Properties

Label 210.3.v.a.163.3
Level 210
Weight 3
Character 210.163
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 163.3
Character \(\chi\) \(=\) 210.163
Dual form 210.3.v.a.67.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(0.626586 + 4.96058i) q^{5} -2.44949 q^{6} +(-6.84672 + 1.45688i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 + 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(0.626586 + 4.96058i) q^{5} -2.44949 q^{6} +(-6.84672 + 1.45688i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(-6.54694 + 2.67163i) q^{10} +(-6.59836 - 11.4287i) q^{11} +(-0.896575 - 3.34607i) q^{12} +(10.7755 + 10.7755i) q^{13} +(-4.49620 - 8.81953i) q^{14} +(-8.58011 - 1.17547i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-7.85475 - 2.10467i) q^{17} +(1.09808 - 4.09808i) q^{18} +(8.35848 + 4.82577i) q^{19} +(-6.04586 - 7.96540i) q^{20} +(0.631897 - 12.1079i) q^{21} +(13.1967 - 13.1967i) q^{22} +(-22.6417 + 6.06684i) q^{23} +(4.24264 - 2.44949i) q^{24} +(-24.2148 + 6.21646i) q^{25} +(-10.7755 + 18.6638i) q^{26} +(3.67423 - 3.67423i) q^{27} +(10.4020 - 9.37010i) q^{28} +41.4745i q^{29} +(-1.53482 - 12.1509i) q^{30} +(-18.0882 - 31.3297i) q^{31} +(5.46410 + 1.46410i) q^{32} +(22.0785 - 5.91593i) q^{33} -11.5001i q^{34} +(-11.5170 - 33.0508i) q^{35} +6.00000 q^{36} +(1.25630 + 4.68858i) q^{37} +(-3.53271 + 13.1843i) q^{38} +(-22.8583 + 13.1973i) q^{39} +(8.66800 - 11.1743i) q^{40} -7.31247 q^{41} +(16.7710 - 3.56860i) q^{42} +(48.7061 + 48.7061i) q^{43} +(22.8574 + 13.1967i) q^{44} +(5.81296 - 13.8279i) q^{45} +(-16.5749 - 28.7086i) q^{46} +(13.9237 + 51.9641i) q^{47} +(4.89898 + 4.89898i) q^{48} +(44.7550 - 19.9496i) q^{49} +(-17.3551 - 30.8026i) q^{50} +(7.04237 - 12.1977i) q^{51} +(-29.4393 - 7.88823i) q^{52} +(-12.1809 + 45.4596i) q^{53} +(6.36396 + 3.67423i) q^{54} +(52.5586 - 39.8928i) q^{55} +(16.6072 + 10.7797i) q^{56} +(-11.8207 + 11.8207i) q^{57} +(-56.6552 + 15.1807i) q^{58} +(1.15330 - 0.665857i) q^{59} +(16.0367 - 6.54413i) q^{60} +(-29.7996 + 51.6144i) q^{61} +(36.1764 - 36.1764i) q^{62} +(19.9736 + 6.48500i) q^{63} +8.00000i q^{64} +(-46.7011 + 60.2047i) q^{65} +(16.1626 + 27.9945i) q^{66} +(117.692 + 31.5356i) q^{67} +(15.7095 - 4.20935i) q^{68} -40.6001i q^{69} +(40.9328 - 27.8300i) q^{70} -82.6803 q^{71} +(2.19615 + 8.19615i) q^{72} +(-13.2814 + 49.5667i) q^{73} +(-5.94488 + 3.43228i) q^{74} +(0.454846 - 43.2989i) q^{75} -19.3031 q^{76} +(61.8273 + 68.6360i) q^{77} +(-26.3945 - 26.3945i) q^{78} +(26.3388 + 15.2067i) q^{79} +(18.4371 + 7.75061i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-2.67655 - 9.98902i) q^{82} +(-32.2690 - 32.2690i) q^{83} +(11.0134 + 21.6034i) q^{84} +(5.51873 - 40.2829i) q^{85} +(-48.7061 + 84.3614i) q^{86} +(-69.3881 - 18.5925i) q^{87} +(-9.66067 + 36.0541i) q^{88} +(19.1540 + 11.0586i) q^{89} +(21.0169 + 2.87930i) q^{90} +(-89.4755 - 58.0783i) q^{91} +(33.1498 - 33.1498i) q^{92} +(60.5243 - 16.2174i) q^{93} +(-65.8878 + 38.0403i) q^{94} +(-18.7013 + 44.4867i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(128.645 - 128.645i) q^{97} +(43.6332 + 53.8344i) q^{98} +39.5902i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) −0.448288 + 1.67303i −0.149429 + 0.557678i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 0.626586 + 4.96058i 0.125317 + 0.992117i
\(6\) −2.44949 −0.408248
\(7\) −6.84672 + 1.45688i −0.978102 + 0.208125i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) −6.54694 + 2.67163i −0.654694 + 0.267163i
\(11\) −6.59836 11.4287i −0.599851 1.03897i −0.992843 0.119430i \(-0.961893\pi\)
0.392992 0.919542i \(-0.371440\pi\)
\(12\) −0.896575 3.34607i −0.0747146 0.278839i
\(13\) 10.7755 + 10.7755i 0.828886 + 0.828886i 0.987363 0.158476i \(-0.0506582\pi\)
−0.158476 + 0.987363i \(0.550658\pi\)
\(14\) −4.49620 8.81953i −0.321157 0.629967i
\(15\) −8.58011 1.17547i −0.572007 0.0783647i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −7.85475 2.10467i −0.462044 0.123804i 0.0202855 0.999794i \(-0.493542\pi\)
−0.482329 + 0.875990i \(0.660209\pi\)
\(18\) 1.09808 4.09808i 0.0610042 0.227671i
\(19\) 8.35848 + 4.82577i 0.439920 + 0.253988i 0.703564 0.710632i \(-0.251591\pi\)
−0.263644 + 0.964620i \(0.584924\pi\)
\(20\) −6.04586 7.96540i −0.302293 0.398270i
\(21\) 0.631897 12.1079i 0.0300903 0.576566i
\(22\) 13.1967 13.1967i 0.599851 0.599851i
\(23\) −22.6417 + 6.06684i −0.984424 + 0.263776i −0.714907 0.699220i \(-0.753531\pi\)
−0.269517 + 0.962996i \(0.586864\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) −24.2148 + 6.21646i −0.968591 + 0.248658i
\(26\) −10.7755 + 18.6638i −0.414443 + 0.717837i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) 10.4020 9.37010i 0.371499 0.334646i
\(29\) 41.4745i 1.43015i 0.699046 + 0.715077i \(0.253608\pi\)
−0.699046 + 0.715077i \(0.746392\pi\)
\(30\) −1.53482 12.1509i −0.0511605 0.405030i
\(31\) −18.0882 31.3297i −0.583490 1.01063i −0.995062 0.0992569i \(-0.968353\pi\)
0.411572 0.911377i \(-0.364980\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 22.0785 5.91593i 0.669047 0.179271i
\(34\) 11.5001i 0.338240i
\(35\) −11.5170 33.0508i −0.329057 0.944310i
\(36\) 6.00000 0.166667
\(37\) 1.25630 + 4.68858i 0.0339541 + 0.126718i 0.980823 0.194902i \(-0.0624390\pi\)
−0.946869 + 0.321621i \(0.895772\pi\)
\(38\) −3.53271 + 13.1843i −0.0929661 + 0.346954i
\(39\) −22.8583 + 13.1973i −0.586111 + 0.338391i
\(40\) 8.66800 11.1743i 0.216700 0.279358i
\(41\) −7.31247 −0.178353 −0.0891764 0.996016i \(-0.528424\pi\)
−0.0891764 + 0.996016i \(0.528424\pi\)
\(42\) 16.7710 3.56860i 0.399309 0.0849668i
\(43\) 48.7061 + 48.7061i 1.13270 + 1.13270i 0.989727 + 0.142972i \(0.0456660\pi\)
0.142972 + 0.989727i \(0.454334\pi\)
\(44\) 22.8574 + 13.1967i 0.519486 + 0.299925i
\(45\) 5.81296 13.8279i 0.129177 0.307286i
\(46\) −16.5749 28.7086i −0.360324 0.624100i
\(47\) 13.9237 + 51.9641i 0.296250 + 1.10562i 0.940220 + 0.340568i \(0.110619\pi\)
−0.643970 + 0.765051i \(0.722714\pi\)
