Properties

Label 210.3.v.a.37.5
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.5
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.60928 + 1.93765i) q^{5} -2.44949 q^{6} +(-1.45688 - 6.84672i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.67303 + 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.60928 + 1.93765i) q^{5} -2.44949 q^{6} +(-1.45688 - 6.84672i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(5.58717 - 4.33400i) q^{10} +(-6.59836 - 11.4287i) q^{11} +(3.34607 - 0.896575i) q^{12} +(10.7755 - 10.7755i) q^{13} +(4.49620 + 8.81953i) q^{14} +(-8.58011 + 1.17547i) q^{15} +(2.00000 - 3.46410i) q^{16} +(2.10467 - 7.85475i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(-8.35848 - 4.82577i) q^{19} +(-6.04586 + 7.96540i) q^{20} +(0.631897 - 12.1079i) q^{21} +(13.1967 + 13.1967i) q^{22} +(6.06684 + 22.6417i) q^{23} +(-4.24264 + 2.44949i) q^{24} +(17.4910 - 17.8624i) q^{25} +(-10.7755 + 18.6638i) q^{26} +(3.67423 + 3.67423i) q^{27} +(-9.37010 - 10.4020i) q^{28} -41.4745i q^{29} +(11.2904 - 4.74626i) q^{30} +(-18.0882 - 31.3297i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-5.91593 - 22.0785i) q^{33} +11.5001i q^{34} +(19.9817 + 28.7355i) q^{35} +6.00000 q^{36} +(-4.68858 + 1.25630i) q^{37} +(13.1843 + 3.53271i) q^{38} +(22.8583 - 13.1973i) q^{39} +(5.34326 - 13.0939i) q^{40} -7.31247 q^{41} +(3.56860 + 16.7710i) q^{42} +(48.7061 - 48.7061i) q^{43} +(-22.8574 - 13.1967i) q^{44} +(-14.8818 - 1.87976i) q^{45} +(-16.5749 - 28.7086i) q^{46} +(-51.9641 + 13.9237i) q^{47} +(4.89898 - 4.89898i) q^{48} +(-44.7550 + 19.9496i) q^{49} +(-17.3551 + 30.8026i) q^{50} +(7.04237 - 12.1977i) q^{51} +(7.88823 - 29.4393i) q^{52} +(45.4596 + 12.1809i) q^{53} +(-6.36396 - 3.67423i) q^{54} +(52.5586 + 39.8928i) q^{55} +(16.6072 + 10.7797i) q^{56} +(-11.8207 - 11.8207i) q^{57} +(15.1807 + 56.6552i) q^{58} +(-1.15330 + 0.665857i) q^{59} +(-13.6857 + 10.6161i) q^{60} +(-29.7996 + 51.6144i) q^{61} +(36.1764 + 36.1764i) q^{62} +(6.48500 - 19.9736i) q^{63} -8.00000i q^{64} +(-28.7882 + 70.5467i) q^{65} +(16.1626 + 27.9945i) q^{66} +(-31.5356 + 117.692i) q^{67} +(-4.20935 - 15.7095i) q^{68} +40.6001i q^{69} +(-37.8135 - 31.9397i) q^{70} -82.6803 q^{71} +(-8.19615 + 2.19615i) q^{72} +(49.5667 + 13.2814i) q^{73} +(5.94488 - 3.43228i) q^{74} +(37.2705 - 22.0433i) q^{75} -19.3031 q^{76} +(-68.6360 + 61.8273i) q^{77} +(-26.3945 + 26.3945i) q^{78} +(-26.3388 - 15.2067i) q^{79} +(-2.50634 + 19.8423i) q^{80} +(4.50000 + 7.79423i) q^{81} +(9.98902 - 2.67655i) q^{82} +(-32.2690 + 32.2690i) q^{83} +(-11.0134 - 21.6034i) q^{84} +(5.51873 + 40.2829i) q^{85} +(-48.7061 + 84.3614i) q^{86} +(18.5925 - 69.3881i) q^{87} +(36.0541 + 9.66067i) q^{88} +(-19.1540 - 11.0586i) q^{89} +(21.0169 - 2.87930i) q^{90} +(-89.4755 - 58.0783i) q^{91} +(33.1498 + 33.1498i) q^{92} +(-16.2174 - 60.5243i) q^{93} +(65.8878 - 38.0403i) q^{94} +(47.8773 + 6.04752i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(128.645 + 128.645i) q^{97} +(53.8344 - 43.6332i) q^{98} -39.5902i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) 1.67303 + 0.448288i 0.557678 + 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −4.60928 + 1.93765i −0.921857 + 0.387531i
\(6\) −2.44949 −0.408248
\(7\) −1.45688 6.84672i −0.208125 0.978102i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 5.58717 4.33400i 0.558717 0.433400i
\(11\) −6.59836 11.4287i −0.599851 1.03897i −0.992843 0.119430i \(-0.961893\pi\)
0.392992 0.919542i \(-0.371440\pi\)
\(12\) 3.34607 0.896575i 0.278839 0.0747146i
\(13\) 10.7755 10.7755i 0.828886 0.828886i −0.158476 0.987363i \(-0.550658\pi\)
0.987363 + 0.158476i \(0.0506582\pi\)
\(14\) 4.49620 + 8.81953i 0.321157 + 0.629967i
\(15\) −8.58011 + 1.17547i −0.572007 + 0.0783647i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 2.10467 7.85475i 0.123804 0.462044i −0.875990 0.482329i \(-0.839791\pi\)
0.999794 + 0.0202855i \(0.00645751\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) −8.35848 4.82577i −0.439920 0.253988i 0.263644 0.964620i \(-0.415076\pi\)
−0.703564 + 0.710632i \(0.748409\pi\)
\(20\) −6.04586 + 7.96540i −0.302293 + 0.398270i
\(21\) 0.631897 12.1079i 0.0300903 0.576566i
\(22\) 13.1967 + 13.1967i 0.599851 + 0.599851i
\(23\) 6.06684 + 22.6417i 0.263776 + 0.984424i 0.962996 + 0.269517i \(0.0868641\pi\)
−0.699220 + 0.714907i \(0.746469\pi\)
\(24\) −4.24264 + 2.44949i −0.176777 + 0.102062i
\(25\) 17.4910 17.8624i 0.699640 0.714495i
\(26\) −10.7755 + 18.6638i −0.414443 + 0.717837i
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) −9.37010 10.4020i −0.334646 0.371499i
\(29\) 41.4745i 1.43015i −0.699046 0.715077i \(-0.746392\pi\)
0.699046 0.715077i \(-0.253608\pi\)
\(30\) 11.2904 4.74626i 0.376346 0.158209i
\(31\) −18.0882 31.3297i −0.583490 1.01063i −0.995062 0.0992569i \(-0.968353\pi\)
0.411572 0.911377i \(-0.364980\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −5.91593 22.0785i −0.179271 0.669047i
\(34\) 11.5001i 0.338240i
\(35\) 19.9817 + 28.7355i 0.570906 + 0.821015i
\(36\) 6.00000 0.166667
\(37\) −4.68858 + 1.25630i −0.126718 + 0.0339541i −0.321621 0.946869i \(-0.604228\pi\)
0.194902 + 0.980823i \(0.437561\pi\)
\(38\) 13.1843 + 3.53271i 0.346954 + 0.0929661i
\(39\) 22.8583 13.1973i 0.586111 0.338391i
\(40\) 5.34326 13.0939i 0.133582 0.327347i
\(41\) −7.31247 −0.178353 −0.0891764 0.996016i \(-0.528424\pi\)
−0.0891764 + 0.996016i \(0.528424\pi\)
\(42\) 3.56860 + 16.7710i 0.0849668 + 0.399309i
\(43\) 48.7061 48.7061i 1.13270 1.13270i 0.142972 0.989727i \(-0.454334\pi\)
0.989727 0.142972i \(-0.0456660\pi\)
\(44\) −22.8574 13.1967i −0.519486 0.299925i
\(45\) −14.8818 1.87976i −0.330706 0.0417724i
\(46\) −16.5749 28.7086i −0.360324 0.624100i
\(47\) −51.9641 + 13.9237i −1.10562 + 0.296250i −0.765051 0.643970i \(-0.777286\pi\)
−0.340568 + 0.940220i \(0.610619\pi\)
\(48\) 4.89898 4.89898i 0.102062 0.102062i
\(49\) −44.7550 + 19.9496i −0.913368 + 0.407135i
