Properties

Label 210.3.v.a.37.2
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.2
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-1.25847 - 4.83903i) q^{5} +2.44949 q^{6} +(5.72194 + 4.03230i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-1.25847 - 4.83903i) q^{5} +2.44949 q^{6} +(5.72194 + 4.03230i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(3.49032 + 6.14961i) q^{10} +(-5.44212 - 9.42602i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(-4.13640 + 4.13640i) q^{13} +(-9.29223 - 3.41385i) q^{14} +(-0.0638118 + 8.66002i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-0.489455 + 1.82667i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(-27.1044 - 15.6487i) q^{19} +(-7.01877 - 7.12298i) q^{20} +(-7.76535 - 9.31124i) q^{21} +(10.8842 + 10.8842i) q^{22} +(-5.85291 - 21.8434i) q^{23} +(4.24264 - 2.44949i) q^{24} +(-21.8325 + 12.1796i) q^{25} +(4.13640 - 7.16445i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(13.9430 + 1.26221i) q^{28} -35.4354i q^{29} +(-3.08262 - 11.8532i) q^{30} +(-7.10988 - 12.3147i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(4.87927 + 18.2097i) q^{33} -2.67443i q^{34} +(12.3115 - 32.7632i) q^{35} +6.00000 q^{36} +(13.4546 - 3.60515i) q^{37} +(42.7531 + 11.4557i) q^{38} +(8.77462 - 5.06603i) q^{39} +(12.1950 + 7.16112i) q^{40} -75.8676 q^{41} +(14.0158 + 9.87708i) q^{42} +(-5.54001 + 5.54001i) q^{43} +(-18.8520 - 10.8842i) q^{44} +(3.98894 - 14.4599i) q^{45} +(15.9904 + 27.6963i) q^{46} +(-89.5659 + 23.9991i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(16.4811 + 46.1451i) q^{49} +(25.3657 - 24.6289i) q^{50} +(1.63775 - 2.83666i) q^{51} +(-3.02805 + 11.3008i) q^{52} +(73.5205 + 19.6998i) q^{53} +(6.36396 + 3.67423i) q^{54} +(-38.7641 + 38.1970i) q^{55} +(-19.5085 + 3.37927i) q^{56} +(38.3314 + 38.3314i) q^{57} +(12.9703 + 48.4057i) q^{58} +(39.8083 - 22.9834i) q^{59} +(8.54949 + 15.0634i) q^{60} +(46.7047 - 80.8948i) q^{61} +(14.2198 + 14.2198i) q^{62} +(8.81757 + 19.0591i) q^{63} -8.00000i q^{64} +(25.2217 + 14.8106i) q^{65} +(-13.3304 - 23.0889i) q^{66} +(-6.47966 + 24.1824i) q^{67} +(0.978910 + 3.65334i) q^{68} +39.1684i q^{69} +(-4.82571 + 49.2617i) q^{70} +4.10846 q^{71} +(-8.19615 + 2.19615i) q^{72} +(94.5138 + 25.3249i) q^{73} +(-17.0598 + 9.84945i) q^{74} +(41.9864 - 10.5896i) q^{75} -62.5949 q^{76} +(6.86912 - 75.8794i) q^{77} +(-10.1321 + 10.1321i) q^{78} +(25.8988 + 14.9527i) q^{79} +(-19.2799 - 5.31859i) q^{80} +(4.50000 + 7.79423i) q^{81} +(103.637 - 27.7695i) q^{82} +(-42.2562 + 42.2562i) q^{83} +(-22.7612 - 8.36220i) q^{84} +(9.45529 + 0.0696718i) q^{85} +(5.54001 - 9.59557i) q^{86} +(-15.8853 + 59.2847i) q^{87} +(29.7363 + 7.96781i) q^{88} +(71.6953 + 41.3933i) q^{89} +(-0.156306 + 21.2126i) q^{90} +(-40.3474 + 6.98900i) q^{91} +(-31.9809 - 31.9809i) q^{92} +(6.37455 + 23.7901i) q^{93} +(113.565 - 65.5668i) q^{94} +(-41.6146 + 150.853i) q^{95} +(4.89898 - 8.48528i) q^{96} +(-60.0597 - 60.0597i) q^{97} +(-39.4039 - 57.0029i) q^{98} -32.6527i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −1.25847 4.83903i −0.251695 0.967807i
\(6\) 2.44949 0.408248
\(7\) 5.72194 + 4.03230i 0.817419 + 0.576043i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 3.49032 + 6.14961i 0.349032 + 0.614961i
\(11\) −5.44212 9.42602i −0.494738 0.856911i 0.505244 0.862977i \(-0.331403\pi\)
−0.999982 + 0.00606548i \(0.998069\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) −4.13640 + 4.13640i −0.318184 + 0.318184i −0.848069 0.529885i \(-0.822235\pi\)
0.529885 + 0.848069i \(0.322235\pi\)
\(14\) −9.29223 3.41385i −0.663731 0.243847i
\(15\) −0.0638118 + 8.66002i −0.00425412 + 0.577335i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −0.489455 + 1.82667i −0.0287915 + 0.107451i −0.978826 0.204693i \(-0.934380\pi\)
0.950035 + 0.312144i \(0.101047\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) −27.1044 15.6487i −1.42655 0.823618i −0.429701 0.902971i \(-0.641381\pi\)
−0.996847 + 0.0793537i \(0.974714\pi\)
\(20\) −7.01877 7.12298i −0.350939 0.356149i
\(21\) −7.76535 9.31124i −0.369779 0.443393i
\(22\) 10.8842 + 10.8842i 0.494738 + 0.494738i
\(23\) −5.85291 21.8434i −0.254474 0.949711i −0.968382 0.249471i \(-0.919743\pi\)
0.713908 0.700240i \(-0.246923\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) −21.8325 + 12.1796i −0.873300 + 0.487184i
\(26\) 4.13640 7.16445i 0.159092 0.275556i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) 13.9430 + 1.26221i 0.497964 + 0.0450791i
\(29\) 35.4354i 1.22191i −0.791665 0.610956i \(-0.790785\pi\)
0.791665 0.610956i \(-0.209215\pi\)
\(30\) −3.08262 11.8532i −0.102754 0.395105i
\(31\) −7.10988 12.3147i −0.229351 0.397248i 0.728265 0.685296i \(-0.240327\pi\)
−0.957616 + 0.288048i \(0.906994\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) 4.87927 + 18.2097i 0.147857 + 0.551808i
\(34\) 2.67443i 0.0786598i
\(35\) 12.3115 32.7632i 0.351758 0.936091i
\(36\) 6.00000 0.166667
\(37\) 13.4546 3.60515i 0.363638 0.0974365i −0.0723735 0.997378i \(-0.523057\pi\)
0.436011 + 0.899941i \(0.356391\pi\)
\(38\) 42.7531 + 11.4557i 1.12508 + 0.301465i
\(39\) 8.77462 5.06603i 0.224990 0.129898i
\(40\) 12.1950 + 7.16112i 0.304875 + 0.179028i
\(41\) −75.8676 −1.85043 −0.925215 0.379443i \(-0.876115\pi\)
−0.925215 + 0.379443i \(0.876115\pi\)
\(42\) 14.0158 + 9.87708i 0.333710 + 0.235169i
\(43\) −5.54001 + 5.54001i −0.128837 + 0.128837i −0.768585 0.639748i \(-0.779039\pi\)
0.639748 + 0.768585i \(0.279039\pi\)
\(44\) −18.8520 10.8842i −0.428456 0.247369i
\(45\) 3.98894 14.4599i 0.0886431 0.321331i
\(46\) 15.9904 + 27.6963i 0.347618 + 0.602093i
\(47\) −89.5659 + 23.9991i −1.90566 + 0.510619i −0.910353 + 0.413833i \(0.864190\pi\)
−0.995305 + 0.0967860i \(0.969144\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) 16.4811 + 46.1451i 0.336349 + 0.941737i
\(50\) 25.3657 24.6289i 0.507314 0.492578i
\(51\) 1.63775 2.83666i 0.0321127 0.0556209i
