Properties

Label 210.3.v.a.37.3
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.3
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-0.438103 + 4.98077i) q^{5} +2.44949 q^{6} +(6.08450 - 3.46105i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-0.438103 + 4.98077i) q^{5} +2.44949 q^{6} +(6.08450 - 3.46105i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(-1.22463 - 6.96421i) q^{10} +(-5.62423 - 9.74146i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(-5.84142 + 5.84142i) q^{13} +(-7.04475 + 6.95496i) q^{14} +(2.96578 - 8.13659i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-6.65160 + 24.8241i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(27.5095 + 15.8826i) q^{19} +(4.22195 + 9.06505i) q^{20} +(-11.7311 + 3.06284i) q^{21} +(11.2485 + 11.2485i) q^{22} +(10.6696 + 39.8193i) q^{23} +(4.24264 - 2.44949i) q^{24} +(-24.6161 - 4.36418i) q^{25} +(5.84142 - 10.1176i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(7.07761 - 12.0792i) q^{28} +8.29704i q^{29} +(-1.07313 + 12.2003i) q^{30} +(6.00177 + 10.3954i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(5.04255 + 18.8190i) q^{33} -36.3450i q^{34} +(14.5731 + 31.8218i) q^{35} +6.00000 q^{36} +(-23.6141 + 6.32737i) q^{37} +(-43.3921 - 11.6269i) q^{38} +(12.3915 - 7.15424i) q^{39} +(-9.08533 - 10.8377i) q^{40} +42.9567 q^{41} +(14.9039 - 8.47781i) q^{42} +(-37.4962 + 37.4962i) q^{43} +(-19.4829 - 11.2485i) q^{44} +(-8.60938 + 12.2833i) q^{45} +(-29.1498 - 50.4889i) q^{46} +(-35.8369 + 9.60246i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(25.0423 - 42.1175i) q^{49} +(35.2237 - 3.04855i) q^{50} +(22.2567 - 38.5497i) q^{51} +(-4.27621 + 15.9590i) q^{52} +(11.0590 + 2.96326i) q^{53} +(6.36396 + 3.67423i) q^{54} +(50.9839 - 23.7452i) q^{55} +(-5.24690 + 19.0911i) q^{56} +(-38.9043 - 38.9043i) q^{57} +(-3.03693 - 11.3340i) q^{58} +(-52.5762 + 30.3549i) q^{59} +(-2.99971 - 17.0588i) q^{60} +(18.8287 - 32.6122i) q^{61} +(-12.0035 - 12.0035i) q^{62} +(20.9996 + 0.134677i) q^{63} -8.00000i q^{64} +(-26.5356 - 31.6539i) q^{65} +(-13.7765 - 23.8616i) q^{66} +(21.1191 - 78.8176i) q^{67} +(13.3032 + 49.6482i) q^{68} -71.4020i q^{69} +(-31.5547 - 38.1353i) q^{70} +1.19909 q^{71} +(-8.19615 + 2.19615i) q^{72} +(69.0889 + 18.5123i) q^{73} +(29.9414 - 17.2867i) q^{74} +(39.2272 + 18.3365i) q^{75} +63.5304 q^{76} +(-67.9363 - 39.8061i) q^{77} +(-14.3085 + 14.3085i) q^{78} +(71.0156 + 41.0009i) q^{79} +(16.3777 + 11.4792i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-58.6799 + 15.7232i) q^{82} +(103.192 - 103.192i) q^{83} +(-17.2560 + 17.0361i) q^{84} +(-120.729 - 44.0056i) q^{85} +(37.4962 - 64.9454i) q^{86} +(3.71946 - 13.8812i) q^{87} +(30.7314 + 8.23445i) q^{88} +(12.6471 + 7.30178i) q^{89} +(7.26464 - 19.9305i) q^{90} +(-15.3247 + 55.7595i) q^{91} +(58.2995 + 58.2995i) q^{92} +(-5.38104 - 20.0823i) q^{93} +(45.4393 - 26.2344i) q^{94} +(-91.1596 + 130.060i) q^{95} +(4.89898 - 8.48528i) q^{96} +(24.6424 + 24.6424i) q^{97} +(-18.7923 + 66.6997i) q^{98} -33.7454i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −0.438103 + 4.98077i −0.0876206 + 0.996154i
\(6\) 2.44949 0.408248
\(7\) 6.08450 3.46105i 0.869214 0.494436i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) −1.22463 6.96421i −0.122463 0.696421i
\(11\) −5.62423 9.74146i −0.511294 0.885587i −0.999914 0.0130905i \(-0.995833\pi\)
0.488620 0.872496i \(-0.337500\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) −5.84142 + 5.84142i −0.449340 + 0.449340i −0.895135 0.445795i \(-0.852921\pi\)
0.445795 + 0.895135i \(0.352921\pi\)
\(14\) −7.04475 + 6.95496i −0.503196 + 0.496783i
\(15\) 2.96578 8.13659i 0.197719 0.542440i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −6.65160 + 24.8241i −0.391270 + 1.46024i 0.436770 + 0.899573i \(0.356122\pi\)
−0.828041 + 0.560668i \(0.810544\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) 27.5095 + 15.8826i 1.44787 + 0.835926i 0.998354 0.0573477i \(-0.0182643\pi\)
0.449513 + 0.893274i \(0.351598\pi\)
\(20\) 4.22195 + 9.06505i 0.211098 + 0.453252i
\(21\) −11.7311 + 3.06284i −0.558624 + 0.145850i
\(22\) 11.2485 + 11.2485i 0.511294 + 0.511294i
\(23\) 10.6696 + 39.8193i 0.463894 + 1.73127i 0.660532 + 0.750798i \(0.270331\pi\)
−0.196638 + 0.980476i \(0.563002\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) −24.6161 4.36418i −0.984645 0.174567i
\(26\) 5.84142 10.1176i 0.224670 0.389140i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 7.07761 12.0792i 0.252772 0.431400i
\(29\) 8.29704i 0.286105i 0.989715 + 0.143052i \(0.0456917\pi\)
−0.989715 + 0.143052i \(0.954308\pi\)
\(30\) −1.07313 + 12.2003i −0.0357710 + 0.406678i
\(31\) 6.00177 + 10.3954i 0.193605 + 0.335334i 0.946442 0.322873i \(-0.104649\pi\)
−0.752837 + 0.658207i \(0.771315\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) 5.04255 + 18.8190i 0.152805 + 0.570274i
\(34\) 36.3450i 1.06897i
\(35\) 14.5731 + 31.8218i 0.416373 + 0.909194i
\(36\) 6.00000 0.166667
\(37\) −23.6141 + 6.32737i −0.638218 + 0.171010i −0.563396 0.826187i \(-0.690505\pi\)
−0.0748217 + 0.997197i \(0.523839\pi\)
\(38\) −43.3921 11.6269i −1.14190 0.305970i
\(39\) 12.3915 7.15424i 0.317731 0.183442i
\(40\) −9.08533 10.8377i −0.227133 0.270944i
\(41\) 42.9567 1.04772 0.523862 0.851803i \(-0.324491\pi\)
0.523862 + 0.851803i \(0.324491\pi\)
\(42\) 14.9039 8.47781i 0.354855 0.201853i
\(43\) −37.4962 + 37.4962i −0.872005 + 0.872005i −0.992691 0.120685i \(-0.961491\pi\)
0.120685 + 0.992691i \(0.461491\pi\)
\(44\) −19.4829 11.2485i −0.442793 0.255647i
\(45\) −8.60938 + 12.2833i −0.191320 + 0.272961i
\(46\) −29.1498 50.4889i −0.633690 1.09758i
\(47\) −35.8369 + 9.60246i −0.762487 + 0.204308i −0.619050 0.785352i \(-0.712482\pi\)
−0.143437 + 0.989659i \(0.545815\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 25.0423 42.1175i 0.511067 0.859541i
\(50\) 35.2237 3.04855i 0.704473 0.0609710i
\(51\) 22.2567 38.5497i 0.436405 0.755876i