\(50\) −17.3551 + 30.8026i −0.347101 + 0.616052i
\(51\) 7.04237 12.1977i 0.138086 0.239172i
\(52\) 7.88823 29.4393i 0.151697 0.566140i
\(53\) 45.4596 + 12.1809i 0.857728 + 0.229827i 0.660774 0.750585i \(-0.270228\pi\)
0.196954 + 0.980413i \(0.436895\pi\)
\(54\) −6.36396 3.67423i −0.117851 0.0680414i
\(55\) 52.5586 + 39.8928i 0.955610 + 0.725323i
\(56\) 16.6072 + 10.7797i 0.296557 + 0.192494i
\(57\) −11.8207 11.8207i −0.207380 0.207380i
\(58\) 15.1807 + 56.6552i 0.261736 + 0.976813i
\(59\) −1.15330 + 0.665857i −0.0195474 + 0.0112857i −0.509742 0.860327i \(-0.670259\pi\)
0.490194 + 0.871613i \(0.336926\pi\)
\(60\) −13.6857 + 10.6161i −0.228095 + 0.176935i
\(61\) −29.7996 + 51.6144i −0.488518 + 0.846138i −0.999913 0.0132077i \(-0.995796\pi\)
0.511395 + 0.859346i \(0.329129\pi\)
\(62\) 36.1764 + 36.1764i 0.583490 + 0.583490i
\(63\) 6.48500 19.9736i 0.102936 0.317041i
\(64\) 8.00000i 0.125000i
\(65\) −28.7882 + 70.5467i −0.442896 + 1.08533i
\(66\) 16.1626 + 27.9945i 0.244888 + 0.424159i
\(67\) −31.5356 + 117.692i −0.470680 + 1.75660i 0.166654 + 0.986015i \(0.446704\pi\)
−0.637335 + 0.770587i \(0.719963\pi\)
\(68\) −4.20935 15.7095i −0.0619021 0.231022i
\(69\) 40.6001i 0.588407i
\(70\) −37.8135 31.9397i −0.540192 0.456281i
\(71\) −82.6803 −1.16451 −0.582256 0.813006i \(-0.697830\pi\)
−0.582256 + 0.813006i \(0.697830\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) 49.5667 + 13.2814i 0.678996 + 0.181936i 0.581804 0.813329i \(-0.302347\pi\)
0.0971923 + 0.995266i \(0.469014\pi\)
\(74\) 5.94488 3.43228i 0.0803362 0.0463821i
\(75\) 37.2705 22.0433i 0.496940 0.293911i
\(76\) −19.3031 −0.253988
\(77\) −68.6360 + 61.8273i −0.891377 + 0.802952i
\(78\) −26.3945 + 26.3945i −0.338391 + 0.338391i
\(79\) −26.3388 15.2067i −0.333403 0.192490i 0.323948 0.946075i \(-0.394990\pi\)
−0.657351 + 0.753585i \(0.728323\pi\)
\(80\) −2.50634 + 19.8423i −0.0313293 + 0.248029i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 9.98902 2.67655i 0.121817 0.0326408i
\(83\) −32.2690 + 32.2690i −0.388784 + 0.388784i −0.874253 0.485470i \(-0.838649\pi\)
0.485470 + 0.874253i \(0.338649\pi\)
\(84\) −11.0134 21.6034i −0.131112 0.257183i
\(85\) 5.51873 + 40.2829i 0.0649263 + 0.473916i
\(86\) −48.7061 + 84.3614i −0.566350 + 0.980946i
\(87\) 18.5925 69.3881i 0.213707 0.797565i
\(88\) 36.0541 + 9.66067i 0.409706 + 0.109780i
\(89\) −19.1540 11.0586i −0.215214 0.124254i 0.388518 0.921441i \(-0.372987\pi\)
−0.603732 + 0.797187i \(0.706320\pi\)
\(90\) 21.0169 2.87930i 0.233521 0.0319923i
\(91\) −89.4755 58.0783i −0.983248 0.638223i
\(92\) 33.1498 + 33.1498i 0.360324 + 0.360324i
\(93\) −16.2174 60.5243i −0.174381 0.650798i
\(94\) 65.8878 38.0403i 0.700934 0.404685i
\(95\) 47.8773 + 6.04752i 0.503972 + 0.0636581i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) 128.645 + 128.645i 1.32623 + 1.32623i 0.908630 + 0.417603i \(0.137130\pi\)
0.417603 + 0.908630i \(0.362870\pi\)
\(98\) 53.8344 43.6332i 0.549331 0.445237i
\(99\) 39.5902i 0.399901i
\(100\) 12.4329 48.4296i 0.124329 0.484296i
\(101\) 25.4347 + 44.0541i 0.251828 + 0.436179i 0.964029 0.265796i \(-0.0856348\pi\)
−0.712201 + 0.701976i \(0.752302\pi\)
\(102\) −5.15537 + 19.2401i −0.0505429 + 0.188629i
\(103\) −31.7417 118.462i −0.308172 1.15011i −0.930181 0.367102i \(-0.880350\pi\)
0.622009 0.783010i \(-0.286317\pi\)
\(104\) 43.1021i 0.414443i
\(105\) 20.5483 + 57.0330i 0.195698 + 0.543172i
\(106\) −66.5574 −0.627900
\(107\) 187.250 50.1735i 1.75000 0.468912i 0.765375 0.643584i \(-0.222553\pi\)
0.984627 + 0.174673i \(0.0558868\pi\)
\(108\) 10.0382 + 2.68973i 0.0929463 + 0.0249049i
\(109\) 58.3978 33.7160i 0.535760 0.309321i −0.207599 0.978214i \(-0.566565\pi\)
0.743359 + 0.668893i \(0.233232\pi\)
\(110\) −86.3981 35.2568i −0.785437 0.320516i
\(111\) −8.40733 −0.0757417
\(112\) −26.6315 8.64666i −0.237781 0.0772023i
\(113\) 85.9828 85.9828i 0.760910 0.760910i −0.215577 0.976487i \(-0.569163\pi\)
0.976487 + 0.215577i \(0.0691632\pi\)
\(114\) 20.4740 + 11.8207i 0.179597 + 0.103690i
\(115\) −71.8356 92.6068i −0.624658 0.805277i
\(116\) −41.4745 71.8359i −0.357538 0.619275i
\(117\) 44.1589 11.8323i 0.377427 0.101131i
\(118\) 1.33171 1.33171i 0.0112857 0.0112857i
\(119\) −56.8455 2.96670i −0.477693 0.0249303i
\(120\) 14.8093 19.5112i 0.123411 0.162593i
\(121\) −26.5767 + 46.0322i −0.219642 + 0.380432i
\(122\) 21.8148 81.4140i 0.178810 0.667328i
\(123\) −12.2340 3.27809i −0.0994634 0.0266511i
\(124\) −62.6593 36.1764i −0.505317 0.291745i
\(125\) −46.0099 + 116.224i −0.368079 + 0.929794i
\(126\) −1.54783 + 29.6581i −0.0122843 + 0.235382i
\(127\) −111.649 111.649i −0.879125 0.879125i 0.114319 0.993444i \(-0.463531\pi\)
−0.993444 + 0.114319i \(0.963531\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 103.321 59.6525i 0.800939 0.462422i
\(130\) 13.5036 106.906i 0.103874 0.822352i
\(131\) 36.8045 63.7473i 0.280951 0.486621i −0.690669 0.723171i \(-0.742684\pi\)
0.971619 + 0.236551i \(0.0760170\pi\)
\(132\) −32.3252 32.3252i −0.244888 0.244888i
\(133\) −20.8634 + 64.2587i −0.156868 + 0.483148i
\(134\) 172.314i 1.28592i
\(135\) −24.0550 9.81620i −0.178185 0.0727126i
\(136\) 11.5001 + 19.9188i 0.0845599 + 0.146462i
\(137\) 61.7203 230.343i 0.450513 1.68134i −0.250440 0.968132i \(-0.580575\pi\)
0.700953 0.713207i \(-0.252758\pi\)
\(138\) −14.8607 55.4607i −0.107686 0.401889i
\(139\) 185.128i 1.33186i 0.746015 + 0.665930i \(0.231965\pi\)
−0.746015 + 0.665930i \(0.768035\pi\)
\(140\) 63.3449 + 29.7897i 0.452463 + 0.212784i
\(141\) −93.1794 −0.660847
\(142\) 112.943 30.2631i 0.795376 0.213120i
\(143\) −194.251 52.0494i −1.35840 0.363982i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 80.3631 + 191.168i 0.554228 + 1.31840i
\(146\) −72.5707 −0.497060
\(147\) −83.8198 + 13.3133i −0.570203 + 0.0905664i
\(148\) −6.86455 + 6.86455i −0.0463821 + 0.0463821i
\(149\) −43.7077 25.2346i −0.293340 0.169360i 0.346107 0.938195i \(-0.387503\pi\)
