Properties

Label 210.3.v.a.37.1
Level 210
Weight 3
Character 210.37
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.1
Character \(\chi\) \(=\) 210.37
Dual form 210.3.v.a.193.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.60436 - 1.94932i) q^{5} +2.44949 q^{6} +(-4.28537 - 5.53495i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.67303 - 0.448288i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.60436 - 1.94932i) q^{5} +2.44949 q^{6} +(-4.28537 - 5.53495i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.59808 + 1.50000i) q^{9} +(7.00318 + 0.977504i) q^{10} +(8.47882 + 14.6857i) q^{11} +(-3.34607 + 0.896575i) q^{12} +(3.05181 - 3.05181i) q^{13} +(7.87985 + 5.99233i) q^{14} +(6.82939 + 5.32535i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-2.87910 + 10.7449i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(-5.74405 - 3.31633i) q^{19} +(-9.92431 + 1.22805i) q^{20} +(4.68831 + 11.1812i) q^{21} +(-16.9576 - 16.9576i) q^{22} +(4.49666 + 16.7817i) q^{23} +(4.24264 - 2.44949i) q^{24} +(17.4003 + 17.9507i) q^{25} +(-3.05181 + 5.28588i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-12.9574 - 5.30145i) q^{28} +35.8861i q^{29} +(-11.2783 - 4.77483i) q^{30} +(22.7901 + 39.4736i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-7.60190 - 28.3707i) q^{33} -15.7317i q^{34} +(8.94201 + 33.8384i) q^{35} +6.00000 q^{36} +(17.7095 - 4.74524i) q^{37} +(9.06038 + 2.42772i) q^{38} +(-6.47386 + 3.73768i) q^{39} +(13.1074 - 5.31009i) q^{40} -42.9609 q^{41} +(-10.4970 - 13.5578i) q^{42} +(-1.98628 + 1.98628i) q^{43} +(29.3715 + 16.9576i) q^{44} +(-9.03851 - 11.9710i) q^{45} +(-12.2851 - 21.2784i) q^{46} +(42.2437 - 11.3192i) q^{47} +(-4.89898 + 4.89898i) q^{48} +(-12.2713 + 47.4385i) q^{49} +(-30.3397 - 18.1522i) q^{50} +(9.63365 - 16.6860i) q^{51} +(2.23408 - 8.33769i) q^{52} +(-82.1632 - 22.0156i) q^{53} +(6.36396 + 3.67423i) q^{54} +(-10.4124 - 84.1464i) q^{55} +(19.6406 + 2.49916i) q^{56} +(8.12331 + 8.12331i) q^{57} +(-13.1352 - 49.0213i) q^{58} +(22.0174 - 12.7117i) q^{59} +(17.1542 + 2.39439i) q^{60} +(42.4823 - 73.5814i) q^{61} +(-45.5802 - 45.5802i) q^{62} +(-2.83128 - 20.8083i) q^{63} -8.00000i q^{64} +(-20.0006 + 8.10268i) q^{65} +(20.7688 + 35.9726i) q^{66} +(-16.2919 + 60.8022i) q^{67} +(5.75820 + 21.4899i) q^{68} -30.0922i q^{69} +(-24.6007 - 42.9512i) q^{70} +137.965 q^{71} +(-8.19615 + 2.19615i) q^{72} +(-7.00522 - 1.87704i) q^{73} +(-22.4547 + 12.9642i) q^{74} +(-21.0642 - 37.8325i) q^{75} -13.2653 q^{76} +(44.9500 - 109.864i) q^{77} +(7.47537 - 7.47537i) q^{78} +(-35.4965 - 20.4939i) q^{79} +(-15.9614 + 12.0513i) q^{80} +(4.50000 + 7.79423i) q^{81} +(58.6857 - 15.7248i) q^{82} +(-109.947 + 109.947i) q^{83} +(19.3016 + 14.6781i) q^{84} +(34.2017 - 43.8613i) q^{85} +(1.98628 - 3.44034i) q^{86} +(16.0873 - 60.0386i) q^{87} +(-46.3291 - 12.4139i) q^{88} +(-49.9706 - 28.8505i) q^{89} +(16.7285 + 13.0444i) q^{90} +(-29.9697 - 3.81348i) q^{91} +(24.5702 + 24.5702i) q^{92} +(-20.4331 - 76.2572i) q^{93} +(-53.5628 + 30.9245i) q^{94} +(19.9831 + 26.4666i) q^{95} +(4.89898 - 8.48528i) q^{96} +(-39.7542 - 39.7542i) q^{97} +(-0.600821 - 69.2939i) q^{98} +50.8729i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) −1.67303 0.448288i −0.557678 0.149429i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −4.60436 1.94932i −0.920873 0.389864i
\(6\) 2.44949 0.408248
\(7\) −4.28537 5.53495i −0.612195 0.790707i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.59808 + 1.50000i 0.288675 + 0.166667i
\(10\) 7.00318 + 0.977504i 0.700318 + 0.0977504i
\(11\) 8.47882 + 14.6857i 0.770802 + 1.33507i 0.937124 + 0.348996i \(0.113477\pi\)
−0.166322 + 0.986071i \(0.553189\pi\)
\(12\) −3.34607 + 0.896575i −0.278839 + 0.0747146i
\(13\) 3.05181 3.05181i 0.234754 0.234754i −0.579920 0.814674i \(-0.696916\pi\)
0.814674 + 0.579920i \(0.196916\pi\)
\(14\) 7.87985 + 5.99233i 0.562846 + 0.428023i
\(15\) 6.82939 + 5.32535i 0.455293 + 0.355023i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −2.87910 + 10.7449i −0.169359 + 0.632055i 0.828085 + 0.560602i \(0.189430\pi\)
−0.997444 + 0.0714531i \(0.977236\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) −5.74405 3.31633i −0.302318 0.174544i 0.341166 0.940003i \(-0.389178\pi\)
−0.643484 + 0.765460i \(0.722512\pi\)
\(20\) −9.92431 + 1.22805i −0.496215 + 0.0614023i
\(21\) 4.68831 + 11.1812i 0.223253 + 0.532439i
\(22\) −16.9576 16.9576i −0.770802 0.770802i
\(23\) 4.49666 + 16.7817i 0.195507 + 0.729641i 0.992135 + 0.125172i \(0.0399482\pi\)
−0.796628 + 0.604469i \(0.793385\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) 17.4003 + 17.9507i 0.696013 + 0.718029i
\(26\) −3.05181 + 5.28588i −0.117377 + 0.203303i
\(27\) −3.67423 3.67423i −0.136083 0.136083i
\(28\) −12.9574 5.30145i −0.462765 0.189337i
\(29\) 35.8861i 1.23745i 0.785607 + 0.618725i \(0.212351\pi\)
−0.785607 + 0.618725i \(0.787649\pi\)
\(30\) −11.2783 4.77483i −0.375945 0.159161i
\(31\) 22.7901 + 39.4736i 0.735165 + 1.27334i 0.954651 + 0.297727i \(0.0962286\pi\)
−0.219486 + 0.975616i \(0.570438\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −7.60190 28.3707i −0.230361 0.859718i
\(34\) 15.7317i 0.462697i
\(35\) 8.94201 + 33.8384i 0.255486 + 0.966813i
\(36\) 6.00000 0.166667
\(37\) 17.7095 4.74524i 0.478635 0.128250i −0.0114320 0.999935i \(-0.503639\pi\)
0.490067 + 0.871685i \(0.336972\pi\)
\(38\) 9.06038 + 2.42772i 0.238431 + 0.0638874i
\(39\) −6.47386 + 3.73768i −0.165996 + 0.0958380i
\(40\) 13.1074 5.31009i 0.327684 0.132752i
\(41\) −42.9609 −1.04783 −0.523913 0.851772i \(-0.675528\pi\)
−0.523913 + 0.851772i \(0.675528\pi\)
\(42\) −10.4970 13.5578i −0.249928 0.322805i
\(43\) −1.98628 + 1.98628i −0.0461926 + 0.0461926i −0.729826 0.683633i \(-0.760399\pi\)
0.683633 + 0.729826i \(0.260399\pi\)
\(44\) 29.3715 + 16.9576i 0.667534 + 0.385401i
\(45\) −9.03851 11.9710i −0.200856 0.266023i
\(46\) −12.2851 21.2784i −0.267067 0.462574i