\(52\) −4.27621 + 15.9590i −0.0822349 + 0.306905i
\(53\) 11.0590 + 2.96326i 0.208661 + 0.0559106i 0.361635 0.932320i \(-0.382219\pi\)
−0.152974 + 0.988230i \(0.548885\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 50.9839 23.7452i 0.926981 0.431732i
\(56\) −5.24690 + 19.0911i −0.0936946 + 0.340912i
\(57\) −38.9043 38.9043i −0.682531 0.682531i
\(58\) −3.03693 11.3340i −0.0523608 0.195413i
\(59\) −52.5762 + 30.3549i −0.891121 + 0.514489i −0.874309 0.485370i \(-0.838685\pi\)
−0.0168122 + 0.999859i \(0.505352\pi\)
\(60\) −2.99971 17.0588i −0.0499952 0.284313i
\(61\) 18.8287 32.6122i 0.308667 0.534627i −0.669404 0.742898i \(-0.733451\pi\)
0.978071 + 0.208272i \(0.0667839\pi\)
\(62\) −12.0035 12.0035i −0.193605 0.193605i
\(63\) 20.9996 + 0.134677i 0.333326 + 0.00213774i
\(64\) 8.00000i 0.125000i
\(65\) −26.5356 31.6539i −0.408240 0.486983i
\(66\) −13.7765 23.8616i −0.208735 0.361539i
\(67\) 21.1191 78.8176i 0.315211 1.17638i −0.608583 0.793491i \(-0.708262\pi\)
0.923793 0.382892i \(-0.125072\pi\)
\(68\) 13.3032 + 49.6482i 0.195635 + 0.730120i
\(69\) 71.4020i 1.03481i
\(70\) −31.5547 38.1353i −0.450782 0.544789i
\(71\) 1.19909 0.0168886 0.00844432 0.999964i \(-0.497312\pi\)
0.00844432 + 0.999964i \(0.497312\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) 69.0889 + 18.5123i 0.946423 + 0.253593i 0.698844 0.715274i \(-0.253698\pi\)
0.247579 + 0.968868i \(0.420365\pi\)
\(74\) 29.9414 17.2867i 0.404614 0.233604i
\(75\) 39.2272 + 18.3365i 0.523029 + 0.244487i
\(76\) 63.5304 0.835926
\(77\) −67.9363 39.8061i −0.882290 0.516963i
\(78\) −14.3085 + 14.3085i −0.183442 + 0.183442i
\(79\) 71.0156 + 41.0009i 0.898932 + 0.518999i 0.876854 0.480757i \(-0.159638\pi\)
0.0220786 + 0.999756i \(0.492972\pi\)
\(80\) 16.3777 + 11.4792i 0.204721 + 0.143490i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −58.6799 + 15.7232i −0.715609 + 0.191747i
\(83\) 103.192 103.192i 1.24328 1.24328i 0.284651 0.958631i \(-0.408122\pi\)
0.958631 0.284651i \(-0.0918777\pi\)
\(84\) −17.2560 + 17.0361i −0.205429 + 0.202811i
\(85\) −120.729 44.0056i −1.42034 0.517713i
\(86\) 37.4962 64.9454i 0.436003 0.755179i
\(87\) 3.71946 13.8812i 0.0427524 0.159554i
\(88\) 30.7314 + 8.23445i 0.349220 + 0.0935733i
\(89\) 12.6471 + 7.30178i 0.142102 + 0.0820425i 0.569365 0.822085i \(-0.307189\pi\)
−0.427264 + 0.904127i \(0.640522\pi\)
\(90\) 7.26464 19.9305i 0.0807183 0.221450i
\(91\) −15.3247 + 55.7595i −0.168403 + 0.612742i
\(92\) 58.2995 + 58.2995i 0.633690 + 0.633690i
\(93\) −5.38104 20.0823i −0.0578606 0.215939i
\(94\) 45.4393 26.2344i 0.483397 0.279090i
\(95\) −91.1596 + 130.060i −0.959574 + 1.36905i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) 24.6424 + 24.6424i 0.254045 + 0.254045i 0.822627 0.568582i \(-0.192508\pi\)
−0.568582 + 0.822627i \(0.692508\pi\)
\(98\) −18.7923 + 66.6997i −0.191758 + 0.680609i
\(99\) 33.7454i 0.340863i
\(100\) −47.0006 + 17.0572i −0.470006 + 0.170572i
\(101\) −80.5667 139.546i −0.797690 1.38164i −0.921117 0.389286i \(-0.872722\pi\)
0.123427 0.992354i \(-0.460612\pi\)
\(102\) −16.2930 + 60.8064i −0.159735 + 0.596141i
\(103\) 17.5834 + 65.6221i 0.170712 + 0.637108i 0.997242 + 0.0742147i \(0.0236450\pi\)
−0.826530 + 0.562893i \(0.809688\pi\)
\(104\) 23.3657i 0.224670i
\(105\) −10.1159 59.7718i −0.0963417 0.569255i
\(106\) −16.1916 −0.152751
\(107\) 28.3972 7.60901i 0.265394 0.0711122i −0.123668 0.992324i \(-0.539466\pi\)
0.389062 + 0.921211i \(0.372799\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) −147.093 + 84.9242i −1.34948 + 0.779121i −0.988175 0.153327i \(-0.951001\pi\)
−0.361302 + 0.932449i \(0.617668\pi\)
\(110\) −60.9540 + 51.0980i −0.554127 + 0.464528i
\(111\) 42.3436 0.381473
\(112\) 0.179570 27.9994i 0.00160330 0.249995i
\(113\) −79.5633 + 79.5633i −0.704100 + 0.704100i −0.965288 0.261188i \(-0.915886\pi\)
0.261188 + 0.965288i \(0.415886\pi\)
\(114\) 67.3842 + 38.9043i 0.591089 + 0.341265i
\(115\) −203.005 + 35.6976i −1.76526 + 0.310414i
\(116\) 8.29704 + 14.3709i 0.0715262 + 0.123887i
\(117\) −23.9386 + 6.41432i −0.204603 + 0.0548232i
\(118\) 60.7097 60.7097i 0.514489 0.514489i
\(119\) 45.4458 + 174.064i 0.381897 + 1.46272i
\(120\) 10.3416 + 22.2047i 0.0861803 + 0.185040i
\(121\) −2.76398 + 4.78736i −0.0228428 + 0.0395649i
\(122\) −13.7835 + 51.4409i −0.112980 + 0.421647i
\(123\) −71.8679 19.2569i −0.584292 0.156561i
\(124\) 20.7907 + 12.0035i 0.167667 + 0.0968027i
\(125\) 32.5214 120.695i 0.260171 0.965563i
\(126\) −28.7352 + 7.50240i −0.228057 + 0.0595429i
\(127\) 76.9204 + 76.9204i 0.605673 + 0.605673i 0.941812 0.336140i \(-0.109121\pi\)
−0.336140 + 0.941812i \(0.609121\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 79.5415 45.9233i 0.616601 0.355995i
\(130\) 47.8344 + 33.5273i 0.367957 + 0.257902i
\(131\) 89.9974 155.880i 0.687003 1.18992i −0.285800 0.958289i \(-0.592259\pi\)
0.972803 0.231635i \(-0.0744074\pi\)
\(132\) 27.5530 + 27.5530i 0.208735 + 0.208735i
\(133\) 222.352 + 1.42602i 1.67182 + 0.0107219i
\(134\) 115.397i 0.861172i
\(135\) 19.9102 16.6908i 0.147483 0.123636i
\(136\) −36.3450 62.9514i −0.267243 0.462878i
\(137\) 60.7150 226.592i 0.443175 1.65395i −0.277534 0.960716i \(-0.589517\pi\)
0.720709 0.693237i \(-0.243816\pi\)
\(138\) 26.1350 + 97.5370i 0.189384 + 0.706790i
\(139\) 224.218i 1.61308i 0.591182 + 0.806538i \(0.298661\pi\)
−0.591182 + 0.806538i \(0.701339\pi\)
\(140\) 57.0631 + 40.5439i 0.407593 + 0.289599i
\(141\) 64.2609 0.455751
\(142\) −1.63799 + 0.438899i −0.0115352 + 0.00309083i
\(143\) 89.7574 + 24.0504i 0.627674 + 0.168185i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) −41.3256 3.63496i −0.285004 0.0250687i
\(146\) −101.153 −0.692830
\(147\) −60.7773 + 59.2378i −0.413451 + 0.402978i
\(148\) −34.5734 + 34.5734i −0.233604 + 0.233604i
\(149\) −99.1675 57.2544i −0.665554 0.384258i 0.128836 0.991666i \(-0.458876\pi\)
−0.794390 + 0.607408i \(0.792209\pi\)
