Properties

Label 210.3.v.a.193.3
Level 210
Weight 3
Character 210.193
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.3
Character \(\chi\) \(=\) 210.193
Dual form 210.3.v.a.37.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-0.438103 - 4.98077i) q^{5} +2.44949 q^{6} +(6.08450 + 3.46105i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-0.438103 - 4.98077i) q^{5} +2.44949 q^{6} +(6.08450 + 3.46105i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(2.59808 - 1.50000i) q^{9} +(-1.22463 + 6.96421i) q^{10} +(-5.62423 + 9.74146i) q^{11} +(-3.34607 - 0.896575i) q^{12} +(-5.84142 - 5.84142i) q^{13} +(-7.04475 - 6.95496i) q^{14} +(2.96578 + 8.13659i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-6.65160 - 24.8241i) q^{17} +(-4.09808 + 1.09808i) q^{18} +(27.5095 - 15.8826i) q^{19} +(4.22195 - 9.06505i) q^{20} +(-11.7311 - 3.06284i) q^{21} +(11.2485 - 11.2485i) q^{22} +(10.6696 - 39.8193i) q^{23} +(4.24264 + 2.44949i) q^{24} +(-24.6161 + 4.36418i) q^{25} +(5.84142 + 10.1176i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(7.07761 + 12.0792i) q^{28} -8.29704i q^{29} +(-1.07313 - 12.2003i) q^{30} +(6.00177 - 10.3954i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(5.04255 - 18.8190i) q^{33} +36.3450i q^{34} +(14.5731 - 31.8218i) q^{35} +6.00000 q^{36} +(-23.6141 - 6.32737i) q^{37} +(-43.3921 + 11.6269i) q^{38} +(12.3915 + 7.15424i) q^{39} +(-9.08533 + 10.8377i) q^{40} +42.9567 q^{41} +(14.9039 + 8.47781i) q^{42} +(-37.4962 - 37.4962i) q^{43} +(-19.4829 + 11.2485i) q^{44} +(-8.60938 - 12.2833i) q^{45} +(-29.1498 + 50.4889i) q^{46} +(-35.8369 - 9.60246i) q^{47} +(-4.89898 - 4.89898i) q^{48} +(25.0423 + 42.1175i) q^{49} +(35.2237 + 3.04855i) q^{50} +(22.2567 + 38.5497i) q^{51} +(-4.27621 - 15.9590i) q^{52} +(11.0590 - 2.96326i) q^{53} +(6.36396 - 3.67423i) q^{54} +(50.9839 + 23.7452i) q^{55} +(-5.24690 - 19.0911i) q^{56} +(-38.9043 + 38.9043i) q^{57} +(-3.03693 + 11.3340i) q^{58} +(-52.5762 - 30.3549i) q^{59} +(-2.99971 + 17.0588i) q^{60} +(18.8287 + 32.6122i) q^{61} +(-12.0035 + 12.0035i) q^{62} +(20.9996 - 0.134677i) q^{63} +8.00000i q^{64} +(-26.5356 + 31.6539i) q^{65} +(-13.7765 + 23.8616i) q^{66} +(21.1191 + 78.8176i) q^{67} +(13.3032 - 49.6482i) q^{68} +71.4020i q^{69} +(-31.5547 + 38.1353i) q^{70} +1.19909 q^{71} +(-8.19615 - 2.19615i) q^{72} +(69.0889 - 18.5123i) q^{73} +(29.9414 + 17.2867i) q^{74} +(39.2272 - 18.3365i) q^{75} +63.5304 q^{76} +(-67.9363 + 39.8061i) q^{77} +(-14.3085 - 14.3085i) q^{78} +(71.0156 - 41.0009i) q^{79} +(16.3777 - 11.4792i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-58.6799 - 15.7232i) q^{82} +(103.192 + 103.192i) q^{83} +(-17.2560 - 17.0361i) q^{84} +(-120.729 + 44.0056i) q^{85} +(37.4962 + 64.9454i) q^{86} +(3.71946 + 13.8812i) q^{87} +(30.7314 - 8.23445i) q^{88} +(12.6471 - 7.30178i) q^{89} +(7.26464 + 19.9305i) q^{90} +(-15.3247 - 55.7595i) q^{91} +(58.2995 - 58.2995i) q^{92} +(-5.38104 + 20.0823i) q^{93} +(45.4393 + 26.2344i) q^{94} +(-91.1596 - 130.060i) q^{95} +(4.89898 + 8.48528i) q^{96} +(24.6424 - 24.6424i) q^{97} +(-18.7923 - 66.6997i) q^{98} +33.7454i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −1.67303 + 0.448288i −0.557678 + 0.149429i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −0.438103 4.98077i −0.0876206 0.996154i
\(6\) 2.44949 0.408248
\(7\) 6.08450 + 3.46105i 0.869214 + 0.494436i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 2.59808 1.50000i 0.288675 0.166667i
\(10\) −1.22463 + 6.96421i −0.122463 + 0.696421i
\(11\) −5.62423 + 9.74146i −0.511294 + 0.885587i 0.488620 + 0.872496i \(0.337500\pi\)
−0.999914 + 0.0130905i \(0.995833\pi\)
\(12\) −3.34607 0.896575i −0.278839 0.0747146i
\(13\) −5.84142 5.84142i −0.449340 0.449340i 0.445795 0.895135i \(-0.352921\pi\)
−0.895135 + 0.445795i \(0.852921\pi\)
\(14\) −7.04475 6.95496i −0.503196 0.496783i
\(15\) 2.96578 + 8.13659i 0.197719 + 0.542440i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −6.65160 24.8241i −0.391270 1.46024i −0.828041 0.560668i \(-0.810544\pi\)
0.436770 0.899573i \(-0.356122\pi\)
\(18\) −4.09808 + 1.09808i −0.227671 + 0.0610042i
\(19\) 27.5095 15.8826i 1.44787 0.835926i 0.449513 0.893274i \(-0.351598\pi\)
0.998354 + 0.0573477i \(0.0182643\pi\)
\(20\) 4.22195 9.06505i 0.211098 0.453252i
\(21\) −11.7311 3.06284i −0.558624 0.145850i
\(22\) 11.2485 11.2485i 0.511294 0.511294i
\(23\) 10.6696 39.8193i 0.463894 1.73127i −0.196638 0.980476i \(-0.563002\pi\)
0.660532 0.750798i \(-0.270331\pi\)
\(24\) 4.24264 + 2.44949i 0.176777 + 0.102062i
\(25\) −24.6161 + 4.36418i −0.984645 + 0.174567i
\(26\) 5.84142 + 10.1176i 0.224670 + 0.389140i
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) 7.07761 + 12.0792i 0.252772 + 0.431400i
\(29\) 8.29704i 0.286105i −0.989715 0.143052i \(-0.954308\pi\)
0.989715 0.143052i \(-0.0456917\pi\)
\(30\) −1.07313 12.2003i −0.0357710 0.406678i
\(31\) 6.00177 10.3954i 0.193605 0.335334i −0.752837 0.658207i \(-0.771315\pi\)
0.946442 + 0.322873i \(0.104649\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 5.04255 18.8190i 0.152805 0.570274i
\(34\) 36.3450i 1.06897i
\(35\) 14.5731 31.8218i 0.416373 0.909194i
\(36\) 6.00000 0.166667
\(37\) −23.6141 6.32737i −0.638218 0.171010i −0.0748217 0.997197i \(-0.523839\pi\)
−0.563396 + 0.826187i \(0.690505\pi\)
\(38\) −43.3921 + 11.6269i −1.14190 + 0.305970i
\(39\) 12.3915 + 7.15424i 0.317731 + 0.183442i
\(40\) −9.08533 + 10.8377i −0.227133 + 0.270944i
\(41\) 42.9567 1.04772 0.523862 0.851803i \(-0.324491\pi\)
0.523862 + 0.851803i \(0.324491\pi\)
\(42\) 14.9039 + 8.47781i 0.354855 + 0.201853i
\(43\) −37.4962 37.4962i −0.872005 0.872005i 0.120685 0.992691i \(-0.461491\pi\)
−0.992691 + 0.120685i \(0.961491\pi\)
\(44\) −19.4829 + 11.2485i −0.442793 + 0.255647i
\(45\) −8.60938 12.2833i −0.191320 0.272961i
\(46\) −29.1498 + 50.4889i −0.633690 + 1.09758i
\(47\) −35.8369 9.60246i −0.762487 0.204308i −0.143437 0.989659i \(-0.545815\pi\)