\(47\) 42.2437 11.3192i 0.898801 0.240833i 0.220300 0.975432i \(-0.429296\pi\)
0.678501 + 0.734599i \(0.262630\pi\)
\(48\) −4.89898 + 4.89898i −0.102062 + 0.102062i
\(49\) −12.2713 + 47.4385i −0.250434 + 0.968134i
\(50\) −30.3397 18.1522i −0.606794 0.363044i
\(51\) 9.63365 16.6860i 0.188895 0.327176i
\(52\) 2.23408 8.33769i 0.0429630 0.160340i
\(53\) −82.1632 22.0156i −1.55025 0.415388i −0.620688 0.784057i \(-0.713147\pi\)
−0.929561 + 0.368669i \(0.879813\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) −10.4124 84.1464i −0.189316 1.52993i
\(56\) 19.6406 + 2.49916i 0.350725 + 0.0446279i
\(57\) 8.12331 + 8.12331i 0.142514 + 0.142514i
\(58\) −13.1352 49.0213i −0.226469 0.845195i
\(59\) 22.0174 12.7117i 0.373176 0.215453i −0.301669 0.953413i \(-0.597544\pi\)
0.674845 + 0.737960i \(0.264211\pi\)
\(60\) 17.1542 + 2.39439i 0.285903 + 0.0399064i
\(61\) 42.4823 73.5814i 0.696431 1.20625i −0.273265 0.961939i \(-0.588104\pi\)
0.969696 0.244314i \(-0.0785629\pi\)
\(62\) −45.5802 45.5802i −0.735165 0.735165i
\(63\) −2.83128 20.8083i −0.0449410 0.330290i
\(64\) 8.00000i 0.125000i
\(65\) −20.0006 + 8.10268i −0.307701 + 0.124657i
\(66\) 20.7688 + 35.9726i 0.314678 + 0.545039i
\(67\) −16.2919 + 60.8022i −0.243163 + 0.907496i 0.731135 + 0.682233i \(0.238991\pi\)
−0.974298 + 0.225263i \(0.927676\pi\)
\(68\) 5.75820 + 21.4899i 0.0846794 + 0.316028i
\(69\) 30.0922i 0.436119i
\(70\) −24.6007 42.9512i −0.351439 0.613588i
\(71\) 137.965 1.94316 0.971582 0.236705i \(-0.0760674\pi\)
0.971582 + 0.236705i \(0.0760674\pi\)
\(72\) −8.19615 + 2.19615i −0.113835 + 0.0305021i
\(73\) −7.00522 1.87704i −0.0959619 0.0257129i 0.210519 0.977590i \(-0.432485\pi\)
−0.306480 + 0.951877i \(0.599151\pi\)
\(74\) −22.4547 + 12.9642i −0.303442 + 0.175193i
\(75\) −21.0642 37.8325i −0.280856 0.504434i
\(76\) −13.2653 −0.174544
\(77\) 44.9500 109.864i 0.583766 1.42680i
\(78\) 7.47537 7.47537i 0.0958380 0.0958380i
\(79\) −35.4965 20.4939i −0.449322 0.259416i 0.258222 0.966086i \(-0.416863\pi\)
−0.707544 + 0.706669i \(0.750197\pi\)
\(80\) −15.9614 + 12.0513i −0.199517 + 0.150642i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) 58.6857 15.7248i 0.715679 0.191766i
\(83\) −109.947 + 109.947i −1.32466 + 1.32466i −0.414699 + 0.909959i \(0.636113\pi\)
−0.909959 + 0.414699i \(0.863887\pi\)
\(84\) 19.3016 + 14.6781i 0.229781 + 0.174740i
\(85\) 34.2017 43.8613i 0.402373 0.516016i
\(86\) 1.98628 3.44034i 0.0230963 0.0400040i
\(87\) 16.0873 60.0386i 0.184911 0.690098i
\(88\) −46.3291 12.4139i −0.526467 0.141066i
\(89\) −49.9706 28.8505i −0.561467 0.324163i 0.192267 0.981343i \(-0.438416\pi\)
−0.753734 + 0.657179i \(0.771749\pi\)
\(90\) 16.7285 + 13.0444i 0.185873 + 0.144938i
\(91\) −29.9697 3.81348i −0.329337 0.0419064i
\(92\) 24.5702 + 24.5702i 0.267067 + 0.267067i
\(93\) −20.4331 76.2572i −0.219710 0.819970i
\(94\) −53.5628 + 30.9245i −0.569817 + 0.328984i
\(95\) 19.9831 + 26.4666i 0.210349 + 0.278595i
\(96\) 4.89898 8.48528i 0.0510310 0.0883883i
\(97\) −39.7542 39.7542i −0.409837 0.409837i 0.471845 0.881682i \(-0.343588\pi\)
−0.881682 + 0.471845i \(0.843588\pi\)
\(98\) −0.600821 69.2939i −0.00613082 0.707080i
\(99\) 50.8729i 0.513868i
\(100\) 48.0890 + 13.6913i 0.480890 + 0.136913i
\(101\) 36.2458 + 62.7796i 0.358869 + 0.621580i 0.987772 0.155904i \(-0.0498290\pi\)
−0.628903 + 0.777484i \(0.716496\pi\)
\(102\) −7.05232 + 26.3196i −0.0691404 + 0.258036i
\(103\) 40.9621 + 152.873i 0.397690 + 1.48420i 0.817149 + 0.576426i \(0.195553\pi\)
−0.419459 + 0.907774i \(0.637780\pi\)
\(104\) 12.2072i 0.117377i
\(105\) 0.209093 60.6214i 0.00199136 0.577347i
\(106\) 120.295 1.13486
\(107\) 43.4424 11.6403i 0.406003 0.108788i −0.0500370 0.998747i \(-0.515934\pi\)
0.456040 + 0.889959i \(0.349267\pi\)
\(108\) −10.0382 2.68973i −0.0929463 0.0249049i
\(109\) −83.0179 + 47.9304i −0.761632 + 0.439729i −0.829881 0.557940i \(-0.811592\pi\)
0.0682492 + 0.997668i \(0.478259\pi\)
\(110\) 45.0233 + 111.135i 0.409303 + 1.01032i
\(111\) −31.7558 −0.286088
\(112\) −27.7444 + 3.77505i −0.247717 + 0.0337058i
\(113\) −86.6065 + 86.6065i −0.766429 + 0.766429i −0.977476 0.211047i \(-0.932313\pi\)
0.211047 + 0.977476i \(0.432313\pi\)
\(114\) −14.0700 8.12331i −0.123421 0.0712571i
\(115\) 12.0087 86.0347i 0.104424 0.748127i
\(116\) 35.8861 + 62.1565i 0.309363 + 0.535832i
\(117\) 12.5065 3.35111i 0.106893 0.0286420i
\(118\) −25.4235 + 25.4235i −0.215453 + 0.215453i
\(119\) 71.8107 30.1103i 0.603451 0.253028i
\(120\) −24.3095 + 3.00809i −0.202579 + 0.0250674i
\(121\) −83.2807 + 144.246i −0.688270 + 1.19212i
\(122\) −31.0992 + 116.064i −0.254911 + 0.951342i
\(123\) 71.8750 + 19.2588i 0.584350 + 0.156576i
\(124\) 78.9472 + 45.5802i 0.636671 + 0.367582i
\(125\) −45.1257 116.570i −0.361006 0.932564i
\(126\) 11.4840 + 27.3883i 0.0911425 + 0.217367i
\(127\) 46.1257 + 46.1257i 0.363194 + 0.363194i 0.864988 0.501793i \(-0.167326\pi\)
−0.501793 + 0.864988i \(0.667326\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 4.21354 2.43269i 0.0326631 0.0188581i
\(130\) 24.3555 18.3892i 0.187350 0.141455i
\(131\) −50.4917 + 87.4543i −0.385433 + 0.667590i −0.991829 0.127573i \(-0.959281\pi\)
0.606396 + 0.795163i \(0.292615\pi\)
\(132\) −41.5376 41.5376i −0.314678 0.314678i
\(133\) 6.25965 + 46.0047i 0.0470650 + 0.345900i
\(134\) 89.0206i 0.664333i
\(135\) 9.75526 + 24.0798i 0.0722612 + 0.178369i
\(136\) −15.7317 27.2481i −0.115674 0.200354i
\(137\) 34.1884 127.593i 0.249550 0.931334i −0.721491 0.692423i \(-0.756543\pi\)
0.971042 0.238911i \(-0.0767903\pi\)
\(138\) 11.0145 + 41.1067i 0.0798153 + 0.297875i
\(139\) 49.7454i 0.357880i −0.983860 0.178940i \(-0.942733\pi\)
0.983860 0.178940i \(-0.0572669\pi\)
\(140\) 49.3265 + 49.6679i 0.352332 + 0.354771i
\(141\) −75.7493 −0.537229
\(142\) −188.463 + 50.4985i −1.32721 + 0.355624i
\(143\) 70.6937 + 18.9423i 0.494362 + 0.132464i
\(144\) 10.3923 6.00000i 0.0721688 0.0416667i
\(145\) 69.9534 165.232i 0.482437 1.13953i
\(146\) 10.2564 0.0702490
