277 + 0.371396i
\(675\) −121.818 + 45.1139i −0.180472 + 0.0668354i
\(676\) −149.894 259.624i −0.221737 0.384060i
\(677\) −246.573 + 66.0690i −0.364214 + 0.0975909i −0.436285 0.899809i \(-0.643706\pi\)
0.0720706 + 0.997400i \(0.477039\pi\)
\(678\) 32.4813 32.4813i 0.0479075 0.0479075i
\(679\) 146.062 220.836i 0.215114 0.325237i
\(680\) 110.715 214.147i 0.162817 0.314922i
\(681\) 23.6076 40.8895i 0.0346660 0.0600433i
\(682\) 100.220 374.025i 0.146950 0.548424i
\(683\) 108.963 + 29.1966i 0.159536 + 0.0427475i 0.337703 0.941253i \(-0.390350\pi\)
−0.178167 + 0.984000i \(0.557017\pi\)
\(684\) 180.282 + 104.086i 0.263571 + 0.152173i
\(685\) −27.2935 + 8.68986i −0.0398445 + 0.0126859i
\(686\) 369.169 + 314.662i 0.538148 + 0.458691i
\(687\) −351.290 351.290i −0.511339 0.511339i
\(688\) 71.2625 + 265.955i 0.103579 + 0.386563i
\(689\) −608.924 + 351.563i −0.883780 + 0.510250i
\(690\) −34.5807 + 37.9515i −0.0501170 + 0.0550021i
\(691\) 478.996 829.646i 0.693193 1.20065i −0.277593 0.960699i \(-0.589537\pi\)
0.970786 0.239947i \(-0.0771300\pi\)
\(692\) 352.508 + 352.508i 0.509405 + 0.509405i
\(693\) −249.294 + 50.8061i −0.359732 + 0.0733132i
\(694\) 388.710i 0.560101i
\(695\) 79.8193 51.1659i 0.114848 0.0736200i
\(696\) 74.8163 + 129.586i 0.107495 + 0.186186i
\(697\) 300.629 1121.96i 0.431318 1.60970i
\(698\) 205.402 + 766.570i 0.294272 + 1.09824i
\(699\) 25.7022i 0.0367699i
\(700\) −334.990 + 101.398i −0.478557 + 0.144855i
\(701\) 1384.85 1.97554 0.987769 0.155922i \(-0.0498347\pi\)
0.987769 + 0.155922i \(0.0498347\pi\)
\(702\) −126.755 + 33.9638i −0.180562 + 0.0483815i
\(703\) 1418.11 + 379.982i 2.01723 + 0.540514i
\(704\) 83.9363 48.4607i 0.119228 0.0688362i
\(705\) 282.966 + 441.430i 0.401370 + 0.626142i
\(706\) −756.135 −1.07101
\(707\) −141.814 + 125.551i −0.200586 + 0.177582i
\(708\) −143.984 + 143.984i −0.203367 + 0.203367i
\(709\) −208.798 120.550i −0.294497 0.170028i 0.345471 0.938429i \(-0.387719\pi\)
−0.639968 + 0.768401i \(0.721052\pi\)
\(710\) −143.519 130.772i −0.202139 0.184186i
\(711\) 17.3153 + 29.9910i 0.0243534 + 0.0421814i
\(712\) −92.7391 + 24.8494i −0.130251 + 0.0349008i
\(713\) −66.9940 + 66.9940i −0.0939608 + 0.0939608i
\(714\) −291.748 17.7463i −0.408610 0.0248548i
\(715\) −328.178 1030.76i −0.458991 1.44162i
\(716\) −62.3461 + 107.987i −0.0870756 + 0.150819i
\(717\) 146.958 548.456i 0.204963 0.764932i
\(718\) 509.307 + 136.468i 0.709342 + 0.190067i
\(719\) −147.138 84.9500i −0.204642 0.118150i 0.394177 0.919035i \(-0.371030\pi\)
−0.598819 + 0.800884i \(0.704363\pi\)