−0.619050 + 0.785352i \(0.712482\pi\)
\(48\) −4.89898 4.89898i −0.102062 0.102062i
\(49\) 25.0423 + 42.1175i 0.511067 + 0.859541i
\(50\) 35.2237 + 3.04855i 0.704473 + 0.0609710i
\(51\) 22.2567 + 38.5497i 0.436405 + 0.755876i
\(52\) −4.27621 15.9590i −0.0822349 0.306905i
\(53\) 11.0590 2.96326i 0.208661 0.0559106i −0.152974 0.988230i \(-0.548885\pi\)
0.361635 + 0.932320i \(0.382219\pi\)
\(54\) 6.36396 3.67423i 0.117851 0.0680414i
\(55\) 50.9839 + 23.7452i 0.926981 + 0.431732i
\(56\) −5.24690 19.0911i −0.0936946 0.340912i
\(57\) −38.9043 + 38.9043i −0.682531 + 0.682531i
\(58\) −3.03693 + 11.3340i −0.0523608 + 0.195413i
\(59\) −52.5762 30.3549i −0.891121 0.514489i −0.0168122 0.999859i \(-0.505352\pi\)
−0.874309 + 0.485370i \(0.838685\pi\)
\(60\) −2.99971 + 17.0588i −0.0499952 + 0.284313i
\(61\) 18.8287 + 32.6122i 0.308667 + 0.534627i 0.978071 0.208272i \(-0.0667839\pi\)
−0.669404 + 0.742898i \(0.733451\pi\)
\(62\) −12.0035 + 12.0035i −0.193605 + 0.193605i
\(63\) 20.9996 0.134677i 0.333326 0.00213774i
\(64\) 8.00000i 0.125000i
\(65\) −26.5356 + 31.6539i −0.408240 + 0.486983i
\(66\) −13.7765 + 23.8616i −0.208735 + 0.361539i
\(67\) 21.1191 + 78.8176i 0.315211 + 1.17638i 0.923793 + 0.382892i \(0.125072\pi\)
−0.608583 + 0.793491i \(0.708262\pi\)
\(68\) 13.3032 49.6482i 0.195635 0.730120i
\(69\) 71.4020i 1.03481i
\(70\) −31.5547 + 38.1353i −0.450782 + 0.544789i
\(71\) 1.19909 0.0168886 0.00844432 0.999964i \(-0.497312\pi\)
0.00844432 + 0.999964i \(0.497312\pi\)
\(72\) −8.19615 2.19615i −0.113835 0.0305021i
\(73\) 69.0889 18.5123i 0.946423 0.253593i 0.247579 0.968868i \(-0.420365\pi\)
0.698844 + 0.715274i \(0.253698\pi\)
\(74\) 29.9414 + 17.2867i 0.404614 + 0.233604i
\(75\) 39.2272 18.3365i 0.523029 0.244487i
\(76\) 63.5304 0.835926
\(77\) −67.9363 + 39.8061i −0.882290 + 0.516963i
\(78\) −14.3085 14.3085i −0.183442 0.183442i
\(79\) 71.0156 41.0009i 0.898932 0.518999i 0.0220786 0.999756i \(-0.492972\pi\)
0.876854 + 0.480757i \(0.159638\pi\)
\(80\) 16.3777 11.4792i 0.204721 0.143490i
\(81\) 4.50000 7.79423i 0.0555556 0.0962250i
\(82\) −58.6799 15.7232i −0.715609 0.191747i
\(83\) 103.192 + 103.192i 1.24328 + 1.24328i 0.958631 + 0.284651i \(0.0918777\pi\)
0.284651 + 0.958631i \(0.408122\pi\)
\(84\) −17.2560 17.0361i −0.205429 0.202811i
\(85\) −120.729 + 44.0056i −1.42034 + 0.517713i
\(86\) 37.4962 + 64.9454i 0.436003 + 0.755179i
\(87\) 3.71946 + 13.8812i 0.0427524 + 0.159554i
\(88\) 30.7314 8.23445i 0.349220 0.0935733i
\(89\) 12.6471 7.30178i 0.142102 0.0820425i −0.427264 0.904127i \(-0.640522\pi\)
0.569365 + 0.822085i \(0.307189\pi\)
\(90\) 7.26464 + 19.9305i 0.0807183 + 0.221450i
\(91\) −15.3247 55.7595i −0.168403 0.612742i
\(92\) 58.2995 58.2995i 0.633690 0.633690i
\(93\) −5.38104 + 20.0823i −0.0578606 + 0.215939i
\(94\) 45.4393 + 26.2344i 0.483397 + 0.279090i
\(95\) −91.1596 130.060i −0.959574 1.36905i
\(96\) 4.89898 + 8.48528i 0.0510310 + 0.0883883i
\(97\) 24.6424 24.6424i 0.254045 0.254045i −0.568582 0.822627i \(-0.692508\pi\)
0.822627 + 0.568582i \(0.192508\pi\)
\(98\) −18.7923 66.6997i −0.191758 0.680609i
\(99\) 33.7454i 0.340863i
\(100\) −47.0006 17.0572i −0.470006 0.170572i
\(101\) −80.5667 + 139.546i −0.797690 + 1.38164i 0.123427 + 0.992354i \(0.460612\pi\)
−0.921117 + 0.389286i \(0.872722\pi\)
\(102\) −16.2930 60.8064i −0.159735 0.596141i
\(103\) 17.5834 65.6221i 0.170712 0.637108i −0.826530 0.562893i \(-0.809688\pi\)
0.997242 0.0742147i \(-0.0236450\pi\)
\(104\) 23.3657i 0.224670i
\(105\) −10.1159 + 59.7718i −0.0963417 + 0.569255i
\(106\) −16.1916 −0.152751
\(107\) 28.3972 + 7.60901i 0.265394 + 0.0711122i 0.389062 0.921211i \(-0.372799\pi\)
−0.123668 + 0.992324i \(0.539466\pi\)
\(108\) −10.0382 + 2.68973i −0.0929463 + 0.0249049i
\(109\) −147.093 84.9242i −1.34948 0.779121i −0.361302 0.932449i \(-0.617668\pi\)
−0.988175 + 0.153327i \(0.951001\pi\)
\(110\) −60.9540 51.0980i −0.554127 0.464528i
\(111\) 42.3436 0.381473
\(112\) 0.179570 + 27.9994i 0.00160330 + 0.249995i
\(113\) −79.5633 79.5633i −0.704100 0.704100i 0.261188 0.965288i \(-0.415886\pi\)
−0.965288 + 0.261188i \(0.915886\pi\)
\(114\) 67.3842 38.9043i 0.591089 0.341265i
\(115\) −203.005 35.6976i −1.76526 0.310414i
\(116\) 8.29704 14.3709i 0.0715262 0.123887i
\(117\) −23.9386 6.41432i −0.204603 0.0548232i
\(118\) 60.7097 + 60.7097i 0.514489 + 0.514489i
\(119\) 45.4458 174.064i 0.381897 1.46272i
\(120\) 10.3416 22.2047i 0.0861803 0.185040i
\(121\) −2.76398 4.78736i −0.0228428 0.0395649i
\(122\) −13.7835 51.4409i −0.112980 0.421647i
\(123\) −71.8679 + 19.2569i −0.584292 + 0.156561i
\(124\) 20.7907 12.0035i 0.167667 0.0968027i
\(125\) 32.5214 + 120.695i 0.260171 + 0.965563i
\(126\) −28.7352 7.50240i −0.228057 0.0595429i
\(127\) 76.9204 76.9204i 0.605673 0.605673i −0.336140 0.941812i \(-0.609121\pi\)
0.941812 + 0.336140i \(0.109121\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 79.5415 + 45.9233i 0.616601 + 0.355995i
\(130\) 47.8344 33.5273i 0.367957 0.257902i
\(131\) 89.9974 + 155.880i 0.687003 + 1.18992i 0.972803 + 0.231635i \(0.0744074\pi\)
−0.285800 + 0.958289i \(0.592259\pi\)
\(132\) 27.5530 27.5530i 0.208735 0.208735i
\(133\) 222.352 1.42602i 1.67182 0.0107219i
\(134\) 115.397i 0.861172i
\(135\) 19.9102 + 16.6908i 0.147483 + 0.123636i
\(136\) −36.3450 + 62.9514i −0.267243 + 0.462878i
\(137\) 60.7150 + 226.592i 0.443175 + 1.65395i 0.720709 + 0.693237i \(0.243816\pi\)
−0.277534 + 0.960716i \(0.589517\pi\)
\(138\) 26.1350 97.5370i 0.189384 0.706790i
\(139\) 224.218i 1.61308i −0.591182 0.806538i \(-0.701339\pi\)
0.591182 0.806538i \(-0.298661\pi\)
\(140\) 57.0631 40.5439i 0.407593 0.289599i
\(141\) 64.2609 0.455751
\(142\) −1.63799 0.438899i −0.0115352 0.00309083i
\(143\) 89.7574 24.0504i 0.627674 0.168185i
\(144\) 10.3923 + 6.00000i 0.0721688 + 0.0416667i
\(145\) −41.3256 + 3.63496i −0.285004 + 0.0250687i
\(146\) −101.153 −0.692830
\(147\) −60.7773 59.2378i −0.413451 0.402978i
\(148\) −34.5734 34.5734i −0.233604 0.233604i