\(147\) 41.7964 73.8652i 0.284329 0.502484i
\(148\) 25.9285 25.9285i 0.175193 0.175193i
\(149\) −196.729 113.581i −1.32033 0.762291i −0.336546 0.941667i \(-0.609259\pi\)
−0.983780 + 0.179377i \(0.942592\pi\)
\(150\) 42.6219 + 43.9701i 0.284146 + 0.293134i
\(151\) 99.4676 + 172.283i 0.658726 + 1.14095i 0.980946 + 0.194282i \(0.0622377\pi\)
−0.322220 + 0.946665i \(0.604429\pi\)
\(152\) 18.1208 4.85544i 0.119215 0.0319437i
\(153\) −23.5975 + 23.5975i −0.154232 + 0.154232i
\(154\) −21.1900 + 166.529i −0.137597 + 1.08136i
\(155\) −27.9873 226.176i −0.180563 1.45920i
\(156\) −7.47537 + 12.9477i −0.0479190 + 0.0829982i
\(157\) −71.9955 + 268.691i −0.458570 + 1.71141i 0.218805 + 0.975769i \(0.429784\pi\)
−0.677375 + 0.735638i \(0.736882\pi\)
\(158\) 55.9903 + 15.0026i 0.354369 + 0.0949530i
\(159\) 127.592 + 73.6655i 0.802468 + 0.463305i
\(160\) 17.3925 22.3047i 0.108703 0.139404i
\(161\) 73.6163 96.8047i 0.457244 0.601271i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 54.3034 + 202.663i 0.333150 + 1.24333i 0.905861 + 0.423574i \(0.139225\pi\)
−0.572712 + 0.819757i \(0.694109\pi\)
\(164\) −74.4105 + 42.9609i −0.453722 + 0.261957i
\(165\) −20.3016 + 145.447i −0.123040 + 0.881500i
\(166\) 109.947 190.433i 0.662329 1.14719i
\(167\) 14.8502 + 14.8502i 0.0889236 + 0.0889236i 0.750169 0.661246i \(-0.229972\pi\)
−0.661246 + 0.750169i \(0.729972\pi\)
\(168\) −31.7391 12.9858i −0.188923 0.0772966i
\(169\) 150.373i 0.889781i
\(170\) −30.6661 + 72.4344i −0.180389 + 0.426085i
\(171\) −9.94898 17.2321i −0.0581812 0.100773i
\(172\) −1.45406 + 5.42662i −0.00845383 + 0.0315501i
\(173\) −33.1178 123.597i −0.191432 0.714435i −0.993162 0.116748i \(-0.962753\pi\)
0.801729 0.597687i \(-0.203914\pi\)
\(174\) 87.9026i 0.505187i
\(175\) 24.7896 173.235i 0.141655 0.989916i
\(176\) 67.8305 0.385401
\(177\) −42.5343 + 11.3970i −0.240307 + 0.0643900i
\(178\) 78.8211 + 21.1200i 0.442815 + 0.118652i
\(179\) −128.441 + 74.1555i −0.717548 + 0.414277i −0.813850 0.581076i \(-0.802632\pi\)
0.0963015 + 0.995352i \(0.469299\pi\)
\(180\) −27.6262 11.6959i −0.153479 0.0649773i
\(181\) −140.949 −0.778724 −0.389362 0.921085i \(-0.627305\pi\)
−0.389362 + 0.921085i \(0.627305\pi\)
\(182\) 42.3352 5.76035i 0.232611 0.0316503i
\(183\) −104.060 + 104.060i −0.568633 + 0.568633i
\(184\) −42.5568 24.5702i −0.231287 0.133534i
\(185\) −90.7909 12.6726i −0.490762 0.0685006i
\(186\) 55.8241 + 96.6902i 0.300130 + 0.519840i
\(187\) −182.209 + 48.8227i −0.974379 + 0.261084i
\(188\) 61.8490 61.8490i 0.328984 0.328984i
\(189\) −4.59126 + 36.0821i −0.0242924 + 0.190911i
\(190\) −36.9849 28.8397i −0.194657 0.151788i
\(191\) 81.4029 140.994i 0.426193 0.738188i −0.570338 0.821410i \(-0.693188\pi\)
0.996531 + 0.0832220i \(0.0265211\pi\)
\(192\) −3.58630 + 13.3843i −0.0186787 + 0.0697097i
\(193\) 223.493 + 59.8847i 1.15799 + 0.310283i 0.786164 0.618018i \(-0.212064\pi\)
0.371829 + 0.928301i \(0.378731\pi\)
\(194\) 68.8562 + 39.7542i 0.354929 + 0.204918i
\(195\) 37.0939 4.59004i 0.190225 0.0235387i
\(196\) 26.1840 + 94.4373i 0.133592 + 0.481823i
\(197\) 175.872 + 175.872i 0.892750 + 0.892750i 0.994781 0.102031i \(-0.0325340\pi\)
−0.102031 + 0.994781i \(0.532534\pi\)
\(198\) −18.6208 69.4937i −0.0940443 0.350978i
\(199\) 222.868 128.673i 1.11994 0.646598i 0.178555 0.983930i \(-0.442858\pi\)
0.941386 + 0.337332i \(0.109525\pi\)
\(200\) −70.7021 1.10083i −0.353511 0.00550414i
\(201\) 54.5138 94.4206i 0.271213 0.469754i
\(202\) −72.4916 72.4916i −0.358869 0.358869i
\(203\) 198.628 153.785i 0.978461 0.757561i
\(204\) 38.5346i 0.188895i
\(205\) 197.808 + 83.7445i 0.964915 + 0.408510i
\(206\) −111.911 193.835i −0.543255 0.940945i
\(207\) −13.4900 + 50.3452i −0.0651689 + 0.243214i
\(208\) −4.46815 16.6754i −0.0214815 0.0801701i
\(209\) 112.474i 0.538154i
\(210\) 21.9034 + 82.8869i 0.104302 + 0.394700i
\(211\) −269.844 −1.27888 −0.639441 0.768840i \(-0.720834\pi\)
−0.639441 + 0.768840i \(0.720834\pi\)
\(212\) −164.326 + 44.0311i −0.775125 + 0.207694i
\(213\) −230.819 61.8478i −1.08366 0.290365i
\(214\) −55.0827 + 31.8020i −0.257396 + 0.148608i
\(215\) 13.0175 5.27367i 0.0605463 0.0245287i
\(216\) 14.6969 0.0680414
\(217\) 120.821 295.301i 0.556777 1.36083i
\(218\) 95.8608 95.8608i 0.439729 0.439729i
\(219\) 10.8785 + 6.28071i 0.0496735 + 0.0286790i
\(220\) −102.181 135.333i −0.464460 0.615152i
\(221\) 24.0050 + 41.5779i 0.108620 + 0.188135i
\(222\) 43.3792 11.6234i 0.195402 0.0523578i
\(223\) 253.501 253.501i 1.13677 1.13677i 0.147749 0.989025i \(-0.452797\pi\)
0.989025 0.147749i \(-0.0472029\pi\)
\(224\) 36.5177 15.3119i 0.163026 0.0683569i
\(225\) 18.2813 + 72.7379i 0.0812500 + 0.323279i
\(226\) 86.6065 150.007i 0.383215 0.663747i
\(227\) −3.59427 + 13.4140i −0.0158338 + 0.0590925i −0.973391 0.229152i \(-0.926405\pi\)
0.957557 + 0.288244i \(0.0930715\pi\)
\(228\) 22.1933 + 5.94668i 0.0973390 + 0.0260819i
\(229\) −310.927 179.514i −1.35776 0.783904i −0.368440 0.929651i \(-0.620108\pi\)
−0.989322 + 0.145747i \(0.953441\pi\)
\(230\) 15.0867 + 121.921i 0.0655941 + 0.530091i
\(231\) −124.453 + 163.655i −0.538759 + 0.708463i
\(232\) −71.7721 71.7721i −0.309363 0.309363i
\(233\) −54.9811 205.192i −0.235970 0.880653i −0.977709 0.209964i \(-0.932665\pi\)
0.741739 0.670689i \(-0.234001\pi\)
\(234\) −15.8576 + 9.15542i −0.0677677 + 0.0391257i
\(235\) −216.570 30.2288i −0.921574 0.128633i
\(236\) 25.4235 44.0347i 0.107727 0.186588i
\(237\) 50.1996 + 50.1996i 0.211813 + 0.211813i
\(238\) −87.0741 + 67.4160i −0.365857 + 0.283261i
\(239\) 145.882i 0.610384i 0.952291 + 0.305192i \(0.0987206\pi\)
−0.952291 + 0.305192i \(0.901279\pi\)
\(240\) 32.1063 13.0070i 0.133776 0.0541959i
\(241\) −132.371 229.274i −0.549258 0.951343i −0.998326 0.0578448i \(-0.981577\pi\)
0.449068 0.893498i \(-0.351756\pi\)
\(242\) 60.9657 227.527i 0.251924 0.940195i
\(243\) −4.03459 15.0573i −0.0166032 0.0619642i
\(244\) 169.929i 0.696431i
\(245\) 148.974 194.504i 0.608058 0.793892i
\(246\) −105.232 −0.427774