−0.639447 + 0.768835i \(0.720837\pi\)
\(150\) −42.8440 + 43.7537i −0.285627 + 0.291692i
\(151\) −16.5824 28.7216i −0.109817 0.190209i 0.805879 0.592080i \(-0.201693\pi\)
−0.915696 + 0.401871i \(0.868360\pi\)
\(152\) 26.3685 7.06542i 0.173477 0.0464830i
\(153\) 17.2502 17.2502i 0.112747 0.112747i
\(154\) 71.1282 109.580i 0.461871 0.711560i
\(155\) 144.080 + 109.359i 0.929546 + 0.705540i
\(156\) 26.3945 45.7167i 0.169196 0.293056i
\(157\) −58.5850 + 218.642i −0.373153 + 1.39262i 0.482873 + 0.875690i \(0.339593\pi\)
−0.856025 + 0.516934i \(0.827073\pi\)
\(158\) 41.5456 + 11.1321i 0.262947 + 0.0704564i
\(159\) 70.5948 + 40.7579i 0.443992 + 0.256339i
\(160\) −3.83907 28.0225i −0.0239942 0.175141i
\(161\) 146.183 74.5241i 0.907969 0.462883i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 44.6896 + 166.784i 0.274169 + 1.02321i 0.956396 + 0.292073i \(0.0943451\pi\)
−0.682227 + 0.731141i \(0.738988\pi\)
\(164\) −12.6656 + 7.31247i −0.0772291 + 0.0445882i
\(165\) 70.0487 + 90.3033i 0.424538 + 0.547293i
\(166\) 32.2690 55.8916i 0.194392 0.336697i
\(167\) −158.459 158.459i −0.948854 0.948854i 0.0498998 0.998754i \(-0.484110\pi\)
−0.998754 + 0.0498998i \(0.984110\pi\)
\(168\) 22.9520 + 25.4795i 0.136619 + 0.151664i
\(169\) 63.2238i 0.374105i
\(170\) −22.2833 53.0074i −0.131078 0.311809i
\(171\) −14.4773 25.0755i −0.0846627 0.146640i
\(172\) 35.6553 133.067i 0.207298 0.773648i
\(173\) −10.9342 40.8069i −0.0632033 0.235878i 0.927097 0.374822i \(-0.122296\pi\)
−0.990300 + 0.138944i \(0.955629\pi\)
\(174\) 101.591i 0.583858i
\(175\) −147.781 93.7326i −0.844462 0.535615i
\(176\) −52.7869 −0.299925
\(177\) −2.22800 + 0.596991i −0.0125876 + 0.00337283i
\(178\) 30.2126 + 8.09545i 0.169734 + 0.0454800i
\(179\) 294.348 169.942i 1.64440 0.949398i 0.665164 0.746697i \(-0.268362\pi\)
0.979241 0.202700i \(-0.0649716\pi\)
\(180\) −27.6557 + 11.6259i −0.153643 + 0.0645884i
\(181\) 37.6015 0.207743 0.103871 0.994591i \(-0.466877\pi\)
0.103871 + 0.994591i \(0.466877\pi\)
\(182\) 143.484 + 46.5862i 0.788374 + 0.255968i
\(183\) −72.9938 + 72.9938i −0.398873 + 0.398873i
\(184\) −57.4172 33.1498i −0.312050 0.180162i
\(185\) 19.1767 14.8755i 0.103658 0.0804080i
\(186\) 44.3068 + 76.7417i 0.238209 + 0.412590i
\(187\) −103.657 + 27.7748i −0.554315 + 0.148528i
\(188\) −76.0807 + 76.0807i −0.404685 + 0.404685i
\(189\) 19.8035 30.5093i 0.104781 0.161425i
\(190\) −67.6152 + 9.26324i −0.355869 + 0.0487539i
\(191\) 141.603 245.263i 0.741375 1.28410i −0.210495 0.977595i \(-0.567508\pi\)
0.951870 0.306503i \(-0.0991591\pi\)
\(192\) 3.58630 13.3843i 0.0186787 0.0697097i
\(193\) 152.834 + 40.9517i 0.791885 + 0.212185i 0.632018 0.774954i \(-0.282227\pi\)
0.159867 + 0.987139i \(0.448894\pi\)
\(194\) −222.819 128.645i −1.14855 0.663116i
\(195\) −79.7889 + 105.121i −0.409174 + 0.539084i
\(196\) −57.5683 + 79.3088i −0.293716 + 0.404637i
\(197\) 188.004 + 188.004i 0.954337 + 0.954337i 0.999002 0.0446654i \(-0.0142222\pi\)
−0.0446654 + 0.999002i \(0.514222\pi\)
\(198\) 14.4910 + 54.0812i 0.0731869 + 0.273137i
\(199\) 4.52064 2.60999i 0.0227168 0.0131155i −0.488599 0.872509i \(-0.662492\pi\)
0.511315 + 0.859393i \(0.329158\pi\)
\(200\) 0.742760 + 70.7068i 0.00371380 + 0.353534i
\(201\) −105.520 + 182.766i −0.524976 + 0.909284i
\(202\) −50.8693 50.8693i −0.251828 0.251828i
\(203\) −283.964 + 60.4232i −1.39884 + 0.297651i
\(204\) 28.1695i 0.138086i
\(205\) 33.7052 14.1690i 0.164416 0.0691172i
\(206\) 86.7199 + 150.203i 0.420970 + 0.729142i
\(207\) −18.2005 + 67.9252i −0.0879252 + 0.328141i
\(208\) −15.7765 58.8786i −0.0758484 0.283070i
\(209\) 127.369i 0.609420i
\(210\) −48.9450 70.3874i −0.233071 0.335178i
\(211\) 49.9660 0.236806 0.118403 0.992966i \(-0.462223\pi\)
0.118403 + 0.992966i \(0.462223\pi\)
\(212\) 90.9191 24.3617i 0.428864 0.114914i
\(213\) −138.327 37.0646i −0.649422 0.174012i
\(214\) −237.424 + 137.077i −1.10946 + 0.640545i
\(215\) −130.125 + 318.876i −0.605231 + 1.48314i
\(216\) −14.6969 −0.0680414
\(217\) −188.153 + 169.488i −0.867065 + 0.781051i
\(218\) −67.4320 + 67.4320i −0.309321 + 0.309321i
\(219\) 76.9729 + 44.4403i 0.351474 + 0.202924i
\(220\) 130.927 + 16.5378i 0.595122 + 0.0751716i
\(221\) −61.9601 107.318i −0.280362 0.485602i
\(222\) 11.4846 3.07730i 0.0517325 0.0138617i
\(223\) 211.407 211.407i 0.948013 0.948013i −0.0507005 0.998714i \(-0.516145\pi\)
0.998714 + 0.0507005i \(0.0161454\pi\)
\(224\) 39.5442 + 2.06377i 0.176536 + 0.00921324i
\(225\) 72.2365 20.1713i 0.321051 0.0896504i
\(226\) −85.9828 + 148.927i −0.380455 + 0.658967i
\(227\) 11.7221 43.7476i 0.0516393 0.192721i −0.935288 0.353888i \(-0.884859\pi\)
0.986927 + 0.161168i \(0.0515260\pi\)
\(228\) −32.2947 8.65334i −0.141643 0.0379532i
\(229\) −84.7804 48.9480i −0.370220 0.213747i 0.303335 0.952884i \(-0.401900\pi\)
−0.673555 + 0.739138i \(0.735233\pi\)
\(230\) 132.026 + 100.210i 0.574025 + 0.435694i
\(231\) −142.547 + 72.6704i −0.617085 + 0.314590i
\(232\) 82.9489 + 82.9489i 0.357538 + 0.357538i
\(233\) −47.1774 176.069i −0.202478 0.755659i −0.990203 0.139632i \(-0.955408\pi\)
0.787725 0.616027i \(-0.211259\pi\)
\(234\) −55.9913 + 32.3266i −0.239279 + 0.138148i
\(235\) 212.538 164.867i 0.904416 0.701561i
\(236\) −1.33171 + 2.30660i −0.00564286 + 0.00977372i
\(237\) −37.2488 37.2488i −0.157168 0.157168i
\(238\) 78.7382 16.7543i 0.330833 0.0703962i
\(239\) 68.1419i 0.285112i −0.989787 0.142556i \(-0.954468\pi\)
0.989787 0.142556i \(-0.0455322\pi\)
\(240\) −13.0883 + 32.0733i −0.0545345 + 0.133639i
\(241\) 136.691 + 236.756i 0.567183 + 0.982389i 0.996843 + 0.0793984i \(0.0252999\pi\)
−0.429660 + 0.902991i \(0.641367\pi\)
\(242\) 19.4555 72.6089i 0.0803946 0.300037i
\(243\) 4.03459 + 15.0573i 0.0166032 + 0.0619642i
\(244\) 119.198i 0.488518i
\(245\) 167.633 178.673i 0.684217 0.729278i
\(246\) 17.9118 0.0728123
\(247\) −142.067 + 38.0668i −0.575171 + 0.154117i
\(248\) 98.8357 + 26.4829i 0.398531 + 0.106786i