\(149\) −99.1675 + 57.2544i −0.665554 + 0.384258i −0.794390 0.607408i \(-0.792209\pi\)
0.128836 + 0.991666i \(0.458876\pi\)
\(150\) −60.2970 + 10.6900i −0.401980 + 0.0712668i
\(151\) −48.4855 + 83.9793i −0.321096 + 0.556154i −0.980714 0.195446i \(-0.937385\pi\)
0.659619 + 0.751601i \(0.270718\pi\)
\(152\) −86.7841 23.2537i −0.570948 0.152985i
\(153\) −54.5175 54.5175i −0.356324 0.356324i
\(154\) 107.373 29.5098i 0.697226 0.191622i
\(155\) −54.4063 25.3392i −0.351008 0.163479i
\(156\) 14.3085 + 24.7830i 0.0917211 + 0.158866i
\(157\) −33.3622 124.509i −0.212498 0.793052i −0.987032 0.160521i \(-0.948683\pi\)
0.774535 0.632531i \(-0.217984\pi\)
\(158\) −112.017 + 30.0147i −0.708965 + 0.189967i
\(159\) −17.1737 + 9.91526i −0.108011 + 0.0623602i
\(160\) −26.5740 + 9.68619i −0.166088 + 0.0605387i
\(161\) 202.735 205.353i 1.25923 1.27548i
\(162\) −9.00000 + 9.00000i −0.0555556 + 0.0555556i
\(163\) −66.5982 + 248.548i −0.408578 + 1.52483i 0.388783 + 0.921329i \(0.372896\pi\)
−0.797360 + 0.603503i \(0.793771\pi\)
\(164\) 74.4031 + 42.9567i 0.453678 + 0.261931i
\(165\) −95.9425 16.8711i −0.581470 0.102249i
\(166\) −103.192 178.735i −0.621641 1.07671i
\(167\) −20.8857 + 20.8857i −0.125064 + 0.125064i −0.766868 0.641804i \(-0.778186\pi\)
0.641804 + 0.766868i \(0.278186\pi\)
\(168\) 17.3365 + 29.5879i 0.103194 + 0.176119i
\(169\) 100.756i 0.596188i
\(170\) 181.026 15.9229i 1.06486 0.0936638i
\(171\) 47.6478 82.5284i 0.278642 0.482622i
\(172\) −27.4491 102.442i −0.159588 0.595591i
\(173\) 55.8433 208.410i 0.322794 1.20468i −0.593718 0.804673i \(-0.702340\pi\)
0.916511 0.400009i \(-0.130993\pi\)
\(174\) 20.3235i 0.116802i
\(175\) −164.881 58.6438i −0.942180 0.335107i
\(176\) −44.9939 −0.255647
\(177\) 101.569 + 27.2154i 0.573838 + 0.153759i
\(178\) −19.9488 + 5.34528i −0.112072 + 0.0300296i
\(179\) 132.468 + 76.4803i 0.740044 + 0.427264i 0.822085 0.569364i \(-0.192811\pi\)
−0.0820415 + 0.996629i \(0.526144\pi\)
\(180\) −2.62862 29.8846i −0.0146034 0.166026i
\(181\) −61.7819 −0.341336 −0.170668 0.985329i \(-0.554593\pi\)
−0.170668 + 0.985329i \(0.554593\pi\)
\(182\) 0.524471 + 81.7781i 0.00288171 + 0.449330i
\(183\) −46.1206 46.1206i −0.252025 0.252025i
\(184\) −100.978 + 58.2995i −0.548792 + 0.316845i
\(185\) −21.1698 + 120.388i −0.114431 + 0.650747i
\(186\) 14.7013 25.4633i 0.0790390 0.136900i
\(187\) 279.233 + 74.8202i 1.49322 + 0.400108i
\(188\) −52.4688 52.4688i −0.279090 0.279090i
\(189\) −35.0726 + 9.63917i −0.185569 + 0.0510009i
\(190\) 76.9210 + 211.032i 0.404847 + 1.11070i
\(191\) 11.1433 + 19.3007i 0.0583417 + 0.101051i 0.893721 0.448623i \(-0.148085\pi\)
−0.835379 + 0.549674i \(0.814752\pi\)
\(192\) −3.58630 13.3843i −0.0186787 0.0697097i
\(193\) −227.270 + 60.8969i −1.17757 + 0.315528i −0.793961 0.607969i \(-0.791984\pi\)
−0.383606 + 0.923497i \(0.625318\pi\)
\(194\) −42.6818 + 24.6424i −0.220009 + 0.127023i
\(195\) 30.2049 64.8536i 0.154897 0.332582i
\(196\) 1.25696 + 97.9919i 0.00641308 + 0.499959i
\(197\) −144.812 + 144.812i −0.735086 + 0.735086i −0.971623 0.236537i \(-0.923988\pi\)
0.236537 + 0.971623i \(0.423988\pi\)
\(198\) 12.3517 46.0971i 0.0623822 0.232813i
\(199\) 166.521 + 96.1408i 0.836787 + 0.483119i 0.856171 0.516693i \(-0.172837\pi\)
−0.0193836 + 0.999812i \(0.506170\pi\)
\(200\) 57.9606 + 40.5039i 0.289803 + 0.202520i
\(201\) −70.6659 122.397i −0.351572 0.608940i
\(202\) 161.133 161.133i 0.797690 0.797690i
\(203\) 28.7165 50.4833i 0.141460 0.248686i
\(204\) 89.0267i 0.436405i
\(205\) −18.8194 213.957i −0.0918022 1.04369i
\(206\) −48.0387 + 83.2055i −0.233198 + 0.403910i
\(207\) −32.0087 119.458i −0.154631 0.577091i
\(208\) 8.55243 31.9181i 0.0411174 0.153452i
\(209\) 357.310i 1.70962i
\(210\) 35.6965 77.9471i 0.169984 0.371177i
\(211\) −1.49392 −0.00708017 −0.00354009 0.999994i \(-0.501127\pi\)
−0.00354009 + 0.999994i \(0.501127\pi\)
\(212\) 22.1181 + 5.92652i 0.104331 + 0.0279553i
\(213\) −2.00612 + 0.537539i −0.00941841 + 0.00252366i
\(214\) −36.0062 20.7882i −0.168253 0.0971411i
\(215\) −170.333 + 203.187i −0.792246 + 0.945057i
\(216\) 14.6969 0.0680414
\(217\) 72.4966 42.4782i 0.334086 0.195752i
\(218\) 169.848 + 169.848i 0.779121 + 0.779121i
\(219\) −107.289 + 61.9434i −0.489905 + 0.282847i
\(220\) 64.5615 + 92.1119i 0.293462 + 0.418691i
\(221\) −106.153 + 183.863i −0.480331 + 0.831957i
\(222\) −57.8424 15.4988i −0.260551 0.0698145i
\(223\) 186.552 + 186.552i 0.836555 + 0.836555i 0.988404 0.151849i \(-0.0485227\pi\)
−0.151849 + 0.988404i \(0.548523\pi\)
\(224\) 10.0032 38.3137i 0.0446572 0.171043i
\(225\) −57.4083 + 48.2627i −0.255148 + 0.214501i
\(226\) 79.5633 + 137.808i 0.352050 + 0.609769i
\(227\) 11.9875 + 44.7381i 0.0528085 + 0.197084i 0.987290 0.158927i \(-0.0508033\pi\)
−0.934482 + 0.356011i \(0.884137\pi\)
\(228\) −106.288 + 28.4799i −0.466177 + 0.124912i
\(229\) 146.091 84.3456i 0.637951 0.368321i −0.145874 0.989303i \(-0.546599\pi\)
0.783825 + 0.620982i \(0.213266\pi\)
\(230\) 264.244 + 123.069i 1.14889 + 0.535082i
\(231\) 95.8151 97.0520i 0.414784 0.420138i
\(232\) −16.5941 + 16.5941i −0.0715262 + 0.0715262i
\(233\) −57.4964 + 214.579i −0.246766 + 0.920942i 0.725722 + 0.687988i \(0.241506\pi\)
−0.972488 + 0.232954i \(0.925161\pi\)
\(234\) 30.3529 + 17.5242i 0.129713 + 0.0748899i
\(235\) −32.1274 + 182.702i −0.136712 + 0.777456i
\(236\) −60.7097 105.152i −0.257245 0.445561i
\(237\) −100.431 + 100.431i −0.423761 + 0.423761i
\(238\) −125.792 + 221.141i −0.528537 + 0.929164i
\(239\) 42.6023i 0.178252i −0.996020 0.0891262i \(-0.971593\pi\)
0.996020 0.0891262i \(-0.0284074\pi\)
\(240\) −22.2544 + 26.5469i −0.0927268 + 0.110612i
\(241\) 110.433 191.275i 0.458227 0.793672i −0.540641 0.841254i \(-0.681818\pi\)
0.998867 + 0.0475819i \(0.0151515\pi\)
\(242\) 2.02337 + 7.55134i 0.00836105 + 0.0312039i
\(243\) −4.03459 + 15.0573i −0.0166032 + 0.0619642i
\(244\) 75.3147i 0.308667i
\(245\) 198.807 143.182i 0.811455 0.584415i