\(52\) −3.02805 + 11.3008i −0.0582318 + 0.217324i
\(53\) 73.5205 + 19.6998i 1.38718 + 0.371694i 0.873724 0.486422i \(-0.161698\pi\)
0.513456 + 0.858116i \(0.328365\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) −38.7641 + 38.1970i −0.704801 + 0.694491i
\(56\) −19.5085 + 3.37927i −0.348366 + 0.0603441i
\(57\) 38.3314 + 38.3314i 0.672481 + 0.672481i
\(58\) 12.9703 + 48.4057i 0.223625 + 0.834581i
\(59\) 39.8083 22.9834i 0.674718 0.389548i −0.123144 0.992389i \(-0.539298\pi\)
0.797862 + 0.602840i \(0.205964\pi\)
\(60\) 8.54949 + 15.0634i 0.142492 + 0.251057i
\(61\) 46.7047 80.8948i 0.765650 1.32615i −0.174252 0.984701i \(-0.555751\pi\)
0.939902 0.341444i \(-0.110916\pi\)
\(62\) 14.2198 + 14.2198i 0.229351 + 0.229351i
\(63\) 8.81757 + 19.0591i 0.139961 + 0.302526i
\(64\) 8.00000i 0.125000i
\(65\) 25.2217 + 14.8106i 0.388026 + 0.227856i
\(66\) −13.3304 23.0889i −0.201976 0.349833i
\(67\) −6.47966 + 24.1824i −0.0967113 + 0.360932i −0.997273 0.0737959i \(-0.976489\pi\)
0.900562 + 0.434728i \(0.143155\pi\)
\(68\) 0.978910 + 3.65334i 0.0143957 + 0.0537256i
\(69\) 39.1684i 0.567658i
\(70\) −4.82571 + 49.2617i −0.0689387 + 0.703738i
\(71\) 4.10846 0.0578656 0.0289328 0.999581i \(-0.490789\pi\)
0.0289328 + 0.999581i \(0.490789\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) 94.5138 + 25.3249i 1.29471 + 0.346916i 0.839448 0.543441i \(-0.182879\pi\)
0.455262 + 0.890357i \(0.349545\pi\)
\(74\) −17.0598 + 9.84945i −0.230537 + 0.133101i
\(75\) 41.9864 10.5896i 0.559819 0.141195i
\(76\) −62.5949 −0.823618
\(77\) 6.86912 75.8794i 0.0892094 0.985446i
\(78\) −10.1321 + 10.1321i −0.129898 + 0.129898i
\(79\) 25.8988 + 14.9527i 0.327833 + 0.189274i 0.654879 0.755734i \(-0.272720\pi\)
−0.327046 + 0.945009i \(0.606053\pi\)
\(80\) −19.2799 5.31859i −0.240998 0.0664823i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 103.637 27.7695i 1.26387 0.338652i
\(83\) −42.2562 + 42.2562i −0.509111 + 0.509111i −0.914254 0.405142i \(-0.867222\pi\)
0.405142 + 0.914254i \(0.367222\pi\)
\(84\) −22.7612 8.36220i −0.270967 0.0995499i
\(85\) 9.45529 + 0.0696718i 0.111239 + 0.000819668i
\(86\) 5.54001 9.59557i 0.0644187 0.111576i
\(87\) −15.8853 + 59.2847i −0.182589 + 0.681433i
\(88\) 29.7363 + 7.96781i 0.337912 + 0.0905433i
\(89\) 71.6953 + 41.3933i 0.805565 + 0.465093i 0.845413 0.534113i \(-0.179354\pi\)
−0.0398483 + 0.999206i \(0.512687\pi\)
\(90\) −0.156306 + 21.2126i −0.00173674 + 0.235696i
\(91\) −40.3474 + 6.98900i −0.443378 + 0.0768022i
\(92\) −31.9809 31.9809i −0.347618 0.347618i
\(93\) 6.37455 + 23.7901i 0.0685435 + 0.255808i
\(94\) 113.565 65.5668i 1.20814 0.697519i
\(95\) −41.6146 + 150.853i −0.438048 + 1.58792i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) −60.0597 60.0597i −0.619172 0.619172i 0.326147 0.945319i \(-0.394249\pi\)
−0.945319 + 0.326147i \(0.894249\pi\)
\(98\) −39.4039 57.0029i −0.402080 0.581663i
\(99\) 32.6527i 0.329825i
\(100\) −25.6354 + 42.9282i −0.256354 + 0.429282i
\(101\) −13.8942 24.0654i −0.137566 0.238272i 0.789009 0.614382i \(-0.210595\pi\)
−0.926575 + 0.376110i \(0.877261\pi\)
\(102\) −1.19892 + 4.47441i −0.0117541 + 0.0438668i
\(103\) −37.1298 138.570i −0.360483 1.34534i −0.873442 0.486928i \(-0.838117\pi\)
0.512959 0.858413i \(-0.328549\pi\)
\(104\) 16.5456i 0.159092i
\(105\) −35.2849 + 49.2948i −0.336047 + 0.469474i
\(106\) −107.642 −1.01549
\(107\) −123.124 + 32.9910i −1.15069 + 0.308328i −0.783243 0.621715i \(-0.786436\pi\)
−0.367451 + 0.930043i \(0.619769\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) 59.7045 34.4704i 0.547748 0.316242i −0.200465 0.979701i \(-0.564245\pi\)
0.748213 + 0.663458i \(0.230912\pi\)
\(110\) 38.9717 66.3667i 0.354288 0.603334i
\(111\) −24.1261 −0.217353
\(112\) 25.4122 11.7568i 0.226894 0.104971i
\(113\) 133.742 133.742i 1.18356 1.18356i 0.204742 0.978816i \(-0.434364\pi\)
0.978816 0.204742i \(-0.0656356\pi\)
\(114\) −66.3920 38.3314i −0.582386 0.336240i
\(115\) −98.3350 + 55.8117i −0.855087 + 0.485319i
\(116\) −35.4354 61.3760i −0.305478 0.529103i
\(117\) −16.9513 + 4.54208i −0.144883 + 0.0388212i
\(118\) −45.9667 + 45.9667i −0.389548 + 0.389548i
\(119\) −10.1663 + 8.47847i −0.0854313 + 0.0712476i
\(120\) −17.1924 17.4477i −0.143270 0.145397i
\(121\) 1.26672 2.19402i 0.0104687 0.0181324i
\(122\) −34.1902 + 127.600i −0.280247 + 1.04590i
\(123\) 126.929 + 34.0105i 1.03194 + 0.276508i
\(124\) −24.6294 14.2198i −0.198624 0.114676i
\(125\) 86.4131 + 90.3204i 0.691305 + 0.722564i
\(126\) −19.0212 22.8078i −0.150962 0.181014i
\(127\) 25.4322 + 25.4322i 0.200254 + 0.200254i 0.800109 0.599855i \(-0.204775\pi\)
−0.599855 + 0.800109i \(0.704775\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 11.7521 6.78509i 0.0911018 0.0525976i
\(130\) −39.8746 10.9999i −0.306727 0.0846145i
\(131\) 43.4151 75.1971i 0.331413 0.574024i −0.651376 0.758755i \(-0.725808\pi\)
0.982789 + 0.184731i \(0.0591414\pi\)
\(132\) 26.6608 + 26.6608i 0.201976 + 0.201976i
\(133\) −91.9892 198.834i −0.691648 1.49499i
\(134\) 35.4055i 0.264220i
\(135\) −13.1558 + 22.4037i −0.0974505 + 0.165953i
\(136\) −2.67443 4.63225i −0.0196649 0.0340607i
\(137\) 6.08183 22.6977i 0.0443929 0.165677i −0.940171 0.340704i \(-0.889335\pi\)
0.984564 + 0.175027i \(0.0560013\pi\)
\(138\) −14.3366 53.5051i −0.103889 0.387718i
\(139\) 123.024i 0.885067i −0.896752 0.442533i \(-0.854080\pi\)
0.896752 0.442533i \(-0.145920\pi\)
\(140\) −11.4390 69.0590i −0.0817070 0.493279i
\(141\) 160.605 1.13904
\(142\) −5.61226 + 1.50380i −0.0395230 + 0.0105901i
\(143\) 61.5005 + 16.4790i 0.430074 + 0.115238i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) −171.473 + 44.5946i −1.18257 + 0.307549i
\(146\) −138.378 −0.947793
\(147\) −6.88711 84.5906i −0.0468511 0.575446i
\(148\) 19.6989 19.6989i 0.133101 0.133101i
\(149\) 32.9396 + 19.0177i 0.221071 + 0.127635i 0.606446 0.795125i \(-0.292595\pi\)
−0.385375 + 0.922760i \(0.625928\pi\)
\(150\) −53.4785 + 29.8338i −0.356523 + 0.198892i