\(150\) −60.2970 10.6900i −0.401980 0.0712668i
\(151\) −48.4855 83.9793i −0.321096 0.556154i 0.659619 0.751601i \(-0.270718\pi\)
−0.980714 + 0.195446i \(0.937385\pi\)
\(152\) −86.7841 + 23.2537i −0.570948 + 0.152985i
\(153\) −54.5175 + 54.5175i −0.356324 + 0.356324i
\(154\) 107.373 + 29.5098i 0.697226 + 0.191622i
\(155\) −54.4063 + 25.3392i −0.351008 + 0.163479i
\(156\) 14.3085 24.7830i 0.0917211 0.158866i
\(157\) −33.3622 + 124.509i −0.212498 + 0.793052i 0.774535 + 0.632531i \(0.217984\pi\)
−0.987032 + 0.160521i \(0.948683\pi\)
\(158\) −112.017 30.0147i −0.708965 0.189967i
\(159\) −17.1737 9.91526i −0.108011 0.0623602i
\(160\) −26.5740 9.68619i −0.166088 0.0605387i
\(161\) 202.735 + 205.353i 1.25923 + 1.27548i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −66.5982 248.548i −0.408578 1.52483i −0.797360 0.603503i \(-0.793771\pi\)
0.388783 0.921329i \(-0.372896\pi\)
\(164\) 74.4031 42.9567i 0.453678 0.261931i
\(165\) −95.9425 + 16.8711i −0.581470 + 0.102249i
\(166\) −103.192 + 178.735i −0.621641 + 1.07671i
\(167\) −20.8857 20.8857i −0.125064 0.125064i 0.641804 0.766868i \(-0.278186\pi\)
−0.766868 + 0.641804i \(0.778186\pi\)
\(168\) 17.3365 29.5879i 0.103194 0.176119i
\(169\) 100.756i 0.596188i
\(170\) 181.026 + 15.9229i 1.06486 + 0.0936638i
\(171\) 47.6478 + 82.5284i 0.278642 + 0.482622i
\(172\) −27.4491 + 102.442i −0.159588 + 0.595591i
\(173\) 55.8433 + 208.410i 0.322794 + 1.20468i 0.916511 + 0.400009i \(0.130993\pi\)
−0.593718 + 0.804673i \(0.702340\pi\)
\(174\) 20.3235i 0.116802i
\(175\) −164.881 + 58.6438i −0.942180 + 0.335107i
\(176\) −44.9939 −0.255647
\(177\) 101.569 27.2154i 0.573838 0.153759i
\(178\) −19.9488 5.34528i −0.112072 0.0300296i
\(179\) 132.468 76.4803i 0.740044 0.427264i −0.0820415 0.996629i \(-0.526144\pi\)
0.822085 + 0.569364i \(0.192811\pi\)
\(180\) −2.62862 + 29.8846i −0.0146034 + 0.166026i
\(181\) −61.7819 −0.341336 −0.170668 0.985329i \(-0.554593\pi\)
−0.170668 + 0.985329i \(0.554593\pi\)
\(182\) 0.524471 81.7781i 0.00288171 0.449330i
\(183\) −46.1206 + 46.1206i −0.252025 + 0.252025i
\(184\) −100.978 58.2995i −0.548792 0.316845i
\(185\) −21.1698 120.388i −0.114431 0.650747i
\(186\) 14.7013 + 25.4633i 0.0790390 + 0.136900i
\(187\) 279.233 74.8202i 1.49322 0.400108i
\(188\) −52.4688 + 52.4688i −0.279090 + 0.279090i
\(189\) −35.0726 9.63917i −0.185569 0.0510009i
\(190\) 76.9210 211.032i 0.404847 1.11070i
\(191\) 11.1433 19.3007i 0.0583417 0.101051i −0.835379 0.549674i \(-0.814752\pi\)
0.893721 + 0.448623i \(0.148085\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) −227.270 60.8969i −1.17757 0.315528i −0.383606 0.923497i \(-0.625318\pi\)
−0.793961 + 0.607969i \(0.791984\pi\)
\(194\) −42.6818 24.6424i −0.220009 0.127023i
\(195\) 30.2049 + 64.8536i 0.154897 + 0.332582i
\(196\) 1.25696 97.9919i 0.00641308 0.499959i
\(197\) −144.812 144.812i −0.735086 0.735086i 0.236537 0.971623i \(-0.423988\pi\)
−0.971623 + 0.236537i \(0.923988\pi\)
\(198\) 12.3517 + 46.0971i 0.0623822 + 0.232813i
\(199\) 166.521 96.1408i 0.836787 0.483119i −0.0193836 0.999812i \(-0.506170\pi\)
0.856171 + 0.516693i \(0.172837\pi\)
\(200\) 57.9606 40.5039i 0.289803 0.202520i
\(201\) −70.6659 + 122.397i −0.351572 + 0.608940i
\(202\) 161.133 + 161.133i 0.797690 + 0.797690i
\(203\) 28.7165 + 50.4833i 0.141460 + 0.248686i
\(204\) 89.0267i 0.436405i
\(205\) −18.8194 + 213.957i −0.0918022 + 1.04369i
\(206\) −48.0387 83.2055i −0.233198 0.403910i
\(207\) −32.0087 + 119.458i −0.154631 + 0.577091i
\(208\) 8.55243 + 31.9181i 0.0411174 + 0.153452i
\(209\) 357.310i 1.70962i
\(210\) 35.6965 + 77.9471i 0.169984 + 0.371177i
\(211\) −1.49392 −0.00708017 −0.00354009 0.999994i \(-0.501127\pi\)
−0.00354009 + 0.999994i \(0.501127\pi\)
\(212\) 22.1181 5.92652i 0.104331 0.0279553i
\(213\) −2.00612 0.537539i −0.00941841 0.00252366i
\(214\) −36.0062 + 20.7882i −0.168253 + 0.0971411i
\(215\) −170.333 203.187i −0.792246 0.945057i
\(216\) 14.6969 0.0680414
\(217\) 72.4966 + 42.4782i 0.334086 + 0.195752i
\(218\) 169.848 169.848i 0.779121 0.779121i
\(219\) −107.289 61.9434i −0.489905 0.282847i
\(220\) 64.5615 92.1119i 0.293462 0.418691i
\(221\) −106.153 183.863i −0.480331 0.831957i
\(222\) −57.8424 + 15.4988i −0.260551 + 0.0698145i
\(223\) 186.552 186.552i 0.836555 0.836555i −0.151849 0.988404i \(-0.548523\pi\)
0.988404 + 0.151849i \(0.0485227\pi\)
\(224\) 10.0032 + 38.3137i 0.0446572 + 0.171043i
\(225\) −57.4083 48.2627i −0.255148 0.214501i
\(226\) 79.5633 137.808i 0.352050 0.609769i
\(227\) 11.9875 44.7381i 0.0528085 0.197084i −0.934482 0.356011i \(-0.884137\pi\)
0.987290 + 0.158927i \(0.0508033\pi\)
\(228\) −106.288 28.4799i −0.466177 0.124912i
\(229\) 146.091 + 84.3456i 0.637951 + 0.368321i 0.783825 0.620982i \(-0.213266\pi\)
−0.145874 + 0.989303i \(0.546599\pi\)
\(230\) 264.244 123.069i 1.14889 0.535082i
\(231\) 95.8151 + 97.0520i 0.414784 + 0.420138i
\(232\) −16.5941 16.5941i −0.0715262 0.0715262i
\(233\) −57.4964 214.579i −0.246766 0.920942i −0.972488 0.232954i \(-0.925161\pi\)
0.725722 0.687988i \(-0.241506\pi\)
\(234\) 30.3529 17.5242i 0.129713 0.0748899i
\(235\) −32.1274 182.702i −0.136712 0.777456i
\(236\) −60.7097 + 105.152i −0.257245 + 0.445561i
\(237\) −100.431 100.431i −0.423761 0.423761i
\(238\) −125.792 221.141i −0.528537 0.929164i
\(239\) 42.6023i 0.178252i 0.996020 + 0.0891262i \(0.0284074\pi\)
−0.996020 + 0.0891262i \(0.971593\pi\)
\(240\) −22.2544 26.5469i −0.0927268 0.110612i
\(241\) 110.433 + 191.275i 0.458227 + 0.793672i 0.998867 0.0475819i \(-0.0151515\pi\)
−0.540641 + 0.841254i \(0.681818\pi\)
\(242\) 2.02337 7.55134i 0.00836105 0.0312039i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 75.3147i 0.308667i
\(245\) 198.807 + 143.182i 0.811455 + 0.584415i
\(246\) 105.222 0.427731
\(247\) −253.471 + 67.9174i −1.02620 + 0.274969i
\(248\) −32.7943 8.78719i −0.132235 0.0354322i
\(249\) −218.904 + 126.384i −0.879133 + 0.507568i
\(250\) −0.247472 + 176.777i −0.000989887 + 0.707106i