\(246\) 105.222 0.427731
\(247\) −253.471 67.9174i −1.02620 0.274969i
\(248\) −32.7943 + 8.78719i −0.132235 + 0.0354322i
\(249\) −218.904 126.384i −0.879133 0.507568i
\(250\) −0.247472 176.777i −0.000989887 0.707106i
\(251\) −165.088 −0.657720 −0.328860 0.944379i \(-0.606664\pi\)
−0.328860 + 0.944379i \(0.606664\pi\)
\(252\) 36.5070 + 20.7663i 0.144869 + 0.0824060i
\(253\) 327.890 + 327.890i 1.29601 + 1.29601i
\(254\) −133.230 + 76.9204i −0.524528 + 0.302836i
\(255\) 182.256 127.744i 0.714731 0.500957i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −123.114 32.9883i −0.479042 0.128359i 0.0112144 0.999937i \(-0.496430\pi\)
−0.490257 + 0.871578i \(0.663097\pi\)
\(258\) −91.8466 91.8466i −0.355995 0.355995i
\(259\) −121.780 120.228i −0.470194 0.464202i
\(260\) −77.6149 + 28.2905i −0.298519 + 0.108810i
\(261\) −12.4456 21.5563i −0.0476841 0.0825913i
\(262\) −65.8827 245.877i −0.251461 0.938463i
\(263\) 421.747 113.007i 1.60360 0.429683i 0.657472 0.753479i \(-0.271626\pi\)
0.946127 + 0.323796i \(0.104959\pi\)
\(264\) −47.7232 + 27.5530i −0.180770 + 0.104367i
\(265\) −19.6043 53.7843i −0.0739786 0.202960i
\(266\) −304.260 79.4384i −1.14384 0.298641i
\(267\) −17.8856 + 17.8856i −0.0669874 + 0.0669874i
\(268\) −42.2382 + 157.635i −0.157605 + 0.588191i
\(269\) 8.01022 + 4.62470i 0.0297778 + 0.0171922i 0.514815 0.857301i \(-0.327861\pi\)
−0.485037 + 0.874494i \(0.661194\pi\)
\(270\) −21.0886 30.0877i −0.0781059 0.111436i
\(271\) 48.2949 + 83.6492i 0.178210 + 0.308669i 0.941267 0.337662i \(-0.109636\pi\)
−0.763058 + 0.646331i \(0.776303\pi\)
\(272\) 72.6900 72.6900i 0.267243 0.267243i
\(273\) 50.6350 + 86.4176i 0.185476 + 0.316548i
\(274\) 331.753i 1.21078i
\(275\) 95.9334 264.342i 0.348849 0.961244i
\(276\) −71.4020 + 123.672i −0.258703 + 0.448087i
\(277\) 39.2810 + 146.599i 0.141809 + 0.529237i 0.999877 + 0.0157013i \(0.00499807\pi\)
−0.858068 + 0.513536i \(0.828335\pi\)
\(278\) −82.0693 + 306.287i −0.295213 + 1.10175i
\(279\) 36.0106i 0.129070i
\(280\) −92.7897 + 34.4975i −0.331392 + 0.123205i
\(281\) −52.8654 −0.188133 −0.0940665 0.995566i \(-0.529987\pi\)
−0.0940665 + 0.995566i \(0.529987\pi\)
\(282\) −87.7821 23.5211i −0.311284 0.0834083i
\(283\) −159.230 + 42.6656i −0.562651 + 0.150762i −0.528924 0.848669i \(-0.677404\pi\)
−0.0337273 + 0.999431i \(0.510738\pi\)
\(284\) 2.07689 + 1.19909i 0.00731299 + 0.00422216i
\(285\) 210.817 + 176.729i 0.739710 + 0.620102i
\(286\) −131.414 −0.459489
\(287\) 261.370 + 148.675i 0.910696 + 0.518032i
\(288\) −12.0000 12.0000i −0.0416667 0.0416667i
\(289\) −321.711 + 185.740i −1.11319 + 0.642698i
\(290\) 57.7824 + 10.1608i 0.199250 + 0.0350372i
\(291\) −30.1806 + 52.2744i −0.103713 + 0.179637i
\(292\) 138.178 + 37.0246i 0.473212 + 0.126797i
\(293\) −251.280 251.280i −0.857612 0.857612i 0.133445 0.991056i \(-0.457396\pi\)
−0.991056 + 0.133445i \(0.957396\pi\)
\(294\) 61.3408 + 103.166i 0.208642 + 0.350906i
\(295\) −128.157 + 275.168i −0.434430 + 0.932774i
\(296\) 34.5734 + 59.8828i 0.116802 + 0.202307i
\(297\) −15.1276 56.4571i −0.0509348 0.190091i
\(298\) 156.422 41.9131i 0.524906 0.140648i
\(299\) −294.926 + 170.276i −0.986376 + 0.569484i
\(300\) 86.2800 + 7.46739i 0.287600 + 0.0248913i
\(301\) −98.3695 357.922i −0.326809 1.18911i
\(302\) 96.9710 96.9710i 0.321096 0.321096i
\(303\) 72.2341 269.581i 0.238396 0.889708i
\(304\) 110.038 + 63.5304i 0.361967 + 0.208982i
\(305\) 154.185 108.069i 0.505525 0.354324i
\(306\) 54.5175 + 94.4271i 0.178162 + 0.308585i
\(307\) 279.604 279.604i 0.910762 0.910762i −0.0855701 0.996332i \(-0.527271\pi\)
0.996332 + 0.0855701i \(0.0272712\pi\)
\(308\) −157.475 + 1.00994i −0.511283 + 0.00327903i
\(309\) 117.670i 0.380810i
\(310\) 65.0456 + 54.5280i 0.209825 + 0.175897i
\(311\) 215.478 373.218i 0.692854 1.20006i −0.278045 0.960568i \(-0.589686\pi\)
0.970899 0.239490i \(-0.0769803\pi\)
\(312\) −10.4745 39.0915i −0.0335722 0.125293i
\(313\) 43.5371 162.483i 0.139096 0.519114i −0.860851 0.508857i \(-0.830068\pi\)
0.999947 0.0102571i \(-0.00326500\pi\)
\(314\) 182.294i 0.580555i
\(315\) −9.87077 104.535i −0.0313358 0.331857i
\(316\) 164.004 0.518999
\(317\) −167.692 44.9330i −0.528997 0.141744i −0.0155721 0.999879i \(-0.504957\pi\)
−0.513425 + 0.858134i \(0.671624\pi\)
\(318\) 27.0890 7.25848i 0.0851856 0.0228254i
\(319\) 80.8252 + 46.6645i 0.253371 + 0.146284i
\(320\) 39.8462 3.50482i 0.124519 0.0109526i
\(321\) −50.9205 −0.158631
\(322\) −352.106 + 206.311i −1.09350 + 0.640716i
\(323\) −577.253 577.253i −1.78716 1.78716i
\(324\) 15.5885 9.00000i 0.0481125 0.0277778i
\(325\) 169.286 + 118.300i 0.520880 + 0.364000i
\(326\) 181.950 315.146i 0.558128 0.966705i
\(327\) 284.162 + 76.1410i 0.868997 + 0.232847i
\(328\) −85.9133 85.9133i −0.261931 0.261931i
\(329\) −184.815 182.459i −0.561747 0.554588i
\(330\) 124.885 + 58.1637i 0.378438 + 0.176254i
\(331\) −201.616 349.209i −0.609112 1.05501i −0.991387 0.130964i \(-0.958193\pi\)
0.382275 0.924048i \(-0.375141\pi\)
\(332\) 75.5421 + 281.927i 0.227536 + 0.849178i
\(333\) −70.8422 + 18.9821i −0.212739 + 0.0570033i
\(334\) 36.1751 20.8857i 0.108309 0.0625320i
\(335\) 383.320 139.720i 1.14424 0.417074i
\(336\) −12.8522 46.7635i −0.0382507 0.139177i
\(337\) −140.687 + 140.687i −0.417468 + 0.417468i −0.884330 0.466862i \(-0.845385\pi\)
0.466862 + 0.884330i \(0.345385\pi\)
\(338\) −36.8792 + 137.635i −0.109110 + 0.407204i
\(339\) 168.779 + 97.4448i 0.497874 + 0.287448i
\(340\) −253.114 44.5091i −0.744454 0.130909i
\(341\) 67.5106 + 116.932i 0.197978 + 0.342909i
\(342\) −95.2956 + 95.2956i −0.278642 + 0.278642i
\(343\) 6.59883 + 342.937i 0.0192386 + 0.999815i
\(344\) 149.985i 0.436003i
\(345\) 355.637 31.2814i 1.03083 0.0906708i
\(346\) −152.567 + 264.253i −0.440944 + 0.763738i
\(347\) 113.946 + 425.251i 0.328373 + 1.22551i 0.910877 + 0.412678i \(0.135407\pi\)
−0.582503 + 0.812828i \(0.697927\pi\)
\(348\) −7.43892 + 27.7624i −0.0213762 + 0.0797771i
\(349\) 283.692i 0.812870i −0.913680 0.406435i \(-0.866772\pi\)