\(247\) −27.6505 + 7.40893i −0.111945 + 0.0299957i
\(248\) −124.527 33.3670i −0.502127 0.134544i
\(249\) 233.232 134.657i 0.936674 0.540789i
\(250\) 104.311 + 142.721i 0.417242 + 0.570884i
\(251\) −301.864 −1.20265 −0.601323 0.799006i \(-0.705359\pi\)
−0.601323 + 0.799006i \(0.705359\pi\)
\(252\) −25.7122 33.2097i −0.102033 0.131784i
\(253\) −208.326 + 208.326i −0.823423 + 0.823423i
\(254\) −79.8921 46.1257i −0.314536 0.181597i
\(255\) −76.8831 + 58.0492i −0.301502 + 0.227644i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −114.284 + 30.6224i −0.444687 + 0.119153i −0.474212 0.880411i \(-0.657267\pi\)
0.0295256 + 0.999564i \(0.490600\pi\)
\(258\) −4.86538 + 4.86538i −0.0188581 + 0.0188581i
\(259\) −102.156 77.6860i −0.394426 0.299946i
\(260\) −26.5393 + 34.0348i −0.102074 + 0.130903i
\(261\) −53.8291 + 93.2347i −0.206242 + 0.357221i
\(262\) 36.9625 137.946i 0.141078 0.526511i
\(263\) −328.455 88.0092i −1.24888 0.334636i −0.426975 0.904264i \(-0.640421\pi\)
−0.821903 + 0.569628i \(0.807087\pi\)
\(264\) 71.9452 + 41.5376i 0.272520 + 0.157339i
\(265\) 335.394 + 261.530i 1.26564 + 0.986905i
\(266\) −25.3897 60.5524i −0.0954501 0.227641i
\(267\) 70.6691 + 70.6691i 0.264678 + 0.264678i
\(268\) 32.5838 + 121.604i 0.121581 + 0.453748i
\(269\) 319.982 184.742i 1.18953 0.686773i 0.231327 0.972876i \(-0.425693\pi\)
0.958199 + 0.286103i \(0.0923600\pi\)
\(270\) −22.1397 29.3229i −0.0819990 0.108603i
\(271\) 137.014 237.315i 0.505586 0.875700i −0.494393 0.869238i \(-0.664610\pi\)
0.999979 0.00646203i \(-0.00205694\pi\)
\(272\) 31.4634 + 31.4634i 0.115674 + 0.115674i
\(273\) 48.4307 + 19.8151i 0.177402 + 0.0725829i
\(274\) 186.809i 0.681784i
\(275\) −116.086 + 407.738i −0.422130 + 1.48268i
\(276\) −30.0922 52.1212i −0.109030 0.188845i
\(277\) −14.5626 + 54.3485i −0.0525727 + 0.196204i −0.987218 0.159379i \(-0.949051\pi\)
0.934645 + 0.355583i \(0.115718\pi\)
\(278\) 18.2081 + 67.9534i 0.0654967 + 0.244437i
\(279\) 136.741i 0.490110i
\(280\) −85.5609 49.7929i −0.305575 0.177832i
\(281\) 535.008 1.90394 0.951971 0.306187i \(-0.0990534\pi\)
0.951971 + 0.306187i \(0.0990534\pi\)
\(282\) 103.475 27.7262i 0.366934 0.0983197i
\(283\) 195.681 + 52.4326i 0.691452 + 0.185274i 0.587399 0.809298i \(-0.300152\pi\)
0.104054 + 0.994572i \(0.466819\pi\)
\(284\) 238.962 137.965i 0.841414 0.485791i
\(285\) −21.5678 53.2376i −0.0756764 0.186799i
\(286\) −103.503 −0.361898
\(287\) 184.103 + 237.786i 0.641474 + 0.828524i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) 143.117 + 82.6285i 0.495214 + 0.285912i
\(290\) −35.0788 + 251.316i −0.120961 + 0.866609i
\(291\) 48.6887 + 84.3313i 0.167315 + 0.289798i
\(292\) −14.0104 + 3.75408i −0.0479809 + 0.0128565i
\(293\) −225.228 + 225.228i −0.768696 + 0.768696i −0.977877 0.209181i \(-0.932920\pi\)
0.209181 + 0.977877i \(0.432920\pi\)
\(294\) −30.0584 + 116.200i −0.102239 + 0.395239i
\(295\) −126.155 + 15.6106i −0.427645 + 0.0529172i
\(296\) −25.9285 + 44.9095i −0.0875963 + 0.151721i
\(297\) 22.8057 85.1120i 0.0767869 0.286573i
\(298\) 310.310 + 83.1473i 1.04131 + 0.279018i
\(299\) 64.9375 + 37.4917i 0.217182 + 0.125390i
\(300\) −74.3168 44.4636i −0.247723 0.148212i
\(301\) 19.5059 + 2.48202i 0.0648037 + 0.00824592i
\(302\) −198.935 198.935i −0.658726 0.658726i
\(303\) −32.4971 121.281i −0.107251 0.400267i
\(304\) −22.9762 + 13.2653i −0.0755796 + 0.0436359i
\(305\) −339.037 + 255.984i −1.11160 + 0.839293i
\(306\) 23.5975 40.8721i 0.0771161 0.133569i
\(307\) 294.340 + 294.340i 0.958762 + 0.958762i 0.999183 0.0404208i \(-0.0128699\pi\)
−0.0404208 + 0.999183i \(0.512870\pi\)
\(308\) −32.0079 235.239i −0.103922 0.763764i
\(309\) 274.124i 0.887132i
\(310\) 121.018 + 298.718i 0.390379 + 0.963607i
\(311\) −116.986 202.625i −0.376160 0.651529i 0.614340 0.789042i \(-0.289422\pi\)
−0.990500 + 0.137513i \(0.956089\pi\)
\(312\) 5.47235 20.4231i 0.0175396 0.0654586i
\(313\) 36.7853 + 137.285i 0.117525 + 0.438609i 0.999463 0.0327556i \(-0.0104283\pi\)
−0.881938 + 0.471365i \(0.843762\pi\)
\(314\) 393.391i 1.25284i
\(315\) −27.5257 + 101.328i −0.0873830 + 0.321676i
\(316\) −81.9755 −0.259416
\(317\) −67.7680 + 18.1584i −0.213779 + 0.0572820i −0.364119 0.931352i \(-0.618630\pi\)
0.150340 + 0.988634i \(0.451963\pi\)
\(318\) −201.258 53.9269i −0.632887 0.169581i
\(319\) −527.014 + 304.271i −1.65208 + 0.953829i
\(320\) −15.5945 + 36.8349i −0.0487329 + 0.115109i
\(321\) −77.8987 −0.242675
\(322\) −65.1287 + 159.183i −0.202263 + 0.494357i
\(323\) 52.1714 52.1714i 0.161521 0.161521i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 107.885 + 1.67976i 0.331952 + 0.00516848i
\(326\) −148.360 256.966i −0.455091 0.788240i
\(327\) 160.378 42.9732i 0.490454 0.131417i
\(328\) 85.9218 85.9218i 0.261957 0.261957i
\(329\) −243.680 185.310i −0.740670 0.563252i
\(330\) −25.5050 206.116i −0.0772879 0.624593i
\(331\) 127.726 221.227i 0.385878 0.668360i −0.606013 0.795455i \(-0.707232\pi\)
0.991891 + 0.127095i \(0.0405652\pi\)
\(332\) −80.4865 + 300.380i −0.242429 + 0.904758i
\(333\) 53.1285 + 14.2357i 0.159545 + 0.0427499i
\(334\) −25.7214 14.8502i −0.0770101 0.0444618i
\(335\) 193.537 248.197i 0.577721 0.740888i
\(336\) 48.1095 + 6.12168i 0.143183 + 0.0182193i
\(337\) 2.44497 + 2.44497i 0.00725510 + 0.00725510i 0.710725 0.703470i \(-0.248367\pi\)
−0.703470 + 0.710725i \(0.748367\pi\)
\(338\) −55.0403 205.413i −0.162841 0.607732i
\(339\) 183.720 106.071i 0.541947 0.312893i
\(340\) 15.3778 110.172i 0.0452288 0.324035i
\(341\) −386.466 + 669.379i −1.13333 + 1.96299i
\(342\) 19.8980 + 19.8980i 0.0581812 + 0.0581812i
\(343\) 315.157 135.371i 0.918825 0.394666i
\(344\) 7.94513i 0.0230963i
\(345\) −58.6593 + 138.555i −0.170027 + 0.401610i
\(346\) 90.4795 + 156.715i 0.261501 + 0.452934i
\(347\) 136.632 509.917i 0.393752 1.46950i −0.430145 0.902760i \(-0.641537\pi\)
0.823896 0.566741i \(-0.191796\pi\)
\(348\) −32.1746 120.077i −0.0924557 0.345049i
\(349\) 74.0257i 0.212108i 0.994360 + 0.106054i \(0.0338216\pi\)