\(48\) 4.89898 + 4.89898i 0.102062 + 0.102062i
\(49\) 44.7550 19.9496i 0.913368 0.407135i
\(50\) −17.3551 30.8026i −0.347101 0.616052i
\(51\) 7.04237 12.1977i 0.138086 0.239172i
\(52\) −29.4393 7.88823i −0.566140 0.151697i
\(53\) −12.1809 + 45.4596i −0.229827 + 0.857728i 0.750585 + 0.660774i \(0.229772\pi\)
−0.980413 + 0.196954i \(0.936895\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) 52.5586 39.8928i 0.955610 0.725323i
\(56\) 16.6072 + 10.7797i 0.296557 + 0.192494i
\(57\) −11.8207 + 11.8207i −0.207380 + 0.207380i
\(58\) −56.6552 + 15.1807i −0.976813 + 0.261736i
\(59\) 1.15330 0.665857i 0.0195474 0.0112857i −0.490194 0.871613i \(-0.663074\pi\)
0.509742 + 0.860327i \(0.329741\pi\)
\(60\) 16.0367 6.54413i 0.267278 0.109069i
\(61\) −29.7996 + 51.6144i −0.488518 + 0.846138i −0.999913 0.0132077i \(-0.995796\pi\)
0.511395 + 0.859346i \(0.329129\pi\)
\(62\) 36.1764 36.1764i 0.583490 0.583490i
\(63\) 19.9736 + 6.48500i 0.317041 + 0.102936i
\(64\) 8.00000i 0.125000i
\(65\) −46.7011 + 60.2047i −0.718478 + 0.926226i
\(66\) 16.1626 + 27.9945i 0.244888 + 0.424159i
\(67\) 117.692 + 31.5356i 1.75660 + 0.470680i 0.986015 0.166654i \(-0.0532964\pi\)
0.770587 + 0.637335i \(0.219963\pi\)
\(68\) 15.7095 4.20935i 0.231022 0.0619021i
\(69\) 40.6001i 0.588407i
\(70\) 40.9328 27.8300i 0.584754 0.397571i
\(71\) −82.6803 −1.16451 −0.582256 0.813006i \(-0.697830\pi\)
−0.582256 + 0.813006i \(0.697830\pi\)
\(72\) 2.19615 + 8.19615i 0.0305021 + 0.113835i
\(73\) −13.2814 + 49.5667i −0.181936 + 0.678996i 0.813329 + 0.581804i \(0.197653\pi\)
−0.995266 + 0.0971923i \(0.969014\pi\)
\(74\) −5.94488 + 3.43228i −0.0803362 + 0.0463821i
\(75\) 0.454846 43.2989i 0.00606461 0.577318i
\(76\) −19.3031 −0.253988
\(77\) 61.8273 + 68.6360i 0.802952 + 0.891377i
\(78\) −26.3945 26.3945i −0.338391 0.338391i
\(79\) 26.3388 + 15.2067i 0.333403 + 0.192490i 0.657351 0.753585i \(-0.271677\pi\)
−0.323948 + 0.946075i \(0.605010\pi\)
\(80\) 18.4371 + 7.75061i 0.230464 + 0.0968826i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −2.67655 9.98902i −0.0326408 0.121817i
\(83\) −32.2690 32.2690i −0.388784 0.388784i 0.485470 0.874253i \(-0.338649\pi\)
−0.874253 + 0.485470i \(0.838649\pi\)
\(84\) 11.0134 + 21.6034i 0.131112 + 0.257183i
\(85\) 5.51873 40.2829i 0.0649263 0.473916i
\(86\) −48.7061 + 84.3614i −0.566350 + 0.980946i
\(87\) −69.3881 18.5925i −0.797565 0.213707i
\(88\) −9.66067 + 36.0541i −0.109780 + 0.409706i
\(89\) 19.1540 + 11.0586i 0.215214 + 0.124254i 0.603732 0.797187i \(-0.293680\pi\)
−0.388518 + 0.921441i \(0.627013\pi\)
\(90\) 21.0169 + 2.87930i 0.233521 + 0.0319923i
\(91\) −89.4755 58.0783i −0.983248 0.638223i
\(92\) 33.1498 33.1498i 0.360324 0.360324i
\(93\) 60.5243 16.2174i 0.650798 0.174381i
\(94\) −65.8878 + 38.0403i −0.700934 + 0.404685i
\(95\) −18.7013 + 44.4867i −0.196856 + 0.468281i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) 128.645 128.645i 1.32623 1.32623i 0.417603 0.908630i \(-0.362870\pi\)
0.908630 0.417603i \(-0.137130\pi\)
\(98\) 43.6332 + 53.8344i 0.445237 + 0.549331i
\(99\) 39.5902i 0.399901i
\(100\) 35.7248 34.9820i 0.357248 0.349820i
\(101\) 25.4347 + 44.0541i 0.251828 + 0.436179i 0.964029 0.265796i \(-0.0856348\pi\)
−0.712201 + 0.701976i \(0.752302\pi\)
\(102\) 19.2401 + 5.15537i 0.188629 + 0.0505429i
\(103\) 118.462 31.7417i 1.15011 0.308172i 0.367102 0.930181i \(-0.380350\pi\)
0.783010 + 0.622009i \(0.213683\pi\)
\(104\) 43.1021i 0.414443i
\(105\) 60.4581 4.45205i 0.575791 0.0424004i
\(106\) −66.5574 −0.627900
\(107\) −50.1735 187.250i −0.468912 1.75000i −0.643584 0.765375i \(-0.722553\pi\)
0.174673 0.984627i \(-0.444113\pi\)
\(108\) −2.68973 + 10.0382i −0.0249049 + 0.0929463i
\(109\) −58.3978 + 33.7160i −0.535760 + 0.309321i −0.743359 0.668893i \(-0.766768\pi\)
0.207599 + 0.978214i \(0.433435\pi\)
\(110\) 73.7323 + 57.1946i 0.670294 + 0.519951i
\(111\) −8.40733 −0.0757417
\(112\) −8.64666 + 26.6315i −0.0772023 + 0.237781i
\(113\) 85.9828 + 85.9828i 0.760910 + 0.760910i 0.976487 0.215577i \(-0.0691632\pi\)
−0.215577 + 0.976487i \(0.569163\pi\)
\(114\) −20.4740 11.8207i −0.179597 0.103690i
\(115\) −44.2820 108.515i −0.385061 0.943608i
\(116\) −41.4745 71.8359i −0.357538 0.619275i
\(117\) −11.8323 44.1589i −0.101131 0.377427i
\(118\) 1.33171 + 1.33171i 0.0112857 + 0.0112857i
\(119\) 56.8455 + 2.96670i 0.477693 + 0.0249303i
\(120\) 14.8093 + 19.5112i 0.123411 + 0.162593i
\(121\) −26.5767 + 46.0322i −0.219642 + 0.380432i
\(122\) −81.4140 21.8148i −0.667328 0.178810i
\(123\) 3.27809 12.2340i 0.0266511 0.0994634i
\(124\) 62.6593 + 36.1764i 0.505317 + 0.291745i
\(125\) −46.0099 116.224i −0.368079 0.929794i
\(126\) −1.54783 + 29.6581i −0.0122843 + 0.235382i
\(127\) −111.649 + 111.649i −0.879125 + 0.879125i −0.993444 0.114319i \(-0.963531\pi\)
0.114319 + 0.993444i \(0.463531\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) −103.321 + 59.6525i −0.800939 + 0.462422i
\(130\) −99.3349 41.7584i −0.764115 0.321219i
\(131\) 36.8045 63.7473i 0.280951 0.486621i −0.690669 0.723171i \(-0.742684\pi\)
0.971619 + 0.236551i \(0.0760170\pi\)
\(132\) −32.3252 + 32.3252i −0.244888 + 0.244888i
\(133\) −64.2587 20.8634i −0.483148 0.156868i
\(134\) 172.314i 1.28592i
\(135\) 20.5286 + 15.9241i 0.152063 + 0.117956i
\(136\) 11.5001 + 19.9188i 0.0845599 + 0.146462i
\(137\) −230.343 61.7203i −1.68134 0.450513i −0.713207 0.700953i \(-0.752758\pi\)
−0.968132 + 0.250440i \(0.919425\pi\)
\(138\) 55.4607 14.8607i 0.401889 0.107686i
\(139\) 185.128i 1.33186i −0.746015 0.665930i \(-0.768035\pi\)
0.746015 0.665930i \(-0.231965\pi\)
\(140\) 52.9989 + 45.7287i 0.378564 + 0.326634i
\(141\) −93.1794 −0.660847
\(142\) −30.2631 112.943i −0.213120 0.795376i
\(143\) 52.0494 194.251i 0.363982 1.35840i
\(144\) −10.3923 + 6.00000i −0.0721688 + 0.0416667i
\(145\) −205.738 + 25.9873i −1.41888 + 0.179223i
\(146\) −72.5707 −0.497060
\(147\) 13.3133 + 83.8198i 0.0905664 + 0.570203i
\(148\) −6.86455 6.86455i −0.0463821 0.0463821i