\(151\) 82.2319 + 142.430i 0.544582 + 0.943244i 0.998633 + 0.0522683i \(0.0166451\pi\)
−0.454051 + 0.890976i \(0.650022\pi\)
\(152\) 85.5063 22.9113i 0.562541 0.150732i
\(153\) −4.01165 + 4.01165i −0.0262199 + 0.0262199i
\(154\) 18.3904 + 106.167i 0.119418 + 0.689399i
\(155\) −50.6435 + 49.9027i −0.326733 + 0.321953i
\(156\) 10.1321 17.5492i 0.0649491 0.112495i
\(157\) −0.0693474 + 0.258808i −0.000441703 + 0.00164846i −0.966146 0.257995i \(-0.916938\pi\)
0.965705 + 0.259643i \(0.0836049\pi\)
\(158\) −40.8515 10.9461i −0.258554 0.0692792i
\(159\) −114.171 65.9167i −0.718057 0.414571i
\(160\) 28.2835 + 0.208408i 0.176772 + 0.00130255i
\(161\) 54.5890 148.587i 0.339062 0.922900i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) −60.2372 224.808i −0.369553 1.37919i −0.861142 0.508364i \(-0.830250\pi\)
0.491589 0.870827i \(-0.336416\pi\)
\(164\) −131.407 + 75.8676i −0.801260 + 0.462607i
\(165\) 81.9768 46.5273i 0.496829 0.281984i
\(166\) 42.2562 73.1899i 0.254556 0.440903i
\(167\) 12.1342 + 12.1342i 0.0726601 + 0.0726601i 0.742503 0.669843i \(-0.233639\pi\)
−0.669843 + 0.742503i \(0.733639\pi\)
\(168\) 34.1532 + 3.09178i 0.203293 + 0.0184035i
\(169\) 134.780i 0.797517i
\(170\) −12.9417 + 3.36570i −0.0761275 + 0.0197983i
\(171\) −46.9462 81.3132i −0.274539 0.475516i
\(172\) −4.05557 + 15.1356i −0.0235789 + 0.0879975i
\(173\) 64.8931 + 242.184i 0.375104 + 1.39991i 0.853192 + 0.521597i \(0.174663\pi\)
−0.478088 + 0.878312i \(0.658670\pi\)
\(174\) 86.7988i 0.498844i
\(175\) −174.036 18.3443i −0.994491 0.104825i
\(176\) −43.5369 −0.247369
\(177\) −76.9038 + 20.6063i −0.434485 + 0.116420i
\(178\) −113.089 30.3020i −0.635329 0.170236i
\(179\) −44.2012 + 25.5196i −0.246934 + 0.142567i −0.618360 0.785895i \(-0.712202\pi\)
0.371425 + 0.928463i \(0.378869\pi\)
\(180\) −7.55084 29.0342i −0.0419491 0.161301i
\(181\) −183.017 −1.01114 −0.505572 0.862785i \(-0.668718\pi\)
−0.505572 + 0.862785i \(0.668718\pi\)
\(182\) 52.5574 24.3153i 0.288777 0.133601i
\(183\) −114.403 + 114.403i −0.625151 + 0.625151i
\(184\) 55.3925 + 31.9809i 0.301046 + 0.173809i
\(185\) −34.3777 60.5703i −0.185825 0.327407i
\(186\) −17.4156 30.1647i −0.0936322 0.162176i
\(187\) 19.8819 5.32735i 0.106320 0.0284885i
\(188\) −131.134 + 131.134i −0.697519 + 0.697519i
\(189\) −6.20811 35.8394i −0.0328472 0.189626i
\(190\) 1.63066 221.301i 0.00858244 1.16474i
\(191\) −68.2455 + 118.205i −0.357307 + 0.618873i −0.987510 0.157557i \(-0.949638\pi\)
0.630203 + 0.776430i \(0.282972\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) −58.1367 15.5777i −0.301227 0.0807134i 0.105040 0.994468i \(-0.466503\pi\)
−0.406267 + 0.913755i \(0.633170\pi\)
\(194\) 104.026 + 60.0597i 0.536218 + 0.309586i
\(195\) −35.5573 36.0852i −0.182345 0.185052i
\(196\) 74.6912 + 63.4446i 0.381078 + 0.323697i
\(197\) 160.750 + 160.750i 0.815988 + 0.815988i 0.985524 0.169536i \(-0.0542270\pi\)
−0.169536 + 0.985524i \(0.554227\pi\)
\(198\) 11.9517 + 44.6044i 0.0603622 + 0.225275i
\(199\) 195.772 113.029i 0.983780 0.567986i 0.0803711 0.996765i \(-0.474389\pi\)
0.903409 + 0.428779i \(0.141056\pi\)
\(200\) 19.3058 68.0242i 0.0965290 0.340121i
\(201\) 21.6814 37.5532i 0.107867 0.186832i
\(202\) 27.7884 + 27.7884i 0.137566 + 0.137566i
\(203\) 142.886 202.759i 0.703874 0.998815i
\(204\) 6.55100i 0.0321127i
\(205\) 95.4774 + 367.126i 0.465743 + 1.79086i
\(206\) 101.440 + 175.700i 0.492429 + 0.852912i
\(207\) 17.5587 65.5301i 0.0848248 0.316570i
\(208\) 6.05611 + 22.6017i 0.0291159 + 0.108662i
\(209\) 340.649i 1.62990i
\(210\) 30.1570 80.2531i 0.143605 0.382158i
\(211\) 320.337 1.51819 0.759093 0.650982i \(-0.225643\pi\)
0.759093 + 0.650982i \(0.225643\pi\)
\(212\) 147.041 39.3995i 0.693590 0.185847i
\(213\) −6.87359 1.84177i −0.0322704 0.00864682i
\(214\) 156.115 90.1332i 0.729511 0.421183i
\(215\) 33.7802 + 19.8363i 0.157117 + 0.0922620i
\(216\) 14.6969 0.0680414
\(217\) 8.97420 99.1330i 0.0413558 0.456834i
\(218\) −68.9409 + 68.9409i −0.316242 + 0.316242i
\(219\) −146.772 84.7388i −0.670191 0.386935i
\(220\) −28.9444 + 104.923i −0.131565 + 0.476924i
\(221\) −5.53126 9.58042i −0.0250283 0.0433503i
\(222\) 32.9569 8.83078i 0.148455 0.0397783i
\(223\) 134.141 134.141i 0.601528 0.601528i −0.339190 0.940718i \(-0.610153\pi\)
0.940718 + 0.339190i \(0.110153\pi\)
\(224\) −30.4104 + 25.3615i −0.135761 + 0.113221i
\(225\) −74.9919 1.10522i −0.333297 0.00491210i
\(226\) −133.742 + 231.648i −0.591779 + 1.02499i
\(227\) −1.96173 + 7.32127i −0.00864198 + 0.0322523i −0.970112 0.242657i \(-0.921981\pi\)
0.961470 + 0.274909i \(0.0886478\pi\)
\(228\) 104.723 + 28.0605i 0.459313 + 0.123073i
\(229\) −172.294 99.4742i −0.752377 0.434385i 0.0741751 0.997245i \(-0.476368\pi\)
−0.826552 + 0.562860i \(0.809701\pi\)
\(230\) 113.900 112.233i 0.495216 0.487971i
\(231\) −45.5080 + 123.869i −0.197005 + 0.536231i
\(232\) 70.8709 + 70.8709i 0.305478 + 0.305478i
\(233\) 51.9234 + 193.781i 0.222847 + 0.831677i 0.983256 + 0.182232i \(0.0583322\pi\)
−0.760408 + 0.649445i \(0.775001\pi\)
\(234\) 21.4933 12.4092i 0.0918519 0.0530307i
\(235\) 228.849 + 403.210i 0.973825 + 1.71579i
\(236\) 45.9667 79.6167i 0.194774 0.337359i
\(237\) −36.6264 36.6264i −0.154542 0.154542i
\(238\) 10.7841 15.3029i 0.0453114 0.0642980i
\(239\) 118.152i 0.494360i 0.968970 + 0.247180i \(0.0795039\pi\)
−0.968970 + 0.247180i \(0.920496\pi\)
\(240\) 29.8716 + 17.5411i 0.124465 + 0.0730879i
\(241\) 10.9226 + 18.9185i 0.0453219 + 0.0784999i 0.887796 0.460236i \(-0.152235\pi\)
−0.842475 + 0.538736i \(0.818902\pi\)
\(242\) −0.927301 + 3.46073i −0.00383182 + 0.0143006i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 186.819i 0.765650i
\(245\) 202.557 137.825i 0.826763 0.562551i
\(246\) −185.837 −0.755435
\(247\) 176.844 47.3852i 0.715967 0.191843i
\(248\) 38.8491 + 10.4096i 0.156650 + 0.0419742i
\(249\) 89.6390 51.7531i 0.359996 0.207844i
\(250\) −151.102 91.7506i −0.604408 0.367003i