\(249\) −68.4530 + 39.5214i −0.274912 + 0.158720i
\(250\) 20.3097 175.606i 0.0812387 0.702425i
\(251\) 102.144 0.406947 0.203473 0.979081i \(-0.434777\pi\)
0.203473 + 0.979081i \(0.434777\pi\)
\(252\) −8.74126 41.0803i −0.0346875 0.163017i
\(253\) 218.734 218.734i 0.864563 0.864563i
\(254\) 193.381 + 111.649i 0.761344 + 0.439562i
\(255\) −8.82530 + 69.8686i −0.0346090 + 0.273994i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −344.764 + 92.3792i −1.34149 + 0.359452i −0.856988 0.515336i \(-0.827667\pi\)
−0.484506 + 0.874788i \(0.661000\pi\)
\(258\) −119.305 + 119.305i −0.462422 + 0.462422i
\(259\) 15.4322 + 30.2711i 0.0595838 + 0.116877i
\(260\) 20.6840 + 150.979i 0.0795538 + 0.580687i
\(261\) 62.2117 107.754i 0.238359 0.412850i
\(262\) −26.9428 + 100.552i −0.102835 + 0.383786i
\(263\) −186.615 50.0033i −0.709562 0.190126i −0.114052 0.993475i \(-0.536383\pi\)
−0.595509 + 0.803348i \(0.703050\pi\)
\(264\) 55.9889 + 32.3252i 0.212079 + 0.122444i
\(265\) −233.138 + 31.9398i −0.879767 + 0.120528i
\(266\) 4.97963 95.4156i 0.0187204 0.358705i
\(267\) −27.0879 27.0879i −0.101453 0.101453i
\(268\) 63.0712 + 235.385i 0.235340 + 0.878301i
\(269\) −244.880 + 141.381i −0.910334 + 0.525582i −0.880539 0.473974i \(-0.842819\pi\)
−0.0297956 + 0.999556i \(0.509486\pi\)
\(270\) 36.4527 + 4.60445i 0.135010 + 0.0170535i
\(271\) 256.230 443.803i 0.945497 1.63765i 0.190745 0.981640i \(-0.438910\pi\)
0.754752 0.656010i \(-0.227757\pi\)
\(272\) −23.0003 23.0003i −0.0845599 0.0845599i
\(273\) −123.660 137.278i −0.452966 0.502849i
\(274\) 337.246i 1.23083i
\(275\) −319.556 82.0369i −1.16202 0.298316i
\(276\) 40.6001 + 70.3214i 0.147102 + 0.254788i
\(277\) −34.4217 + 128.464i −0.124266 + 0.463767i −0.999812 0.0193668i \(-0.993835\pi\)
0.875546 + 0.483134i \(0.160502\pi\)
\(278\) −67.7617 252.890i −0.243747 0.909677i
\(279\) 108.529i 0.388993i
\(280\) −97.4345 17.5076i −0.347980 0.0625273i
\(281\) 456.720 1.62534 0.812670 0.582724i \(-0.198013\pi\)
0.812670 + 0.582724i \(0.198013\pi\)
\(282\) 127.285 34.1060i 0.451367 0.120943i
\(283\) −90.4360 24.2323i −0.319562 0.0856264i 0.0954725 0.995432i \(-0.469564\pi\)
−0.415034 + 0.909806i \(0.636230\pi\)
\(284\) −143.207 + 82.6803i −0.504248 + 0.291128i
\(285\) 77.3893 + 31.5805i 0.271541 + 0.110809i
\(286\) 284.403 0.994417
\(287\) 10.6534 + 50.0664i 0.0371197 + 0.174447i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 193.014 + 111.437i 0.667868 + 0.385594i
\(290\) −179.750 231.725i −0.619828 0.799051i
\(291\) 157.557 + 272.896i 0.541432 + 0.937788i
\(292\) 99.1334 26.5627i 0.339498 0.0909682i
\(293\) 41.1011 41.1011i 0.140277 0.140277i −0.633481 0.773758i \(-0.718375\pi\)
0.773758 + 0.633481i \(0.218375\pi\)
\(294\) 109.627 48.8664i 0.372881 0.166212i
\(295\) 4.02568 5.30382i 0.0136464 0.0179790i
\(296\) 6.86455 11.8898i 0.0231911 0.0401681i
\(297\) 17.7478 66.2356i 0.0597568 0.223016i
\(298\) 68.9423 + 18.4730i 0.231350 + 0.0619900i
\(299\) 309.350 + 178.603i 1.03462 + 0.597335i
\(300\) 42.5111 75.4507i 0.141704 0.251502i
\(301\) −404.435 262.518i −1.34364 0.872152i
\(302\) 33.1648 + 33.1648i 0.109817 + 0.109817i
\(303\) 22.8041 + 85.1060i 0.0752610 + 0.280878i
\(304\) −33.4339 + 19.3031i −0.109980 + 0.0634970i
\(305\) 37.3440 295.647i 0.122439 0.969334i
\(306\) −17.2502 + 29.8783i −0.0563733 + 0.0976414i
\(307\) −219.450 219.450i −0.714822 0.714822i 0.252718 0.967540i \(-0.418676\pi\)
−0.967540 + 0.252718i \(0.918676\pi\)
\(308\) −57.0538 + 175.724i −0.185240 + 0.570533i
\(309\) 212.419i 0.687442i
\(310\) −236.844 96.6499i −0.764014 0.311774i
\(311\) 239.292 + 414.465i 0.769427 + 1.33269i 0.937874 + 0.346976i \(0.112791\pi\)
−0.168447 + 0.985711i \(0.553875\pi\)
\(312\) −19.3221 + 72.1112i −0.0619299 + 0.231126i
\(313\) 99.3245 + 370.684i 0.317331 + 1.18429i 0.921800 + 0.387666i \(0.126718\pi\)
−0.604470 + 0.796628i \(0.706615\pi\)
\(314\) 320.114i 1.01947i
\(315\) 8.81071 + 104.630i 0.0279705 + 0.332158i
\(316\) −60.8270 −0.192490
\(317\) 141.782 37.9902i 0.447260 0.119843i −0.0281569 0.999604i \(-0.508964\pi\)
0.475417 + 0.879760i \(0.342297\pi\)
\(318\) −111.353 29.8369i −0.350166 0.0938267i
\(319\) −473.999 + 273.663i −1.48589 + 0.857879i
\(320\) 15.5012 + 36.8743i 0.0484413 + 0.115232i
\(321\) 335.768 1.04601
\(322\) −172.412 + 155.309i −0.535441 + 0.482325i
\(323\) −55.4971 + 55.4971i −0.171818 + 0.171818i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) −4.00181 380.951i −0.0123133 1.17216i
\(326\) −122.094 211.473i −0.374522 0.648692i
\(327\) 112.816 30.2289i 0.345003 0.0924432i
\(328\) 14.6249 14.6249i 0.0445882 0.0445882i
\(329\) 171.037 + 335.498i 0.519870 + 1.01975i
\(330\) −128.742 97.7169i −0.390126 0.296112i
\(331\) 29.0788 50.3660i 0.0878515 0.152163i −0.818751 0.574148i \(-0.805333\pi\)
0.906603 + 0.421985i \(0.138667\pi\)
\(332\) −23.6226 + 88.1607i −0.0711524 + 0.265544i
\(333\) −14.0657 3.76890i −0.0422394 0.0113180i
\(334\) 274.459 + 158.459i 0.821732 + 0.474427i
\(335\) −82.6905 603.583i −0.246837 1.80174i
\(336\) −40.6791 26.4047i −0.121069 0.0785854i
\(337\) −296.066 296.066i −0.878534 0.878534i 0.114849 0.993383i \(-0.463362\pi\)
−0.993383 + 0.114849i \(0.963362\pi\)
\(338\) 23.1415 + 86.3653i 0.0684660 + 0.255519i
\(339\) 182.397 105.307i 0.538045 0.310640i
\(340\) 49.8416 + 64.2533i 0.146593 + 0.188980i
\(341\) −238.705 + 413.449i −0.700014 + 1.21246i
\(342\) 28.9546 + 28.9546i 0.0846627 + 0.0846627i
\(343\) 201.792 + 277.361i 0.588315 + 0.808632i
\(344\) 194.824i 0.566350i
\(345\) −78.6688 187.137i −0.228026 0.542427i
\(346\) 29.8727 + 51.7411i 0.0863373 + 0.149541i
\(347\) −33.2690 + 124.162i −0.0958760 + 0.357814i −0.997151 0.0754337i \(-0.975966\pi\)
0.901275 + 0.433248i \(0.142633\pi\)
\(348\) −37.1850 138.776i −0.106853 0.398782i
\(349\) 335.241i 0.960576i 0.877111 + 0.480288i \(0.159468\pi\)
−0.877111 + 0.480288i \(0.840532\pi\)
\(350\) 236.181 + 73.9496i 0.674803 + 0.211285i