\(149\) 43.7077 + 25.2346i 0.293340 + 0.169360i 0.639447 0.768835i \(-0.279163\pi\)
−0.346107 + 0.938195i \(0.612497\pi\)
\(150\) 59.3139 15.2272i 0.395426 0.101514i
\(151\) −16.5824 28.7216i −0.109817 0.190209i 0.805879 0.592080i \(-0.201693\pi\)
−0.915696 + 0.401871i \(0.868360\pi\)
\(152\) −7.06542 26.3685i −0.0464830 0.173477i
\(153\) 17.2502 + 17.2502i 0.112747 + 0.112747i
\(154\) −71.1282 + 109.580i −0.461871 + 0.711560i
\(155\) 144.080 109.359i 0.929546 0.705540i
\(156\) 26.3945 45.7167i 0.169196 0.293056i
\(157\) 218.642 + 58.5850i 1.39262 + 0.373153i 0.875690 0.482873i \(-0.160407\pi\)
0.516934 + 0.856025i \(0.327073\pi\)
\(158\) −11.1321 + 41.5456i −0.0704564 + 0.262947i
\(159\) −70.5948 40.7579i −0.443992 0.256339i
\(160\) −3.83907 + 28.0225i −0.0239942 + 0.175141i
\(161\) 146.183 74.5241i 0.907969 0.462883i
\(162\) −9.00000 + 9.00000i −0.0555556 + 0.0555556i
\(163\) −166.784 + 44.6896i −1.02321 + 0.274169i −0.731141 0.682227i \(-0.761012\pi\)
−0.292073 + 0.956396i \(0.594345\pi\)
\(164\) 12.6656 7.31247i 0.0772291 0.0445882i
\(165\) 43.1806 + 105.816i 0.261700 + 0.641307i
\(166\) 32.2690 55.8916i 0.194392 0.336697i
\(167\) −158.459 + 158.459i −0.948854 + 0.948854i −0.998754 0.0498998i \(-0.984110\pi\)
0.0498998 + 0.998754i \(0.484110\pi\)
\(168\) −25.4795 + 22.9520i −0.151664 + 0.136619i
\(169\) 63.2238i 0.374105i
\(170\) 57.0474 7.20583i 0.335573 0.0423872i
\(171\) −14.4773 25.0755i −0.0846627 0.146640i
\(172\) −133.067 35.6553i −0.773648 0.207298i
\(173\) 40.8069 10.9342i 0.235878 0.0632033i −0.138944 0.990300i \(-0.544371\pi\)
0.374822 + 0.927097i \(0.377704\pi\)
\(174\) 101.591i 0.583858i
\(175\) 156.735 77.8403i 0.895629 0.444802i
\(176\) −52.7869 −0.299925
\(177\) 0.596991 + 2.22800i 0.00337283 + 0.0125876i
\(178\) −8.09545 + 30.2126i −0.0454800 + 0.169734i
\(179\) −294.348 + 169.942i −1.64440 + 0.949398i −0.665164 + 0.746697i \(0.731638\pi\)
−0.979241 + 0.202700i \(0.935028\pi\)
\(180\) 3.75951 + 29.7635i 0.0208862 + 0.165353i
\(181\) 37.6015 0.207743 0.103871 0.994591i \(-0.466877\pi\)
0.103871 + 0.994591i \(0.466877\pi\)
\(182\) 46.5862 143.484i 0.255968 0.788374i
\(183\) −72.9938 72.9938i −0.398873 0.398873i
\(184\) 57.4172 + 33.1498i 0.312050 + 0.180162i
\(185\) −22.4709 + 9.16978i −0.121464 + 0.0495664i
\(186\) 44.3068 + 76.7417i 0.238209 + 0.412590i
\(187\) 27.7748 + 103.657i 0.148528 + 0.554315i
\(188\) −76.0807 76.0807i −0.404685 0.404685i
\(189\) −19.8035 + 30.5093i −0.104781 + 0.161425i
\(190\) −67.6152 9.26324i −0.355869 0.0487539i
\(191\) 141.603 245.263i 0.741375 1.28410i −0.210495 0.977595i \(-0.567508\pi\)
0.951870 0.306503i \(-0.0991591\pi\)
\(192\) −13.3843 3.58630i −0.0697097 0.0186787i
\(193\) −40.9517 + 152.834i −0.212185 + 0.791885i 0.774954 + 0.632018i \(0.217773\pi\)
−0.987139 + 0.159867i \(0.948894\pi\)
\(194\) 222.819 + 128.645i 1.14855 + 0.663116i
\(195\) −79.7889 105.121i −0.409174 0.539084i
\(196\) −57.5683 + 79.3088i −0.293716 + 0.404637i
\(197\) 188.004 188.004i 0.954337 0.954337i −0.0446654 0.999002i \(-0.514222\pi\)
0.999002 + 0.0446654i \(0.0142222\pi\)
\(198\) −54.0812 + 14.4910i −0.273137 + 0.0731869i
\(199\) −4.52064 + 2.60999i −0.0227168 + 0.0131155i −0.511315 0.859393i \(-0.670842\pi\)
0.488599 + 0.872509i \(0.337508\pi\)
\(200\) 60.8625 + 35.9966i 0.304312 + 0.179983i
\(201\) −105.520 + 182.766i −0.524976 + 0.909284i
\(202\) −50.8693 + 50.8693i −0.251828 + 0.251828i
\(203\) −60.4232 283.964i −0.297651 1.39884i
\(204\) 28.1695i 0.138086i
\(205\) −4.58189 36.2741i −0.0223507 0.176947i
\(206\) 86.7199 + 150.203i 0.420970 + 0.729142i
\(207\) 67.9252 + 18.2005i 0.328141 + 0.0879252i
\(208\) 58.8786 15.7765i 0.283070 0.0758484i
\(209\) 127.369i 0.609420i
\(210\) 28.2108 + 80.9577i 0.134337 + 0.385513i
\(211\) 49.9660 0.236806 0.118403 0.992966i \(-0.462223\pi\)
0.118403 + 0.992966i \(0.462223\pi\)
\(212\) −24.3617 90.9191i −0.114914 0.428864i
\(213\) 37.0646 138.327i 0.174012 0.649422i
\(214\) 237.424 137.077i 1.10946 0.640545i
\(215\) −211.092 + 272.129i −0.981823 + 1.26572i
\(216\) −14.6969 −0.0680414
\(217\) 169.488 + 188.153i 0.781051 + 0.867065i
\(218\) −67.4320 67.4320i −0.309321 0.309321i
\(219\) −76.9729 44.4403i −0.351474 0.202924i
\(220\) −51.1413 + 121.655i −0.232461 + 0.552977i
\(221\) −61.9601 107.318i −0.280362 0.485602i
\(222\) −3.07730 11.4846i −0.0138617 0.0517325i
\(223\) 211.407 + 211.407i 0.948013 + 0.948013i 0.998714 0.0507005i \(-0.0161454\pi\)
−0.0507005 + 0.998714i \(0.516145\pi\)
\(224\) −39.5442 2.06377i −0.176536 0.00921324i
\(225\) 72.2365 + 20.1713i 0.321051 + 0.0896504i
\(226\) −85.9828 + 148.927i −0.380455 + 0.658967i
\(227\) −43.7476 11.7221i −0.192721 0.0516393i 0.161168 0.986927i \(-0.448474\pi\)
−0.353888 + 0.935288i \(0.615141\pi\)
\(228\) 8.65334 32.2947i 0.0379532 0.141643i
\(229\) 84.7804 + 48.9480i 0.370220 + 0.213747i 0.673555 0.739138i \(-0.264767\pi\)
−0.303335 + 0.952884i \(0.598100\pi\)
\(230\) 132.026 100.210i 0.574025 0.435694i
\(231\) −142.547 + 72.6704i −0.617085 + 0.314590i
\(232\) 82.9489 82.9489i 0.357538 0.357538i
\(233\) 176.069 47.1774i 0.755659 0.202478i 0.139632 0.990203i \(-0.455408\pi\)
0.616027 + 0.787725i \(0.288741\pi\)
\(234\) 55.9913 32.3266i 0.239279 0.138148i
\(235\) −249.048 + 101.630i −1.05978 + 0.432467i
\(236\) −1.33171 + 2.30660i −0.00564286 + 0.00977372i
\(237\) −37.2488 + 37.2488i −0.157168 + 0.157168i
\(238\) 16.7543 + 78.7382i 0.0703962 + 0.330833i
\(239\) 68.1419i 0.285112i 0.989787 + 0.142556i \(0.0455322\pi\)
−0.989787 + 0.142556i \(0.954468\pi\)
\(240\) −21.2322 + 27.3714i −0.0884674 + 0.114048i
\(241\) 136.691 + 236.756i 0.567183 + 0.982389i 0.996843 + 0.0793984i \(0.0252999\pi\)
−0.429660 + 0.902991i \(0.641367\pi\)
\(242\) −72.6089 19.4555i −0.300037 0.0803946i
\(243\) −15.0573 + 4.03459i −0.0619642 + 0.0166032i
\(244\) 119.198i 0.488518i
\(245\) 127.005 + 209.511i 0.518387 + 0.855146i
\(246\) 17.9118 0.0728123