\(251\) −198.472 −0.790724 −0.395362 0.918525i \(-0.629381\pi\)
−0.395362 + 0.918525i \(0.629381\pi\)
\(252\) 34.3316 + 24.1938i 0.136237 + 0.0960072i
\(253\) −174.044 + 174.044i −0.687920 + 0.687920i
\(254\) −44.0499 25.4322i −0.173425 0.100127i
\(255\) −15.7878 4.35525i −0.0619129 0.0170794i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −52.6213 + 14.0998i −0.204752 + 0.0548632i −0.359737 0.933054i \(-0.617134\pi\)
0.154985 + 0.987917i \(0.450467\pi\)
\(258\) −13.5702 + 13.5702i −0.0525976 + 0.0525976i
\(259\) 91.5234 + 33.6246i 0.353372 + 0.129825i
\(260\) 58.4959 + 0.431030i 0.224984 + 0.00165781i
\(261\) 53.1532 92.0640i 0.203652 0.352736i
\(262\) −31.7820 + 118.612i −0.121305 + 0.452718i
\(263\) −185.719 49.7632i −0.706154 0.189214i −0.112169 0.993689i \(-0.535780\pi\)
−0.593986 + 0.804476i \(0.702446\pi\)
\(264\) −46.1779 26.6608i −0.174916 0.100988i
\(265\) 2.80418 380.560i 0.0105818 1.43608i
\(266\) 198.438 + 237.942i 0.746007 + 0.894519i
\(267\) −101.392 101.392i −0.379747 0.379747i
\(268\) 12.9593 + 48.3648i 0.0483557 + 0.180466i
\(269\) 168.301 97.1687i 0.625655 0.361222i −0.153413 0.988162i \(-0.549026\pi\)
0.779067 + 0.626940i \(0.215693\pi\)
\(270\) 9.77087 35.4193i 0.0361884 0.131183i
\(271\) −211.981 + 367.162i −0.782218 + 1.35484i 0.148429 + 0.988923i \(0.452578\pi\)
−0.930647 + 0.365918i \(0.880755\pi\)
\(272\) 5.34887 + 5.34887i 0.0196649 + 0.0196649i
\(273\) 70.6356 + 6.39442i 0.258738 + 0.0234228i
\(274\) 33.2317i 0.121284i
\(275\) 233.620 + 139.511i 0.849528 + 0.507312i
\(276\) 39.1684 + 67.8417i 0.141915 + 0.245803i
\(277\) 91.1582 340.207i 0.329091 1.22818i −0.581044 0.813872i \(-0.697356\pi\)
0.910135 0.414312i \(-0.135978\pi\)
\(278\) 45.0300 + 168.054i 0.161978 + 0.604512i
\(279\) 42.6593i 0.152901i
\(280\) 40.9033 + 90.1494i 0.146083 + 0.321962i
\(281\) 358.294 1.27507 0.637534 0.770422i \(-0.279954\pi\)
0.637534 + 0.770422i \(0.279954\pi\)
\(282\) −219.391 + 58.7856i −0.777982 + 0.208460i
\(283\) −529.966 142.004i −1.87267 0.501781i −0.999907 0.0136400i \(-0.995658\pi\)
−0.872765 0.488141i \(-0.837675\pi\)
\(284\) 7.11606 4.10846i 0.0250566 0.0144664i
\(285\) 137.248 233.726i 0.481572 0.820091i
\(286\) −90.0430 −0.314836
\(287\) −434.110 305.921i −1.51258 1.06593i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 247.184 + 142.712i 0.855309 + 0.493813i
\(290\) 217.914 123.681i 0.751428 0.426486i
\(291\) 73.5578 + 127.406i 0.252776 + 0.437821i
\(292\) 189.028 50.6498i 0.647355 0.173458i
\(293\) −90.1783 + 90.1783i −0.307776 + 0.307776i −0.844046 0.536270i \(-0.819833\pi\)
0.536270 + 0.844046i \(0.319833\pi\)
\(294\) 40.3703 + 113.032i 0.137314 + 0.384463i
\(295\) −161.315 163.710i −0.546831 0.554949i
\(296\) −19.6989 + 34.1195i −0.0665504 + 0.115269i
\(297\) −14.6378 + 54.6290i −0.0492855 + 0.183936i
\(298\) −51.9572 13.9219i −0.174353 0.0467178i
\(299\) 114.563 + 66.1428i 0.383153 + 0.221213i
\(300\) 62.1330 60.3282i 0.207110 0.201094i
\(301\) −54.0385 + 9.36058i −0.179530 + 0.0310983i
\(302\) −164.464 164.464i −0.544582 0.544582i
\(303\) 12.4572 + 46.4909i 0.0411128 + 0.153435i
\(304\) −108.418 + 62.5949i −0.356637 + 0.205904i
\(305\) −450.229 124.201i −1.47616 0.407218i
\(306\) 4.01165 6.94838i 0.0131100 0.0227071i
\(307\) 201.844 + 201.844i 0.657473 + 0.657473i 0.954781 0.297309i \(-0.0960890\pi\)
−0.297309 + 0.954781i \(0.596089\pi\)
\(308\) −63.9817 138.296i −0.207733 0.449013i
\(309\) 248.477i 0.804133i
\(310\) 50.9147 86.7051i 0.164241 0.279694i
\(311\) −232.134 402.068i −0.746412 1.29282i −0.949532 0.313669i \(-0.898442\pi\)
0.203121 0.979154i \(-0.434892\pi\)
\(312\) −7.41718 + 27.6813i −0.0237730 + 0.0887221i
\(313\) 32.4320 + 121.038i 0.103616 + 0.386702i 0.998185 0.0602298i \(-0.0191833\pi\)
−0.894568 + 0.446932i \(0.852517\pi\)
\(314\) 0.378921i 0.00120676i
\(315\) 81.1311 66.6539i 0.257559 0.211600i
\(316\) 59.8107 0.189274
\(317\) −68.5329 + 18.3633i −0.216192 + 0.0579285i −0.365289 0.930894i \(-0.619030\pi\)
0.149097 + 0.988823i \(0.452363\pi\)
\(318\) 180.088 + 48.2544i 0.566314 + 0.151743i
\(319\) −334.015 + 192.844i −1.04707 + 0.604526i
\(320\) −38.7123 + 10.0678i −0.120976 + 0.0314618i
\(321\) 220.780 0.687789
\(322\) −20.1834 + 222.954i −0.0626813 + 0.692405i
\(323\) 41.8515 41.8515i 0.129571 0.129571i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 39.9282 140.687i 0.122856 0.432884i
\(326\) 164.571 + 285.045i 0.504819 + 0.874372i
\(327\) −115.340 + 30.9053i −0.352723 + 0.0945117i
\(328\) 151.735 151.735i 0.462607 0.462607i
\(329\) −609.262 223.835i −1.85186 0.680351i
\(330\) −94.9522 + 93.5631i −0.287734 + 0.283525i
\(331\) 319.578 553.526i 0.965493 1.67228i 0.257208 0.966356i \(-0.417197\pi\)
0.708285 0.705927i \(-0.249469\pi\)
\(332\) −30.9337 + 115.446i −0.0931738 + 0.347729i
\(333\) 40.3638 + 10.8155i 0.121213 + 0.0324788i
\(334\) −21.0171 12.1342i −0.0629255 0.0363300i
\(335\) 125.174 + 0.922351i 0.373654 + 0.00275329i
\(336\) −47.7858 + 8.27749i −0.142220 + 0.0246354i
\(337\) −257.177 257.177i −0.763138 0.763138i 0.213751 0.976888i \(-0.431432\pi\)
−0.976888 + 0.213751i \(0.931432\pi\)
\(338\) −49.3331 184.114i −0.145956 0.544715i
\(339\) −283.710 + 163.800i −0.836902 + 0.483186i
\(340\) 16.4467 9.33462i 0.0483727 0.0274548i
\(341\) −77.3856 + 134.036i −0.226937 + 0.393067i
\(342\) 93.8924 + 93.8924i 0.274539 + 0.274539i
\(343\) −91.7673 + 330.496i −0.267543 + 0.963546i
\(344\) 22.1600i 0.0644187i
\(345\) 189.537 49.2924i 0.549384 0.142877i
\(346\) −177.291 307.077i −0.512402 0.887507i
\(347\) −5.83564 + 21.7789i −0.0168174 + 0.0627635i −0.973825 0.227301i \(-0.927010\pi\)
0.957007 + 0.290064i \(0.0936766\pi\)
\(348\) 31.7706 + 118.569i 0.0912947 + 0.340716i
\(349\) 262.235i 0.751390i 0.926743 + 0.375695i \(0.122596\pi\)
−0.926743 + 0.375695i \(0.877404\pi\)
\(350\) 244.452 38.6427i 0.698434 0.110408i
\(351\) 30.3962 0.0865988
\(352\) 59.4726 15.9356i 0.168956 0.0452717i