\(351\) 79.1836 0.225594
\(352\) 72.1082 19.3213i 0.204853 0.0548902i
\(353\) −28.0127 7.50598i −0.0793561 0.0212634i 0.218923 0.975742i \(-0.429746\pi\)
−0.298279 + 0.954479i \(0.596412\pi\)
\(354\) 2.82499 1.63101i 0.00798021 0.00460737i
\(355\) 381.097 160.206i 1.07351 0.451284i
\(356\) −44.2343 −0.124254
\(357\) −93.7744 30.4465i −0.262673 0.0852844i
\(358\) −339.884 + 339.884i −0.949398 + 0.949398i
\(359\) −237.071 136.873i −0.660366 0.381262i 0.132050 0.991243i \(-0.457844\pi\)
−0.792416 + 0.609981i \(0.791177\pi\)
\(360\) 33.5230 26.0040i 0.0931195 0.0722333i
\(361\) −133.924 231.963i −0.370980 0.642556i
\(362\) −51.3646 + 13.7631i −0.141891 + 0.0380196i
\(363\) −65.0994 + 65.0994i −0.179337 + 0.179337i
\(364\) −213.055 11.1191i −0.585315 0.0305469i
\(365\) −254.202 + 34.8255i −0.696443 + 0.0954123i
\(366\) 72.9938 126.429i 0.199437 0.345434i
\(367\) 73.2224 273.270i 0.199516 0.744604i −0.791535 0.611123i \(-0.790718\pi\)
0.991051 0.133481i \(-0.0426154\pi\)
\(368\) 90.5670 + 24.2673i 0.246106 + 0.0659439i
\(369\) −18.9984 10.9687i −0.0514860 0.0297255i
\(370\) −20.7511 + 27.3394i −0.0560840 + 0.0738904i
\(371\) 17.1699 328.995i 0.0462800 0.886778i
\(372\) −88.6137 88.6137i −0.238209 0.238209i
\(373\) 86.9270 + 324.416i 0.233048 + 0.869747i 0.979019 + 0.203769i \(0.0653191\pi\)
−0.745971 + 0.665979i \(0.768014\pi\)
\(374\) 131.432 75.8821i 0.351422 0.202893i
\(375\) −129.078 + 173.821i −0.344208 + 0.463524i
\(376\) 76.0807 131.776i 0.202342 0.350467i
\(377\) −446.909 446.909i −1.18544 1.18544i
\(378\) −15.8849 + 48.9251i −0.0420236 + 0.129432i
\(379\) 479.313i 1.26468i −0.774692 0.632339i \(-0.782095\pi\)
0.774692 0.632339i \(-0.217905\pi\)
\(380\) 88.9734 37.4027i 0.234141 0.0984281i
\(381\) −136.741 236.843i −0.358901 0.621635i
\(382\) −103.660 + 386.865i −0.271362 + 1.01274i
\(383\) 105.779 + 394.771i 0.276184 + 1.03073i 0.955044 + 0.296465i \(0.0958079\pi\)
−0.678859 + 0.734268i \(0.737525\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 196.563 417.972i 0.510554 1.08564i
\(386\) −223.764 −0.579700
\(387\) 199.601 53.4830i 0.515765 0.138199i
\(388\) 351.464 + 94.1744i 0.905834 + 0.242717i
\(389\) 427.944 247.074i 1.10011 0.635151i 0.163863 0.986483i \(-0.447605\pi\)
0.936251 + 0.351332i \(0.114271\pi\)
\(390\) 70.5165 172.803i 0.180811 0.443086i
\(391\) 190.614 0.487504
\(392\) 49.6108 129.409i 0.126558 0.330126i
\(393\) 90.1523 90.1523i 0.229395 0.229395i
\(394\) −325.633 188.004i −0.826480 0.477168i
\(395\) 150.869 + 19.0567i 0.381946 + 0.0482447i
\(396\) −39.5902 68.5722i −0.0999752 0.173162i
\(397\) 557.198 149.301i 1.40352 0.376073i 0.523914 0.851771i \(-0.324471\pi\)
0.879608 + 0.475699i \(0.157805\pi\)
\(398\) −5.21998 + 5.21998i −0.0131155 + 0.0131155i
\(399\) −63.7116 + 98.1541i −0.159678 + 0.246000i
\(400\) −26.8951 96.3154i −0.0672378 0.240788i
\(401\) −200.253 + 346.849i −0.499384 + 0.864959i −1.00000 0.000710769i \(-0.999774\pi\)
0.500615 + 0.865670i \(0.333107\pi\)
\(402\) 77.2461 288.286i 0.192154 0.717130i
\(403\) −532.503 142.684i −1.32135 0.354054i
\(404\) 88.1083 + 50.8693i 0.218090 + 0.125914i
\(405\) −35.8443 27.2064i −0.0885044 0.0671762i
\(406\) 365.785 186.478i 0.900949 0.459304i
\(407\) 45.2948 + 45.2948i 0.111289 + 0.111289i
\(408\) 10.3107 + 38.4802i 0.0252714 + 0.0943143i
\(409\) −579.420 + 334.528i −1.41667 + 0.817917i −0.996005 0.0892974i \(-0.971538\pi\)
−0.420669 + 0.907214i \(0.638205\pi\)
\(410\) −40.8560 + 31.6922i −0.0996488 + 0.0772981i
\(411\) 206.520 357.704i 0.502482 0.870325i
\(412\) −173.440 173.440i −0.420970 0.420970i
\(413\) 6.23915 + 6.92624i 0.0151069 + 0.0167705i
\(414\) 99.4494i 0.240216i
\(415\) 86.2110 211.263i 0.207737 0.509069i
\(416\) 43.1021 + 74.6550i 0.103611 + 0.179459i
\(417\) −82.9908 + 309.726i −0.199019 + 0.742748i
\(418\) −46.6202 173.989i −0.111532 0.416241i
\(419\) 19.3686i 0.0462258i −0.999733 0.0231129i \(-0.992642\pi\)
0.999733 0.0231129i \(-0.00735772\pi\)
\(420\) 92.6237 + 78.2359i 0.220533 + 0.186276i
\(421\) −337.581 −0.801854 −0.400927 0.916110i \(-0.631312\pi\)
−0.400927 + 0.916110i \(0.631312\pi\)
\(422\) −68.2548 + 18.2888i −0.161741 + 0.0433384i
\(423\) −155.892 41.7712i −0.368540 0.0987499i
\(424\) −115.281 + 66.5574i −0.271889 + 0.156975i
\(425\) −103.492 174.982i −0.243510 0.411722i
\(426\) 202.525 0.475410
\(427\) 396.804 + 128.834i 0.929283 + 0.301718i
\(428\) 274.153 274.153i 0.640545 0.640545i
\(429\) −301.655 174.161i −0.703159 0.405969i
\(430\) 61.0370 483.221i 0.141947 1.12377i
\(431\) 123.164 + 213.326i 0.285763 + 0.494955i 0.972794 0.231673i \(-0.0744198\pi\)
−0.687031 + 0.726628i \(0.741086\pi\)
\(432\) 20.0764 5.37945i 0.0464731 0.0124524i
\(433\) 480.212 480.212i 1.10904 1.10904i 0.115758 0.993277i \(-0.463070\pi\)
0.993277 0.115758i \(-0.0369298\pi\)
\(434\) 194.985 300.394i 0.449274 0.692152i
\(435\) 48.7520 + 355.855i 0.112074 + 0.818058i
\(436\) 67.4320 116.796i 0.154661 0.267880i
\(437\) 58.5544 218.528i 0.133992 0.500064i
\(438\) −121.413 32.5326i −0.277199 0.0742752i
\(439\) −309.357 178.607i −0.704685 0.406850i 0.104405 0.994535i \(-0.466706\pi\)
−0.809090 + 0.587685i \(0.800040\pi\)
\(440\) −184.903 + 25.3316i −0.420233 + 0.0575717i
\(441\) −146.201 15.3019i −0.331522 0.0346981i
\(442\) 123.920 + 123.920i 0.280362 + 0.280362i
\(443\) 206.262 + 769.781i 0.465603 + 1.73765i 0.654883 + 0.755731i \(0.272718\pi\)
−0.189280 + 0.981923i \(0.560615\pi\)
\(444\) −14.5619 + 8.40733i −0.0327971 + 0.0189354i
\(445\) 109.714 + 13.8583i 0.246549 + 0.0311423i
\(446\) −211.407 + 366.168i −0.474007 + 0.821004i
\(447\) −61.8120 61.8120i −0.138282 0.138282i
\(448\) −54.7737 + 11.6550i −0.122263 + 0.0260156i
\(449\) 838.986i 1.86857i 0.356531 + 0.934283i \(0.383959\pi\)
−0.356531 + 0.934283i \(0.616041\pi\)
\(450\) −91.2937 + 53.9950i −0.202875 + 0.119989i
\(451\) 48.2503 + 83.5720i 0.106985 + 0.185304i
\(452\) 62.9438 234.909i 0.139256 0.519711i