\(247\) 38.0668 + 142.067i 0.154117 + 0.575171i
\(248\) −26.4829 + 98.8357i −0.106786 + 0.398531i
\(249\) 68.4530 39.5214i 0.274912 0.158720i
\(250\) 141.925 105.392i 0.567698 0.421567i
\(251\) 102.144 0.406947 0.203473 0.979081i \(-0.434777\pi\)
0.203473 + 0.979081i \(0.434777\pi\)
\(252\) −41.0803 + 8.74126i −0.163017 + 0.0346875i
\(253\) 218.734 + 218.734i 0.864563 + 0.864563i
\(254\) −193.381 111.649i −0.761344 0.439562i
\(255\) 64.9206 + 27.2913i 0.254591 + 0.107025i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 92.3792 + 344.764i 0.359452 + 1.34149i 0.874788 + 0.484506i \(0.161000\pi\)
−0.515336 + 0.856988i \(0.672333\pi\)
\(258\) −119.305 119.305i −0.462422 0.462422i
\(259\) −15.4322 30.2711i −0.0595838 0.116877i
\(260\) 20.6840 150.979i 0.0795538 0.580687i
\(261\) 62.2117 107.754i 0.238359 0.412850i
\(262\) 100.552 + 26.9428i 0.383786 + 0.102835i
\(263\) 50.0033 186.615i 0.190126 0.709562i −0.803348 0.595509i \(-0.796950\pi\)
0.993475 0.114052i \(-0.0363831\pi\)
\(264\) −55.9889 32.3252i −0.212079 0.122444i
\(265\) −233.138 31.9398i −0.879767 0.120528i
\(266\) 4.97963 95.4156i 0.0187204 0.358705i
\(267\) −27.0879 + 27.0879i −0.101453 + 0.101453i
\(268\) −235.385 + 63.0712i −0.878301 + 0.235340i
\(269\) 244.880 141.381i 0.910334 0.525582i 0.0297956 0.999556i \(-0.490514\pi\)
0.880539 + 0.473974i \(0.157181\pi\)
\(270\) −14.2388 + 33.8712i −0.0527362 + 0.125449i
\(271\) 256.230 443.803i 0.945497 1.63765i 0.190745 0.981640i \(-0.438910\pi\)
0.754752 0.656010i \(-0.227757\pi\)
\(272\) −23.0003 + 23.0003i −0.0845599 + 0.0845599i
\(273\) 137.278 123.660i 0.502849 0.452966i
\(274\) 337.246i 1.23083i
\(275\) 230.824 + 235.725i 0.839360 + 0.857181i
\(276\) 40.6001 + 70.3214i 0.147102 + 0.254788i
\(277\) 128.464 + 34.4217i 0.463767 + 0.124266i 0.483134 0.875546i \(-0.339498\pi\)
−0.0193668 + 0.999812i \(0.506165\pi\)
\(278\) 252.890 67.7617i 0.909677 0.243747i
\(279\) 108.529i 0.388993i
\(280\) −43.0677 + 89.1357i −0.153813 + 0.318342i
\(281\) 456.720 1.62534 0.812670 0.582724i \(-0.198013\pi\)
0.812670 + 0.582724i \(0.198013\pi\)
\(282\) −34.1060 127.285i −0.120943 0.451367i
\(283\) 24.2323 90.4360i 0.0856264 0.319562i −0.909806 0.415034i \(-0.863770\pi\)
0.995432 + 0.0954725i \(0.0304362\pi\)
\(284\) 143.207 82.6803i 0.504248 0.291128i
\(285\) −66.0441 51.2308i −0.231734 0.179757i
\(286\) 284.403 0.994417
\(287\) 50.0664 10.6534i 0.174447 0.0371197i
\(288\) −12.0000 12.0000i −0.0416667 0.0416667i
\(289\) −193.014 111.437i −0.667868 0.385594i
\(290\) −110.804 271.531i −0.382084 0.936313i
\(291\) 157.557 + 272.896i 0.541432 + 0.937788i
\(292\) −26.5627 99.1334i −0.0909682 0.339498i
\(293\) 41.1011 + 41.1011i 0.140277 + 0.140277i 0.773758 0.633481i \(-0.218375\pi\)
−0.633481 + 0.773758i \(0.718375\pi\)
\(294\) −109.627 + 48.8664i −0.372881 + 0.166212i
\(295\) 4.02568 + 5.30382i 0.0136464 + 0.0179790i
\(296\) 6.86455 11.8898i 0.0231911 0.0401681i
\(297\) −66.2356 17.7478i −0.223016 0.0597568i
\(298\) −18.4730 + 68.9423i −0.0619900 + 0.231350i
\(299\) −309.350 178.603i −1.03462 0.597335i
\(300\) 42.5111 + 75.4507i 0.141704 + 0.251502i
\(301\) −404.435 262.518i −1.34364 0.872152i
\(302\) 33.1648 33.1648i 0.109817 0.109817i
\(303\) −85.1060 + 22.8041i −0.280878 + 0.0752610i
\(304\) 33.4339 19.3031i 0.109980 0.0634970i
\(305\) −274.710 115.483i −0.900688 0.378631i
\(306\) −17.2502 + 29.8783i −0.0563733 + 0.0976414i
\(307\) −219.450 + 219.450i −0.714822 + 0.714822i −0.967540 0.252718i \(-0.918676\pi\)
0.252718 + 0.967540i \(0.418676\pi\)
\(308\) −175.724 57.0538i −0.570533 0.185240i
\(309\) 212.419i 0.687442i
\(310\) 202.124 + 156.788i 0.652011 + 0.505769i
\(311\) 239.292 + 414.465i 0.769427 + 1.33269i 0.937874 + 0.346976i \(0.112791\pi\)
−0.168447 + 0.985711i \(0.553875\pi\)
\(312\) 72.1112 + 19.3221i 0.231126 + 0.0619299i
\(313\) −370.684 + 99.3245i −1.18429 + 0.317331i −0.796628 0.604470i \(-0.793385\pi\)
−0.387666 + 0.921800i \(0.626718\pi\)
\(314\) 320.114i 1.01947i
\(315\) −19.6542 + 103.144i −0.0623943 + 0.327442i
\(316\) −60.8270 −0.192490
\(317\) −37.9902 141.782i −0.119843 0.447260i 0.879760 0.475417i \(-0.157703\pi\)
−0.999604 + 0.0281569i \(0.991036\pi\)
\(318\) 29.8369 111.353i 0.0938267 0.350166i
\(319\) 473.999 273.663i 1.48589 0.857879i
\(320\) −39.6847 + 5.01269i −0.124015 + 0.0156646i
\(321\) 335.768 1.04601
\(322\) 155.309 + 172.412i 0.482325 + 0.535441i
\(323\) −55.4971 55.4971i −0.171818 0.171818i
\(324\) −15.5885 9.00000i −0.0481125 0.0277778i
\(325\) −327.913 193.941i −1.00896 0.596742i
\(326\) −122.094 211.473i −0.374522 0.648692i
\(327\) −30.2289 112.816i −0.0924432 0.345003i
\(328\) 14.6249 + 14.6249i 0.0445882 + 0.0445882i
\(329\) −171.037 335.498i −0.519870 1.01975i
\(330\) −128.742 + 97.7169i −0.390126 + 0.296112i
\(331\) 29.0788 50.3660i 0.0878515 0.152163i −0.818751 0.574148i \(-0.805333\pi\)
0.906603 + 0.421985i \(0.138667\pi\)
\(332\) 88.1607 + 23.6226i 0.265544 + 0.0711524i
\(333\) 3.76890 14.0657i 0.0113180 0.0422394i
\(334\) −274.459 158.459i −0.821732 0.474427i
\(335\) −82.6905 + 603.583i −0.246837 + 1.80174i
\(336\) −40.6791 26.4047i −0.121069 0.0785854i
\(337\) −296.066 + 296.066i −0.878534 + 0.878534i −0.993383 0.114849i \(-0.963362\pi\)
0.114849 + 0.993383i \(0.463362\pi\)
\(338\) −86.3653 + 23.1415i −0.255519 + 0.0684660i
\(339\) −182.397 + 105.307i −0.538045 + 0.310640i
\(340\) 30.7242 + 75.2907i 0.0903652 + 0.221443i
\(341\) −238.705 + 413.449i −0.700014 + 1.21246i
\(342\) 28.9546 28.9546i 0.0846627 0.0846627i
\(343\) −277.361 + 201.792i −0.808632 + 0.588315i
\(344\) 194.824i 0.566350i
\(345\) 201.400 25.4394i 0.583768 0.0737375i
\(346\) 29.8727 + 51.7411i 0.0863373 + 0.149541i
\(347\) 124.162 + 33.2690i 0.357814 + 0.0958760i 0.433248 0.901275i \(-0.357367\pi\)
−0.0754337 + 0.997151i \(0.524034\pi\)
\(348\) 138.776 37.1850i 0.398782 0.106853i
\(349\) 335.241i 0.960576i −0.877111 0.480288i \(-0.840532\pi\)
0.877111 0.480288i \(-0.159468\pi\)