\(251\) −165.088 −0.657720 −0.328860 0.944379i \(-0.606664\pi\)
−0.328860 + 0.944379i \(0.606664\pi\)
\(252\) 36.5070 20.7663i 0.144869 0.0824060i
\(253\) 327.890 327.890i 1.29601 1.29601i
\(254\) −133.230 76.9204i −0.524528 0.302836i
\(255\) 182.256 + 127.744i 0.714731 + 0.500957i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −123.114 + 32.9883i −0.479042 + 0.128359i −0.490257 0.871578i \(-0.663097\pi\)
0.0112144 + 0.999937i \(0.496430\pi\)
\(258\) −91.8466 + 91.8466i −0.355995 + 0.355995i
\(259\) −121.780 + 120.228i −0.470194 + 0.464202i
\(260\) −77.6149 28.2905i −0.298519 0.108810i
\(261\) −12.4456 + 21.5563i −0.0476841 + 0.0825913i
\(262\) −65.8827 + 245.877i −0.251461 + 0.938463i
\(263\) 421.747 + 113.007i 1.60360 + 0.429683i 0.946127 0.323796i \(-0.104959\pi\)
0.657472 + 0.753479i \(0.271626\pi\)
\(264\) −47.7232 27.5530i −0.180770 0.104367i
\(265\) −19.6043 + 53.7843i −0.0739786 + 0.202960i
\(266\) −304.260 + 79.4384i −1.14384 + 0.298641i
\(267\) −17.8856 17.8856i −0.0669874 0.0669874i
\(268\) −42.2382 157.635i −0.157605 0.588191i
\(269\) 8.01022 4.62470i 0.0297778 0.0171922i −0.485037 0.874494i \(-0.661194\pi\)
0.514815 + 0.857301i \(0.327861\pi\)
\(270\) −21.0886 + 30.0877i −0.0781059 + 0.111436i
\(271\) 48.2949 83.6492i 0.178210 0.308669i −0.763058 0.646331i \(-0.776303\pi\)
0.941267 + 0.337662i \(0.109636\pi\)
\(272\) 72.6900 + 72.6900i 0.267243 + 0.267243i
\(273\) 50.6350 86.4176i 0.185476 0.316548i
\(274\) 331.753i 1.21078i
\(275\) 95.9334 + 264.342i 0.348849 + 0.961244i
\(276\) −71.4020 123.672i −0.258703 0.448087i
\(277\) 39.2810 146.599i 0.141809 0.529237i −0.858068 0.513536i \(-0.828335\pi\)
0.999877 0.0157013i \(-0.00499807\pi\)
\(278\) −82.0693 306.287i −0.295213 1.10175i
\(279\) 36.0106i 0.129070i
\(280\) −92.7897 34.4975i −0.331392 0.123205i
\(281\) −52.8654 −0.188133 −0.0940665 0.995566i \(-0.529987\pi\)
−0.0940665 + 0.995566i \(0.529987\pi\)
\(282\) −87.7821 + 23.5211i −0.311284 + 0.0834083i
\(283\) −159.230 42.6656i −0.562651 0.150762i −0.0337273 0.999431i \(-0.510738\pi\)
−0.528924 + 0.848669i \(0.677404\pi\)
\(284\) 2.07689 1.19909i 0.00731299 0.00422216i
\(285\) 210.817 176.729i 0.739710 0.620102i
\(286\) −131.414 −0.459489
\(287\) 261.370 148.675i 0.910696 0.518032i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −321.711 185.740i −1.11319 0.642698i
\(290\) 57.7824 10.1608i 0.199250 0.0350372i
\(291\) −30.1806 52.2744i −0.103713 0.179637i
\(292\) 138.178 37.0246i 0.473212 0.126797i
\(293\) −251.280 + 251.280i −0.857612 + 0.857612i −0.991056 0.133445i \(-0.957396\pi\)
0.133445 + 0.991056i \(0.457396\pi\)
\(294\) 61.3408 103.166i 0.208642 0.350906i
\(295\) −128.157 275.168i −0.434430 0.932774i
\(296\) 34.5734 59.8828i 0.116802 0.202307i
\(297\) −15.1276 + 56.4571i −0.0509348 + 0.190091i
\(298\) 156.422 + 41.9131i 0.524906 + 0.140648i
\(299\) −294.926 170.276i −0.986376 0.569484i
\(300\) 86.2800 7.46739i 0.287600 0.0248913i
\(301\) −98.3695 + 357.922i −0.326809 + 1.18911i
\(302\) 96.9710 + 96.9710i 0.321096 + 0.321096i
\(303\) 72.2341 + 269.581i 0.238396 + 0.889708i
\(304\) 110.038 63.5304i 0.361967 0.208982i
\(305\) 154.185 + 108.069i 0.505525 + 0.354324i
\(306\) 54.5175 94.4271i 0.178162 0.308585i
\(307\) 279.604 + 279.604i 0.910762 + 0.910762i 0.996332 0.0855701i \(-0.0272712\pi\)
−0.0855701 + 0.996332i \(0.527271\pi\)
\(308\) −157.475 1.00994i −0.511283 0.00327903i
\(309\) 117.670i 0.380810i
\(310\) 65.0456 54.5280i 0.209825 0.175897i
\(311\) 215.478 + 373.218i 0.692854 + 1.20006i 0.970899 + 0.239490i \(0.0769803\pi\)
−0.278045 + 0.960568i \(0.589686\pi\)
\(312\) −10.4745 + 39.0915i −0.0335722 + 0.125293i
\(313\) 43.5371 + 162.483i 0.139096 + 0.519114i 0.999947 + 0.0102571i \(0.00326500\pi\)
−0.860851 + 0.508857i \(0.830068\pi\)
\(314\) 182.294i 0.580555i
\(315\) −9.87077 + 104.535i −0.0313358 + 0.331857i
\(316\) 164.004 0.518999
\(317\) −167.692 + 44.9330i −0.528997 + 0.141744i −0.513425 0.858134i \(-0.671624\pi\)
−0.0155721 + 0.999879i \(0.504957\pi\)
\(318\) 27.0890 + 7.25848i 0.0851856 + 0.0228254i
\(319\) 80.8252 46.6645i 0.253371 0.146284i
\(320\) 39.8462 + 3.50482i 0.124519 + 0.0109526i
\(321\) −50.9205 −0.158631
\(322\) −352.106 206.311i −1.09350 0.640716i
\(323\) −577.253 + 577.253i −1.78716 + 1.78716i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 169.286 118.300i 0.520880 0.364000i
\(326\) 181.950 + 315.146i 0.558128 + 0.966705i
\(327\) 284.162 76.1410i 0.868997 0.232847i
\(328\) −85.9133 + 85.9133i −0.261931 + 0.261931i
\(329\) −184.815 + 182.459i −0.561747 + 0.554588i
\(330\) 124.885 58.1637i 0.378438 0.176254i
\(331\) −201.616 + 349.209i −0.609112 + 1.05501i 0.382275 + 0.924048i \(0.375141\pi\)
−0.991387 + 0.130964i \(0.958193\pi\)
\(332\) 75.5421 281.927i 0.227536 0.849178i
\(333\) −70.8422 18.9821i −0.212739 0.0570033i
\(334\) 36.1751 + 20.8857i 0.108309 + 0.0625320i
\(335\) 383.320 + 139.720i 1.14424 + 0.417074i
\(336\) −12.8522 + 46.7635i −0.0382507 + 0.139177i
\(337\) −140.687 140.687i −0.417468 0.417468i 0.466862 0.884330i \(-0.345385\pi\)
−0.884330 + 0.466862i \(0.845385\pi\)
\(338\) −36.8792 137.635i −0.109110 0.407204i
\(339\) 168.779 97.4448i 0.497874 0.287448i
\(340\) −253.114 + 44.5091i −0.744454 + 0.130909i
\(341\) 67.5106 116.932i 0.197978 0.342909i
\(342\) −95.2956 95.2956i −0.278642 0.278642i
\(343\) 6.59883 342.937i 0.0192386 0.999815i
\(344\) 149.985i 0.436003i
\(345\) 355.637 + 31.2814i 1.03083 + 0.0906708i
\(346\) −152.567 264.253i −0.440944 0.763738i
\(347\) 113.946 425.251i 0.328373 1.22551i −0.582503 0.812828i \(-0.697927\pi\)
0.910877 0.412678i \(-0.135407\pi\)
\(348\) −7.43892 27.7624i −0.0213762 0.0797771i
\(349\) 283.692i 0.812870i 0.913680 + 0.406435i \(0.133228\pi\)
−0.913680 + 0.406435i \(0.866772\pi\)
\(350\) 203.767 140.460i 0.582192 0.401314i
\(351\) 42.9255 0.122295
\(352\) 61.4628 16.4689i 0.174610 0.0467866i