\(453\) −14.8674 55.4858i −0.0328198 0.122485i
\(454\) 64.0509i 0.141081i
\(455\) 524.954 + 94.3270i 1.15374 + 0.207312i
\(456\) 47.2827 0.103690
\(457\) 445.251 119.305i 0.974291 0.261060i 0.263652 0.964618i \(-0.415073\pi\)
0.710638 + 0.703557i \(0.248406\pi\)
\(458\) 133.728 + 35.8324i 0.291983 + 0.0782367i
\(459\) 36.5932 21.1271i 0.0797238 0.0460286i
\(460\) −217.030 88.5641i −0.471804 0.192531i
\(461\) 583.525 1.26578 0.632890 0.774241i \(-0.281868\pi\)
0.632890 + 0.774241i \(0.281868\pi\)
\(462\) 168.123 151.445i 0.363903 0.327804i
\(463\) 235.910 235.910i 0.509525 0.509525i −0.404856 0.914381i \(-0.632678\pi\)
0.914381 + 0.404856i \(0.132678\pi\)
\(464\) −143.672 82.9489i −0.309637 0.178769i
\(465\) 192.026 + 247.550i 0.412958 + 0.532365i
\(466\) 128.891 + 223.246i 0.276591 + 0.479069i
\(467\) −223.045 + 59.7647i −0.477612 + 0.127976i −0.489590 0.871952i \(-0.662854\pi\)
0.0119785 + 0.999928i \(0.496187\pi\)
\(468\) 64.6531 64.6531i 0.138148 0.138148i
\(469\) 851.750 + 44.4519i 1.81610 + 0.0947801i
\(470\) −229.987 + 303.006i −0.489333 + 0.644695i
\(471\) −196.029 + 339.532i −0.416198 + 0.720875i
\(472\) 0.974883 3.63831i 0.00206543 0.00770829i
\(473\) −878.027 235.267i −1.85629 0.497392i
\(474\) 64.5167 + 37.2488i 0.136111 + 0.0785839i
\(475\) −232.398 + 64.8948i −0.489259 + 0.136621i
\(476\) −101.426 + 51.7070i −0.213080 + 0.108628i
\(477\) 99.8361 + 99.8361i 0.209300 + 0.209300i
\(478\) 24.9416 + 93.0835i 0.0521792 + 0.194735i
\(479\) −497.384 + 287.165i −1.03838 + 0.599509i −0.919374 0.393385i \(-0.871304\pi\)
−0.119006 + 0.992894i \(0.537971\pi\)
\(480\) 6.13926 48.6036i 0.0127901 0.101257i
\(481\) −36.9846 + 64.0592i −0.0768910 + 0.133179i
\(482\) −273.382 273.382i −0.567183 0.567183i
\(483\) 277.977 59.1493i 0.575522 0.122462i
\(484\) 106.307i 0.219642i
\(485\) −842.228 343.691i −1.73655 0.708641i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) −197.500 + 737.079i −0.405544 + 1.51351i 0.397507 + 0.917599i \(0.369875\pi\)
−0.803051 + 0.595911i \(0.796791\pi\)
\(488\) −43.6297 162.828i −0.0894050 0.333664i
\(489\) 299.069i 0.611592i
\(490\) −163.592 + 305.430i −0.333862 + 0.623327i
\(491\) 267.633 0.545077 0.272538 0.962145i \(-0.412137\pi\)
0.272538 + 0.962145i \(0.412137\pi\)
\(492\) −24.4680 + 6.55618i −0.0497317 + 0.0133256i
\(493\) −325.771 87.2902i −0.660794 0.177059i
\(494\) 180.134 104.000i 0.364644 0.210527i
\(495\) 76.7120 + 182.482i 0.154974 + 0.368651i
\(496\) −144.705 −0.291745
\(497\) 120.455 + 566.089i 0.242364 + 1.13901i
\(498\) 79.0427 79.0427i 0.158720 0.158720i
\(499\) −328.627 189.733i −0.658572 0.380227i 0.133161 0.991094i \(-0.457487\pi\)
−0.791733 + 0.610868i \(0.790821\pi\)
\(500\) 36.5328 + 247.316i 0.0730656 + 0.494633i
\(501\) −194.071 336.142i −0.387368 0.670941i
\(502\) −139.531 + 37.3871i −0.277950 + 0.0744764i
\(503\) −344.318 + 344.318i −0.684530 + 0.684530i −0.961017 0.276488i \(-0.910829\pi\)
0.276488 + 0.961017i \(0.410829\pi\)
\(504\) 26.9772 + 52.9172i 0.0535262 + 0.104994i
\(505\) −202.597 153.774i −0.401183 0.304504i
\(506\) −218.734 + 378.859i −0.432281 + 0.748733i
\(507\) 28.3425 105.776i 0.0559023 0.208630i
\(508\) −305.030 81.7326i −0.600453 0.160891i
\(509\) −217.653 125.662i −0.427608 0.246880i 0.270719 0.962658i \(-0.412739\pi\)
−0.698327 + 0.715779i \(0.746072\pi\)
\(510\) −13.5181 98.6725i −0.0265060 0.193476i
\(511\) 18.7211 358.718i 0.0366363 0.701993i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −12.9800 48.4421i −0.0253022 0.0944290i
\(514\) 437.143 252.385i 0.850473 0.491021i
\(515\) 375.844 + 484.519i 0.729794 + 0.940813i
\(516\) 119.305 206.642i 0.231211 0.400470i
\(517\) 502.008 + 502.008i 0.971002 + 0.971002i
\(518\) −32.1608 35.7025i −0.0620864 0.0689237i
\(519\) 73.1729i 0.140988i
\(520\) −83.5169 198.670i −0.160609 0.382057i
\(521\) −146.018 252.911i −0.280266 0.485434i 0.691184 0.722678i \(-0.257089\pi\)
−0.971450 + 0.237244i \(0.923756\pi\)
\(522\) −45.5421 + 169.966i −0.0872454 + 0.325604i
\(523\) 199.320 + 743.873i 0.381109 + 1.42232i 0.844209 + 0.536014i \(0.180070\pi\)
−0.463100 + 0.886306i \(0.653263\pi\)
\(524\) 147.218i 0.280951i
\(525\) −205.223 223.066i −0.390901 0.424888i
\(526\) 273.223 0.519435
\(527\) −284.156 + 76.1394i −0.539196 + 0.144477i
\(528\) −88.3142 23.6637i −0.167262 0.0448176i
\(529\) −17.7146 + 10.2276i −0.0334870 + 0.0193337i
\(530\) 306.782 128.965i 0.578834 0.243330i
\(531\) −3.99514 −0.00752381
\(532\) 28.1222 + 132.163i 0.0528613 + 0.248426i
\(533\) −78.7957 + 78.7957i −0.147834 + 0.147834i
\(534\) 46.9176 + 27.0879i 0.0878607 + 0.0507264i
\(535\) −765.870 + 594.090i −1.43153 + 1.11045i
\(536\) −172.314 298.456i −0.321481 0.556821i
\(537\) 568.638 152.366i 1.05892 0.283736i
\(538\) 282.763 282.763i 0.525582 0.525582i
\(539\) 523.308 + 379.857i 0.970887 + 0.704743i
\(540\) −51.4807 + 7.05282i −0.0953345 + 0.0130608i
\(541\) 82.6003 143.068i 0.152681 0.264451i −0.779531 0.626363i \(-0.784543\pi\)
0.932212 + 0.361912i \(0.117876\pi\)
\(542\) −187.573 + 700.033i −0.346076 + 1.29157i
\(543\) 62.9085 + 16.8563i 0.115854 + 0.0310429i
\(544\) 39.8377 + 23.0003i 0.0732310 + 0.0422800i
\(545\) −203.842 + 268.561i −0.374022 + 0.492773i
\(546\) 219.169 + 142.262i 0.401409 + 0.260554i
\(547\) 172.204 + 172.204i 0.314815 + 0.314815i 0.846772 0.531956i \(-0.178543\pi\)
−0.531956 + 0.846772i \(0.678543\pi\)
\(548\) −123.441 460.687i −0.225257 0.840670i
\(549\) −154.843 + 89.3988i −0.282046 + 0.162839i
\(550\) 466.549 4.90100i 0.848270 0.00891090i
\(551\) −200.146 + 346.664i −0.363242 + 0.629154i
\(552\) −81.2001 81.2001i −0.147102 0.147102i
\(553\) −65.7438 + 202.489i −0.118886 + 0.366164i
\(554\) 188.084i 0.339501i
\(555\) 38.7518 16.2905i 0.0698230 0.0293522i
\(556\) 185.128 + 320.652i 0.332965 + 0.576712i
\(557\) −6.64563 + 24.8018i −0.0119311 + 0.0445275i −0.971635 0.236487i \(-0.924004\pi\)
0.959704 + 0.281014i \(0.0906708\pi\)