\(353\) 112.727 + 30.2052i 0.319341 + 0.0855671i 0.414929 0.909854i \(-0.363806\pi\)
−0.0955880 + 0.995421i \(0.530473\pi\)
\(354\) 97.5101 56.2975i 0.275452 0.159032i
\(355\) −5.17039 19.8810i −0.0145645 0.0560028i
\(356\) 165.573 0.465093
\(357\) 20.8094 9.62732i 0.0582896 0.0269673i
\(358\) 51.0392 51.0392i 0.142567 0.142567i
\(359\) −189.185 109.226i −0.526979 0.304251i 0.212806 0.977094i \(-0.431740\pi\)
−0.739785 + 0.672843i \(0.765073\pi\)
\(360\) 20.9419 + 36.8977i 0.0581719 + 0.102493i
\(361\) 309.266 + 535.664i 0.856692 + 1.48383i
\(362\) 250.006 66.9889i 0.690624 0.185052i
\(363\) −3.10281 + 3.10281i −0.00854768 + 0.00854768i
\(364\) −62.8947 + 52.4527i −0.172788 + 0.144101i
\(365\) 3.60489 489.226i 0.00987641 1.34035i
\(366\) 114.403 198.151i 0.312575 0.541396i
\(367\) 56.9224 212.437i 0.155102 0.578848i −0.843995 0.536352i \(-0.819802\pi\)
0.999097 0.0424967i \(-0.0135312\pi\)
\(368\) −87.3734 23.4116i −0.237428 0.0636186i
\(369\) −197.110 113.801i −0.534173 0.308405i
\(370\) 69.1311 + 70.1574i 0.186841 + 0.189615i
\(371\) 341.244 + 409.178i 0.919796 + 1.10291i
\(372\) 34.8312 + 34.8312i 0.0936322 + 0.0936322i
\(373\) −164.238 612.944i −0.440316 1.64328i −0.728016 0.685560i \(-0.759557\pi\)
0.287700 0.957721i \(-0.407109\pi\)
\(374\) −25.2093 + 14.5546i −0.0674045 + 0.0389160i
\(375\) −104.082 189.847i −0.277553 0.506259i
\(376\) 131.134 227.130i 0.348760 0.604069i
\(377\) 146.575 + 146.575i 0.388793 + 0.388793i
\(378\) 21.5986 + 46.6851i 0.0571390 + 0.123506i
\(379\) 311.145i 0.820964i 0.911869 + 0.410482i \(0.134640\pi\)
−0.911869 + 0.410482i \(0.865360\pi\)
\(380\) 78.7741 + 302.899i 0.207300 + 0.797103i
\(381\) −31.1480 53.9499i −0.0817533 0.141601i
\(382\) 49.9592 186.450i 0.130783 0.488090i
\(383\) 80.4180 + 300.124i 0.209969 + 0.783614i 0.987877 + 0.155236i \(0.0496139\pi\)
−0.777909 + 0.628377i \(0.783719\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −375.827 + 62.2523i −0.976175 + 0.161694i
\(386\) 85.1181 0.220513
\(387\) −22.7034 + 6.08335i −0.0586650 + 0.0157192i
\(388\) −164.086 43.9667i −0.422902 0.113316i
\(389\) −649.129 + 374.775i −1.66871 + 0.963431i −0.700377 + 0.713774i \(0.746985\pi\)
−0.968334 + 0.249657i \(0.919682\pi\)
\(390\) 61.7803 + 36.2785i 0.158411 + 0.0930217i
\(391\) 42.7654 0.109374
\(392\) −125.252 59.3281i −0.319522 0.151347i
\(393\) −106.345 + 106.345i −0.270597 + 0.270597i
\(394\) −278.426 160.750i −0.706666 0.407994i
\(395\) 39.7635 144.143i 0.100667 0.364918i
\(396\) −32.6527 56.5561i −0.0824563 0.142819i
\(397\) −452.948 + 121.367i −1.14093 + 0.305711i −0.779324 0.626621i \(-0.784437\pi\)
−0.361604 + 0.932332i \(0.617771\pi\)
\(398\) −226.058 + 226.058i −0.567986 + 0.567986i
\(399\) 64.7661 + 373.894i 0.162321 + 0.937077i
\(400\) −1.47363 + 99.9891i −0.00368408 + 0.249973i
\(401\) 156.647 271.320i 0.390640 0.676609i −0.601894 0.798576i \(-0.705587\pi\)
0.992534 + 0.121967i \(0.0389203\pi\)
\(402\) −15.8719 + 59.2346i −0.0394822 + 0.147350i
\(403\) 80.3477 + 21.5291i 0.199374 + 0.0534221i
\(404\) −48.1309 27.7884i −0.119136 0.0687831i
\(405\) 32.0534 31.5845i 0.0791442 0.0779864i
\(406\) −120.971 + 329.274i −0.297959 + 0.811021i
\(407\) −107.204 107.204i −0.263400 0.263400i
\(408\) 2.39783 + 8.94883i 0.00587704 + 0.0219334i
\(409\) 368.604 212.814i 0.901233 0.520327i 0.0236332 0.999721i \(-0.492477\pi\)
0.877600 + 0.479393i \(0.159143\pi\)
\(410\) −264.802 466.556i −0.645859 1.13794i
\(411\) −20.3502 + 35.2476i −0.0495139 + 0.0857605i
\(412\) −202.881 202.881i −0.492429 0.492429i
\(413\) 320.457 + 29.0099i 0.775924 + 0.0702420i
\(414\) 95.9427i 0.231746i
\(415\) 257.658 + 151.301i 0.620862 + 0.364581i
\(416\) −16.5456 28.6578i −0.0397730 0.0688889i
\(417\) −55.1503 + 205.824i −0.132255 + 0.493582i
\(418\) −124.686 465.335i −0.298292 1.11324i
\(419\) 804.373i 1.91975i −0.280437 0.959873i \(-0.590479\pi\)
0.280437 0.959873i \(-0.409521\pi\)
\(420\) −11.8205 + 120.666i −0.0281441 + 0.287300i
\(421\) −184.978 −0.439379 −0.219689 0.975570i \(-0.570504\pi\)
−0.219689 + 0.975570i \(0.570504\pi\)
\(422\) −437.589 + 117.252i −1.03694 + 0.277847i
\(423\) −268.698 71.9973i −0.635219 0.170206i
\(424\) −186.441 + 107.642i −0.439718 + 0.253872i
\(425\) −11.5621 45.8422i −0.0272049 0.107864i
\(426\) 10.0636 0.0236235
\(427\) 593.433 274.548i 1.38977 0.642969i
\(428\) −180.266 + 180.266i −0.421183 + 0.421183i
\(429\) −95.5051 55.1399i −0.222622 0.128531i
\(430\) −53.4052 14.7325i −0.124198 0.0342616i
\(431\) −334.095 578.669i −0.775162 1.34262i −0.934704 0.355428i \(-0.884335\pi\)
0.159542 0.987191i \(-0.448998\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) 283.514 283.514i 0.654767 0.654767i −0.299370 0.954137i \(-0.596776\pi\)
0.954137 + 0.299370i \(0.0967765\pi\)
\(434\) 24.0262 + 138.703i 0.0553599 + 0.319592i
\(435\) 306.872 + 2.26120i 0.705452 + 0.00519816i
\(436\) 68.9409 119.409i 0.158121 0.273874i
\(437\) −183.181 + 683.642i −0.419179 + 1.56440i
\(438\) 231.511 + 62.0331i 0.528563 + 0.141628i
\(439\) 533.804 + 308.192i 1.21595 + 0.702032i 0.964050 0.265721i \(-0.0856099\pi\)
0.251904 + 0.967752i \(0.418943\pi\)
\(440\) 1.13418 153.922i 0.00257769 0.349823i
\(441\) −26.3986 + 144.610i −0.0598607 + 0.327914i
\(442\) 11.0625 + 11.0625i 0.0250283 + 0.0250283i
\(443\) −156.996 585.918i −0.354393 1.32261i −0.881246 0.472657i \(-0.843295\pi\)
0.526853 0.849956i \(-0.323372\pi\)
\(444\) −41.7877 + 24.1261i −0.0941164 + 0.0543381i
\(445\) 110.077 399.028i 0.247364 0.896693i
\(446\) −134.141 + 232.339i −0.300764 + 0.520939i
\(447\) −46.5836 46.5836i −0.104214 0.104214i
\(448\) 32.2584 45.7755i 0.0720054 0.102177i
\(449\) 794.202i 1.76882i −0.466707 0.884412i \(-0.654560\pi\)
0.466707 0.884412i \(-0.345440\pi\)
\(450\) 102.845 25.9392i 0.228545 0.0576426i
\(451\) 412.881 + 715.130i 0.915478 + 1.58565i
\(452\) 97.9060 365.390i 0.216606 0.808385i
\(453\) −73.7271 275.153i −0.162753 0.607403i