\(353\) 52.7227 + 14.1270i 0.149356 + 0.0400199i 0.332722 0.943025i \(-0.392033\pi\)
−0.183366 + 0.983045i \(0.558699\pi\)
\(354\) −128.785 + 74.3539i −0.363799 + 0.210039i
\(355\) −0.525326 + 5.97241i −0.00147979 + 0.0168237i
\(356\) 29.2071 0.0820425
\(357\) 1.99831 311.587i 0.00559752 0.872793i
\(358\) −152.961 + 152.961i −0.427264 + 0.427264i
\(359\) 255.462 + 147.491i 0.711594 + 0.410839i 0.811651 0.584143i \(-0.198569\pi\)
−0.100057 + 0.994982i \(0.531903\pi\)
\(360\) −7.34777 41.7853i −0.0204105 0.116070i
\(361\) 324.014 + 561.209i 0.897546 + 1.55459i
\(362\) 84.3956 22.6137i 0.233137 0.0624689i
\(363\) 6.77034 6.77034i 0.0186511 0.0186511i
\(364\) 29.2164 + 111.903i 0.0802649 + 0.307426i
\(365\) −122.474 + 336.006i −0.335544 + 0.920563i
\(366\) 46.1206 79.8833i 0.126013 0.218260i
\(367\) 2.51130 9.37230i 0.00684278 0.0255376i −0.962420 0.271565i \(-0.912459\pi\)
0.969263 + 0.246028i \(0.0791254\pi\)
\(368\) 159.277 + 42.6782i 0.432819 + 0.115973i
\(369\) 111.605 + 64.4350i 0.302452 + 0.174621i
\(370\) 72.9836 + 156.705i 0.197253 + 0.423526i
\(371\) 77.5447 20.2459i 0.209015 0.0545712i
\(372\) −29.4025 29.4025i −0.0790390 0.0790390i
\(373\) −3.18482 11.8859i −0.00853840 0.0318658i 0.961525 0.274717i \(-0.0885841\pi\)
−0.970064 + 0.242851i \(0.921917\pi\)
\(374\) −354.053 + 204.413i −0.946666 + 0.546558i
\(375\) −108.516 + 187.348i −0.289375 + 0.499595i
\(376\) 52.4688 90.8787i 0.139545 0.241699i
\(377\) −48.4665 48.4665i −0.128558 0.128558i
\(378\) 51.4382 + 0.329891i 0.136080 + 0.000872727i
\(379\) 287.766i 0.759278i −0.925135 0.379639i \(-0.876048\pi\)
0.925135 0.379639i \(-0.123952\pi\)
\(380\) −27.8329 + 316.430i −0.0732444 + 0.832711i
\(381\) −94.2079 163.173i −0.247265 0.428275i
\(382\) −8.15744 + 30.4440i −0.0213546 + 0.0796963i
\(383\) −167.673 625.764i −0.437788 1.63385i −0.734305 0.678820i \(-0.762492\pi\)
0.296516 0.955028i \(-0.404175\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 228.028 320.936i 0.592281 0.833600i
\(386\) 332.747 0.862038
\(387\) −153.662 + 41.1737i −0.397060 + 0.106392i
\(388\) 67.3242 + 18.0395i 0.173516 + 0.0464935i
\(389\) 117.516 67.8481i 0.302099 0.174417i −0.341287 0.939959i \(-0.610863\pi\)
0.643385 + 0.765543i \(0.277529\pi\)
\(390\) −64.9987 77.5359i −0.166663 0.198810i
\(391\) −1059.45 −2.70959
\(392\) 34.1505 + 134.320i 0.0871186 + 0.342652i
\(393\) −220.448 + 220.448i −0.560936 + 0.560936i
\(394\) 250.822 + 144.812i 0.636603 + 0.367543i
\(395\) −235.328 + 335.750i −0.595768 + 0.850000i
\(396\) −33.7454 58.4487i −0.0852156 0.147598i
\(397\) 335.779 89.9718i 0.845791 0.226629i 0.190200 0.981745i \(-0.439086\pi\)
0.655591 + 0.755116i \(0.272420\pi\)
\(398\) −192.282 + 192.282i −0.483119 + 0.483119i
\(399\) −371.363 102.063i −0.930733 0.255798i
\(400\) −64.3502 + 76.5444i −0.160876 + 0.191361i
\(401\) 103.629 179.491i 0.258427 0.447609i −0.707394 0.706820i \(-0.750129\pi\)
0.965821 + 0.259211i \(0.0834624\pi\)
\(402\) 51.7311 193.063i 0.128684 0.480256i
\(403\) −95.7824 25.6648i −0.237674 0.0636844i
\(404\) −279.091 161.133i −0.690820 0.398845i
\(405\) −40.7927 + 18.9988i −0.100723 + 0.0469106i
\(406\) −57.7056 58.4506i −0.142132 0.143967i
\(407\) 194.449 + 194.449i 0.477761 + 0.477761i
\(408\) 32.5860 + 121.613i 0.0798677 + 0.298070i
\(409\) −226.963 + 131.037i −0.554921 + 0.320384i −0.751105 0.660183i \(-0.770479\pi\)
0.196183 + 0.980567i \(0.437145\pi\)
\(410\) −52.6060 299.159i −0.128307 0.729657i
\(411\) −203.156 + 351.877i −0.494298 + 0.856149i
\(412\) 96.0774 + 96.0774i 0.233198 + 0.233198i
\(413\) −214.840 + 366.663i −0.520193 + 0.887803i
\(414\) 174.899i 0.422460i
\(415\) 468.769 + 559.187i 1.12956 + 1.34744i
\(416\) −23.3657 40.4705i −0.0561675 0.0972849i
\(417\) 100.514 375.123i 0.241041 0.899576i
\(418\) 130.784 + 488.094i 0.312881 + 1.16769i
\(419\) 143.688i 0.342931i 0.985190 + 0.171465i \(0.0548502\pi\)
−0.985190 + 0.171465i \(0.945150\pi\)
\(420\) −77.2930 93.4119i −0.184031 0.222409i
\(421\) 305.872 0.726537 0.363269 0.931684i \(-0.381661\pi\)
0.363269 + 0.931684i \(0.381661\pi\)
\(422\) 2.04073 0.546811i 0.00483585 0.00129576i
\(423\) −107.511 28.8074i −0.254162 0.0681026i
\(424\) −28.0446 + 16.1916i −0.0661429 + 0.0381876i
\(425\) 272.073 582.044i 0.640173 1.36952i
\(426\) 2.93717 0.00689476
\(427\) 1.69053 263.596i 0.00395909 0.617321i
\(428\) 41.5764 41.5764i 0.0971411 0.0971411i
\(429\) −139.386 80.4743i −0.324908 0.187586i
\(430\) 307.051 + 215.213i 0.714071 + 0.500495i
\(431\) 314.493 + 544.718i 0.729683 + 1.26385i 0.957017 + 0.290031i \(0.0936656\pi\)
−0.227334 + 0.973817i \(0.573001\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) 215.672 215.672i 0.498087 0.498087i −0.412755 0.910842i \(-0.635433\pi\)
0.910842 + 0.412755i \(0.135433\pi\)
\(434\) −114.580 31.4907i −0.264010 0.0725591i
\(435\) 67.5096 + 24.6072i 0.155195 + 0.0565682i
\(436\) −169.848 + 294.186i −0.389561 + 0.674739i
\(437\) −338.920 + 1264.87i −0.775562 + 2.89444i
\(438\) 169.233 + 45.3457i 0.386376 + 0.103529i
\(439\) −356.713 205.949i −0.812559 0.469131i 0.0352848 0.999377i \(-0.488766\pi\)
−0.847844 + 0.530246i \(0.822099\pi\)
\(440\) −54.4774 + 149.458i −0.123812 + 0.339678i
\(441\) 128.238 71.8611i 0.290789 0.162950i
\(442\) 212.306 + 212.306i 0.480331 + 0.480331i
\(443\) −108.244 403.971i −0.244342 0.911898i −0.973713 0.227779i \(-0.926854\pi\)
0.729370 0.684119i \(-0.239813\pi\)
\(444\) 73.3412 42.3436i 0.165183 0.0953684i
\(445\) −41.9092 + 59.7931i −0.0941780 + 0.134367i
\(446\) −186.552 + 323.117i −0.418277 + 0.724478i
\(447\) 140.244 + 140.244i 0.313745 + 0.313745i
\(448\) −27.6884 48.6760i −0.0618045 0.108652i
\(449\) 142.091i 0.316460i 0.987402 + 0.158230i \(0.0505788\pi\)
−0.987402 + 0.158230i \(0.949421\pi\)
\(450\) 96.0866 + 44.9151i 0.213526 + 0.0998114i
\(451\) −241.598 418.460i −0.535695 0.927850i
\(452\) −58.2444 + 217.371i −0.128859 + 0.480909i
\(453\) 43.4709 + 162.236i 0.0959622 + 0.358136i