\(558\) 39.7244 + 148.254i 0.0711907 + 0.265687i
\(559\) 1049.67i 1.87776i
\(560\) 139.506 11.7476i 0.249118 0.0209779i
\(561\) −185.872 −0.331323
\(562\) −623.892 + 167.171i −1.11013 + 0.297458i
\(563\) 813.352 + 217.937i 1.44468 + 0.387100i 0.894168 0.447731i \(-0.147768\pi\)
0.550507 + 0.834831i \(0.314434\pi\)
\(564\) −161.392 + 93.1794i −0.286155 + 0.165212i
\(565\) −229.714 + 562.924i −0.406574 + 0.996326i
\(566\) 132.408 0.233936
\(567\) 46.8089 42.1654i 0.0825554 0.0743659i
\(568\) 165.361 165.361i 0.291128 0.291128i
\(569\) −88.8020 51.2699i −0.156067 0.0901052i 0.419933 0.907555i \(-0.362054\pi\)
−0.576000 + 0.817450i \(0.695387\pi\)
\(570\) −117.275 14.8133i −0.205746 0.0259883i
\(571\) 313.449 + 542.910i 0.548947 + 0.950805i 0.998347 + 0.0574739i \(0.0183046\pi\)
−0.449400 + 0.893331i \(0.648362\pi\)
\(572\) −388.502 + 104.099i −0.679199 + 0.181991i
\(573\) 346.854 346.854i 0.605330 0.605330i
\(574\) −32.8783 64.4926i −0.0572793 0.112356i
\(575\) 510.551 + 287.659i 0.887914 + 0.500276i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) 256.448 957.078i 0.444451 1.65871i −0.272930 0.962034i \(-0.587993\pi\)
0.717381 0.696681i \(-0.245341\pi\)
\(578\) −304.451 81.5773i −0.526731 0.141137i
\(579\) 237.338 + 137.027i 0.409910 + 0.236661i
\(580\) 330.361 + 250.749i 0.569587 + 0.432326i
\(581\) 267.949 + 173.925i 0.461186 + 0.299355i
\(582\) −315.114 315.114i −0.541432 0.541432i
\(583\) −160.747 599.917i −0.275724 1.02902i
\(584\) −125.696 + 72.5707i −0.215233 + 0.124265i
\(585\) −180.614 + 140.103i −0.308742 + 0.239493i
\(586\) −41.1011 + 71.1892i −0.0701384 + 0.121483i
\(587\) −625.656 625.656i −1.06585 1.06585i −0.997673 0.0681813i \(-0.978280\pi\)
−0.0681813 0.997673i \(-0.521720\pi\)
\(588\) −131.867 + 106.879i −0.224263 + 0.181767i
\(589\) 349.158i 0.592798i
\(590\) −3.55785 + 8.71865i −0.00603026 + 0.0147774i
\(591\) 230.257 + 398.817i 0.389606 + 0.674818i
\(592\) −5.02520 + 18.7543i −0.00848852 + 0.0316796i
\(593\) −143.959 537.263i −0.242764 0.906009i −0.974494 0.224414i \(-0.927953\pi\)
0.731730 0.681595i \(-0.238713\pi\)
\(594\) 96.9757i 0.163259i
\(595\) 267.765 96.4724i 0.450026 0.162138i
\(596\) −100.938 −0.169360
\(597\) 8.73320 2.34005i 0.0146285 0.00391969i
\(598\) −487.953 130.747i −0.815975 0.218640i
\(599\) 179.972 103.907i 0.300454 0.173467i −0.342193 0.939630i \(-0.611170\pi\)
0.642647 + 0.766163i \(0.277836\pi\)
\(600\) −30.4543 + 118.628i −0.0507572 + 0.197713i
\(601\) −803.576 −1.33707 −0.668533 0.743683i \(-0.733077\pi\)
−0.668533 + 0.743683i \(0.733077\pi\)
\(602\) 648.557 + 210.572i 1.07734 + 0.349788i
\(603\) −258.470 + 258.470i −0.428641 + 0.428641i
\(604\) −57.4431 33.1648i −0.0951045 0.0549086i
\(605\) 33.3052 263.672i 0.0550499 0.435821i
\(606\) −62.3019 107.910i −0.102808 0.178070i
\(607\) −241.467 + 64.7010i −0.397805 + 0.106591i −0.452175 0.891929i \(-0.649352\pi\)
0.0543700 + 0.998521i \(0.482685\pi\)
\(608\) 38.6062 38.6062i 0.0634970 0.0634970i
\(609\) −502.168 26.2076i −0.824578 0.0430338i
\(610\) 57.2014 + 417.530i 0.0937728 + 0.684475i
\(611\) −409.905 + 709.976i −0.670875 + 1.16199i
\(612\) 12.6280 47.1285i 0.0206340 0.0770073i
\(613\) 508.814 + 136.336i 0.830039 + 0.222408i 0.648731 0.761018i \(-0.275300\pi\)
0.181308 + 0.983426i \(0.441967\pi\)
\(614\) 380.099 + 219.450i 0.619054 + 0.357411i
\(615\) 62.7418 8.59559i 0.102019 0.0139766i
\(616\) 13.6175 260.927i 0.0221063 0.423582i
\(617\) −188.817 188.817i −0.306025 0.306025i 0.537340 0.843365i \(-0.319429\pi\)
−0.843365 + 0.537340i \(0.819429\pi\)
\(618\) 77.7509 + 290.170i 0.125811 + 0.469531i
\(619\) 93.0351 53.7139i 0.150299 0.0867752i −0.422964 0.906146i \(-0.639010\pi\)
0.573263 + 0.819371i \(0.305677\pi\)
\(620\) 358.912 + 45.3352i 0.578890 + 0.0731213i
\(621\) −60.9001 + 105.482i −0.0980678 + 0.169858i
\(622\) −478.584 478.584i −0.769427 0.769427i
\(623\) −47.8099 + 147.253i −0.0767415 + 0.236361i
\(624\) 105.578i 0.169196i
\(625\) −13.1295 624.862i −0.0210073 0.999779i
\(626\) −271.359 470.008i −0.433482 0.750812i
\(627\) −57.0978 + 213.092i −0.0910651 + 0.339860i
\(628\) 117.170 + 437.284i 0.186576 + 0.696312i
\(629\) 39.4717i 0.0627531i
\(630\) −50.3328 139.702i −0.0798933 0.221749i
\(631\) −494.190 −0.783185 −0.391593 0.920139i \(-0.628076\pi\)
−0.391593 + 0.920139i \(0.628076\pi\)
\(632\) 83.0912 22.2642i 0.131473 0.0352282i
\(633\) 83.5947 + 22.3991i 0.132061 + 0.0353857i
\(634\) −179.772 + 103.791i −0.283552 + 0.163709i
\(635\) 730.958 + 298.285i 1.15111 + 0.469739i
\(636\) 163.032 0.256339
\(637\) −267.291 + 697.227i −0.419609 + 1.09455i
\(638\) 547.327 547.327i 0.857879 0.857879i
\(639\) −214.810 124.021i −0.336166 0.194085i
\(640\) −34.6720 44.6974i −0.0541750 0.0698396i
\(641\) −209.798 363.381i −0.327298 0.566897i 0.654677 0.755909i \(-0.272805\pi\)
−0.981975 + 0.189012i \(0.939471\pi\)
\(642\) −458.667 + 122.900i −0.714435 + 0.191432i
\(643\) −192.944 + 192.944i −0.300069 + 0.300069i −0.841041 0.540972i \(-0.818057\pi\)
0.540972 + 0.841041i \(0.318057\pi\)
\(644\) 178.672 275.263i 0.277441 0.427426i
\(645\) −360.651 + 475.156i −0.559149 + 0.736676i
\(646\) 55.4971 96.1238i 0.0859088 0.148798i
\(647\) 91.8957 342.959i 0.142033 0.530076i −0.857836 0.513923i \(-0.828192\pi\)
0.999870 0.0161528i \(-0.00514181\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) 15.2198 + 8.78713i 0.0234511 + 0.0135395i
\(650\) 144.904 + 518.924i 0.222930 + 0.798345i
\(651\) −390.766 + 199.212i −0.600254 + 0.306010i
\(652\) 244.189 + 244.189i 0.374522 + 0.374522i
\(653\) −101.202 377.692i −0.154981 0.578395i −0.999107 0.0422513i \(-0.986547\pi\)
0.844126 0.536144i \(-0.180120\pi\)
\(654\) −143.045 + 82.5870i −0.218723 + 0.126280i
\(655\) −46.1224 + 365.144i −0.0704158 + 0.557471i
\(656\) −14.6249 + 25.3311i −0.0222941 + 0.0386145i
\(657\) 108.856 + 108.856i 0.165687 + 0.165687i
\(658\) −356.442 395.695i −0.541705 0.601360i