\(350\) 163.701 + 185.613i 0.467717 + 0.530322i
\(351\) 79.1836 0.225594
\(352\) −19.3213 72.1082i −0.0548902 0.204853i
\(353\) 7.50598 28.0127i 0.0212634 0.0793561i −0.954479 0.298279i \(-0.903588\pi\)
0.975742 + 0.218923i \(0.0702542\pi\)
\(354\) −2.82499 + 1.63101i −0.00798021 + 0.00460737i
\(355\) −51.8063 410.143i −0.145933 1.15533i
\(356\) −44.2343 −0.124254
\(357\) −30.4465 + 93.7744i −0.0852844 + 0.262673i
\(358\) −339.884 339.884i −0.949398 0.949398i
\(359\) 237.071 + 136.873i 0.660366 + 0.381262i 0.792416 0.609981i \(-0.208823\pi\)
−0.132050 + 0.991243i \(0.542156\pi\)
\(360\) −39.2816 + 16.0298i −0.109116 + 0.0445272i
\(361\) −133.924 231.963i −0.370980 0.642556i
\(362\) 13.7631 + 51.3646i 0.0380196 + 0.141891i
\(363\) −65.0994 65.0994i −0.179337 0.179337i
\(364\) 213.055 + 11.1191i 0.585315 + 0.0305469i
\(365\) −254.202 34.8255i −0.696443 0.0954123i
\(366\) 72.9938 126.429i 0.199437 0.345434i
\(367\) −273.270 73.2224i −0.744604 0.199516i −0.133481 0.991051i \(-0.542615\pi\)
−0.611123 + 0.791535i \(0.709282\pi\)
\(368\) −24.2673 + 90.5670i −0.0659439 + 0.246106i
\(369\) 18.9984 + 10.9687i 0.0514860 + 0.0297255i
\(370\) −20.7511 27.3394i −0.0560840 0.0738904i
\(371\) 17.1699 328.995i 0.0462800 0.886778i
\(372\) −88.6137 + 88.6137i −0.238209 + 0.238209i
\(373\) −324.416 + 86.9270i −0.869747 + 0.233048i −0.665979 0.745971i \(-0.731986\pi\)
−0.203769 + 0.979019i \(0.565319\pi\)
\(374\) −131.432 + 75.8821i −0.351422 + 0.202893i
\(375\) 215.073 24.8742i 0.573527 0.0663311i
\(376\) 76.0807 131.776i 0.202342 0.350467i
\(377\) −446.909 + 446.909i −1.18544 + 1.18544i
\(378\) −48.9251 15.8849i −0.129432 0.0420236i
\(379\) 479.313i 1.26468i 0.774692 + 0.632339i \(0.217905\pi\)
−0.774692 + 0.632339i \(0.782095\pi\)
\(380\) −12.0950 95.7546i −0.0318291 0.251986i
\(381\) −136.741 236.843i −0.358901 0.621635i
\(382\) 386.865 + 103.660i 1.01274 + 0.271362i
\(383\) −394.771 + 105.779i −1.03073 + 0.276184i −0.734268 0.678859i \(-0.762475\pi\)
−0.296465 + 0.955044i \(0.595808\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) −301.735 + 349.706i −0.783726 + 0.908327i
\(386\) −223.764 −0.579700
\(387\) −53.4830 199.601i −0.138199 0.515765i
\(388\) −94.1744 + 351.464i −0.242717 + 0.905834i
\(389\) −427.944 + 247.074i −1.10011 + 0.635151i −0.936251 0.351332i \(-0.885729\pi\)
−0.163863 + 0.986483i \(0.552395\pi\)
\(390\) 114.394 147.471i 0.293318 0.378130i
\(391\) 190.614 0.487504
\(392\) −129.409 49.6108i −0.330126 0.126558i
\(393\) 90.1523 + 90.1523i 0.229395 + 0.229395i
\(394\) 325.633 + 188.004i 0.826480 + 0.477168i
\(395\) −58.9308 + 140.184i −0.149192 + 0.354897i
\(396\) −39.5902 68.5722i −0.0999752 0.173162i
\(397\) −149.301 557.198i −0.376073 1.40352i −0.851771 0.523914i \(-0.824471\pi\)
0.475699 0.879608i \(-0.342195\pi\)
\(398\) −5.21998 5.21998i −0.0131155 0.0131155i
\(399\) 63.7116 98.1541i 0.159678 0.246000i
\(400\) −26.8951 + 96.3154i −0.0672378 + 0.240788i
\(401\) −200.253 + 346.849i −0.499384 + 0.864959i −1.00000 0.000710769i \(-0.999774\pi\)
0.500615 + 0.865670i \(0.333107\pi\)
\(402\) −288.286 77.2461i −0.717130 0.192154i
\(403\) 142.684 532.503i 0.354054 1.32135i
\(404\) −88.1083 50.8693i −0.218090 0.125914i
\(405\) −35.8443 + 27.2064i −0.0885044 + 0.0671762i
\(406\) 365.785 186.478i 0.900949 0.459304i
\(407\) 45.2948 45.2948i 0.111289 0.111289i
\(408\) −38.4802 + 10.3107i −0.0943143 + 0.0252714i
\(409\) 579.420 334.528i 1.41667 0.817917i 0.420669 0.907214i \(-0.361795\pi\)
0.996005 + 0.0892974i \(0.0284621\pi\)
\(410\) 47.8743 19.5362i 0.116767 0.0476493i
\(411\) 206.520 357.704i 0.502482 0.870325i
\(412\) −173.440 + 173.440i −0.420970 + 0.420970i
\(413\) −6.92624 + 6.23915i −0.0167705 + 0.0151069i
\(414\) 99.4494i 0.240216i
\(415\) 139.854 180.293i 0.336998 0.434440i
\(416\) 43.1021 + 74.6550i 0.103611 + 0.179459i
\(417\) 309.726 + 82.9908i 0.742748 + 0.199019i
\(418\) 173.989 46.6202i 0.416241 0.111532i
\(419\) 19.3686i 0.0462258i 0.999733 + 0.0231129i \(0.00735772\pi\)
−0.999733 + 0.0231129i \(0.992642\pi\)
\(420\) −100.264 + 68.1692i −0.238725 + 0.162308i
\(421\) −337.581 −0.801854 −0.400927 0.916110i \(-0.631312\pi\)
−0.400927 + 0.916110i \(0.631312\pi\)
\(422\) 18.2888 + 68.2548i 0.0433384 + 0.161741i
\(423\) 41.7712 155.892i 0.0987499 0.368540i
\(424\) 115.281 66.5574i 0.271889 0.156975i
\(425\) 203.285 + 2.13546i 0.478317 + 0.00502462i
\(426\) 202.525 0.475410
\(427\) 128.834 396.804i 0.301718 0.929283i
\(428\) 274.153 + 274.153i 0.640545 + 0.640545i
\(429\) 301.655 + 174.161i 0.703159 + 0.405969i
\(430\) −449.000 188.751i −1.04419 0.438956i
\(431\) 123.164 + 213.326i 0.285763 + 0.494955i 0.972794 0.231673i \(-0.0744198\pi\)
−0.687031 + 0.726628i \(0.741086\pi\)
\(432\) −5.37945 20.0764i −0.0124524 0.0464731i
\(433\) 480.212 + 480.212i 1.10904 + 1.10904i 0.993277 + 0.115758i \(0.0369298\pi\)
0.115758 + 0.993277i \(0.463070\pi\)
\(434\) −194.985 + 300.394i −0.449274 + 0.692152i
\(435\) 48.7520 355.855i 0.112074 0.818058i
\(436\) 67.4320 116.796i 0.154661 0.267880i
\(437\) −218.528 58.5544i −0.500064 0.133992i
\(438\) 32.5326 121.413i 0.0742752 0.277199i
\(439\) 309.357 + 178.607i 0.704685 + 0.406850i 0.809090 0.587685i \(-0.199960\pi\)
−0.104405 + 0.994535i \(0.533294\pi\)
\(440\) −184.903 25.3316i −0.420233 0.0575717i
\(441\) −146.201 15.3019i −0.331522 0.0346981i
\(442\) 123.920 123.920i 0.280362 0.280362i
\(443\) −769.781 + 206.262i −1.73765 + 0.465603i −0.981923 0.189280i \(-0.939385\pi\)
−0.755731 + 0.654883i \(0.772718\pi\)
\(444\) 14.5619 8.40733i 0.0327971 0.0189354i
\(445\) −42.8554 + 101.944i −0.0963043 + 0.229088i
\(446\) −211.407 + 366.168i −0.474007 + 0.821004i
\(447\) −61.8120 + 61.8120i −0.138282 + 0.138282i
\(448\) −11.6550 54.7737i −0.0260156 0.122263i
\(449\) 838.986i 1.86857i −0.356531 0.934283i \(-0.616041\pi\)
0.356531 0.934283i \(-0.383959\pi\)
\(450\) −1.11414 + 106.060i −0.00247587 + 0.235689i
\(451\) 48.2503 + 83.5720i 0.106985 + 0.185304i