−0.994360 + 0.106054i \(0.966178\pi\)
\(350\) 29.5452 + 245.717i 0.0844150 + 0.702050i
\(351\) −22.4261 −0.0638920
\(352\) −92.6583 + 24.8277i −0.263234 + 0.0705332i
\(353\) 277.271 + 74.2945i 0.785470 + 0.210466i 0.629195 0.777248i \(-0.283385\pi\)
0.156275 + 0.987714i \(0.450051\pi\)
\(354\) 53.9313 31.1373i 0.152348 0.0879584i
\(355\) −635.239 268.937i −1.78941 0.757569i
\(356\) −115.402 −0.324163
\(357\) −133.640 + 18.1837i −0.374341 + 0.0509348i
\(358\) 148.311 148.311i 0.414277 0.414277i
\(359\) 571.100 + 329.725i 1.59081 + 0.918453i 0.993169 + 0.116687i \(0.0372273\pi\)
0.597638 + 0.801766i \(0.296106\pi\)
\(360\) 42.0191 + 5.86502i 0.116720 + 0.0162917i
\(361\) −158.504 274.537i −0.439069 0.760490i
\(362\) 192.540 51.5910i 0.531879 0.142516i
\(363\) 203.995 203.995i 0.561970 0.561970i
\(364\) −55.7225 + 23.3645i −0.153084 + 0.0641883i
\(365\) 28.5956 + 22.2980i 0.0783442 + 0.0610904i
\(366\) 104.060 180.237i 0.284317 0.492451i
\(367\) −101.239 + 377.829i −0.275856 + 1.02951i 0.679410 + 0.733759i \(0.262236\pi\)
−0.955266 + 0.295749i \(0.904431\pi\)
\(368\) 67.1270 + 17.9866i 0.182410 + 0.0488767i
\(369\) −111.616 64.4414i −0.302482 0.174638i
\(370\) 128.661 15.9207i 0.347733 0.0430289i
\(371\) 230.244 + 549.114i 0.620605 + 1.48009i
\(372\) −111.648 111.648i −0.300130 0.300130i
\(373\) 7.60446 + 28.3802i 0.0203873 + 0.0760864i 0.975370 0.220575i \(-0.0707934\pi\)
−0.954983 + 0.296661i \(0.904127\pi\)
\(374\) 231.032 133.386i 0.617731 0.356647i
\(375\) 23.2397 + 215.255i 0.0619725 + 0.574015i
\(376\) −61.8490 + 107.126i −0.164492 + 0.284909i
\(377\) 109.517 + 109.517i 0.290497 + 0.290497i
\(378\) −6.93520 50.9696i −0.0183471 0.134840i
\(379\) 469.896i 1.23983i −0.784668 0.619916i \(-0.787167\pi\)
0.784668 0.619916i \(-0.212833\pi\)
\(380\) 61.0783 + 25.8583i 0.160732 + 0.0680482i
\(381\) −56.4922 97.8474i −0.148274 0.256817i
\(382\) −59.5911 + 222.397i −0.155998 + 0.582191i
\(383\) 140.563 + 524.588i 0.367005 + 1.36968i 0.864683 + 0.502318i \(0.167519\pi\)
−0.497678 + 0.867362i \(0.665814\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −421.125 + 418.230i −1.09383 + 1.08631i
\(386\) −327.216 −0.847709
\(387\) −8.13994 + 2.18109i −0.0210334 + 0.00563589i
\(388\) −108.610 29.1021i −0.279924 0.0750053i
\(389\) 329.553 190.268i 0.847180 0.489120i −0.0125180 0.999922i \(-0.503985\pi\)
0.859699 + 0.510802i \(0.170651\pi\)
\(390\) −48.9912 + 19.8474i −0.125618 + 0.0508909i
\(391\) −193.265 −0.494284
\(392\) −70.3345 119.420i −0.179425 0.304642i
\(393\) 123.679 123.679i 0.314705 0.314705i
\(394\) −304.619 175.872i −0.773145 0.446375i
\(395\) 123.489 + 163.555i 0.312632 + 0.414064i
\(396\) 50.8729 + 88.1145i 0.128467 + 0.222511i
\(397\) 329.585 88.3122i 0.830190 0.222449i 0.181393 0.983411i \(-0.441939\pi\)
0.648797 + 0.760962i \(0.275273\pi\)
\(398\) −257.346 + 257.346i −0.646598 + 0.646598i
\(399\) 10.1507 79.7735i 0.0254405 0.199934i
\(400\) 96.9838 24.3750i 0.242460 0.0609375i
\(401\) −216.181 + 374.437i −0.539105 + 0.933757i 0.459848 + 0.887998i \(0.347904\pi\)
−0.998952 + 0.0457593i \(0.985429\pi\)
\(402\) −39.9068 + 148.934i −0.0992708 + 0.370484i
\(403\) 190.017 + 50.9148i 0.471506 + 0.126340i
\(404\) 125.559 + 72.4916i 0.310790 + 0.179435i
\(405\) −5.52621 44.6594i −0.0136450 0.110270i
\(406\) −215.041 + 282.777i −0.529658 + 0.696495i
\(407\) 219.843 + 219.843i 0.540155 + 0.540155i
\(408\) 14.1046 + 52.6392i 0.0345702 + 0.129018i
\(409\) 219.191 126.550i 0.535918 0.309413i −0.207505 0.978234i \(-0.566534\pi\)
0.743423 + 0.668821i \(0.233201\pi\)
\(410\) −300.863 41.9944i −0.733812 0.102425i
\(411\) −114.397 + 198.141i −0.278337 + 0.482094i
\(412\) 223.821 + 223.821i 0.543255 + 0.543255i
\(413\) −164.711 67.3905i −0.398817 0.163173i
\(414\) 73.7105i 0.178045i
\(415\) 720.555 291.913i 1.73628 0.703405i
\(416\) 12.2072 + 21.1435i 0.0293443 + 0.0508258i
\(417\) −22.3002 + 83.2256i −0.0534778 + 0.199582i
\(418\) 41.1684 + 153.643i 0.0984890 + 0.367566i
\(419\) 456.021i 1.08835i 0.838970 + 0.544177i \(0.183158\pi\)
−0.838970 + 0.544177i \(0.816842\pi\)
\(420\) −60.2593 105.208i −0.143474 0.250496i
\(421\) 87.9279 0.208855 0.104427 0.994533i \(-0.466699\pi\)
0.104427 + 0.994533i \(0.466699\pi\)
\(422\) 368.614 98.7698i 0.873493 0.234052i
\(423\) 126.731 + 33.9575i 0.299600 + 0.0802777i
\(424\) 208.358 120.295i 0.491409 0.283715i
\(425\) −242.977 + 135.283i −0.571710 + 0.318314i
\(426\) 337.943 0.793293
\(427\) −589.321 + 80.1862i −1.38014 + 0.187790i
\(428\) 63.6040 63.6040i 0.148608 0.148608i
\(429\) −109.781 63.3823i −0.255900 0.147744i
\(430\) −15.8519 + 11.9687i −0.0368648 + 0.0278342i
\(431\) −368.932 639.009i −0.855991 1.48262i −0.875722 0.482815i \(-0.839614\pi\)
0.0197313 0.999805i \(-0.493719\pi\)
\(432\) −20.0764 + 5.37945i −0.0464731 + 0.0124524i
\(433\) 29.1869 29.1869i 0.0674062 0.0674062i −0.672600 0.740006i \(-0.734823\pi\)
0.740006 + 0.672600i \(0.234823\pi\)
\(434\) −56.9562 + 447.612i −0.131236 + 1.03136i
\(435\) −191.106 + 245.080i −0.439324 + 0.563403i
\(436\) −95.8608 + 166.036i −0.219864 + 0.380816i
\(437\) 29.8248 111.308i 0.0682489 0.254708i
\(438\) −17.1592 4.59780i −0.0391763 0.0104973i
\(439\) −353.707 204.213i −0.805710 0.465177i 0.0397539 0.999210i \(-0.487343\pi\)
−0.845464 + 0.534033i \(0.820676\pi\)
\(440\) 189.118 + 147.468i 0.429813 + 0.335155i
\(441\) −103.040 + 104.842i −0.233650 + 0.237737i
\(442\) −48.0100 48.0100i −0.108620 0.108620i
\(443\) −153.503 572.880i −0.346507 1.29318i −0.890841 0.454314i \(-0.849884\pi\)
0.544334 0.838869i \(-0.316782\pi\)
\(444\) −55.0026 + 31.7558i −0.123880 + 0.0715221i
\(445\) 173.844 + 230.247i 0.390660 + 0.517409i
\(446\) −253.501 + 439.076i −0.568387 + 0.984475i
\(447\) 278.216 + 278.216i 0.622408 + 0.622408i
\(448\) −44.2796 + 34.2829i −0.0988383 + 0.0765244i
\(449\) 176.194i 0.392415i 0.980562 + 0.196208i \(0.0628627\pi\)
−0.980562 + 0.196208i \(0.937137\pi\)
\(450\) −51.5966 92.6704i −0.114659 0.205934i