\(659\) 325.611i 0.494099i 0.969003 + 0.247050i \(0.0794610\pi\)
−0.969003 + 0.247050i \(0.920539\pi\)
\(660\) 211.631 + 86.3611i 0.320653 + 0.130850i
\(661\) −127.822 221.394i −0.193377 0.334938i 0.752990 0.658032i \(-0.228611\pi\)
−0.946367 + 0.323093i \(0.895277\pi\)
\(662\) −21.2872 + 79.4448i −0.0321559 + 0.120007i
\(663\) −55.5519 207.322i −0.0837886 0.312703i
\(664\) 129.076i 0.194392i
\(665\) −28.3457 336.613i −0.0426250 0.506185i
\(666\) 20.5937 0.0309214
\(667\) 939.054 251.619i 1.40788 0.377240i
\(668\) −432.917 116.000i −0.648080 0.173652i
\(669\) 448.462 258.920i 0.670347 0.387025i
\(670\) 333.884 + 794.242i 0.498334 + 1.18544i
\(671\) 786.514 1.17215
\(672\) 65.2335 + 21.1799i 0.0970737 + 0.0315177i
\(673\) 74.4755 74.4755i 0.110662 0.110662i −0.649608 0.760270i \(-0.725067\pi\)
0.760270 + 0.649608i \(0.225067\pi\)
\(674\) 512.801 + 296.066i 0.760833 + 0.439267i
\(675\) 129.897 1.36454i 0.192439 0.00202154i
\(676\) −63.2238 109.507i −0.0935264 0.161992i
\(677\) 291.039 77.9835i 0.429894 0.115190i −0.0373822 0.999301i \(-0.511902\pi\)
0.467277 + 0.884111i \(0.345235\pi\)
\(678\) −210.614 + 210.614i −0.310640 + 0.310640i
\(679\) 693.374 1068.21i 1.02117 1.57321i
\(680\) −91.6032 69.5283i −0.134711 0.102248i
\(681\) 39.2230 67.9362i 0.0575962 0.0997595i
\(682\) 174.744 652.153i 0.256223 0.956237i
\(683\) −682.280 182.816i −0.998945 0.267667i −0.277942 0.960598i \(-0.589652\pi\)
−0.721004 + 0.692931i \(0.756319\pi\)
\(684\) −50.1509 28.9546i −0.0733200 0.0423313i
\(685\) 161.839 + 1181.31i 0.236261 + 1.72454i
\(686\) −377.174 305.021i −0.549816 0.444637i
\(687\) −119.898 119.898i −0.174523 0.174523i
\(688\) −71.3106 266.135i −0.103649 0.386824i
\(689\) 621.106 358.596i 0.901460 0.520458i
\(690\) 175.961 + 226.839i 0.255015 + 0.328753i
\(691\) 363.308 629.267i 0.525771 0.910662i −0.473779 0.880644i \(-0.657110\pi\)
0.999549 0.0300178i \(-0.00955639\pi\)
\(692\) −59.7454 59.7454i −0.0863373 0.0863373i
\(693\) −271.063 + 57.6780i −0.391144 + 0.0832294i
\(694\) 181.785i 0.261938i
\(695\) −358.715 853.309i −0.516136 1.22778i
\(696\) 101.591 + 175.961i 0.145964 + 0.252818i
\(697\) −15.3904 + 57.4376i −0.0220809 + 0.0824069i
\(698\) −122.707 457.948i −0.175798 0.656086i
\(699\) 315.718i 0.451670i
\(700\) −349.697 14.5688i −0.499567 0.0208126i
\(701\) −693.038 −0.988642 −0.494321 0.869279i \(-0.664583\pi\)
−0.494321 + 0.869279i \(0.664583\pi\)
\(702\) −108.167 + 28.9832i −0.154084 + 0.0412866i
\(703\) 45.2520 + 12.1252i 0.0643699 + 0.0172479i
\(704\) −91.4296 + 52.7869i −0.129872 + 0.0749814i
\(705\) 429.491 180.549i 0.609206 0.256098i
\(706\) 41.0134 0.0580927
\(707\) 264.571 238.325i 0.374216 0.337094i
\(708\) −3.26202 + 3.26202i −0.00460737 + 0.00460737i
\(709\) −222.013 128.179i −0.313135 0.180789i 0.335193 0.942149i \(-0.391198\pi\)
−0.648329 + 0.761361i \(0.724532\pi\)
\(710\) −461.949 + 358.336i −0.650633 + 0.504699i
\(711\) −45.6202 79.0165i −0.0641635 0.111134i
\(712\) 60.4252 16.1909i 0.0848669 0.0227400i
\(713\) 599.620 599.620i 0.840982 0.840982i
\(714\) 139.242 + 7.26691i 0.195017 + 0.0101777i
\(715\) 996.212 136.480i 1.39330 0.190882i
\(716\) 339.884 588.697i 0.474699 0.822202i
\(717\) 30.5472 114.004i 0.0426041 0.159001i
\(718\) 373.945 + 100.198i 0.520814 + 0.139552i
\(719\) −527.096 304.319i −0.733096 0.423253i 0.0864576 0.996256i \(-0.472445\pi\)
−0.819554 + 0.573002i \(0.805779\pi\)
\(720\) −36.2752 + 47.7924i −0.0503822 + 0.0663783i
\(721\) −764.829 + 389.910i −1.06079 + 0.540791i
\(722\) 267.848 + 267.848i 0.370980 + 0.370980i
\(723\) 122.554 + 457.377i 0.169507 + 0.632610i
\(724\) 65.1277 37.6015i 0.0899553 0.0519357i
\(725\) −740.833 725.430i −1.02184 1.00059i
\(726\) 65.0994 112.755i 0.0896686 0.155311i
\(727\) −549.001 549.001i −0.755160 0.755160i 0.220278 0.975437i \(-0.429304\pi\)
−0.975437 + 0.220278i \(0.929304\pi\)
\(728\) 295.108 62.7944i 0.405368 0.0862561i
\(729\) 27.0000i 0.0370370i
\(730\) 334.499 140.617i 0.458218 0.192626i
\(731\) −280.063 485.084i −0.383124 0.663590i
\(732\) −53.4352 + 199.423i −0.0729989 + 0.272436i
\(733\) −156.408 583.723i −0.213381 0.796347i −0.986730 0.162368i \(-0.948087\pi\)
0.773350 0.633980i \(-0.218580\pi\)
\(734\) 400.095i 0.545088i
\(735\) 360.553 223.778i 0.490548 0.304460i
\(736\) −132.599 −0.180162
\(737\) 1553.15 416.166i 2.10740 0.564676i
\(738\) 29.9671 + 8.02965i 0.0406058 + 0.0108803i
\(739\) 532.900 307.670i 0.721109 0.416333i −0.0940517 0.995567i \(-0.529982\pi\)
0.815161 + 0.579235i \(0.196649\pi\)
\(740\) 18.3396 44.9418i 0.0247832 0.0607322i
\(741\) −254.748 −0.343790
\(742\) 96.9659 + 455.700i 0.130682 + 0.614151i
\(743\) 236.059 236.059i 0.317710 0.317710i −0.530177 0.847887i \(-0.677874\pi\)
0.847887 + 0.530177i \(0.177874\pi\)
\(744\) 153.483 + 88.6137i 0.206295 + 0.119104i
\(745\) 250.357 + 31.6233i 0.336050 + 0.0424474i
\(746\) −237.489 411.343i −0.318350 0.551398i
\(747\) −132.241 + 35.4339i −0.177029 + 0.0474349i
\(748\) −151.764 + 151.764i −0.202893 + 0.202893i
\(749\) −616.324 1208.95i −0.822863 1.61409i
\(750\) 112.701 284.690i 0.150268 0.379587i
\(751\) −676.879 + 1172.39i −0.901303 + 1.56110i −0.0754985 + 0.997146i \(0.524055\pi\)
−0.825804 + 0.563957i \(0.809279\pi\)
\(752\) −55.6949 + 207.856i −0.0740624 + 0.276405i
\(753\) 170.890 + 45.7897i 0.226945 + 0.0608097i
\(754\) 774.069 + 446.909i 1.02662 + 0.592718i
\(755\) 132.085 + 100.255i 0.174948 + 0.132788i
\(756\) 3.79138 72.6473i 0.00501506 0.0960943i
\(757\) −435.838 435.838i −0.575744 0.575744i 0.357984 0.933728i \(-0.383464\pi\)
−0.933728 + 0.357984i \(0.883464\pi\)
\(758\) 175.441 + 654.753i 0.231452 + 0.863791i
\(759\) 464.006 267.894i 0.611338 0.352956i
\(760\) −107.850 + 83.6596i −0.141907 + 0.110078i
\(761\) 560.575 970.944i 0.736629 1.27588i −0.217375 0.976088i \(-0.569750\pi\)
0.954005 0.299792i \(-0.0969171\pi\)
\(762\) 273.483 + 273.483i 0.358901 + 0.358901i
\(763\) −315.922 350.713i −0.414053 0.459650i