\(454\) 65.5011i 0.144275i
\(455\) −271.012 100.757i −0.595630 0.221444i
\(456\) 155.617 0.341265
\(457\) −68.5338 + 18.3636i −0.149965 + 0.0401829i −0.333020 0.942920i \(-0.608068\pi\)
0.183056 + 0.983103i \(0.441401\pi\)
\(458\) −230.436 61.7452i −0.503136 0.134815i
\(459\) 115.649 66.7700i 0.251959 0.145468i
\(460\) −315.918 + 264.835i −0.686777 + 0.575729i
\(461\) 75.0514 0.162801 0.0814007 0.996681i \(-0.474061\pi\)
0.0814007 + 0.996681i \(0.474061\pi\)
\(462\) −166.409 97.5047i −0.360193 0.211049i
\(463\) 345.058 345.058i 0.745267 0.745267i −0.228320 0.973586i \(-0.573323\pi\)
0.973586 + 0.228320i \(0.0733231\pi\)
\(464\) 28.7418 + 16.5941i 0.0619435 + 0.0357631i
\(465\) 102.383 18.0036i 0.220178 0.0387174i
\(466\) 157.083 + 272.076i 0.337088 + 0.583854i
\(467\) −583.925 + 156.462i −1.25037 + 0.335037i −0.822481 0.568792i \(-0.807411\pi\)
−0.427894 + 0.903829i \(0.640744\pi\)
\(468\) −35.0485 + 35.0485i −0.0748899 + 0.0748899i
\(469\) −144.292 552.660i −0.307660 1.17838i
\(470\) 110.760 + 237.816i 0.235661 + 0.505992i
\(471\) 111.632 193.352i 0.237010 0.410514i
\(472\) 44.4426 165.862i 0.0941580 0.351403i
\(473\) 576.155 + 154.380i 1.21809 + 0.326386i
\(474\) 173.952 + 100.431i 0.366988 + 0.211880i
\(475\) −607.862 511.024i −1.27971 1.07584i
\(476\) 252.778 + 256.041i 0.531046 + 0.537902i
\(477\) 24.2873 + 24.2873i 0.0509169 + 0.0509169i
\(478\) −15.5935 58.1958i −0.0326224 0.121749i
\(479\) 485.140 280.096i 1.01282 0.584751i 0.100803 0.994906i \(-0.467859\pi\)
0.912016 + 0.410155i \(0.134526\pi\)
\(480\) 40.1170 + 28.1181i 0.0835770 + 0.0585794i
\(481\) 100.979 174.900i 0.209935 0.363618i
\(482\) −220.865 220.865i −0.458227 0.458227i
\(483\) −247.126 434.446i −0.511648 0.899473i
\(484\) 11.0559i 0.0228428i
\(485\) −133.534 + 111.942i −0.275328 + 0.230808i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) 181.271 676.511i 0.372219 1.38914i −0.485147 0.874433i \(-0.661234\pi\)
0.857366 0.514707i \(-0.172099\pi\)
\(488\) 27.5671 + 102.882i 0.0564899 + 0.210823i
\(489\) 445.684i 0.911419i
\(490\) −323.983 122.821i −0.661190 0.250656i
\(491\) 285.090 0.580632 0.290316 0.956931i \(-0.406240\pi\)
0.290316 + 0.956931i \(0.406240\pi\)
\(492\) −143.736 + 38.5139i −0.292146 + 0.0782803i
\(493\) −205.966 55.1886i −0.417782 0.111944i
\(494\) 321.389 185.554i 0.650584 0.375615i
\(495\) 168.078 + 14.7840i 0.339552 + 0.0298666i
\(496\) 48.0141 0.0968027
\(497\) 7.29588 4.15012i 0.0146798 0.00835034i
\(498\) 252.769 252.769i 0.507568 0.507568i
\(499\) 659.973 + 381.035i 1.32259 + 0.763598i 0.984141 0.177387i \(-0.0567643\pi\)
0.338449 + 0.940985i \(0.390098\pi\)
\(500\) −64.3666 241.572i −0.128733 0.483144i
\(501\) 25.5797 + 44.3053i 0.0510572 + 0.0884337i
\(502\) 225.514 60.4263i 0.449231 0.120371i
\(503\) −242.900 + 242.900i −0.482902 + 0.482902i −0.906057 0.423155i \(-0.860922\pi\)
0.423155 + 0.906057i \(0.360922\pi\)
\(504\) −42.2685 + 41.7298i −0.0838661 + 0.0827972i
\(505\) 730.341 340.149i 1.44622 0.673562i
\(506\) −327.890 + 567.922i −0.648004 + 1.12238i
\(507\) 45.1676 168.568i 0.0890879 0.332480i
\(508\) 210.150 + 56.3097i 0.413682 + 0.110846i
\(509\) 110.550 + 63.8262i 0.217191 + 0.125395i 0.604649 0.796492i \(-0.293313\pi\)
−0.387458 + 0.921887i \(0.626647\pi\)
\(510\) −295.724 107.791i −0.579852 0.211355i
\(511\) 484.443 126.482i 0.948030 0.247518i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −42.7198 159.433i −0.0832746 0.310785i
\(514\) 156.102 90.1256i 0.303701 0.175342i
\(515\) −334.552 + 58.8296i −0.649615 + 0.114232i
\(516\) 91.8466 159.083i 0.177997 0.308300i
\(517\) 295.097 + 295.097i 0.570787 + 0.570787i
\(518\) 122.348 208.810i 0.236194 0.403107i
\(519\) 373.711i 0.720059i
\(520\) 116.379 + 10.2366i 0.223806 + 0.0196857i
\(521\) −371.561 643.563i −0.713170 1.23525i −0.963661 0.267127i \(-0.913926\pi\)
0.250492 0.968119i \(-0.419408\pi\)
\(522\) 9.11078 34.0019i 0.0174536 0.0651377i
\(523\) −243.232 907.753i −0.465070 1.73566i −0.656657 0.754189i \(-0.728030\pi\)
0.191587 0.981476i \(-0.438636\pi\)
\(524\) 359.990i 0.687003i
\(525\) 302.141 24.1987i 0.575507 0.0460927i
\(526\) −617.480 −1.17392
\(527\) −297.977 + 79.8426i −0.565421 + 0.151504i
\(528\) 75.2762 + 20.1702i 0.142569 + 0.0382011i
\(529\) −1013.61 + 585.208i −1.91609 + 1.10625i
\(530\) 7.09357 80.6464i 0.0133841 0.152163i
\(531\) −182.129 −0.342993
\(532\) 386.551 219.882i 0.726599 0.413312i
\(533\) −250.928 + 250.928i −0.470784 + 0.470784i
\(534\) 30.9788 + 17.8856i 0.0580128 + 0.0334937i
\(535\) 25.4578 + 144.773i 0.0475847 + 0.270605i
\(536\) 115.397 + 199.873i 0.215293 + 0.372898i
\(537\) −255.908 + 68.5704i −0.476552 + 0.127692i
\(538\) −9.24940 + 9.24940i −0.0171922 + 0.0171922i
\(539\) −551.129 7.06945i −1.02250 0.0131159i
\(540\) 17.7947 48.8196i 0.0329531 0.0904066i
\(541\) 151.264 261.997i 0.279600 0.484282i −0.691685 0.722199i \(-0.743131\pi\)
0.971285 + 0.237917i \(0.0764647\pi\)
\(542\) −35.3543 + 131.944i −0.0652294 + 0.243439i
\(543\) 103.363 + 27.6960i 0.190356 + 0.0510056i
\(544\) −125.903 72.6900i −0.231439 0.133621i
\(545\) −358.546 769.842i −0.657883 1.41255i
\(546\) −37.5376 + 136.582i −0.0687502 + 0.250151i
\(547\) −471.627 471.627i −0.862206 0.862206i 0.129388 0.991594i \(-0.458699\pi\)
−0.991594 + 0.129388i \(0.958699\pi\)
\(548\) −121.430 453.183i −0.221588 0.826977i
\(549\) 97.8367 56.4860i 0.178209 0.102889i
\(550\) −227.803 325.984i −0.414188 0.592698i
\(551\) −131.779 + 228.247i −0.239163 + 0.414242i
\(552\) 142.804 + 142.804i 0.258703 + 0.258703i
\(553\) 574.001 + 3.68126i 1.03798 + 0.00665690i
\(554\) 214.635i 0.387429i
\(555\) −18.5508 + 210.904i −0.0334249 + 0.380006i
\(556\) 224.218 + 388.356i 0.403269 + 0.698482i
\(557\) 11.4833 42.8563i 0.0206164 0.0769413i −0.954851 0.297084i \(-0.903986\pi\)
0.975468 + 0.220143i \(0.0706524\pi\)
\(558\) −13.1808 49.1914i −0.0236215 0.0881566i
\(559\) 438.062i 0.783653i