\(454\) 10.7191i 0.0236103i
\(455\) 84.5961 + 186.447i 0.185926 + 0.409773i
\(456\) −153.326 −0.336240
\(457\) −468.412 + 125.511i −1.02497 + 0.274640i −0.731872 0.681442i \(-0.761353\pi\)
−0.293099 + 0.956082i \(0.594687\pi\)
\(458\) 271.769 + 72.8202i 0.593381 + 0.158996i
\(459\) 8.50999 4.91325i 0.0185403 0.0107042i
\(460\) −114.509 + 195.004i −0.248934 + 0.423921i
\(461\) 259.108 0.562057 0.281028 0.959699i \(-0.409324\pi\)
0.281028 + 0.959699i \(0.409324\pi\)
\(462\) 16.8258 185.866i 0.0364196 0.402307i
\(463\) −529.834 + 529.834i −1.14435 + 1.14435i −0.156705 + 0.987645i \(0.550087\pi\)
−0.987645 + 0.156705i \(0.949913\pi\)
\(464\) −122.752 70.8709i −0.264552 0.152739i
\(465\) 107.099 60.7859i 0.230321 0.130722i
\(466\) −141.857 245.704i −0.304415 0.527262i
\(467\) −100.756 + 26.9974i −0.215751 + 0.0578103i −0.365075 0.930978i \(-0.618957\pi\)
0.149324 + 0.988788i \(0.452290\pi\)
\(468\) −24.8184 + 24.8184i −0.0530307 + 0.0530307i
\(469\) −134.587 + 112.242i −0.286966 + 0.239323i
\(470\) −460.199 467.031i −0.979146 0.993683i
\(471\) 0.232041 0.401907i 0.000492656 0.000853306i
\(472\) −33.6500 + 125.583i −0.0712923 + 0.266067i
\(473\) 82.3696 + 22.0709i 0.174143 + 0.0466614i
\(474\) 63.4388 + 36.6264i 0.133837 + 0.0772709i
\(475\) 782.352 + 11.5302i 1.64706 + 0.0242742i
\(476\) −9.13012 + 24.8515i −0.0191809 + 0.0522089i
\(477\) 161.462 + 161.462i 0.338495 + 0.338495i
\(478\) −43.2467 161.399i −0.0904742 0.337654i
\(479\) 352.830 203.707i 0.736598 0.425275i −0.0842332 0.996446i \(-0.526844\pi\)
0.820831 + 0.571171i \(0.193511\pi\)
\(480\) −47.2258 13.0278i −0.0983871 0.0271413i
\(481\) −40.7412 + 70.5659i −0.0847011 + 0.146707i
\(482\) −21.8452 21.8452i −0.0453219 0.0453219i
\(483\) −157.939 + 224.119i −0.326996 + 0.464015i
\(484\) 5.06687i 0.0104687i
\(485\) −215.047 + 366.214i −0.443396 + 0.755081i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) 210.150 784.291i 0.431520 1.61045i −0.317739 0.948178i \(-0.602924\pi\)
0.749259 0.662277i \(-0.230410\pi\)
\(488\) 68.3804 + 255.199i 0.140124 + 0.522949i
\(489\) 403.115i 0.824366i
\(490\) −226.250 + 262.413i −0.461735 + 0.535538i
\(491\) 334.632 0.681531 0.340766 0.940148i \(-0.389314\pi\)
0.340766 + 0.940148i \(0.389314\pi\)
\(492\) 253.858 68.0211i 0.515972 0.138254i
\(493\) 64.7289 + 17.3441i 0.131296 + 0.0351807i
\(494\) −224.229 + 129.459i −0.453905 + 0.262062i
\(495\) −158.008 + 41.0926i −0.319207 + 0.0830153i
\(496\) −56.8791 −0.114676
\(497\) 23.5083 + 16.5665i 0.0473005 + 0.0333331i
\(498\) −103.506 + 103.506i −0.207844 + 0.207844i
\(499\) 313.315 + 180.893i 0.627886 + 0.362510i 0.779933 0.625863i \(-0.215253\pi\)
−0.152047 + 0.988373i \(0.548587\pi\)
\(500\) 239.992 + 70.0265i 0.479985 + 0.140053i
\(501\) −14.8613 25.7406i −0.0296634 0.0513784i
\(502\) 271.118 72.6457i 0.540075 0.144713i
\(503\) −319.003 + 319.003i −0.634200 + 0.634200i −0.949119 0.314918i \(-0.898023\pi\)
0.314918 + 0.949119i \(0.398023\pi\)
\(504\) −55.7534 20.4831i −0.110622 0.0406411i
\(505\) −98.9680 + 97.5201i −0.195976 + 0.193109i
\(506\) 174.044 301.453i 0.343960 0.595756i
\(507\) 60.4204 225.492i 0.119172 0.444758i
\(508\) 69.4822 + 18.6177i 0.136776 + 0.0366490i
\(509\) 116.748 + 67.4044i 0.229367 + 0.132425i 0.610280 0.792186i \(-0.291057\pi\)
−0.380913 + 0.924611i \(0.624390\pi\)
\(510\) 23.1606 + 0.170660i 0.0454130 + 0.000334628i
\(511\) 438.684 + 526.016i 0.858482 + 1.02938i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 42.0908 + 157.085i 0.0820484 + 0.306209i
\(514\) 66.7212 38.5215i 0.129808 0.0749445i
\(515\) −623.819 + 354.059i −1.21130 + 0.687493i
\(516\) 13.5702 23.5043i 0.0262988 0.0455509i
\(517\) 713.644 + 713.644i 1.38036 + 1.38036i
\(518\) −137.331 12.4321i −0.265117 0.0240002i
\(519\) 434.273i 0.836749i
\(520\) −80.0646 + 20.8222i −0.153970 + 0.0400427i
\(521\) −299.369 518.522i −0.574605 0.995244i −0.996084 0.0884066i \(-0.971823\pi\)
0.421480 0.906838i \(-0.361511\pi\)
\(522\) −38.9108 + 145.217i −0.0745418 + 0.278194i
\(523\) 159.082 + 593.701i 0.304172 + 1.13518i 0.933656 + 0.358171i \(0.116600\pi\)
−0.629484 + 0.777013i \(0.716734\pi\)
\(524\) 173.660i 0.331413i
\(525\) 282.944 + 108.709i 0.538941 + 0.207064i
\(526\) 271.911 0.516941
\(527\) 25.9748 6.95994i 0.0492881 0.0132067i
\(528\) 72.8387 + 19.5171i 0.137952 + 0.0369642i
\(529\) 15.2520 8.80574i 0.0288317 0.0166460i
\(530\) 135.464 + 520.881i 0.255593 + 0.982794i
\(531\) 137.900 0.259699
\(532\) −358.164 252.402i −0.673241 0.474439i
\(533\) 313.819 313.819i 0.588778 0.588778i
\(534\) 175.617 + 101.392i 0.328871 + 0.189874i
\(535\) 314.593 + 554.284i 0.588025 + 1.03604i
\(536\) −35.4055 61.3242i −0.0660551 0.114411i
\(537\) 85.3902 22.8802i 0.159013 0.0426075i
\(538\) −194.337 + 194.337i −0.361222 + 0.361222i
\(539\) 345.273 406.478i 0.640581 0.754134i
\(540\) −0.382871 + 51.9601i −0.000709020 + 0.0962224i
\(541\) −384.127 + 665.328i −0.710032 + 1.22981i 0.254813 + 0.966990i \(0.417986\pi\)
−0.964845 + 0.262821i \(0.915347\pi\)
\(542\) 155.181 579.143i 0.286312 1.06853i
\(543\) 306.193 + 82.0443i 0.563892 + 0.151094i
\(544\) −9.26451 5.34887i −0.0170303 0.00983247i
\(545\) −241.940 245.532i −0.443927 0.450518i
\(546\) −98.8305 + 17.1195i −0.181008 + 0.0313544i
\(547\) 83.3079 + 83.3079i 0.152300 + 0.152300i 0.779144 0.626845i \(-0.215654\pi\)
−0.626845 + 0.779144i \(0.715654\pi\)
\(548\) −12.1637 45.3954i −0.0221965 0.0828383i
\(549\) 242.685 140.114i 0.442048 0.255217i
\(550\) −370.195 105.064i −0.673083 0.191026i
\(551\) −554.520 + 960.457i −1.00639 + 1.74312i
\(552\) −78.3369 78.3369i −0.141915 0.141915i
\(553\) 87.8975 + 189.990i 0.158947 + 0.343562i
\(554\) 498.097i 0.899093i
\(555\) 30.3621 + 116.747i 0.0547065 + 0.210355i
\(556\) −123.024 213.084i −0.221267 0.383245i
\(557\) 157.183 586.616i 0.282196 1.05317i −0.668667 0.743562i \(-0.733135\pi\)
0.950864 0.309610i \(-0.100198\pi\)
\(558\) 15.6144 + 58.2737i 0.0279828 + 0.104433i