\(451\) −364.258 630.913i −0.807667 1.39892i
\(452\) −63.4004 + 236.613i −0.140266 + 0.523481i
\(453\) −89.1802 332.825i −0.196866 0.734713i
\(454\) 19.6394i 0.0432587i
\(455\) 130.558 + 75.9791i 0.286940 + 0.166987i
\(456\) −32.4932 −0.0712571
\(457\) 50.1945 13.4496i 0.109835 0.0294302i −0.203483 0.979078i \(-0.565226\pi\)
0.313318 + 0.949648i \(0.398559\pi\)
\(458\) 490.442 + 131.413i 1.07083 + 0.286929i
\(459\) 50.0579 28.9010i 0.109059 0.0629650i
\(460\) −65.2349 161.025i −0.141815 0.350055i
\(461\) −420.947 −0.913117 −0.456558 0.889693i \(-0.650918\pi\)
−0.456558 + 0.889693i \(0.650918\pi\)
\(462\) 110.105 269.110i 0.238322 0.582489i
\(463\) −45.3241 + 45.3241i −0.0978921 + 0.0978921i −0.754357 0.656465i \(-0.772051\pi\)
0.656465 + 0.754357i \(0.272051\pi\)
\(464\) 124.313 + 71.7721i 0.267916 + 0.154681i
\(465\) −54.5683 + 390.946i −0.117351 + 0.840745i
\(466\) 150.211 + 260.173i 0.322342 + 0.558312i
\(467\) −512.522 + 137.330i −1.09748 + 0.294068i −0.761737 0.647886i \(-0.775653\pi\)
−0.335741 + 0.941954i \(0.608987\pi\)
\(468\) 18.3108 18.3108i 0.0391257 0.0391257i
\(469\) 406.354 170.385i 0.866426 0.363294i
\(470\) 306.904 37.9767i 0.652988 0.0808015i
\(471\) 240.902 417.254i 0.511468 0.885889i
\(472\) −18.6113 + 69.4582i −0.0394306 + 0.147157i
\(473\) −46.0114 12.3287i −0.0972756 0.0260649i
\(474\) −86.9482 50.1996i −0.183435 0.105906i
\(475\) −40.4178 160.815i −0.0850900 0.338558i
\(476\) 94.2694 123.963i 0.198045 0.260427i
\(477\) −180.443 180.443i −0.378287 0.378287i
\(478\) −53.3964 199.278i −0.111708 0.416900i
\(479\) −287.563 + 166.025i −0.600340 + 0.346607i −0.769175 0.639038i \(-0.779333\pi\)
0.168835 + 0.985644i \(0.445999\pi\)
\(480\) −39.0972 + 29.5196i −0.0814525 + 0.0614993i
\(481\) 39.5644 68.5275i 0.0822544 0.142469i
\(482\) 264.742 + 264.742i 0.549258 + 0.549258i
\(483\) −166.559 + 128.956i −0.344842 + 0.266990i
\(484\) 333.123i 0.688270i
\(485\) 105.549 + 260.536i 0.217627 + 0.537188i
\(486\) 11.0227 + 19.0919i 0.0226805 + 0.0392837i
\(487\) 192.469 718.303i 0.395213 1.47496i −0.426204 0.904627i \(-0.640149\pi\)
0.821417 0.570328i \(-0.193184\pi\)
\(488\) 62.1984 + 232.127i 0.127456 + 0.475671i
\(489\) 363.405i 0.743160i
\(490\) −132.309 + 320.225i −0.270019 + 0.653521i
\(491\) 46.6728 0.0950567 0.0475284 0.998870i \(-0.484866\pi\)
0.0475284 + 0.998870i \(0.484866\pi\)
\(492\) 143.750 38.5177i 0.292175 0.0782880i
\(493\) −385.594 103.320i −0.782137 0.209573i
\(494\) 35.0594 20.2416i 0.0709705 0.0409748i
\(495\) 99.1675 234.237i 0.200338 0.473207i
\(496\) 182.321 0.367582
\(497\) −591.229 763.627i −1.18959 1.53647i
\(498\) −269.313 + 269.313i −0.540789 + 0.540789i
\(499\) −216.276 124.867i −0.433418 0.250234i 0.267384 0.963590i \(-0.413841\pi\)
−0.700802 + 0.713356i \(0.747174\pi\)
\(500\) −194.730 156.780i −0.389461 0.313560i
\(501\) −18.1878 31.5021i −0.0363029 0.0628785i
\(502\) 412.354 110.490i 0.821422 0.220099i
\(503\) −77.7709 + 77.7709i −0.154614 + 0.154614i −0.780175 0.625561i \(-0.784870\pi\)
0.625561 + 0.780175i \(0.284870\pi\)
\(504\) 47.2791 + 35.9540i 0.0938077 + 0.0713372i
\(505\) −44.5115 359.715i −0.0881416 0.712306i
\(506\) 208.326 360.831i 0.411712 0.713106i
\(507\) 67.4104 251.579i 0.132959 0.496211i
\(508\) 126.018 + 33.7664i 0.248066 + 0.0664692i
\(509\) 269.664 + 155.690i 0.529791 + 0.305875i 0.740931 0.671581i \(-0.234384\pi\)
−0.211140 + 0.977456i \(0.567718\pi\)
\(510\) 83.7768 107.438i 0.164268 0.210663i
\(511\) 19.6306 + 46.8173i 0.0384160 + 0.0916190i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 8.92002 + 33.2900i 0.0173879 + 0.0648927i
\(514\) 144.907 83.6620i 0.281920 0.162767i
\(515\) 109.393 783.729i 0.212414 1.52180i
\(516\) 4.86538 8.42708i 0.00942903 0.0163316i
\(517\) 524.407 + 524.407i 1.01433 + 1.01433i
\(518\) 167.983 + 68.7293i 0.324292 + 0.132682i
\(519\) 221.629i 0.427030i
\(520\) 23.7958 56.2065i 0.0457611 0.108089i
\(521\) 146.921 + 254.474i 0.281997 + 0.488434i 0.971877 0.235491i \(-0.0756698\pi\)
−0.689879 + 0.723924i \(0.742336\pi\)
\(522\) 39.4056 147.064i 0.0754897 0.281732i
\(523\) 7.45680 + 27.8292i 0.0142577 + 0.0532106i 0.972688 0.232116i \(-0.0745647\pi\)
−0.958430 + 0.285326i \(0.907898\pi\)
\(524\) 201.967i 0.385433i
\(525\) −119.133 + 278.715i −0.226920 + 0.530887i
\(526\) 480.891 0.914242
\(527\) −489.757 + 131.230i −0.929330 + 0.249013i
\(528\) −113.483 30.4076i −0.214929 0.0575902i
\(529\) 196.720 113.577i 0.371872 0.214700i
\(530\) −553.883 234.494i −1.04506 0.442441i
\(531\) 76.2704 0.143635
\(532\) 56.8467 + 73.4228i 0.106855 + 0.138013i
\(533\) −131.108 + 131.108i −0.245982 + 0.245982i
\(534\) −122.402 70.6691i −0.229218 0.132339i
\(535\) −222.715 31.0866i −0.416290 0.0581058i
\(536\) −89.0206 154.188i −0.166083 0.287665i
\(537\) 248.129 66.4860i 0.462066 0.123810i
\(538\) −369.484 + 369.484i −0.686773 + 0.686773i
\(539\) −800.716 + 222.010i −1.48556 + 0.411892i
\(540\) 40.9764 + 31.9521i 0.0758822 + 0.0591706i
\(541\) 429.327 743.616i 0.793580 1.37452i −0.130157 0.991493i \(-0.541548\pi\)
0.923737 0.383028i \(-0.125119\pi\)
\(542\) −100.301 + 374.329i −0.185057 + 0.690643i
\(543\) 235.812 + 63.1858i 0.434277 + 0.116364i
\(544\) −54.4962 31.4634i −0.100177 0.0578371i
\(545\) 475.676 58.8607i 0.872800 0.108001i
\(546\) −73.4104 9.34108i −0.134451 0.0171082i
\(547\) −579.972 579.972i −1.06028 1.06028i −0.998063 0.0622157i \(-0.980183\pi\)
−0.0622157 0.998063i \(-0.519817\pi\)
\(548\) −68.3767 255.185i −0.124775 0.465667i
\(549\) 220.744 127.447i 0.402084 0.232144i
\(550\) 9.33373 599.470i 0.0169704 1.08995i
\(551\) 119.010 206.131i 0.215989 0.374104i
\(552\) 60.1844 + 60.1844i 0.109030 + 0.109030i
\(553\) 38.6827 + 284.295i 0.0699506 + 0.514095i
\(554\) 79.5717i 0.143631i
\(555\) 146.215 + 61.9021i 0.263451 + 0.111535i
\(556\) −49.7454 86.1615i −0.0894701 0.154967i
\(557\) 235.011 877.073i 0.421923 1.57464i −0.348629 0.937261i \(-0.613353\pi\)
0.770552 0.637377i \(-0.219981\pi\)