\(452\) −234.909 62.9438i −0.519711 0.139256i
\(453\) 55.4858 14.8674i 0.122485 0.0328198i
\(454\) 64.0509i 0.141081i
\(455\) 232.038 480.242i 0.509974 1.05548i
\(456\) 47.2827 0.103690
\(457\) −119.305 445.251i −0.261060 0.974291i −0.964618 0.263652i \(-0.915073\pi\)
0.703557 0.710638i \(-0.251594\pi\)
\(458\) −35.8324 + 133.728i −0.0782367 + 0.291983i
\(459\) −36.5932 + 21.1271i −0.0797238 + 0.0460286i
\(460\) 185.214 + 143.671i 0.402638 + 0.312329i
\(461\) 583.525 1.26578 0.632890 0.774241i \(-0.281868\pi\)
0.632890 + 0.774241i \(0.281868\pi\)
\(462\) −151.445 168.123i −0.327804 0.363903i
\(463\) 235.910 + 235.910i 0.509525 + 0.509525i 0.914381 0.404856i \(-0.132678\pi\)
−0.404856 + 0.914381i \(0.632678\pi\)
\(464\) 143.672 + 82.9489i 0.309637 + 0.178769i
\(465\) 118.372 + 290.074i 0.254562 + 0.623815i
\(466\) 128.891 + 223.246i 0.276591 + 0.479069i
\(467\) 59.7647 + 223.045i 0.127976 + 0.477612i 0.999928 0.0119785i \(-0.00381295\pi\)
−0.871952 + 0.489590i \(0.837146\pi\)
\(468\) 64.6531 + 64.6531i 0.138148 + 0.138148i
\(469\) −851.750 44.4519i −1.81610 0.0947801i
\(470\) −229.987 303.006i −0.489333 0.644695i
\(471\) −196.029 + 339.532i −0.416198 + 0.720875i
\(472\) −3.63831 0.974883i −0.00770829 0.00206543i
\(473\) 235.267 878.027i 0.497392 1.85629i
\(474\) −64.5167 37.2488i −0.136111 0.0785839i
\(475\) −232.398 64.8948i −0.489259 0.136621i
\(476\) −101.426 + 51.7070i −0.213080 + 0.108628i
\(477\) 99.8361 99.8361i 0.209300 0.209300i
\(478\) −93.0835 + 24.9416i −0.194735 + 0.0521792i
\(479\) 497.384 287.165i 1.03838 0.599509i 0.119006 0.992894i \(-0.462029\pi\)
0.919374 + 0.393385i \(0.128696\pi\)
\(480\) −45.1616 18.9850i −0.0940866 0.0395522i
\(481\) −36.9846 + 64.0592i −0.0768910 + 0.133179i
\(482\) −273.382 + 273.382i −0.567183 + 0.567183i
\(483\) 59.1493 + 277.977i 0.122462 + 0.575522i
\(484\) 106.307i 0.219642i
\(485\) 718.759 + 557.545i 1.48198 + 1.14958i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) 737.079 + 197.500i 1.51351 + 0.405544i 0.917599 0.397507i \(-0.130125\pi\)
0.595911 + 0.803051i \(0.296791\pi\)
\(488\) 162.828 43.6297i 0.333664 0.0894050i
\(489\) 299.069i 0.611592i
\(490\) −239.710 + 250.178i −0.489205 + 0.510567i
\(491\) 267.633 0.545077 0.272538 0.962145i \(-0.412137\pi\)
0.272538 + 0.962145i \(0.412137\pi\)
\(492\) 6.55618 + 24.4680i 0.0133256 + 0.0497317i
\(493\) 87.2902 325.771i 0.177059 0.660794i
\(494\) −180.134 + 104.000i −0.364644 + 0.210527i
\(495\) −196.390 + 24.8066i −0.396748 + 0.0501144i
\(496\) −144.705 −0.291745
\(497\) 566.089 120.455i 1.13901 0.242364i
\(498\) 79.0427 + 79.0427i 0.158720 + 0.158720i
\(499\) 328.627 + 189.733i 0.658572 + 0.380227i 0.791733 0.610868i \(-0.209179\pi\)
−0.133161 + 0.991094i \(0.542513\pi\)
\(500\) 195.916 + 155.296i 0.391832 + 0.310593i
\(501\) −194.071 336.142i −0.387368 0.670941i
\(502\) 37.3871 + 139.531i 0.0744764 + 0.277950i
\(503\) −344.318 344.318i −0.684530 0.684530i 0.276488 0.961017i \(-0.410829\pi\)
−0.961017 + 0.276488i \(0.910829\pi\)
\(504\) −26.9772 52.9172i −0.0535262 0.104994i
\(505\) −202.597 + 153.774i −0.401183 + 0.304504i
\(506\) −218.734 + 378.859i −0.432281 + 0.748733i
\(507\) −105.776 28.3425i −0.208630 0.0559023i
\(508\) 81.7326 305.030i 0.160891 0.600453i
\(509\) 217.653 + 125.662i 0.427608 + 0.246880i 0.698327 0.715779i \(-0.253928\pi\)
−0.270719 + 0.962658i \(0.587261\pi\)
\(510\) −13.5181 + 98.6725i −0.0265060 + 0.193476i
\(511\) 18.7211 358.718i 0.0366363 0.701993i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 48.4421 12.9800i 0.0944290 0.0253022i
\(514\) −437.143 + 252.385i −0.850473 + 0.491021i
\(515\) 231.684 + 567.750i 0.449871 + 1.10243i
\(516\) 119.305 206.642i 0.231211 0.400470i
\(517\) 502.008 502.008i 0.971002 0.971002i
\(518\) 35.7025 32.1608i 0.0689237 0.0620864i
\(519\) 73.1729i 0.140988i
\(520\) 213.812 27.0072i 0.411176 0.0519368i
\(521\) −146.018 252.911i −0.280266 0.485434i 0.691184 0.722678i \(-0.257089\pi\)
−0.971450 + 0.237244i \(0.923756\pi\)
\(522\) 169.966 + 45.5421i 0.325604 + 0.0872454i
\(523\) −743.873 + 199.320i −1.42232 + 0.381109i −0.886306 0.463100i \(-0.846737\pi\)
−0.536014 + 0.844209i \(0.680070\pi\)
\(524\) 147.218i 0.280951i
\(525\) 59.9669 + 297.118i 0.114223 + 0.565939i
\(526\) 273.223 0.519435
\(527\) 76.1394 + 284.156i 0.144477 + 0.539196i
\(528\) 23.6637 88.3142i 0.0448176 0.167262i
\(529\) 17.7146 10.2276i 0.0334870 0.0193337i
\(530\) −41.7039 330.164i −0.0786867 0.622950i
\(531\) −3.99514 −0.00752381
\(532\) 132.163 28.1222i 0.248426 0.0528613i
\(533\) −78.7957 78.7957i −0.147834 0.147834i
\(534\) −46.9176 27.0879i −0.0878607 0.0507264i
\(535\) 897.432 366.218i 1.67744 0.684520i
\(536\) −172.314 298.456i −0.321481 0.556821i
\(537\) −152.366 568.638i −0.283736 1.05892i
\(538\) 282.763 + 282.763i 0.525582 + 0.525582i
\(539\) −523.308 379.857i −0.970887 0.704743i
\(540\) −51.4807 7.05282i −0.0953345 0.0130608i
\(541\) 82.6003 143.068i 0.152681 0.264451i −0.779531 0.626363i \(-0.784543\pi\)
0.932212 + 0.361912i \(0.117876\pi\)
\(542\) 700.033 + 187.573i 1.29157 + 0.346076i
\(543\) −16.8563 + 62.9085i −0.0310429 + 0.115854i
\(544\) −39.8377 23.0003i −0.0732310 0.0422800i
\(545\) −203.842 268.561i −0.374022 0.492773i
\(546\) 219.169 + 142.262i 0.401409 + 0.260554i
\(547\) 172.204 172.204i 0.314815 0.314815i −0.531956 0.846772i \(-0.678543\pi\)
0.846772 + 0.531956i \(0.178543\pi\)
\(548\) 460.687 123.441i 0.840670 0.225257i
\(549\) 154.843 89.3988i 0.282046 0.162839i
\(550\) −237.519 + 401.593i −0.431852 + 0.730168i
\(551\) −200.146 + 346.664i −0.363242 + 0.629154i
\(552\) −81.2001 + 81.2001i −0.147102 + 0.147102i
\(553\) −202.489 65.7438i −0.366164 0.118886i
\(554\) 188.084i 0.339501i
\(555\) −5.26791 41.7052i −0.00949173 0.0751446i
\(556\) 185.128 + 320.652i 0.332965 + 0.576712i
\(557\) 24.8018 + 6.64563i 0.0445275 + 0.0119311i 0.281014 0.959704i \(-0.409329\pi\)
−0.236487 + 0.971635i \(0.575996\pi\)