0.913680 0.406435i \(-0.133228\pi\)
\(350\) 203.767 + 140.460i 0.582192 + 0.401314i
\(351\) 42.9255 0.122295
\(352\) 61.4628 + 16.4689i 0.174610 + 0.0467866i
\(353\) 52.7227 14.1270i 0.149356 0.0400199i −0.183366 0.983045i \(-0.558699\pi\)
0.332722 + 0.943025i \(0.392033\pi\)
\(354\) −128.785 74.3539i −0.363799 0.210039i
\(355\) −0.525326 5.97241i −0.00147979 0.0168237i
\(356\) 29.2071 0.0820425
\(357\) 1.99831 + 311.587i 0.00559752 + 0.872793i
\(358\) −152.961 152.961i −0.427264 0.427264i
\(359\) 255.462 147.491i 0.711594 0.410839i −0.100057 0.994982i \(-0.531903\pi\)
0.811651 + 0.584143i \(0.198569\pi\)
\(360\) −7.34777 + 41.7853i −0.0204105 + 0.116070i
\(361\) 324.014 561.209i 0.897546 1.55459i
\(362\) 84.3956 + 22.6137i 0.233137 + 0.0624689i
\(363\) 6.77034 + 6.77034i 0.0186511 + 0.0186511i
\(364\) 29.2164 111.903i 0.0802649 0.307426i
\(365\) −122.474 336.006i −0.335544 0.920563i
\(366\) 46.1206 + 79.8833i 0.126013 + 0.218260i
\(367\) 2.51130 + 9.37230i 0.00684278 + 0.0255376i 0.969263 0.246028i \(-0.0791254\pi\)
−0.962420 + 0.271565i \(0.912459\pi\)
\(368\) 159.277 42.6782i 0.432819 0.115973i
\(369\) 111.605 64.4350i 0.302452 0.174621i
\(370\) 72.9836 156.705i 0.197253 0.423526i
\(371\) 77.5447 + 20.2459i 0.209015 + 0.0545712i
\(372\) −29.4025 + 29.4025i −0.0790390 + 0.0790390i
\(373\) −3.18482 + 11.8859i −0.00853840 + 0.0318658i −0.970064 0.242851i \(-0.921917\pi\)
0.961525 + 0.274717i \(0.0885841\pi\)
\(374\) −354.053 204.413i −0.946666 0.546558i
\(375\) −108.516 187.348i −0.289375 0.499595i
\(376\) 52.4688 + 90.8787i 0.139545 + 0.241699i
\(377\) −48.4665 + 48.4665i −0.128558 + 0.128558i
\(378\) 51.4382 0.329891i 0.136080 0.000872727i
\(379\) 287.766i 0.759278i 0.925135 + 0.379639i \(0.123952\pi\)
−0.925135 + 0.379639i \(0.876048\pi\)
\(380\) −27.8329 316.430i −0.0732444 0.832711i
\(381\) −94.2079 + 163.173i −0.247265 + 0.428275i
\(382\) −8.15744 30.4440i −0.0213546 0.0796963i
\(383\) −167.673 + 625.764i −0.437788 + 1.63385i 0.296516 + 0.955028i \(0.404175\pi\)
−0.734305 + 0.678820i \(0.762492\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 228.028 + 320.936i 0.592281 + 0.833600i
\(386\) 332.747 0.862038
\(387\) −153.662 41.1737i −0.397060 0.106392i
\(388\) 67.3242 18.0395i 0.173516 0.0464935i
\(389\) 117.516 + 67.8481i 0.302099 + 0.174417i 0.643385 0.765543i \(-0.277529\pi\)
−0.341287 + 0.939959i \(0.610863\pi\)
\(390\) −64.9987 + 77.5359i −0.166663 + 0.198810i
\(391\) −1059.45 −2.70959
\(392\) 34.1505 134.320i 0.0871186 0.342652i
\(393\) −220.448 220.448i −0.560936 0.560936i
\(394\) 250.822 144.812i 0.636603 0.367543i
\(395\) −235.328 335.750i −0.595768 0.850000i
\(396\) −33.7454 + 58.4487i −0.0852156 + 0.147598i
\(397\) 335.779 + 89.9718i 0.845791 + 0.226629i 0.655591 0.755116i \(-0.272420\pi\)
0.190200 + 0.981745i \(0.439086\pi\)
\(398\) −192.282 192.282i −0.483119 0.483119i
\(399\) −371.363 + 102.063i −0.930733 + 0.255798i
\(400\) −64.3502 76.5444i −0.160876 0.191361i
\(401\) 103.629 + 179.491i 0.258427 + 0.447609i 0.965821 0.259211i \(-0.0834624\pi\)
−0.707394 + 0.706820i \(0.750129\pi\)
\(402\) 51.7311 + 193.063i 0.128684 + 0.480256i
\(403\) −95.7824 + 25.6648i −0.237674 + 0.0636844i
\(404\) −279.091 + 161.133i −0.690820 + 0.398845i
\(405\) −40.7927 18.9988i −0.100723 0.0469106i
\(406\) −57.7056 + 58.4506i −0.142132 + 0.143967i
\(407\) 194.449 194.449i 0.477761 0.477761i
\(408\) 32.5860 121.613i 0.0798677 0.298070i
\(409\) −226.963 131.037i −0.554921 0.320384i 0.196183 0.980567i \(-0.437145\pi\)
−0.751105 + 0.660183i \(0.770479\pi\)
\(410\) −52.6060 + 299.159i −0.128307 + 0.729657i
\(411\) −203.156 351.877i −0.494298 0.856149i
\(412\) 96.0774 96.0774i 0.233198 0.233198i
\(413\) −214.840 366.663i −0.520193 0.887803i
\(414\) 174.899i 0.422460i
\(415\) 468.769 559.187i 1.12956 1.34744i
\(416\) −23.3657 + 40.4705i −0.0561675 + 0.0972849i
\(417\) 100.514 + 375.123i 0.241041 + 0.899576i
\(418\) 130.784 488.094i 0.312881 1.16769i
\(419\) 143.688i 0.342931i −0.985190 0.171465i \(-0.945150\pi\)
0.985190 0.171465i \(-0.0548502\pi\)
\(420\) −77.2930 + 93.4119i −0.184031 + 0.222409i
\(421\) 305.872 0.726537 0.363269 0.931684i \(-0.381661\pi\)
0.363269 + 0.931684i \(0.381661\pi\)
\(422\) 2.04073 + 0.546811i 0.00483585 + 0.00129576i
\(423\) −107.511 + 28.8074i −0.254162 + 0.0681026i
\(424\) −28.0446 16.1916i −0.0661429 0.0381876i
\(425\) 272.073 + 582.044i 0.640173 + 1.36952i
\(426\) 2.93717 0.00689476
\(427\) 1.69053 + 263.596i 0.00395909 + 0.617321i
\(428\) 41.5764 + 41.5764i 0.0971411 + 0.0971411i
\(429\) −139.386 + 80.4743i −0.324908 + 0.187586i
\(430\) 307.051 215.213i 0.714071 0.500495i
\(431\) 314.493 544.718i 0.729683 1.26385i −0.227334 0.973817i \(-0.573001\pi\)
0.957017 0.290031i \(-0.0936656\pi\)
\(432\) −20.0764 5.37945i −0.0464731 0.0124524i
\(433\) 215.672 + 215.672i 0.498087 + 0.498087i 0.910842 0.412755i \(-0.135433\pi\)
−0.412755 + 0.910842i \(0.635433\pi\)
\(434\) −114.580 + 31.4907i −0.264010 + 0.0725591i
\(435\) 67.5096 24.6072i 0.155195 0.0565682i
\(436\) −169.848 294.186i −0.389561 0.674739i
\(437\) −338.920 1264.87i −0.775562 2.89444i
\(438\) 169.233 45.3457i 0.386376 0.103529i
\(439\) −356.713 + 205.949i −0.812559 + 0.469131i −0.847844 0.530246i \(-0.822099\pi\)
0.0352848 + 0.999377i \(0.488766\pi\)
\(440\) −54.4774 149.458i −0.123812 0.339678i
\(441\) 128.238 + 71.8611i 0.290789 + 0.162950i
\(442\) 212.306 212.306i 0.480331 0.480331i
\(443\) −108.244 + 403.971i −0.244342 + 0.911898i 0.729370 + 0.684119i \(0.239813\pi\)
−0.973713 + 0.227779i \(0.926854\pi\)
\(444\) 73.3412 + 42.3436i 0.165183 + 0.0953684i
\(445\) −41.9092 59.7931i −0.0941780 0.134367i
\(446\) −186.552 323.117i −0.418277 0.724478i
\(447\) 140.244 140.244i 0.313745 0.313745i
\(448\) −27.6884 + 48.6760i −0.0618045 + 0.108652i
\(449\) 142.091i 0.316460i −0.987402 0.158230i \(-0.949421\pi\)
0.987402 0.158230i \(-0.0505788\pi\)