\(559\) 45.8313i 0.0819881i
\(560\) −88.8719 108.175i −0.158700 0.193169i
\(561\) −35.6513 −0.0635495
\(562\) −489.439 + 131.145i −0.870888 + 0.233354i
\(563\) 578.669 + 155.054i 1.02783 + 0.275406i 0.733062 0.680162i \(-0.238091\pi\)
0.294769 + 0.955569i \(0.404757\pi\)
\(564\) 278.176 160.605i 0.493221 0.284761i
\(565\) −815.493 478.871i −1.44335 0.847560i
\(566\) 775.924 1.37089
\(567\) −5.67997 + 62.7434i −0.0100176 + 0.110659i
\(568\) −8.21692 + 8.21692i −0.0144664 + 0.0144664i
\(569\) 520.684 + 300.617i 0.915086 + 0.528325i 0.882064 0.471130i \(-0.156154\pi\)
0.0330217 + 0.999455i \(0.489487\pi\)
\(570\) −101.934 + 369.512i −0.178832 + 0.648267i
\(571\) −175.699 304.320i −0.307705 0.532960i 0.670155 0.742221i \(-0.266228\pi\)
−0.977860 + 0.209261i \(0.932894\pi\)
\(572\) 123.001 32.9580i 0.215037 0.0576189i
\(573\) 167.167 167.167i 0.291740 0.291740i
\(574\) 704.980 + 259.001i 1.22819 + 0.451221i
\(575\) 393.827 + 405.609i 0.684916 + 0.705406i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −222.552 + 830.576i −0.385705 + 1.43947i 0.451346 + 0.892349i \(0.350944\pi\)
−0.837052 + 0.547123i \(0.815723\pi\)
\(578\) −389.896 104.472i −0.674561 0.180748i
\(579\) 90.2814 + 52.1240i 0.155926 + 0.0900241i
\(580\) −252.406 + 248.713i −0.435183 + 0.428816i
\(581\) −412.177 + 71.3976i −0.709427 + 0.122887i
\(582\) −147.116 147.116i −0.252776 0.252776i
\(583\) −214.417 800.215i −0.367782 1.37258i
\(584\) −239.677 + 138.378i −0.410407 + 0.236948i
\(585\) 43.3120 + 76.3117i 0.0740376 + 0.130447i
\(586\) 90.1783 156.193i 0.153888 0.266542i
\(587\) 601.442 + 601.442i 1.02460 + 1.02460i 0.999690 + 0.0249132i \(0.00793095\pi\)
0.0249132 + 0.999690i \(0.492069\pi\)
\(588\) −96.5194 139.628i −0.164149 0.237463i
\(589\) 445.043i 0.755590i
\(590\) 280.282 + 164.587i 0.475055 + 0.278960i
\(591\) −196.877 341.001i −0.333126 0.576990i
\(592\) 14.4206 53.8184i 0.0243591 0.0909095i
\(593\) 50.6955 + 189.198i 0.0854898 + 0.319052i 0.995407 0.0957387i \(-0.0305213\pi\)
−0.909917 + 0.414791i \(0.863855\pi\)
\(594\) 79.9825i 0.134651i
\(595\) 53.8216 + 38.5252i 0.0904565 + 0.0647483i
\(596\) 76.0707 0.127635
\(597\) −378.203 + 101.339i −0.633506 + 0.169747i
\(598\) −180.706 48.4199i −0.302183 0.0809697i
\(599\) 273.403 157.849i 0.456432 0.263521i −0.254111 0.967175i \(-0.581783\pi\)
0.710543 + 0.703654i \(0.248449\pi\)
\(600\) −62.7936 + 105.152i −0.104656 + 0.175253i
\(601\) −956.156 −1.59094 −0.795470 0.605992i \(-0.792776\pi\)
−0.795470 + 0.605992i \(0.792776\pi\)
\(602\) 70.3918 32.5663i 0.116930 0.0540968i
\(603\) −53.1083 + 53.1083i −0.0880734 + 0.0880734i
\(604\) 284.860 + 164.464i 0.471622 + 0.272291i
\(605\) −12.2111 3.36857i −0.0201836 0.00556788i
\(606\) −34.0337 58.9480i −0.0561612 0.0972740i
\(607\) 562.393 150.693i 0.926513 0.248258i 0.236146 0.971718i \(-0.424116\pi\)
0.690367 + 0.723459i \(0.257449\pi\)
\(608\) 125.190 125.190i 0.205904 0.205904i
\(609\) −329.948 + 275.169i −0.541787 + 0.451837i
\(610\) 660.486 + 4.86682i 1.08276 + 0.00797840i
\(611\) 271.210 469.750i 0.443879 0.768822i
\(612\) −2.93673 + 10.9600i −0.00479858 + 0.0179085i
\(613\) 659.677 + 176.760i 1.07614 + 0.288352i 0.753016 0.658003i \(-0.228598\pi\)
0.323129 + 0.946355i \(0.395265\pi\)
\(614\) −349.604 201.844i −0.569388 0.328736i
\(615\) 4.84125 657.015i 0.00787195 1.06832i
\(616\) 138.020 + 165.497i 0.224059 + 0.268664i
\(617\) 709.720 + 709.720i 1.15027 + 1.15027i 0.986497 + 0.163777i \(0.0523679\pi\)
0.163777 + 0.986497i \(0.447632\pi\)
\(618\) −90.9490 339.426i −0.147167 0.549233i
\(619\) 286.349 165.324i 0.462599 0.267082i −0.250537 0.968107i \(-0.580607\pi\)
0.713137 + 0.701025i \(0.247274\pi\)
\(620\) −37.8145 + 137.077i −0.0609912 + 0.221093i
\(621\) −58.7526 + 101.763i −0.0946097 + 0.163869i
\(622\) 464.268 + 464.268i 0.746412 + 0.746412i
\(623\) 243.326 + 525.947i 0.390571 + 0.844216i
\(624\) 40.5282i 0.0649491i
\(625\) 328.315 531.822i 0.525304 0.850915i
\(626\) −88.6058 153.470i −0.141543 0.245159i
\(627\) 152.709 569.917i 0.243555 0.908958i
\(628\) 0.138695 + 0.517616i 0.000220852 + 0.000824230i
\(629\) 26.3417i 0.0418787i
\(630\) −86.4301 + 120.747i −0.137191 + 0.191662i
\(631\) −786.255 −1.24605 −0.623023 0.782203i \(-0.714096\pi\)
−0.623023 + 0.782203i \(0.714096\pi\)
\(632\) −81.7029 + 21.8922i −0.129277 + 0.0346396i
\(633\) −535.935 143.603i −0.846658 0.226861i
\(634\) 86.8962 50.1696i 0.137060 0.0791318i
\(635\) 91.0616 155.073i 0.143404 0.244210i
\(636\) −263.667 −0.414571
\(637\) −259.047 122.702i −0.406667 0.192625i
\(638\) 385.688 385.688i 0.604526 0.604526i
\(639\) 10.6741 + 6.16269i 0.0167044 + 0.00964427i
\(640\) 49.1969 27.9225i 0.0768701 0.0436290i
\(641\) −184.010 318.714i −0.287067 0.497214i 0.686042 0.727562i \(-0.259347\pi\)
−0.973108 + 0.230348i \(0.926013\pi\)
\(642\) −301.592 + 80.8112i −0.469769 + 0.125874i
\(643\) 569.132 569.132i 0.885119 0.885119i −0.108930 0.994049i \(-0.534743\pi\)
0.994049 + 0.108930i \(0.0347425\pi\)
\(644\) −54.0360 311.949i −0.0839068 0.484393i
\(645\) −47.6230 48.3301i −0.0738342 0.0749303i
\(646\) −41.8515 + 72.4889i −0.0647856 + 0.112212i
\(647\) 0.849457 3.17022i 0.00131292 0.00489987i −0.965266 0.261268i \(-0.915859\pi\)
0.966579 + 0.256368i \(0.0825260\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) −433.283 250.156i −0.667617 0.385449i
\(650\) −3.04776 + 206.797i −0.00468886 + 0.318150i
\(651\) −59.4542 + 161.830i −0.0913275 + 0.248586i
\(652\) −329.142 329.142i −0.504819 0.504819i
\(653\) −120.224 448.682i −0.184110 0.687108i −0.994819 0.101659i \(-0.967585\pi\)
0.810709 0.585449i \(-0.199082\pi\)
\(654\) 146.246 84.4350i 0.223617 0.129105i
\(655\) −418.518 115.453i −0.638959 0.176265i
\(656\) −151.735 + 262.813i −0.231304 + 0.400630i
\(657\) 207.567 + 207.567i 0.315931 + 0.315931i
\(658\) 914.197 + 82.7594i 1.38936 + 0.125774i
\(659\) 591.441i 0.897482i −0.893662 0.448741i \(-0.851873\pi\)