\(558\) −148.254 + 39.7244i −0.265687 + 0.0711907i
\(559\) 1049.67i 1.87776i
\(560\) −137.526 26.2056i −0.245581 0.0467957i
\(561\) −185.872 −0.331323
\(562\) 167.171 + 623.892i 0.297458 + 1.11013i
\(563\) −217.937 + 813.352i −0.387100 + 1.44468i 0.447731 + 0.894168i \(0.352232\pi\)
−0.834831 + 0.550507i \(0.814434\pi\)
\(564\) 161.392 93.1794i 0.286155 0.165212i
\(565\) −372.649 + 480.401i −0.659557 + 0.850267i
\(566\) 132.408 0.233936
\(567\) −42.1654 46.8089i −0.0743659 0.0825554i
\(568\) 165.361 + 165.361i 0.291128 + 0.291128i
\(569\) 88.8020 + 51.2699i 0.156067 + 0.0901052i 0.576000 0.817450i \(-0.304613\pi\)
−0.419933 + 0.907555i \(0.637946\pi\)
\(570\) 45.8087 108.970i 0.0803662 0.191175i
\(571\) 313.449 + 542.910i 0.548947 + 0.950805i 0.998347 + 0.0574739i \(0.0183046\pi\)
−0.449400 + 0.893331i \(0.648362\pi\)
\(572\) 104.099 + 388.502i 0.181991 + 0.679199i
\(573\) 346.854 + 346.854i 0.605330 + 0.605330i
\(574\) 32.8783 + 64.4926i 0.0572793 + 0.112356i
\(575\) 510.551 287.659i 0.887914 0.500276i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −957.078 256.448i −1.65871 0.444451i −0.696681 0.717381i \(-0.745341\pi\)
−0.962034 + 0.272930i \(0.912007\pi\)
\(578\) 81.5773 304.451i 0.141137 0.526731i
\(579\) −237.338 137.027i −0.409910 0.236661i
\(580\) 330.361 250.749i 0.569587 0.432326i
\(581\) 267.949 + 173.925i 0.461186 + 0.299355i
\(582\) −315.114 + 315.114i −0.541432 + 0.541432i
\(583\) 599.917 160.747i 1.02902 0.275724i
\(584\) 125.696 72.5707i 0.215233 0.124265i
\(585\) 211.640 86.3647i 0.361778 0.147632i
\(586\) −41.1011 + 71.1892i −0.0701384 + 0.121483i
\(587\) −625.656 + 625.656i −1.06585 + 1.06585i −0.0681813 + 0.997673i \(0.521720\pi\)
−0.997673 + 0.0681813i \(0.978280\pi\)
\(588\) −106.879 131.867i −0.181767 0.224263i
\(589\) 349.158i 0.592798i
\(590\) −5.77165 + 7.44051i −0.00978245 + 0.0126110i
\(591\) 230.257 + 398.817i 0.389606 + 0.674818i
\(592\) 18.7543 + 5.02520i 0.0316796 + 0.00848852i
\(593\) 537.263 143.959i 0.906009 0.242764i 0.224414 0.974494i \(-0.427953\pi\)
0.681595 + 0.731730i \(0.261287\pi\)
\(594\) 96.9757i 0.163259i
\(595\) 20.9020 + 283.846i 0.0351294 + 0.477051i
\(596\) −100.938 −0.169360
\(597\) −2.34005 8.73320i −0.00391969 0.0146285i
\(598\) 130.747 487.953i 0.218640 0.815975i
\(599\) −179.972 + 103.907i −0.300454 + 0.173467i −0.642647 0.766163i \(-0.722164\pi\)
0.342193 + 0.939630i \(0.388830\pi\)
\(600\) −87.5075 + 85.6881i −0.145846 + 0.142813i
\(601\) −803.576 −1.33707 −0.668533 0.743683i \(-0.733077\pi\)
−0.668533 + 0.743683i \(0.733077\pi\)
\(602\) 210.572 648.557i 0.349788 1.07734i
\(603\) −258.470 258.470i −0.428641 0.428641i
\(604\) 57.4431 + 33.1648i 0.0951045 + 0.0549086i
\(605\) −244.999 102.993i −0.404957 0.170236i
\(606\) −62.3019 107.910i −0.102808 0.178070i
\(607\) 64.7010 + 241.467i 0.106591 + 0.397805i 0.998521 0.0543700i \(-0.0173151\pi\)
−0.891929 + 0.452175i \(0.850648\pi\)
\(608\) 38.6062 + 38.6062i 0.0634970 + 0.0634970i
\(609\) 502.168 + 26.2076i 0.824578 + 0.0430338i
\(610\) 57.2014 417.530i 0.0937728 0.684475i
\(611\) −409.905 + 709.976i −0.670875 + 1.16199i
\(612\) −47.1285 12.6280i −0.0770073 0.0206340i
\(613\) −136.336 + 508.814i −0.222408 + 0.830039i 0.761018 + 0.648731i \(0.224700\pi\)
−0.983426 + 0.181308i \(0.941967\pi\)
\(614\) −380.099 219.450i −0.619054 0.357411i
\(615\) 62.7418 + 8.59559i 0.102019 + 0.0139766i
\(616\) 13.6175 260.927i 0.0221063 0.423582i
\(617\) −188.817 + 188.817i −0.306025 + 0.306025i −0.843365 0.537340i \(-0.819429\pi\)
0.537340 + 0.843365i \(0.319429\pi\)
\(618\) −290.170 + 77.7509i −0.469531 + 0.125811i
\(619\) −93.0351 + 53.7139i −0.150299 + 0.0867752i −0.573263 0.819371i \(-0.694323\pi\)
0.422964 + 0.906146i \(0.360990\pi\)
\(620\) −140.194 + 333.494i −0.226120 + 0.537894i
\(621\) −60.9001 + 105.482i −0.0980678 + 0.169858i
\(622\) −478.584 + 478.584i −0.769427 + 0.769427i
\(623\) −147.253 47.8099i −0.236361 0.0767415i
\(624\) 105.578i 0.169196i
\(625\) 547.711 301.061i 0.876338 0.481697i
\(626\) −271.359 470.008i −0.433482 0.750812i
\(627\) 213.092 + 57.0978i 0.339860 + 0.0910651i
\(628\) −437.284 + 117.170i −0.696312 + 0.186576i
\(629\) 39.4717i 0.0627531i
\(630\) −148.091 + 10.9052i −0.235066 + 0.0173099i
\(631\) −494.190 −0.783185 −0.391593 0.920139i \(-0.628076\pi\)
−0.391593 + 0.920139i \(0.628076\pi\)
\(632\) −22.2642 83.0912i −0.0352282 0.131473i
\(633\) −22.3991 + 83.5947i −0.0353857 + 0.132061i
\(634\) 179.772 103.791i 0.283552 0.163709i
\(635\) −623.801 483.886i −0.982364 0.762025i
\(636\) 163.032 0.256339
\(637\) 697.227 + 267.291i 1.09455 + 0.419609i
\(638\) 547.327 + 547.327i 0.857879 + 0.857879i
\(639\) 214.810 + 124.021i 0.336166 + 0.194085i
\(640\) −21.3731 52.3755i −0.0333954 0.0818367i
\(641\) −209.798 363.381i −0.327298 0.566897i 0.654677 0.755909i \(-0.272805\pi\)
−0.981975 + 0.189012i \(0.939471\pi\)
\(642\) 122.900 + 458.667i 0.191432 + 0.714435i
\(643\) −192.944 192.944i −0.300069 0.300069i 0.540972 0.841041i \(-0.318057\pi\)
−0.841041 + 0.540972i \(0.818057\pi\)
\(644\) −178.672 + 275.263i −0.277441 + 0.427426i
\(645\) −360.651 475.156i −0.559149 0.736676i
\(646\) 55.4971 96.1238i 0.0859088 0.148798i
\(647\) −342.959 91.8957i −0.530076 0.142033i −0.0161528 0.999870i \(-0.505142\pi\)
−0.513923 + 0.857836i \(0.671808\pi\)
\(648\) 6.58846 24.5885i 0.0101674 0.0379452i
\(649\) −15.2198 8.78713i −0.0234511 0.0135395i
\(650\) 144.904 518.924i 0.222930 0.798345i
\(651\) −390.766 + 199.212i −0.600254 + 0.306010i
\(652\) 244.189 244.189i 0.374522 0.374522i
\(653\) 377.692 101.202i 0.578395 0.154981i 0.0422513 0.999107i \(-0.486547\pi\)
0.536144 + 0.844126i \(0.319880\pi\)
\(654\) 143.045 82.5870i 0.218723 0.126280i
\(655\) 339.285 + 142.629i 0.517992 + 0.217754i
\(656\) −14.6249 + 25.3311i −0.0222941 + 0.0386145i
\(657\) 108.856 108.856i 0.165687 0.165687i
\(658\) 395.695 356.442i 0.601360 0.541705i
\(659\) 325.611i 0.494099i −0.969003 0.247050i \(-0.920539\pi\)