\(450\) 96.0866 44.9151i 0.213526 0.0998114i
\(451\) −241.598 + 418.460i −0.535695 + 0.927850i
\(452\) −58.2444 217.371i −0.128859 0.480909i
\(453\) 43.4709 162.236i 0.0959622 0.358136i
\(454\) 65.5011i 0.144275i
\(455\) −271.012 + 100.757i −0.595630 + 0.221444i
\(456\) 155.617 0.341265
\(457\) −68.5338 18.3636i −0.149965 0.0401829i 0.183056 0.983103i \(-0.441401\pi\)
−0.333020 + 0.942920i \(0.608068\pi\)
\(458\) −230.436 + 61.7452i −0.503136 + 0.134815i
\(459\) 115.649 + 66.7700i 0.251959 + 0.145468i
\(460\) −315.918 264.835i −0.686777 0.575729i
\(461\) 75.0514 0.162801 0.0814007 0.996681i \(-0.474061\pi\)
0.0814007 + 0.996681i \(0.474061\pi\)
\(462\) −166.409 + 97.5047i −0.360193 + 0.211049i
\(463\) 345.058 + 345.058i 0.745267 + 0.745267i 0.973586 0.228320i \(-0.0733231\pi\)
−0.228320 + 0.973586i \(0.573323\pi\)
\(464\) 28.7418 16.5941i 0.0619435 0.0357631i
\(465\) 102.383 + 18.0036i 0.220178 + 0.0387174i
\(466\) 157.083 272.076i 0.337088 0.583854i
\(467\) −583.925 156.462i −1.25037 0.335037i −0.427894 0.903829i \(-0.640744\pi\)
−0.822481 + 0.568792i \(0.807411\pi\)
\(468\) −35.0485 35.0485i −0.0748899 0.0748899i
\(469\) −144.292 + 552.660i −0.307660 + 1.17838i
\(470\) 110.760 237.816i 0.235661 0.505992i
\(471\) 111.632 + 193.352i 0.237010 + 0.410514i
\(472\) 44.4426 + 165.862i 0.0941580 + 0.351403i
\(473\) 576.155 154.380i 1.21809 0.326386i
\(474\) 173.952 100.431i 0.366988 0.211880i
\(475\) −607.862 + 511.024i −1.27971 + 1.07584i
\(476\) 252.778 256.041i 0.531046 0.537902i
\(477\) 24.2873 24.2873i 0.0509169 0.0509169i
\(478\) −15.5935 + 58.1958i −0.0326224 + 0.121749i
\(479\) 485.140 + 280.096i 1.01282 + 0.584751i 0.912016 0.410155i \(-0.134526\pi\)
0.100803 + 0.994906i \(0.467859\pi\)
\(480\) 40.1170 28.1181i 0.0835770 0.0585794i
\(481\) 100.979 + 174.900i 0.209935 + 0.363618i
\(482\) −220.865 + 220.865i −0.458227 + 0.458227i
\(483\) −247.126 + 434.446i −0.511648 + 0.899473i
\(484\) 11.0559i 0.0228428i
\(485\) −133.534 111.942i −0.275328 0.230808i
\(486\) 11.0227 19.0919i 0.0226805 0.0392837i
\(487\) 181.271 + 676.511i 0.372219 + 1.38914i 0.857366 + 0.514707i \(0.172099\pi\)
−0.485147 + 0.874433i \(0.661234\pi\)
\(488\) 27.5671 102.882i 0.0564899 0.210823i
\(489\) 445.684i 0.911419i
\(490\) −323.983 + 122.821i −0.661190 + 0.250656i
\(491\) 285.090 0.580632 0.290316 0.956931i \(-0.406240\pi\)
0.290316 + 0.956931i \(0.406240\pi\)
\(492\) −143.736 38.5139i −0.292146 0.0782803i
\(493\) −205.966 + 55.1886i −0.417782 + 0.111944i
\(494\) 321.389 + 185.554i 0.650584 + 0.375615i
\(495\) 168.078 14.7840i 0.339552 0.0298666i
\(496\) 48.0141 0.0968027
\(497\) 7.29588 + 4.15012i 0.0146798 + 0.00835034i
\(498\) 252.769 + 252.769i 0.507568 + 0.507568i
\(499\) 659.973 381.035i 1.32259 0.763598i 0.338449 0.940985i \(-0.390098\pi\)
0.984141 + 0.177387i \(0.0567643\pi\)
\(500\) −64.3666 + 241.572i −0.128733 + 0.483144i
\(501\) 25.5797 44.3053i 0.0510572 0.0884337i
\(502\) 225.514 + 60.4263i 0.449231 + 0.120371i
\(503\) −242.900 242.900i −0.482902 0.482902i 0.423155 0.906057i \(-0.360922\pi\)
−0.906057 + 0.423155i \(0.860922\pi\)
\(504\) −42.2685 41.7298i −0.0838661 0.0827972i
\(505\) 730.341 + 340.149i 1.44622 + 0.673562i
\(506\) −327.890 567.922i −0.648004 1.12238i
\(507\) 45.1676 + 168.568i 0.0890879 + 0.332480i
\(508\) 210.150 56.3097i 0.413682 0.110846i
\(509\) 110.550 63.8262i 0.217191 0.125395i −0.387458 0.921887i \(-0.626647\pi\)
0.604649 + 0.796492i \(0.293313\pi\)
\(510\) −295.724 + 107.791i −0.579852 + 0.211355i
\(511\) 484.443 + 126.482i 0.948030 + 0.247518i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −42.7198 + 159.433i −0.0832746 + 0.310785i
\(514\) 156.102 + 90.1256i 0.303701 + 0.175342i
\(515\) −334.552 58.8296i −0.649615 0.114232i
\(516\) 91.8466 + 159.083i 0.177997 + 0.308300i
\(517\) 295.097 295.097i 0.570787 0.570787i
\(518\) 122.348 + 208.810i 0.236194 + 0.403107i
\(519\) 373.711i 0.720059i
\(520\) 116.379 10.2366i 0.223806 0.0196857i
\(521\) −371.561 + 643.563i −0.713170 + 1.23525i 0.250492 + 0.968119i \(0.419408\pi\)
−0.963661 + 0.267127i \(0.913926\pi\)
\(522\) 9.11078 + 34.0019i 0.0174536 + 0.0651377i
\(523\) −243.232 + 907.753i −0.465070 + 1.73566i 0.191587 + 0.981476i \(0.438636\pi\)
−0.656657 + 0.754189i \(0.728030\pi\)
\(524\) 359.990i 0.687003i
\(525\) 302.141 + 24.1987i 0.575507 + 0.0460927i
\(526\) −617.480 −1.17392
\(527\) −297.977 79.8426i −0.565421 0.151504i
\(528\) 75.2762 20.1702i 0.142569 0.0382011i
\(529\) −1013.61 585.208i −1.91609 1.10625i
\(530\) 7.09357 + 80.6464i 0.0133841 + 0.152163i
\(531\) −182.129 −0.342993
\(532\) 386.551 + 219.882i 0.726599 + 0.413312i
\(533\) −250.928 250.928i −0.470784 0.470784i
\(534\) 30.9788 17.8856i 0.0580128 0.0334937i
\(535\) 25.4578 144.773i 0.0475847 0.270605i
\(536\) 115.397 199.873i 0.215293 0.372898i
\(537\) −255.908 68.5704i −0.476552 0.127692i
\(538\) −9.24940 9.24940i −0.0171922 0.0171922i
\(539\) −551.129 + 7.06945i −1.02250 + 0.0131159i
\(540\) 17.7947 + 48.8196i 0.0329531 + 0.0904066i
\(541\) 151.264 + 261.997i 0.279600 + 0.484282i 0.971285 0.237917i \(-0.0764647\pi\)
−0.691685 + 0.722199i \(0.743131\pi\)
\(542\) −35.3543 131.944i −0.0652294 0.243439i
\(543\) 103.363 27.6960i 0.190356 0.0510056i
\(544\) −125.903 + 72.6900i −0.231439 + 0.133621i
\(545\) −358.546 + 769.842i −0.657883 + 1.41255i
\(546\) −37.5376 136.582i −0.0687502 0.250151i
\(547\) −471.627 + 471.627i −0.862206 + 0.862206i −0.991594 0.129388i \(-0.958699\pi\)
0.129388 + 0.991594i \(0.458699\pi\)
\(548\) −121.430 + 453.183i −0.221588 + 0.826977i
\(549\) 97.8367 + 56.4860i 0.178209 + 0.102889i
\(550\) −227.803 + 325.984i −0.414188 + 0.592698i
\(551\) −131.779 228.247i −0.239163 0.414242i
\(552\) 142.804 142.804i 0.258703 0.258703i
\(553\) 574.001 3.68126i 1.03798 0.00665690i
\(554\) 214.635i 0.387429i
\(555\) −18.5508 210.904i −0.0334249 0.380006i
\(556\) 224.218 388.356i 0.403269 0.698482i
\(557\) 11.4833 + 42.8563i 0.0206164 + 0.0769413i 0.975468 0.220143i \(-0.0706524\pi\)