\(558\) −50.0505 186.791i −0.0896963 0.334751i
\(559\) 12.1235i 0.0216878i
\(560\) 135.104 + 36.7009i 0.241257 + 0.0655373i
\(561\) 326.728 0.582403
\(562\) −730.834 + 195.826i −1.30042 + 0.348446i
\(563\) −89.3163 23.9322i −0.158644 0.0425084i 0.178623 0.983918i \(-0.442836\pi\)
−0.337267 + 0.941409i \(0.609502\pi\)
\(564\) −131.202 + 75.7493i −0.232627 + 0.134307i
\(565\) 567.591 229.944i 1.00459 0.406981i
\(566\) −286.497 −0.506178
\(567\) 23.8565 58.3084i 0.0420750 0.102837i
\(568\) −275.929 + 275.929i −0.485791 + 0.485791i
\(569\) 579.130 + 334.361i 1.01780 + 0.587628i 0.913467 0.406914i \(-0.133395\pi\)
0.104336 + 0.994542i \(0.466728\pi\)
\(570\) 48.9484 + 64.8296i 0.0858744 + 0.113736i
\(571\) 47.9078 + 82.9787i 0.0839016 + 0.145322i 0.904923 0.425576i \(-0.139929\pi\)
−0.821021 + 0.570898i \(0.806595\pi\)
\(572\) 141.387 37.8847i 0.247181 0.0662319i
\(573\) −199.396 + 199.396i −0.347985 + 0.347985i
\(574\) −338.525 257.436i −0.589766 0.448494i
\(575\) −223.001 + 372.726i −0.387829 + 0.648219i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −110.186 + 411.220i −0.190964 + 0.712686i 0.802311 + 0.596906i \(0.203603\pi\)
−0.993275 + 0.115780i \(0.963063\pi\)
\(578\) −225.745 60.4883i −0.390563 0.104651i
\(579\) −347.065 200.378i −0.599421 0.346076i
\(580\) −44.0697 356.144i −0.0759823 0.614042i
\(581\) 1079.71 + 137.387i 1.85836 + 0.236467i
\(582\) −97.3774 97.3774i −0.167315 0.167315i
\(583\) −373.332 1393.29i −0.640364 2.38987i
\(584\) 17.7645 10.2564i 0.0304187 0.0175622i
\(585\) −64.1170 8.94945i −0.109602 0.0152982i
\(586\) 225.228 390.106i 0.384348 0.665710i
\(587\) 139.731 + 139.731i 0.238042 + 0.238042i 0.816039 0.577997i \(-0.196165\pi\)
−0.577997 + 0.816039i \(0.696165\pi\)
\(588\) −1.47170 169.735i −0.00250290 0.288664i
\(589\) 302.318i 0.513273i
\(590\) 166.617 67.5004i 0.282402 0.114408i
\(591\) −215.398 373.081i −0.364464 0.631270i
\(592\) 18.9810 70.8380i 0.0320625 0.119659i
\(593\) −96.1240 358.740i −0.162098 0.604957i −0.998393 0.0566772i \(-0.981949\pi\)
0.836295 0.548280i \(-0.184717\pi\)
\(594\) 124.613i 0.209786i
\(595\) −389.337 1.34289i −0.654348 0.00225695i
\(596\) −454.325 −0.762291
\(597\) −430.548 + 115.365i −0.721186 + 0.193241i
\(598\) −102.429 27.4458i −0.171286 0.0458960i
\(599\) −612.367 + 353.550i −1.02232 + 0.590234i −0.914774 0.403966i \(-0.867631\pi\)
−0.107542 + 0.994201i \(0.534298\pi\)
\(600\) 117.793 + 33.5366i 0.196322 + 0.0558944i
\(601\) −568.154 −0.945347 −0.472674 0.881238i \(-0.656711\pi\)
−0.472674 + 0.881238i \(0.656711\pi\)
\(602\) −27.5541 + 3.74915i −0.0457709 + 0.00622783i
\(603\) −133.531 + 133.531i −0.221444 + 0.221444i
\(604\) 344.566 + 198.935i 0.570473 + 0.329363i
\(605\) 664.637 501.822i 1.09857 0.829459i
\(606\) 88.7838 + 153.778i 0.146508 + 0.253759i
\(607\) −256.981 + 68.8578i −0.423362 + 0.113439i −0.464209 0.885726i \(-0.653661\pi\)
0.0408466 + 0.999165i \(0.486995\pi\)
\(608\) 26.5306 26.5306i 0.0436359 0.0436359i
\(609\) −401.250 + 168.245i −0.658867 + 0.276264i
\(610\) 369.437 473.777i 0.605634 0.776684i
\(611\) 94.3756 163.463i 0.154461 0.267534i
\(612\) −17.2746 + 64.4696i −0.0282265 + 0.105343i
\(613\) 794.625 + 212.919i 1.29629 + 0.347340i 0.840046 0.542515i \(-0.182528\pi\)
0.456243 + 0.889855i \(0.349195\pi\)
\(614\) −509.812 294.340i −0.830312 0.479381i
\(615\) −293.397 228.782i −0.477068 0.372003i
\(616\) 129.827 + 309.627i 0.210758 + 0.502642i
\(617\) −49.7691 49.7691i −0.0806631 0.0806631i 0.665624 0.746287i \(-0.268165\pi\)
−0.746287 + 0.665624i \(0.768165\pi\)
\(618\) 100.336 + 374.460i 0.162356 + 0.605922i
\(619\) −309.731 + 178.823i −0.500373 + 0.288891i −0.728868 0.684655i \(-0.759953\pi\)
0.228494 + 0.973545i \(0.426620\pi\)
\(620\) −274.651 363.761i −0.442986 0.586712i
\(621\) 45.1383 78.1818i 0.0726865 0.125897i
\(622\) 233.972 + 233.972i 0.376160 + 0.376160i
\(623\) 54.4560 + 400.219i 0.0874093 + 0.642407i
\(624\) 29.9015i 0.0479190i
\(625\) −19.4577 + 624.697i −0.0311324 + 0.999515i
\(626\) −100.499 174.070i −0.160542 0.278067i
\(627\) −50.4208 + 188.173i −0.0804159 + 0.300116i
\(628\) 143.991 + 537.382i 0.229285 + 0.855703i
\(629\) 203.949i 0.324244i
\(630\) 0.512171 148.492i 0.000812970 0.235701i
\(631\) −35.2671 −0.0558908 −0.0279454 0.999609i \(-0.508896\pi\)
−0.0279454 + 0.999609i \(0.508896\pi\)
\(632\) 111.981 30.0051i 0.177185 0.0474765i
\(633\) 451.458 + 120.968i 0.713204 + 0.191102i
\(634\) 85.9264 49.6096i 0.135531 0.0782486i
\(635\) −122.466 302.293i −0.192860 0.476052i
\(636\) 294.662 0.463305
\(637\) 107.324 + 182.223i 0.168483 + 0.286064i
\(638\) 608.543 608.543i 0.953829 0.953829i
\(639\) 358.443 + 206.947i 0.560943 + 0.323861i
\(640\) 7.82003 56.0254i 0.0122188 0.0875397i
\(641\) 154.470 + 267.550i 0.240983 + 0.417394i 0.960995 0.276567i \(-0.0891969\pi\)
−0.720012 + 0.693962i \(0.755864\pi\)
\(642\) 106.412 28.5129i 0.165750 0.0444126i
\(643\) 356.455 356.455i 0.554362 0.554362i −0.373335 0.927697i \(-0.621786\pi\)
0.927697 + 0.373335i \(0.121786\pi\)
\(644\) 30.7025 241.287i 0.0476746 0.374669i
\(645\) −24.1428 + 2.98745i −0.0374306 + 0.00463171i
\(646\) −52.1714 + 90.3636i −0.0807607 + 0.139882i
\(647\) −79.7113 + 297.486i −0.123201 + 0.459794i −0.999769 0.0214847i \(-0.993161\pi\)
0.876568 + 0.481278i \(0.159827\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) 373.362 + 215.561i 0.575289 + 0.332143i
\(650\) −147.988 + 37.1939i −0.227674 + 0.0572214i
\(651\) −334.516 + 439.886i −0.513850 + 0.675708i
\(652\) 296.719 + 296.719i 0.455091 + 0.455091i
\(653\) −6.40777 23.9141i −0.00981282 0.0366219i 0.960846 0.277083i \(-0.0893679\pi\)
−0.970659 + 0.240462i \(0.922701\pi\)
\(654\) −203.352 + 117.405i −0.310935 + 0.179518i
\(655\) 402.958 304.247i 0.615204 0.464499i
\(656\) −85.9218 + 148.821i −0.130978 + 0.226861i
\(657\) −15.3845 15.3845i −0.0234163 0.0234163i
\(658\) 400.702 + 163.945i 0.608969 + 0.249156i
\(659\) 392.819i 0.596083i −0.954553 0.298042i \(-0.903667\pi\)