\(720\) −53.2982 27.5555i −0.0740252 0.0382715i
\(721\) 579.085 288.962i 0.803169 0.400780i
\(722\) −842.766 842.766i −1.16727 1.16727i
\(723\) 160.557 + 599.206i 0.222070 + 0.828778i
\(724\) 332.287 191.846i 0.458960 0.264981i
\(725\) 693.848 + 318.819i 0.957031 + 0.439751i
\(726\) 31.5705 54.6818i 0.0434856 0.0753192i
\(727\) 400.461 + 400.461i 0.550841 + 0.550841i 0.926683 0.375843i \(-0.122647\pi\)
−0.375843 + 0.926683i \(0.622647\pi\)
\(728\) −346.441 + 70.6047i −0.475881 + 0.0969844i
\(729\) 27.0000i 0.0370370i
\(730\) −493.904 770.495i −0.676581 1.05547i
\(731\) 586.692 + 1016.18i 0.802589 + 1.39012i
\(732\) 33.5929 125.370i 0.0458919 0.171271i
\(733\) 223.184 + 832.935i 0.304480 + 1.13634i 0.933392 + 0.358859i \(0.116834\pi\)
−0.628911 + 0.777477i \(0.716499\pi\)
\(734\) 518.211i 0.706010i
\(735\) 276.714 + 321.721i 0.376481 + 0.437716i
\(736\) −23.7145 −0.0322208
\(737\) 1330.30 356.454i 1.80503 0.483655i
\(738\) −279.241 74.8223i −0.378375 0.101385i
\(739\) −141.888 + 81.9191i −0.192000 + 0.110851i −0.592919 0.805262i \(-0.702024\pi\)
0.400918 + 0.916114i \(0.368691\pi\)
\(740\) −413.376 90.4273i −0.558616 0.122199i
\(741\) 1073.14 1.44823
\(742\) 77.8376 + 381.932i 0.104902 + 0.514733i
\(743\) 362.720 362.720i 0.488183 0.488183i −0.419550 0.907732i \(-0.637812\pi\)
0.907732 + 0.419550i \(0.137812\pi\)
\(744\) −95.8846 55.3590i −0.128877 0.0744072i
\(745\) 4.22952 + 91.0123i 0.00567721 + 0.122164i
\(746\) −193.928 335.893i −0.259957 0.450258i
\(747\) −46.8659 + 12.5577i −0.0627389 + 0.0168108i
\(748\) 292.065 292.065i 0.390462 0.390462i
\(749\) 248.503 + 498.003i 0.331779 + 0.664890i
\(750\) −303.220 + 42.5187i −0.404293 + 0.0566916i
\(751\) 424.168 734.681i 0.564804 0.978270i −0.432263 0.901747i \(-0.642285\pi\)
0.997068 0.0765226i \(-0.0243817\pi\)
\(752\) −62.6812 + 233.929i −0.0833526 + 0.311076i
\(753\) −799.017 214.096i −1.06111 0.284324i
\(754\) 668.020 + 385.681i 0.885968 + 0.511514i
\(755\) −380.514 + 735.995i −0.503993 + 0.974828i
\(756\) −4.41682 + 72.6119i −0.00584235 + 0.0960475i
\(757\) −507.330 507.330i −0.670185 0.670185i 0.287574 0.957758i \(-0.407151\pi\)
−0.957758 + 0.287574i \(0.907151\pi\)
\(758\) −25.0767 93.5875i −0.0330827 0.123466i
\(759\) −76.1832 + 43.9844i −0.100373 + 0.0579505i
\(760\) 362.685 + 330.473i 0.477218 + 0.434833i
\(761\) −189.748 + 328.654i −0.249341 + 0.431871i −0.963343 0.268272i \(-0.913547\pi\)
0.714002 + 0.700143i \(0.246881\pi\)
\(762\) 189.003 + 189.003i 0.248035 + 0.248035i
\(763\) −109.583 123.777i −0.143621 0.162225i