−0.954851 + 0.297084i \(0.903986\pi\)
\(558\) −13.1808 + 49.1914i −0.0236215 + 0.0881566i
\(559\) 438.062i 0.783653i
\(560\) 139.380 13.1610i 0.248893 0.0235018i
\(561\) −500.707 −0.892526
\(562\) 72.2154 + 19.3501i 0.128497 + 0.0344307i
\(563\) 79.9337 21.4182i 0.141978 0.0380429i −0.187130 0.982335i \(-0.559919\pi\)
0.329108 + 0.944292i \(0.393252\pi\)
\(564\) 111.303 + 64.2609i 0.197346 + 0.113938i
\(565\) −361.430 + 431.143i −0.639698 + 0.763086i
\(566\) 233.129 0.411889
\(567\) 54.3565 31.8493i 0.0958668 0.0561715i
\(568\) −2.39819 2.39819i −0.00422216 0.00422216i
\(569\) 497.115 287.010i 0.873665 0.504410i 0.00510028 0.999987i \(-0.498377\pi\)
0.868564 + 0.495577i \(0.165043\pi\)
\(570\) −223.294 318.581i −0.391745 0.558914i
\(571\) −231.337 + 400.688i −0.405144 + 0.701730i −0.994338 0.106261i \(-0.966112\pi\)
0.589194 + 0.807992i \(0.299445\pi\)
\(572\) 179.515 + 48.1008i 0.313837 + 0.0840924i
\(573\) −27.2953 27.2953i −0.0476358 0.0476358i
\(574\) −302.619 298.762i −0.527211 0.520491i
\(575\) −88.8645 + 1026.76i −0.154547 + 1.78567i
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) −53.7263 200.509i −0.0931131 0.347503i 0.903614 0.428349i \(-0.140905\pi\)
−0.996727 + 0.0808459i \(0.974238\pi\)
\(578\) 507.450 135.971i 0.877942 0.235244i
\(579\) 352.931 203.765i 0.609553 0.351926i
\(580\) −75.2131 35.0297i −0.129678 0.0603961i
\(581\) 270.720 + 985.028i 0.465955 + 1.69540i
\(582\) 60.3612 60.3612i 0.103713 0.103713i
\(583\) −33.3321 + 124.397i −0.0571735 + 0.213374i
\(584\) −175.202 101.153i −0.300004 0.173207i
\(585\) −21.4607 + 122.043i −0.0366849 + 0.208620i
\(586\) 251.280 + 435.230i 0.428806 + 0.742714i
\(587\) 275.657 275.657i 0.469603 0.469603i −0.432183 0.901786i \(-0.642256\pi\)
0.901786 + 0.432183i \(0.142256\pi\)
\(588\) −46.0315 163.380i −0.0782849 0.277858i
\(589\) 381.295i 0.647359i
\(590\) 275.784 328.978i 0.467431 0.557590i
\(591\) 177.358 307.192i 0.300098 0.519784i
\(592\) −25.3095 94.4562i −0.0427525 0.159554i
\(593\) 62.5653 233.497i 0.105506 0.393755i −0.892896 0.450264i \(-0.851330\pi\)
0.998402 + 0.0565081i \(0.0179967\pi\)
\(594\) 82.6590i 0.139157i
\(595\) −886.881 150.097i −1.49056 0.252264i
\(596\) −229.018 −0.384258
\(597\) −321.693 86.1974i −0.538850 0.144384i
\(598\) 465.202 124.651i 0.777930 0.208446i
\(599\) 678.246 + 391.586i 1.13230 + 0.653732i 0.944512 0.328478i \(-0.106536\pi\)
0.187786 + 0.982210i \(0.439869\pi\)
\(600\) −115.127 41.7813i −0.191879 0.0696355i
\(601\) −970.347 −1.61455 −0.807277 0.590172i \(-0.799060\pi\)
−0.807277 + 0.590172i \(0.799060\pi\)
\(602\) 3.36660 + 524.936i 0.00559235 + 0.871987i
\(603\) 173.096 + 173.096i 0.287057 + 0.287057i
\(604\) −167.959 + 96.9710i −0.278077 + 0.160548i
\(605\) −22.6338 + 15.8641i −0.0374113 + 0.0262217i
\(606\) −197.347 + 341.816i −0.325656 + 0.564052i
\(607\) 16.1478 + 4.32679i 0.0266027 + 0.00712816i 0.272096 0.962270i \(-0.412283\pi\)
−0.245493 + 0.969398i \(0.578950\pi\)
\(608\) −127.061 127.061i −0.208982 0.208982i
\(609\) −25.4125 + 97.3335i −0.0417283 + 0.159825i
\(610\) −250.177 + 91.1891i −0.410126 + 0.149490i
\(611\) 153.246 + 265.430i 0.250812 + 0.434419i
\(612\) −39.9096 148.945i −0.0652117 0.243373i
\(613\) 862.305 231.054i 1.40670 0.376923i 0.525952 0.850514i \(-0.323709\pi\)
0.880745 + 0.473591i \(0.157042\pi\)
\(614\) −484.288 + 279.604i −0.788743 + 0.455381i
\(615\) 127.400 + 349.521i 0.207154 + 0.568327i
\(616\) 215.485 + 56.2603i 0.349813 + 0.0913317i
\(617\) 698.494 698.494i 1.13208 1.13208i 0.142251 0.989831i \(-0.454566\pi\)
0.989831 0.142251i \(-0.0454339\pi\)
\(618\) 43.0703 160.741i 0.0696931 0.260098i
\(619\) 637.279 + 367.933i 1.02953 + 0.594399i 0.916850 0.399232i \(-0.130723\pi\)
0.112679 + 0.993631i \(0.464057\pi\)
\(620\) −68.8953 98.2950i −0.111121 0.158540i
\(621\) 107.103 + 185.508i 0.172469 + 0.298725i
\(622\) −430.955 + 430.955i −0.692854 + 0.692854i
\(623\) 102.223 0.655590i 0.164082 0.00105231i
\(624\) 57.2340i 0.0917211i
\(625\) 586.908 214.858i 0.939053 0.343774i
\(626\) −118.946 + 206.020i −0.190009 + 0.329105i
\(627\) −160.178 597.791i −0.255467 0.953414i
\(628\) 66.7243 249.018i 0.106249 0.396526i
\(629\) 628.285i 0.998863i
\(630\) −24.7787 + 146.410i −0.0393313 + 0.232398i
\(631\) 395.464 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(632\) −224.033 60.0295i −0.354483 0.0949834i
\(633\) 2.49937 0.669704i 0.00394845 0.00105798i
\(634\) 212.625 + 122.759i 0.335371 + 0.193626i
\(635\) −416.822 349.424i −0.656413 0.550274i
\(636\) −39.6611 −0.0623602
\(637\) 99.7436 392.308i 0.156583 0.615868i
\(638\) −93.3290 93.3290i −0.146284 0.146284i
\(639\) 3.11534 1.79864i 0.00487533 0.00281477i
\(640\) −55.7137 9.79703i −0.0870527 0.0153079i
\(641\) −99.9972 + 173.200i −0.156002 + 0.270203i −0.933423 0.358777i \(-0.883194\pi\)
0.777421 + 0.628980i \(0.216527\pi\)
\(642\) 69.5587 + 18.6382i 0.108347 + 0.0290314i
\(643\) −854.979 854.979i −1.32967 1.32967i −0.905653 0.424019i \(-0.860619\pi\)
−0.424019 0.905653i \(-0.639381\pi\)
\(644\) 556.501 152.946i 0.864132 0.237494i
\(645\) 193.886 416.297i 0.300599 0.645422i
\(646\) 577.253 + 999.832i 0.893581 + 1.54773i
\(647\) −130.579 487.329i −0.201823 0.753213i −0.990395 0.138270i \(-0.955846\pi\)
0.788572 0.614943i \(-0.210821\pi\)
\(648\) −24.5885 + 6.58846i −0.0379452 + 0.0101674i
\(649\) 591.401 341.446i 0.911250 0.526110i
\(650\) −187.948 223.564i −0.289151 0.343944i
\(651\) −102.247 + 103.567i −0.157061 + 0.159089i
\(652\) −363.899 + 363.899i −0.558128 + 0.558128i
\(653\) −95.8220 + 357.612i −0.146741 + 0.547645i 0.852931 + 0.522024i \(0.174823\pi\)
−0.999672 + 0.0256211i \(0.991844\pi\)
\(654\) −360.303 208.021i −0.550922 0.318075i
\(655\) 736.974 516.548i 1.12515 0.788622i
\(656\) 85.9133 + 148.806i 0.130965 + 0.226839i
\(657\) 151.730 151.730i 0.230943 0.230943i
\(658\) 185.677 + 316.891i 0.282184 + 0.481597i