\(560\) 139.380 + 13.1610i 0.248893 + 0.0235018i
\(561\) −500.707 −0.892526
\(562\) 72.2154 19.3501i 0.128497 0.0344307i
\(563\) 79.9337 + 21.4182i 0.141978 + 0.0380429i 0.329108 0.944292i \(-0.393252\pi\)
−0.187130 + 0.982335i \(0.559919\pi\)
\(564\) 111.303 64.2609i 0.197346 0.113938i
\(565\) −361.430 431.143i −0.639698 0.763086i
\(566\) 233.129 0.411889
\(567\) 54.3565 + 31.8493i 0.0958668 + 0.0561715i
\(568\) −2.39819 + 2.39819i −0.00422216 + 0.00422216i
\(569\) 497.115 + 287.010i 0.873665 + 0.504410i 0.868564 0.495577i \(-0.165043\pi\)
0.00510028 + 0.999987i \(0.498377\pi\)
\(570\) −223.294 + 318.581i −0.391745 + 0.558914i
\(571\) −231.337 400.688i −0.405144 0.701730i 0.589194 0.807992i \(-0.299445\pi\)
−0.994338 + 0.106261i \(0.966112\pi\)
\(572\) 179.515 48.1008i 0.313837 0.0840924i
\(573\) −27.2953 + 27.2953i −0.0476358 + 0.0476358i
\(574\) −302.619 + 298.762i −0.527211 + 0.520491i
\(575\) −88.8645 1026.76i −0.154547 1.78567i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −53.7263 + 200.509i −0.0931131 + 0.347503i −0.996727 0.0808459i \(-0.974238\pi\)
0.903614 + 0.428349i \(0.140905\pi\)
\(578\) 507.450 + 135.971i 0.877942 + 0.235244i
\(579\) 352.931 + 203.765i 0.609553 + 0.351926i
\(580\) −75.2131 + 35.0297i −0.129678 + 0.0603961i
\(581\) 270.720 985.028i 0.465955 1.69540i
\(582\) 60.3612 + 60.3612i 0.103713 + 0.103713i
\(583\) −33.3321 124.397i −0.0571735 0.213374i
\(584\) −175.202 + 101.153i −0.300004 + 0.173207i
\(585\) −21.4607 122.043i −0.0366849 0.208620i
\(586\) 251.280 435.230i 0.428806 0.742714i
\(587\) 275.657 + 275.657i 0.469603 + 0.469603i 0.901786 0.432183i \(-0.142256\pi\)
−0.432183 + 0.901786i \(0.642256\pi\)
\(588\) −46.0315 + 163.380i −0.0782849 + 0.277858i
\(589\) 381.295i 0.647359i
\(590\) 275.784 + 328.978i 0.467431 + 0.557590i
\(591\) 177.358 + 307.192i 0.300098 + 0.519784i
\(592\) −25.3095 + 94.4562i −0.0427525 + 0.159554i
\(593\) 62.5653 + 233.497i 0.105506 + 0.393755i 0.998402 0.0565081i \(-0.0179967\pi\)
−0.892896 + 0.450264i \(0.851330\pi\)
\(594\) 82.6590i 0.139157i
\(595\) −886.881 + 150.097i −1.49056 + 0.252264i
\(596\) −229.018 −0.384258
\(597\) −321.693 + 86.1974i −0.538850 + 0.144384i
\(598\) 465.202 + 124.651i 0.777930 + 0.208446i
\(599\) 678.246 391.586i 1.13230 0.653732i 0.187786 0.982210i \(-0.439869\pi\)
0.944512 + 0.328478i \(0.106536\pi\)
\(600\) −115.127 + 41.7813i −0.191879 + 0.0696355i
\(601\) −970.347 −1.61455 −0.807277 0.590172i \(-0.799060\pi\)
−0.807277 + 0.590172i \(0.799060\pi\)
\(602\) 3.36660 524.936i 0.00559235 0.871987i
\(603\) 173.096 173.096i 0.287057 0.287057i
\(604\) −167.959 96.9710i −0.278077 0.160548i
\(605\) −22.6338 15.8641i −0.0374113 0.0262217i
\(606\) −197.347 341.816i −0.325656 0.564052i
\(607\) 16.1478 4.32679i 0.0266027 0.00712816i −0.245493 0.969398i \(-0.578950\pi\)
0.272096 + 0.962270i \(0.412283\pi\)
\(608\) −127.061 + 127.061i −0.208982 + 0.208982i
\(609\) −25.4125 97.3335i −0.0417283 0.159825i
\(610\) −250.177 91.1891i −0.410126 0.149490i
\(611\) 153.246 265.430i 0.250812 0.434419i
\(612\) −39.9096 + 148.945i −0.0652117 + 0.243373i
\(613\) 862.305 + 231.054i 1.40670 + 0.376923i 0.880745 0.473591i \(-0.157042\pi\)
0.525952 + 0.850514i \(0.323709\pi\)
\(614\) −484.288 279.604i −0.788743 0.455381i
\(615\) 127.400 349.521i 0.207154 0.568327i
\(616\) 215.485 56.2603i 0.349813 0.0913317i
\(617\) 698.494 + 698.494i 1.13208 + 1.13208i 0.989831 + 0.142251i \(0.0454339\pi\)
0.142251 + 0.989831i \(0.454566\pi\)
\(618\) 43.0703 + 160.741i 0.0696931 + 0.260098i
\(619\) 637.279 367.933i 1.02953 0.594399i 0.112679 0.993631i \(-0.464057\pi\)
0.916850 + 0.399232i \(0.130723\pi\)
\(620\) −68.8953 + 98.2950i −0.111121 + 0.158540i
\(621\) 107.103 185.508i 0.172469 0.298725i
\(622\) −430.955 430.955i −0.692854 0.692854i
\(623\) 102.223 + 0.655590i 0.164082 + 0.00105231i
\(624\) 57.2340i 0.0917211i
\(625\) 586.908 + 214.858i 0.939053 + 0.343774i
\(626\) −118.946 206.020i −0.190009 0.329105i
\(627\) −160.178 + 597.791i −0.255467 + 0.953414i
\(628\) 66.7243 + 249.018i 0.106249 + 0.396526i
\(629\) 628.285i 0.998863i
\(630\) −24.7787 146.410i −0.0393313 0.232398i
\(631\) 395.464 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(632\) −224.033 + 60.0295i −0.354483 + 0.0949834i
\(633\) 2.49937 + 0.669704i 0.00394845 + 0.00105798i
\(634\) 212.625 122.759i 0.335371 0.193626i
\(635\) −416.822 + 349.424i −0.656413 + 0.550274i
\(636\) −39.6611 −0.0623602
\(637\) 99.7436 + 392.308i 0.156583 + 0.615868i
\(638\) −93.3290 + 93.3290i −0.146284 + 0.146284i
\(639\) 3.11534 + 1.79864i 0.00487533 + 0.00281477i
\(640\) −55.7137 + 9.79703i −0.0870527 + 0.0153079i
\(641\) −99.9972 173.200i −0.156002 0.270203i 0.777421 0.628980i \(-0.216527\pi\)
−0.933423 + 0.358777i \(0.883194\pi\)
\(642\) 69.5587 18.6382i 0.108347 0.0290314i
\(643\) −854.979 + 854.979i −1.32967 + 1.32967i −0.424019 + 0.905653i \(0.639381\pi\)
−0.905653 + 0.424019i \(0.860619\pi\)
\(644\) 556.501 + 152.946i 0.864132 + 0.237494i
\(645\) 193.886 + 416.297i 0.300599 + 0.645422i
\(646\) 577.253 999.832i 0.893581 1.54773i
\(647\) −130.579 + 487.329i −0.201823 + 0.753213i 0.788572 + 0.614943i \(0.210821\pi\)
−0.990395 + 0.138270i \(0.955846\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) 591.401 + 341.446i 0.911250 + 0.526110i
\(650\) −187.948 + 223.564i −0.289151 + 0.343944i
\(651\) −102.247 103.567i −0.157061 0.159089i
\(652\) −363.899 363.899i −0.558128 0.558128i
\(653\) −95.8220 357.612i −0.146741 0.547645i −0.999672 0.0256211i \(-0.991844\pi\)
0.852931 0.522024i \(-0.174823\pi\)
\(654\) −360.303 + 208.021i −0.550922 + 0.318075i
\(655\) 736.974 + 516.548i 1.12515 + 0.788622i
\(656\) 85.9133 148.806i 0.130965 0.226839i
\(657\) 151.730 + 151.730i 0.230943 + 0.230943i
\(658\) 185.677 316.891i 0.282184 0.481597i
\(659\) 328.877i 0.499055i 0.968368 + 0.249528i \(0.0802753\pi\)
−0.968368 + 0.249528i \(0.919725\pi\)