0.954553 0.298042i \(-0.0963334\pi\)
\(660\) 110.284 + 272.224i 0.167097 + 0.412460i
\(661\) 630.880 + 1092.72i 0.954433 + 1.65313i 0.735661 + 0.677350i \(0.236872\pi\)
0.218772 + 0.975776i \(0.429795\pi\)
\(662\) −93.5016 + 348.953i −0.141241 + 0.527119i
\(663\) −21.5223 80.3224i −0.0324620 0.121150i
\(664\) 439.786i 0.662329i
\(665\) 60.8561 224.024i 0.0915129 0.336879i
\(666\) −77.7855 −0.116795
\(667\) −602.231 + 161.367i −0.902895 + 0.241930i
\(668\) 40.5716 + 10.8711i 0.0607360 + 0.0162741i
\(669\) −537.756 + 310.474i −0.803821 + 0.464086i
\(670\) −173.529 + 409.883i −0.258999 + 0.611766i
\(671\) 1440.80 2.14724
\(672\) −67.9595 + 9.24694i −0.101130 + 0.0137603i
\(673\) −848.161 + 848.161i −1.26027 + 1.26027i −0.309306 + 0.950962i \(0.600097\pi\)
−0.950962 + 0.309306i \(0.899903\pi\)
\(674\) −4.23481 2.44497i −0.00628310 0.00362755i
\(675\) 2.02235 129.888i 0.00299608 0.192427i
\(676\) 150.373 + 260.454i 0.222445 + 0.385286i
\(677\) −734.564 + 196.826i −1.08503 + 0.290732i −0.756654 0.653815i \(-0.773167\pi\)
−0.328374 + 0.944548i \(0.606501\pi\)
\(678\) −212.142 + 212.142i −0.312893 + 0.312893i
\(679\) −49.6761 + 390.398i −0.0731607 + 0.574961i
\(680\) 19.3192 + 156.126i 0.0284106 + 0.229597i
\(681\) 12.0267 20.8308i 0.0176603 0.0305885i
\(682\) 282.913 1055.85i 0.414828 1.54816i
\(683\) 223.339 + 59.8436i 0.326997 + 0.0876187i 0.418583 0.908179i \(-0.362527\pi\)
−0.0915857 + 0.995797i \(0.529194\pi\)
\(684\) −34.4643 19.8980i −0.0503864 0.0290906i
\(685\) −406.134 + 520.839i −0.592897 + 0.760349i
\(686\) −380.963 + 300.275i −0.555340 + 0.437719i
\(687\) 439.718 + 439.718i 0.640055 + 0.640055i
\(688\) 2.90812 + 10.8532i 0.00422692 + 0.0157751i
\(689\) −317.933 + 183.559i −0.461442 + 0.266413i
\(690\) 29.4152 210.741i 0.0426308 0.305422i
\(691\) −536.360 + 929.003i −0.776209 + 1.34443i 0.157904 + 0.987455i \(0.449526\pi\)
−0.934112 + 0.356979i \(0.883807\pi\)
\(692\) −180.959 180.959i −0.261501 0.261501i
\(693\) 281.579 218.009i 0.406319 0.314587i
\(694\) 746.570i 1.07575i
\(695\) −96.9695 + 229.046i −0.139525 + 0.329562i
\(696\) 87.9026 + 152.252i 0.126297 + 0.218752i
\(697\) 123.689 461.612i 0.177459 0.662285i
\(698\) −27.0953 101.121i −0.0388185 0.144872i
\(699\) 367.941i 0.526382i
\(700\) −130.298 324.842i −0.186141 0.464060i
\(701\) 708.751 1.01106 0.505528 0.862810i \(-0.331298\pi\)
0.505528 + 0.862810i \(0.331298\pi\)
\(702\) 30.6346 8.20852i 0.0436391 0.0116930i
\(703\) −117.461 31.4736i −0.167085 0.0447704i
\(704\) 117.486 67.8305i 0.166883 0.0963502i
\(705\) 348.777 + 147.659i 0.494719 + 0.209446i
\(706\) −405.953 −0.575004
\(707\) 192.155 469.652i 0.271790 0.664289i
\(708\) −62.2745 + 62.2745i −0.0879584 + 0.0879584i
\(709\) 328.423 + 189.615i 0.463220 + 0.267440i 0.713397 0.700760i \(-0.247156\pi\)
−0.250177 + 0.968200i \(0.580489\pi\)
\(710\) 966.190 + 134.861i 1.36083 + 0.189945i
\(711\) −61.4817 106.489i −0.0864721 0.149774i
\(712\) 157.642 42.2401i 0.221408 0.0593260i
\(713\) −559.957 + 559.957i −0.785354 + 0.785354i
\(714\) 175.900 73.7550i 0.246358 0.103298i
\(715\) −288.575 225.022i −0.403601 0.314716i
\(716\) −148.311 + 256.882i −0.207138 + 0.358774i
\(717\) 65.3970 244.065i 0.0912092 0.340397i
\(718\) −900.824 241.375i −1.25463 0.336177i
\(719\) 498.664 + 287.904i 0.693552 + 0.400422i 0.804941 0.593355i \(-0.202197\pi\)
−0.111390 + 0.993777i \(0.535530\pi\)
\(720\) −59.5459 + 7.36827i −0.0827026 + 0.0102337i
\(721\) 670.605 881.838i 0.930103 1.22308i
\(722\) 317.008 + 317.008i 0.439069 + 0.439069i
\(723\) 118.681 + 442.923i 0.164150 + 0.612618i
\(724\) −244.131 + 140.949i −0.337198 + 0.194681i
\(725\) −644.181 + 624.429i −0.888526 + 0.861281i
\(726\) −203.995 + 353.330i −0.280985 + 0.486681i
\(727\) 841.342 + 841.342i 1.15728 + 1.15728i 0.985058 + 0.172220i \(0.0550941\pi\)
0.172220 + 0.985058i \(0.444906\pi\)
\(728\) 67.5663 52.3124i 0.0928109 0.0718577i
\(729\) 27.0000i 0.0370370i
\(730\) −47.2240 19.9929i −0.0646904 0.0273875i
\(731\) −15.6238 27.0612i −0.0213732 0.0370194i
\(732\) −76.1771 + 284.297i −0.104067 + 0.388384i
\(733\) 116.341 + 434.189i 0.158718 + 0.592345i 0.998758 + 0.0498201i \(0.0158648\pi\)
−0.840040 + 0.542525i \(0.817469\pi\)
\(734\) 553.181i 0.753652i
\(735\) −336.432 + 258.628i −0.457731 + 0.351874i
\(736\) −98.2807 −0.133534
\(737\) −1031.06 + 276.272i −1.39900 + 0.374860i
\(738\) 176.057 + 47.1743i 0.238560 + 0.0639219i
\(739\) −725.131 + 418.655i −0.981233 + 0.566515i −0.902642 0.430392i \(-0.858375\pi\)
−0.0785910 + 0.996907i \(0.525042\pi\)
\(740\) −169.927 + 68.8413i −0.229631 + 0.0930288i
\(741\) 49.5815 0.0669116
\(742\) −515.509 665.828i −0.694756 0.897342i
\(743\) 241.494 241.494i 0.325025 0.325025i −0.525666 0.850691i \(-0.676184\pi\)
0.850691 + 0.525666i \(0.176184\pi\)
\(744\) 193.380 + 111.648i 0.259920 + 0.150065i
\(745\) 684.404 + 906.456i 0.918663 + 1.21672i
\(746\) −20.7758 35.9847i −0.0278495 0.0482368i
\(747\) −450.569 + 120.730i −0.603172 + 0.161619i
\(748\) −266.772 + 266.772i −0.356647 + 0.356647i
\(749\) −250.595 190.568i −0.334573 0.254430i
\(750\) −110.535 285.538i −0.147380 0.380718i
\(751\) 157.587 272.949i 0.209836 0.363447i −0.741826 0.670592i \(-0.766040\pi\)
0.951663 + 0.307145i \(0.0993735\pi\)
\(752\) 45.2766 168.975i 0.0602083 0.224700i
\(753\) 505.028 + 135.322i 0.670688 + 0.179710i
\(754\) −189.690 109.517i −0.251578 0.145248i
\(755\) −122.151 987.147i −0.161789 1.30748i
\(756\) 28.1298 + 67.0873i 0.0372088 + 0.0887399i
\(757\) −650.017 650.017i −0.858675 0.858675i 0.132507 0.991182i \(-0.457697\pi\)
−0.991182 + 0.132507i \(0.957697\pi\)
\(758\) 171.994 + 641.890i 0.226905 + 0.846821i
\(759\) 441.926 255.146i 0.582248 0.336161i
\(760\) −92.8993 12.9669i −0.122236 0.0170617i
\(761\) 349.979 606.182i 0.459894 0.796560i −0.539061 0.842267i \(-0.681221\pi\)
0.998955 + 0.0457070i \(0.0145541\pi\)
\(762\) 112.984 + 112.984i 0.148274 + 0.148274i
\(763\) 621.054 + 254.100i 0.813964 + 0.333028i