\(659\) 328.877i 0.499055i −0.968368 0.249528i \(-0.919725\pi\)
0.968368 0.249528i \(-0.0802753\pi\)
\(660\) −149.306 125.164i −0.226222 0.189643i
\(661\) −174.842 + 302.835i −0.264511 + 0.458147i −0.967435 0.253118i \(-0.918544\pi\)
0.702924 + 0.711265i \(0.251877\pi\)
\(662\) 147.593 + 550.825i 0.222950 + 0.832062i
\(663\) 95.1743 355.195i 0.143551 0.535739i
\(664\) 412.770i 0.621641i
\(665\) −104.516 1106.86i −0.157166 1.66445i
\(666\) 103.720 0.155736
\(667\) −330.382 88.5257i −0.495326 0.132722i
\(668\) −57.0608 + 15.2894i −0.0854203 + 0.0228883i
\(669\) −395.736 228.478i −0.591533 0.341522i
\(670\) −574.766 + 50.5558i −0.857860 + 0.0754564i
\(671\) −423.587 −0.631278
\(672\) 0.439855 + 68.5843i 0.000654545 + 0.102060i
\(673\) −861.883 861.883i −1.28066 1.28066i −0.940294 0.340364i \(-0.889450\pi\)
−0.340364 0.940294i \(-0.610550\pi\)
\(674\) 243.677 140.687i 0.361538 0.208734i
\(675\) 74.4104 106.480i 0.110238 0.157749i
\(676\) 100.756 174.514i 0.149047 0.258157i
\(677\) 954.281 + 255.699i 1.40957 + 0.377694i 0.881773 0.471674i \(-0.156350\pi\)
0.527801 + 0.849368i \(0.323017\pi\)
\(678\) −194.890 194.890i −0.287448 0.287448i
\(679\) 235.225 64.6480i 0.346428 0.0952106i
\(680\) 329.469 + 153.447i 0.484513 + 0.225657i
\(681\) −40.1110 69.4744i −0.0589002 0.102018i
\(682\) −49.4212 184.443i −0.0724651 0.270444i
\(683\) 531.889 142.519i 0.778753 0.208666i 0.152518 0.988301i \(-0.451262\pi\)
0.626235 + 0.779634i \(0.284595\pi\)
\(684\) 165.057 95.2956i 0.241311 0.139321i
\(685\) 1102.00 401.678i 1.60876 0.586391i
\(686\) 116.509 470.875i 0.169839 0.686407i
\(687\) −206.604 + 206.604i −0.300733 + 0.300733i
\(688\) 54.8983 204.883i 0.0797940 0.297795i
\(689\) −81.9101 47.2908i −0.118883 0.0686369i
\(690\) −497.259 87.4410i −0.720665 0.126726i
\(691\) 81.0298 + 140.348i 0.117265 + 0.203108i 0.918683 0.394996i \(-0.129254\pi\)
−0.801418 + 0.598104i \(0.795921\pi\)
\(692\) 305.133 305.133i 0.440944 0.440944i
\(693\) −116.794 + 205.324i −0.168535 + 0.296283i
\(694\) 622.610i 0.897133i
\(695\) −1116.78 + 98.2304i −1.60687 + 0.141339i
\(696\) 20.3235 35.2014i 0.0292004 0.0505767i
\(697\) −285.730 1066.36i −0.409943 1.52993i
\(698\) −103.838 + 387.530i −0.148766 + 0.555201i
\(699\) 384.773i 0.550462i
\(700\) −226.939 266.456i −0.324199 0.380651i
\(701\) −106.422 −0.151815 −0.0759076 0.997115i \(-0.524185\pi\)
−0.0759076 + 0.997115i \(0.524185\pi\)
\(702\) −58.6373 15.7118i −0.0835289 0.0223815i
\(703\) −750.105 + 200.990i −1.06701 + 0.285903i
\(704\) −77.9317 44.9939i −0.110698 0.0639117i
\(705\) −28.1529 320.069i −0.0399332 0.453998i
\(706\) −77.1914 −0.109336
\(707\) −973.182 + 570.220i −1.37650 + 0.806534i
\(708\) 148.708 + 148.708i 0.210039 + 0.210039i
\(709\) 517.345 298.689i 0.729682 0.421282i −0.0886236 0.996065i \(-0.528247\pi\)
0.818306 + 0.574783i \(0.194913\pi\)
\(710\) −1.46844 + 8.35074i −0.00206823 + 0.0117616i
\(711\) 123.003 213.047i 0.173000 0.299644i
\(712\) −39.8977 10.6906i −0.0560361 0.0150148i
\(713\) −349.900 349.900i −0.490743 0.490743i
\(714\) 111.319 426.367i 0.155909 0.597153i
\(715\) −159.113 436.524i −0.222535 0.610523i
\(716\) 152.961 + 264.936i 0.213632 + 0.370022i
\(717\) 19.0981 + 71.2751i 0.0266361 + 0.0994073i
\(718\) −402.953 + 107.971i −0.561216 + 0.150377i
\(719\) 781.019 450.921i 1.08626 0.627151i 0.153680 0.988121i \(-0.450888\pi\)
0.932577 + 0.360970i \(0.117554\pi\)
\(720\) 25.3317 54.3903i 0.0351829 0.0755421i
\(721\) 334.107 338.421i 0.463394 0.469377i
\(722\) −648.028 + 648.028i −0.897546 + 0.897546i
\(723\) −99.0112 + 369.515i −0.136945 + 0.511085i
\(724\) −107.009 61.7819i −0.147803 0.0853341i
\(725\) 36.2098 + 204.241i 0.0499445 + 0.281712i
\(726\) −6.77034 11.7266i −0.00932554 0.0161523i
\(727\) 985.007 985.007i 1.35489 1.35489i 0.474798 0.880095i \(-0.342521\pi\)
0.880095 0.474798i \(-0.157479\pi\)
\(728\) −80.8697 + 142.168i −0.111085 + 0.195286i
\(729\) 27.0000i 0.0370370i
\(730\) 44.3155 + 503.821i 0.0607062 + 0.690165i
\(731\) −681.400 + 1180.22i −0.932148 + 1.61453i
\(732\) −33.7627 126.004i −0.0461238 0.172137i
\(733\) 296.294 1105.78i 0.404220 1.50857i −0.401269 0.915960i \(-0.631431\pi\)
0.805489 0.592611i \(-0.201903\pi\)
\(734\) 13.7220i 0.0186948i
\(735\) −268.423 + 328.670i −0.365202 + 0.447170i
\(736\) −233.198 −0.316845
\(737\) −886.577 237.558i −1.20295 0.322331i
\(738\) −176.040 + 47.1697i −0.238536 + 0.0639156i
\(739\) −1074.61 620.424i −1.45413 0.839545i −0.455422 0.890276i \(-0.650512\pi\)
−0.998712 + 0.0507308i \(0.983845\pi\)
\(740\) −157.055 + 187.349i −0.212237 + 0.253174i
\(741\) 454.512 0.613377
\(742\) −98.5175 56.0398i −0.132773 0.0755253i
\(743\) 452.213 + 452.213i 0.608631 + 0.608631i 0.942588 0.333957i \(-0.108384\pi\)
−0.333957 + 0.942588i \(0.608384\pi\)
\(744\) 50.9267 29.4025i 0.0684498 0.0395195i
\(745\) 328.617 + 468.847i 0.441096 + 0.629325i
\(746\) 8.70110 15.0708i 0.0116637 0.0202021i
\(747\) 422.890 + 113.313i 0.566118 + 0.151691i
\(748\) 408.825 + 408.825i 0.546558 + 0.546558i
\(749\) 146.448 + 144.581i 0.195524 + 0.193032i
\(750\) 79.6608 + 295.642i 0.106214 + 0.394189i
\(751\) −169.151 292.978i −0.225234 0.390118i 0.731155 0.682211i \(-0.238981\pi\)
−0.956390 + 0.292093i \(0.905648\pi\)
\(752\) −38.4098 143.348i −0.0510769 0.190622i
\(753\) 276.197 74.0068i 0.366796 0.0982826i
\(754\) 83.9464 48.4665i 0.111335 0.0642791i
\(755\) 439.523 + 204.703i 0.582150 + 0.271130i
\(756\) −70.3867 18.3771i −0.0931041 0.0243083i
\(757\) 295.501 295.501i 0.390357 0.390357i −0.484457 0.874815i \(-0.660983\pi\)
0.874815 + 0.484457i \(0.160983\pi\)
\(758\) 105.330 393.096i 0.138958 0.518597i
\(759\) −695.560 401.582i −0.916416 0.529093i
\(760\) −77.8011 + 442.439i −0.102370 + 0.582157i
\(761\) −43.0586 74.5798i −0.0565817 0.0980023i 0.836347 0.548200i \(-0.184687\pi\)
−0.892929 + 0.450198i \(0.851353\pi\)
\(762\) 188.416 188.416i 0.247265 0.247265i
\(763\) −601.061 1025.82i −0.787760 1.34445i
\(764\) 44.5731i 0.0583417i