\(660\) −149.306 + 125.164i −0.226222 + 0.189643i
\(661\) −174.842 302.835i −0.264511 0.458147i 0.702924 0.711265i \(-0.251877\pi\)
−0.967435 + 0.253118i \(0.918544\pi\)
\(662\) 147.593 550.825i 0.222950 0.832062i
\(663\) 95.1743 + 355.195i 0.143551 + 0.535739i
\(664\) 412.770i 0.621641i
\(665\) −104.516 + 1106.86i −0.157166 + 1.66445i
\(666\) 103.720 0.155736
\(667\) −330.382 + 88.5257i −0.495326 + 0.132722i
\(668\) −57.0608 15.2894i −0.0854203 0.0228883i
\(669\) −395.736 + 228.478i −0.591533 + 0.341522i
\(670\) −574.766 50.5558i −0.857860 0.0754564i
\(671\) −423.587 −0.631278
\(672\) 0.439855 68.5843i 0.000654545 0.102060i
\(673\) −861.883 + 861.883i −1.28066 + 1.28066i −0.340364 + 0.940294i \(0.610550\pi\)
−0.940294 + 0.340364i \(0.889450\pi\)
\(674\) 243.677 + 140.687i 0.361538 + 0.208734i
\(675\) 74.4104 + 106.480i 0.110238 + 0.157749i
\(676\) 100.756 + 174.514i 0.149047 + 0.258157i
\(677\) 954.281 255.699i 1.40957 0.377694i 0.527801 0.849368i \(-0.323017\pi\)
0.881773 + 0.471674i \(0.156350\pi\)
\(678\) −194.890 + 194.890i −0.287448 + 0.287448i
\(679\) 235.225 + 64.6480i 0.346428 + 0.0952106i
\(680\) 329.469 153.447i 0.484513 0.225657i
\(681\) −40.1110 + 69.4744i −0.0589002 + 0.102018i
\(682\) −49.4212 + 184.443i −0.0724651 + 0.270444i
\(683\) 531.889 + 142.519i 0.778753 + 0.208666i 0.626235 0.779634i \(-0.284595\pi\)
0.152518 + 0.988301i \(0.451262\pi\)
\(684\) 165.057 + 95.2956i 0.241311 + 0.139321i
\(685\) 1102.00 + 401.678i 1.60876 + 0.586391i
\(686\) 116.509 + 470.875i 0.169839 + 0.686407i
\(687\) −206.604 206.604i −0.300733 0.300733i
\(688\) 54.8983 + 204.883i 0.0797940 + 0.297795i
\(689\) −81.9101 + 47.2908i −0.118883 + 0.0686369i
\(690\) −497.259 + 87.4410i −0.720665 + 0.126726i
\(691\) 81.0298 140.348i 0.117265 0.203108i −0.801418 0.598104i \(-0.795921\pi\)
0.918683 + 0.394996i \(0.129254\pi\)
\(692\) 305.133 + 305.133i 0.440944 + 0.440944i
\(693\) −116.794 205.324i −0.168535 0.296283i
\(694\) 622.610i 0.897133i
\(695\) −1116.78 98.2304i −1.60687 0.141339i
\(696\) 20.3235 + 35.2014i 0.0292004 + 0.0505767i
\(697\) −285.730 + 1066.36i −0.409943 + 1.52993i
\(698\) −103.838 387.530i −0.148766 0.555201i
\(699\) 384.773i 0.550462i
\(700\) −226.939 + 266.456i −0.324199 + 0.380651i
\(701\) −106.422 −0.151815 −0.0759076 0.997115i \(-0.524185\pi\)
−0.0759076 + 0.997115i \(0.524185\pi\)
\(702\) −58.6373 + 15.7118i −0.0835289 + 0.0223815i
\(703\) −750.105 200.990i −1.06701 0.285903i
\(704\) −77.9317 + 44.9939i −0.110698 + 0.0639117i
\(705\) −28.1529 + 320.069i −0.0399332 + 0.453998i
\(706\) −77.1914 −0.109336
\(707\) −973.182 570.220i −1.37650 0.806534i
\(708\) 148.708 148.708i 0.210039 0.210039i
\(709\) 517.345 + 298.689i 0.729682 + 0.421282i 0.818306 0.574783i \(-0.194913\pi\)
−0.0886236 + 0.996065i \(0.528247\pi\)
\(710\) −1.46844 8.35074i −0.00206823 0.0117616i
\(711\) 123.003 + 213.047i 0.173000 + 0.299644i
\(712\) −39.8977 + 10.6906i −0.0560361 + 0.0150148i
\(713\) −349.900 + 349.900i −0.490743 + 0.490743i
\(714\) 111.319 + 426.367i 0.155909 + 0.597153i
\(715\) −159.113 + 436.524i −0.222535 + 0.610523i
\(716\) 152.961 264.936i 0.213632 0.370022i
\(717\) 19.0981 71.2751i 0.0266361 0.0994073i
\(718\) −402.953 107.971i −0.561216 0.150377i
\(719\) 781.019 + 450.921i 1.08626 + 0.627151i 0.932577 0.360970i \(-0.117554\pi\)
0.153680 + 0.988121i \(0.450888\pi\)
\(720\) 25.3317 + 54.3903i 0.0351829 + 0.0755421i
\(721\) 334.107 + 338.421i 0.463394 + 0.469377i
\(722\) −648.028 648.028i −0.897546 0.897546i
\(723\) −99.0112 369.515i −0.136945 0.511085i
\(724\) −107.009 + 61.7819i −0.147803 + 0.0853341i
\(725\) 36.2098 204.241i 0.0499445 0.281712i
\(726\) −6.77034 + 11.7266i −0.00932554 + 0.0161523i
\(727\) 985.007 + 985.007i 1.35489 + 1.35489i 0.880095 + 0.474798i \(0.157479\pi\)
0.474798 + 0.880095i \(0.342521\pi\)
\(728\) −80.8697 142.168i −0.111085 0.195286i
\(729\) 27.0000i 0.0370370i
\(730\) 44.3155 503.821i 0.0607062 0.690165i
\(731\) −681.400 1180.22i −0.932148 1.61453i
\(732\) −33.7627 + 126.004i −0.0461238 + 0.172137i
\(733\) 296.294 + 1105.78i 0.404220 + 1.50857i 0.805489 + 0.592611i \(0.201903\pi\)
−0.401269 + 0.915960i \(0.631431\pi\)
\(734\) 13.7220i 0.0186948i
\(735\) −268.423 328.670i −0.365202 0.447170i
\(736\) −233.198 −0.316845
\(737\) −886.577 + 237.558i −1.20295 + 0.322331i
\(738\) −176.040 47.1697i −0.238536 0.0639156i
\(739\) −1074.61 + 620.424i −1.45413 + 0.839545i −0.998712 0.0507308i \(-0.983845\pi\)
−0.455422 + 0.890276i \(0.650512\pi\)
\(740\) −157.055 187.349i −0.212237 0.253174i
\(741\) 454.512 0.613377
\(742\) −98.5175 + 56.0398i −0.132773 + 0.0755253i
\(743\) 452.213 452.213i 0.608631 0.608631i −0.333957 0.942588i \(-0.608384\pi\)
0.942588 + 0.333957i \(0.108384\pi\)
\(744\) 50.9267 + 29.4025i 0.0684498 + 0.0395195i
\(745\) 328.617 468.847i 0.441096 0.629325i
\(746\) 8.70110 + 15.0708i 0.0116637 + 0.0202021i
\(747\) 422.890 113.313i 0.566118 0.151691i
\(748\) 408.825 408.825i 0.546558 0.546558i
\(749\) 146.448 144.581i 0.195524 0.193032i
\(750\) 79.6608 295.642i 0.106214 0.394189i
\(751\) −169.151 + 292.978i −0.225234 + 0.390118i −0.956390 0.292093i \(-0.905648\pi\)
0.731155 + 0.682211i \(0.238981\pi\)
\(752\) −38.4098 + 143.348i −0.0510769 + 0.190622i
\(753\) 276.197 + 74.0068i 0.366796 + 0.0982826i
\(754\) 83.9464 + 48.4665i 0.111335 + 0.0642791i
\(755\) 439.523 204.703i 0.582150 0.271130i
\(756\) −70.3867 + 18.3771i −0.0931041 + 0.0243083i
\(757\) 295.501 + 295.501i 0.390357 + 0.390357i 0.874815 0.484457i \(-0.160983\pi\)
−0.484457 + 0.874815i \(0.660983\pi\)
\(758\) 105.330 + 393.096i 0.138958 + 0.518597i
\(759\) −695.560 + 401.582i −0.916416 + 0.529093i
\(760\) −77.8011 442.439i −0.102370 0.582157i
\(761\) −43.0586 + 74.5798i −0.0565817 + 0.0980023i −0.892929 0.450198i \(-0.851353\pi\)
0.836347 + 0.548200i \(0.184687\pi\)
\(762\) 188.416 + 188.416i 0.247265 + 0.247265i
\(763\) −601.061 + 1025.82i −0.787760 + 1.34445i