0.969003 0.247050i \(-0.0794610\pi\)
\(660\) −180.607 140.097i −0.273646 0.212269i
\(661\) −127.822 221.394i −0.193377 0.334938i 0.752990 0.658032i \(-0.228611\pi\)
−0.946367 + 0.323093i \(0.895277\pi\)
\(662\) 79.4448 + 21.2872i 0.120007 + 0.0321559i
\(663\) 207.322 55.5519i 0.312703 0.0837886i
\(664\) 129.076i 0.194392i
\(665\) 63.2311 331.833i 0.0950844 0.498998i
\(666\) 20.5937 0.0309214
\(667\) −251.619 939.054i −0.377240 1.40788i
\(668\) 116.000 432.917i 0.173652 0.648080i
\(669\) −448.462 + 258.920i −0.670347 + 0.387025i
\(670\) −854.776 + 107.969i −1.27579 + 0.161148i
\(671\) 786.514 1.17215
\(672\) 21.1799 65.2335i 0.0315177 0.0970737i
\(673\) 74.4755 + 74.4755i 0.110662 + 0.110662i 0.760270 0.649608i \(-0.225067\pi\)
−0.649608 + 0.760270i \(0.725067\pi\)
\(674\) −512.801 296.066i −0.760833 0.439267i
\(675\) −66.1300 + 111.812i −0.0979704 + 0.165647i
\(676\) −63.2238 109.507i −0.0935264 0.161992i
\(677\) −77.9835 291.039i −0.115190 0.429894i 0.884111 0.467277i \(-0.154765\pi\)
−0.999301 + 0.0373822i \(0.988098\pi\)
\(678\) −210.614 210.614i −0.310640 0.310640i
\(679\) −693.374 + 1068.21i −1.02117 + 1.57321i
\(680\) −91.6032 + 69.5283i −0.134711 + 0.102248i
\(681\) 39.2230 67.9362i 0.0575962 0.0997595i
\(682\) −652.153 174.744i −0.956237 0.256223i
\(683\) 182.816 682.280i 0.267667 0.998945i −0.692931 0.721004i \(-0.743681\pi\)
0.960598 0.277942i \(-0.0896523\pi\)
\(684\) 50.1509 + 28.9546i 0.0733200 + 0.0423313i
\(685\) 161.839 1181.31i 0.236261 1.72454i
\(686\) −377.174 305.021i −0.549816 0.444637i
\(687\) −119.898 + 119.898i −0.174523 + 0.174523i
\(688\) 266.135 71.3106i 0.386824 0.103649i
\(689\) −621.106 + 358.596i −0.901460 + 0.520458i
\(690\) 108.468 + 265.806i 0.157201 + 0.385226i
\(691\) 363.308 629.267i 0.525771 0.910662i −0.473779 0.880644i \(-0.657110\pi\)
0.999549 0.0300178i \(-0.00955639\pi\)
\(692\) −59.7454 + 59.7454i −0.0863373 + 0.0863373i
\(693\) −57.6780 271.063i −0.0832294 0.391144i
\(694\) 181.785i 0.261938i
\(695\) 918.345 115.999i 1.32136 0.166905i
\(696\) 101.591 + 175.961i 0.145964 + 0.252818i
\(697\) 57.4376 + 15.3904i 0.0824069 + 0.0220809i
\(698\) 457.948 122.707i 0.656086 0.175798i
\(699\) 315.718i 0.451670i
\(700\) −193.633 + 291.558i −0.276618 + 0.416512i
\(701\) −693.038 −0.988642 −0.494321 0.869279i \(-0.664583\pi\)
−0.494321 + 0.869279i \(0.664583\pi\)
\(702\) 28.9832 + 108.167i 0.0412866 + 0.154084i
\(703\) −12.1252 + 45.2520i −0.0172479 + 0.0643699i
\(704\) 91.4296 52.7869i 0.129872 0.0749814i
\(705\) −58.3849 462.224i −0.0828155 0.655637i
\(706\) 41.0134 0.0580927
\(707\) −238.325 264.571i −0.337094 0.374216i
\(708\) −3.26202 3.26202i −0.00460737 0.00460737i
\(709\) 222.013 + 128.179i 0.313135 + 0.180789i 0.648329 0.761361i \(-0.275468\pi\)
−0.335193 + 0.942149i \(0.608802\pi\)
\(710\) 541.303 220.891i 0.762399 0.311115i
\(711\) −45.6202 79.0165i −0.0641635 0.111134i
\(712\) −16.1909 60.4252i −0.0227400 0.0848669i
\(713\) 599.620 + 599.620i 0.840982 + 0.840982i
\(714\) −139.242 7.26691i −0.195017 0.0101777i
\(715\) 996.212 + 136.480i 1.39330 + 0.190882i
\(716\) 339.884 588.697i 0.474699 0.822202i
\(717\) −114.004 30.5472i −0.159001 0.0426041i
\(718\) −100.198 + 373.945i −0.139552 + 0.520814i
\(719\) 527.096 + 304.319i 0.733096 + 0.423253i 0.819554 0.573002i \(-0.194221\pi\)
−0.0864576 + 0.996256i \(0.527555\pi\)
\(720\) −36.2752 47.7924i −0.0503822 0.0663783i
\(721\) −764.829 + 389.910i −1.06079 + 0.540791i
\(722\) 267.848 267.848i 0.370980 0.370980i
\(723\) −457.377 + 122.554i −0.632610 + 0.169507i
\(724\) −65.1277 + 37.6015i −0.0899553 + 0.0519357i
\(725\) −257.824 1004.29i −0.355620 1.38523i
\(726\) 65.0994 112.755i 0.0896686 0.155311i
\(727\) −549.001 + 549.001i −0.755160 + 0.755160i −0.975437 0.220278i \(-0.929304\pi\)
0.220278 + 0.975437i \(0.429304\pi\)
\(728\) 62.7944 + 295.108i 0.0862561 + 0.405368i
\(729\) 27.0000i 0.0370370i
\(730\) −45.4718 359.993i −0.0622901 0.493141i
\(731\) −280.063 485.084i −0.383124 0.663590i
\(732\) 199.423 + 53.4352i 0.272436 + 0.0729989i
\(733\) 583.723 156.408i 0.796347 0.213381i 0.162368 0.986730i \(-0.448087\pi\)
0.633980 + 0.773350i \(0.281420\pi\)
\(734\) 400.095i 0.545088i
\(735\) −407.453 + 118.562i −0.554358 + 0.161309i
\(736\) −132.599 −0.180162
\(737\) −416.166 1553.15i −0.564676 2.10740i
\(738\) −8.02965 + 29.9671i −0.0108803 + 0.0406058i
\(739\) −532.900 + 307.670i −0.721109 + 0.416333i −0.815161 0.579235i \(-0.803351\pi\)
0.0940517 + 0.995567i \(0.470018\pi\)
\(740\) 29.7510 38.3534i 0.0402040 0.0518290i
\(741\) −254.748 −0.343790
\(742\) 455.700 96.9659i 0.614151 0.130682i
\(743\) 236.059 + 236.059i 0.317710 + 0.317710i 0.847887 0.530177i \(-0.177874\pi\)
−0.530177 + 0.847887i \(0.677874\pi\)
\(744\) −153.483 88.6137i −0.206295 0.119104i
\(745\) −97.7919 + 232.627i −0.131264 + 0.312251i
\(746\) −237.489 411.343i −0.318350 0.551398i
\(747\) 35.4339 + 132.241i 0.0474349 + 0.177029i
\(748\) −151.764 151.764i −0.202893 0.202893i
\(749\) 616.324 + 1208.95i 0.822863 + 1.61409i
\(750\) 112.701 + 284.690i 0.150268 + 0.379587i
\(751\) −676.879 + 1172.39i −0.901303 + 1.56110i −0.0754985 + 0.997146i \(0.524055\pi\)
−0.825804 + 0.563957i \(0.809279\pi\)
\(752\) 207.856 + 55.6949i 0.276405 + 0.0740624i
\(753\) −45.7897 + 170.890i −0.0608097 + 0.226945i
\(754\) −774.069 446.909i −1.02662 0.592718i
\(755\) 132.085 100.255i 0.174948 0.132788i
\(756\) 3.79138 72.6473i 0.00501506 0.0960943i
\(757\) −435.838 + 435.838i −0.575744 + 0.575744i −0.933728 0.357984i \(-0.883464\pi\)
0.357984 + 0.933728i \(0.383464\pi\)
\(758\) −654.753 + 175.441i −0.863791 + 0.231452i
\(759\) −464.006 + 267.894i −0.611338 + 0.352956i
\(760\) 126.376 51.5707i 0.166284 0.0678562i
\(761\) 560.575 970.944i 0.736629 1.27588i −0.217375 0.976088i \(-0.569750\pi\)
0.954005 0.299792i \(-0.0969171\pi\)
\(762\) 273.483 273.483i 0.358901 0.358901i
\(763\) 350.713 315.922i 0.459650 0.414053i
\(764\) 566.410i 0.741375i