0.893662 0.448741i \(-0.148127\pi\)
\(660\) 95.4607 162.565i 0.144637 0.246310i
\(661\) −251.099 434.916i −0.379878 0.657967i 0.611166 0.791502i \(-0.290701\pi\)
−0.991044 + 0.133535i \(0.957367\pi\)
\(662\) −233.947 + 873.104i −0.353395 + 1.31889i
\(663\) 4.95919 + 18.5080i 0.00747993 + 0.0279155i
\(664\) 169.025i 0.254556i
\(665\) −846.399 + 695.367i −1.27278 + 1.04566i
\(666\) −59.0967 −0.0887338
\(667\) −774.029 + 207.400i −1.16046 + 0.310945i
\(668\) 33.1513 + 8.88288i 0.0496278 + 0.0132977i
\(669\) −284.556 + 164.288i −0.425345 + 0.245573i
\(670\) −171.328 + 44.5569i −0.255714 + 0.0665029i
\(671\) −1016.69 −1.51518
\(672\) 62.2469 28.7981i 0.0926292 0.0428543i
\(673\) −145.430 + 145.430i −0.216092 + 0.216092i −0.806849 0.590757i \(-0.798829\pi\)
0.590757 + 0.806849i \(0.298829\pi\)
\(674\) 445.444 + 257.177i 0.660897 + 0.381569i
\(675\) 124.968 + 35.4670i 0.185138 + 0.0525437i
\(676\) 134.780 + 233.447i 0.199379 + 0.345335i
\(677\) 475.760 127.480i 0.702747 0.188301i 0.110287 0.993900i \(-0.464823\pi\)
0.592461 + 0.805599i \(0.298156\pi\)
\(678\) 327.600 327.600i 0.483186 0.483186i
\(679\) −101.479 585.836i −0.149453 0.862793i
\(680\) −19.0499 + 18.7712i −0.0280146 + 0.0276048i
\(681\) 6.56408 11.3693i 0.00963888 0.0166950i
\(682\) 56.6502 211.421i 0.0830648 0.310002i
\(683\) −1070.02 286.711i −1.56665 0.419782i −0.631887 0.775061i \(-0.717719\pi\)
−0.934760 + 0.355279i \(0.884386\pi\)
\(684\) −162.626 93.8924i −0.237758 0.137270i
\(685\) −117.489 0.865722i −0.171516 0.00126383i
\(686\) 4.38646 485.055i 0.00639426 0.707078i
\(687\) 243.661 + 243.661i 0.354674 + 0.354674i
\(688\) 8.11113 + 30.2712i 0.0117894 + 0.0439988i
\(689\) −385.596 + 222.624i −0.559646 + 0.323112i
\(690\) −240.871 + 136.710i −0.349088 + 0.198131i
\(691\) 551.244 954.783i 0.797748 1.38174i −0.123331 0.992366i \(-0.539358\pi\)
0.921079 0.389375i \(-0.127309\pi\)
\(692\) 354.582 + 354.582i 0.512402 + 0.512402i
\(693\) 131.666 186.837i 0.189994 0.269606i
\(694\) 31.8866i 0.0459460i
\(695\) −595.319 + 154.823i −0.856574 + 0.222767i
\(696\) −86.7988 150.340i −0.124711 0.216006i
\(697\) 37.1338 138.585i 0.0532766 0.198831i
\(698\) −95.9847 358.220i −0.137514 0.513209i
\(699\) 347.478i 0.497108i
\(700\) −319.783 + 142.263i −0.456833 + 0.203232i
\(701\) −869.635 −1.24056 −0.620282 0.784379i \(-0.712982\pi\)
−0.620282 + 0.784379i \(0.712982\pi\)
\(702\) −41.5220 + 11.1258i −0.0591481 + 0.0158487i
\(703\) −421.095 112.832i −0.598997 0.160501i
\(704\) −75.4082 + 43.5369i −0.107114 + 0.0618422i
\(705\) −202.117 777.174i −0.286691 1.10237i
\(706\) −165.044 −0.233774
\(707\) 17.5374 193.726i 0.0248054 0.274012i
\(708\) −112.595 + 112.595i −0.159032 + 0.159032i
\(709\) −1104.74 637.824i −1.55817 0.899610i −0.997432 0.0716178i \(-0.977184\pi\)
−0.560739 0.827993i \(-0.689483\pi\)
\(710\) 14.3398 + 25.2654i 0.0201969 + 0.0355851i
\(711\) 44.8580 + 77.6964i 0.0630915 + 0.109278i
\(712\) −226.177 + 60.6040i −0.317665 + 0.0851180i
\(713\) −227.380 + 227.380i −0.318907 + 0.318907i
\(714\) −24.9023 + 20.7679i −0.0348772 + 0.0290867i
\(715\) 2.34572 318.342i 0.00328072 0.445233i
\(716\) −51.0392 + 88.4024i −0.0712837 + 0.123467i
\(717\) 52.9661 197.672i 0.0738719 0.275694i
\(718\) 298.412 + 79.9592i 0.415615 + 0.111364i
\(719\) 477.496 + 275.682i 0.664111 + 0.383425i 0.793841 0.608125i \(-0.208078\pi\)
−0.129731 + 0.991549i \(0.541411\pi\)
\(720\) −42.1126 42.7379i −0.0584898 0.0593581i
\(721\) 346.303 942.608i 0.480309 1.30736i
\(722\) −618.532 618.532i −0.856692 0.856692i
\(723\) −9.79292 36.5477i −0.0135448 0.0505501i
\(724\) −316.995 + 183.017i −0.437838 + 0.252786i
\(725\) 431.589 + 773.644i 0.595296 + 1.06710i
\(726\) 3.10281 5.37422i 0.00427384 0.00740251i
\(727\) 380.507 + 380.507i 0.523393 + 0.523393i 0.918594 0.395202i \(-0.129325\pi\)
−0.395202 + 0.918594i \(0.629325\pi\)
\(728\) 66.7168 94.6728i 0.0916439 0.130045i
\(729\) 27.0000i 0.0370370i
\(730\) 174.145 + 669.615i 0.238555 + 0.917281i
\(731\) −7.40819 12.8314i −0.0101343 0.0175532i
\(732\) −83.7485 + 312.554i −0.114411 + 0.426986i
\(733\) −44.1289 164.691i −0.0602031 0.224681i 0.929269 0.369403i \(-0.120438\pi\)
−0.989472 + 0.144722i \(0.953771\pi\)
\(734\) 311.030i 0.423746i
\(735\) −400.669 + 139.782i −0.545128 + 0.190180i
\(736\) 127.924 0.173809
\(737\) 263.207 70.5261i 0.357133 0.0956935i
\(738\) 310.911 + 83.3084i 0.421289 + 0.112884i
\(739\) −199.580 + 115.227i −0.270067 + 0.155923i −0.628918 0.777471i \(-0.716502\pi\)
0.358851 + 0.933395i \(0.383169\pi\)
\(740\) −120.114 70.5331i −0.162317 0.0953150i
\(741\) −317.108 −0.427946
\(742\) −615.918 434.043i −0.830078 0.584964i
\(743\) −944.117 + 944.117i −1.27068 + 1.27068i −0.324952 + 0.945731i \(0.605348\pi\)
−0.945731 + 0.324952i \(0.894652\pi\)
\(744\) −60.3294 34.8312i −0.0810878 0.0468161i
\(745\) 50.5736 183.329i 0.0678840 0.246079i
\(746\) 448.706 + 777.182i 0.601483 + 1.04180i
\(747\) −173.169 + 46.4006i −0.231820 + 0.0621159i
\(748\) 29.1092 29.1092i 0.0389160 0.0389160i
\(749\) −837.539 307.701i −1.11821 0.410816i
\(750\) 211.668 + 221.239i 0.282224 + 0.294985i
\(751\) 147.067 254.727i 0.195828 0.339184i −0.751344 0.659911i \(-0.770594\pi\)
0.947172 + 0.320727i \(0.103927\pi\)
\(752\) −95.9965 + 358.264i −0.127655 + 0.476414i
\(753\) 332.050 + 88.9725i 0.440969 + 0.118157i
\(754\) −253.875 146.575i −0.336705 0.194397i
\(755\) 585.736 577.167i 0.775809 0.764460i
\(756\) −46.5921 55.8675i −0.0616298 0.0738988i
\(757\) −521.238 521.238i −0.688557 0.688557i 0.273356 0.961913i \(-0.411866\pi\)
−0.961913 + 0.273356i \(0.911866\pi\)
\(758\) −113.887 425.033i −0.150247 0.560729i
\(759\) 369.203 213.159i 0.486433 0.280842i
\(760\) −218.476 384.934i −0.287469 0.506493i
\(761\) 237.263 410.952i 0.311779 0.540016i −0.666969 0.745086i \(-0.732409\pi\)
0.978747 + 0.205069i \(0.0657420\pi\)
\(762\) 62.2960 + 62.2960i 0.0817533 + 0.0817533i
\(763\) 480.621 + 43.5091i 0.629909 + 0.0570237i