Properties

Label 210.3.v.a.163.2
Level 210
Weight 3
Character 210.163
Analytic conductor 5.722
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.v (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 163.2
Character \(\chi\) \(=\) 210.163
Dual form 210.3.v.a.67.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-1.45729 - 4.78292i) q^{5} -2.44949 q^{6} +(-1.05182 - 6.92053i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +O(q^{10})\) \(q+(0.366025 + 1.36603i) q^{2} +(-0.448288 + 1.67303i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-1.45729 - 4.78292i) q^{5} -2.44949 q^{6} +(-1.05182 - 6.92053i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(6.00018 - 3.74136i) q^{10} +(-6.50271 - 11.2630i) q^{11} +(-0.896575 - 3.34607i) q^{12} +(-0.863323 - 0.863323i) q^{13} +(9.06862 - 3.96990i) q^{14} +(8.65526 - 0.293964i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-0.902729 - 0.241886i) q^{17} +(1.09808 - 4.09808i) q^{18} +(-5.84532 - 3.37480i) q^{19} +(7.30701 + 6.82697i) q^{20} +(12.0498 + 1.34266i) q^{21} +(13.0054 - 13.0054i) q^{22} +(14.5886 - 3.90901i) q^{23} +(4.24264 - 2.44949i) q^{24} +(-20.7526 + 13.9402i) q^{25} +(0.863323 - 1.49532i) q^{26} +(3.67423 - 3.67423i) q^{27} +(8.74233 + 10.9349i) q^{28} -31.3119i q^{29} +(3.56961 + 11.7157i) q^{30} +(23.4627 + 40.6387i) q^{31} +(5.46410 + 1.46410i) q^{32} +(21.7585 - 5.83017i) q^{33} -1.32169i q^{34} +(-31.5675 + 15.1160i) q^{35} +6.00000 q^{36} +(-9.80457 - 36.5911i) q^{37} +(2.47052 - 9.22012i) q^{38} +(1.83139 - 1.05735i) q^{39} +(-6.65126 + 12.4804i) q^{40} -64.3783 q^{41} +(2.57642 + 16.9518i) q^{42} +(17.7560 + 17.7560i) q^{43} +(22.5261 + 13.0054i) q^{44} +(-3.38824 + 14.6123i) q^{45} +(10.6796 + 18.4976i) q^{46} +(-12.9084 - 48.1749i) q^{47} +(4.89898 + 4.89898i) q^{48} +(-46.7873 + 14.5583i) q^{49} +(-26.6386 - 23.2462i) q^{50} +(0.809365 - 1.40186i) q^{51} +(2.35864 + 0.631996i) q^{52} +(19.3489 - 72.2110i) q^{53} +(6.36396 + 3.67423i) q^{54} +(-44.3938 + 47.5154i) q^{55} +(-11.7374 + 15.9447i) q^{56} +(8.26653 - 8.26653i) q^{57} +(42.7729 - 11.4610i) q^{58} +(31.0409 - 17.9215i) q^{59} +(-14.6974 + 9.16442i) q^{60} +(-54.5626 + 94.5052i) q^{61} +(-46.9255 + 46.9255i) q^{62} +(-7.64808 + 19.5578i) q^{63} +8.00000i q^{64} +(-2.87110 + 5.38731i) q^{65} +(15.9283 + 27.5887i) q^{66} +(60.4832 + 16.2064i) q^{67} +(1.80546 - 0.483771i) q^{68} +26.1596i q^{69} +(-32.2033 - 37.5892i) q^{70} -74.7760 q^{71} +(2.19615 + 8.19615i) q^{72} +(21.5032 - 80.2512i) q^{73} +(46.3957 - 26.7866i) q^{74} +(-14.0192 - 40.9690i) q^{75} +13.4992 q^{76} +(-71.1064 + 56.8489i) q^{77} +(2.11470 + 2.11470i) q^{78} +(83.9374 + 48.4613i) q^{79} +(-19.4831 - 4.51765i) q^{80} +(4.50000 + 7.79423i) q^{81} +(-23.5641 - 87.9423i) q^{82} +(31.9008 + 31.9008i) q^{83} +(-22.2135 + 9.72423i) q^{84} +(0.158616 + 4.67018i) q^{85} +(-17.7560 + 30.7543i) q^{86} +(52.3859 + 14.0368i) q^{87} +(-9.52063 + 35.5315i) q^{88} +(-44.1998 - 25.5187i) q^{89} +(-21.2010 + 0.720063i) q^{90} +(-5.06659 + 6.88271i) q^{91} +(-21.3592 + 21.3592i) q^{92} +(-78.5079 + 21.0361i) q^{93} +(61.0833 - 35.2664i) q^{94} +(-7.62307 + 32.8757i) q^{95} +(-4.89898 + 8.48528i) q^{96} +(-83.5410 + 83.5410i) q^{97} +(-37.0124 - 58.5840i) q^{98} +39.0163i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + O(q^{10}) \) \( 32q - 16q^{2} - 8q^{7} - 64q^{8} + 4q^{10} - 32q^{11} - 32q^{13} + 64q^{16} - 56q^{17} - 48q^{18} - 16q^{20} - 48q^{21} + 64q^{22} - 48q^{23} + 68q^{25} + 32q^{26} + 40q^{28} + 12q^{30} + 160q^{31} + 64q^{32} + 12q^{33} + 152q^{35} + 192q^{36} + 44q^{37} - 64q^{38} + 8q^{40} - 80q^{41} - 48q^{42} - 184q^{43} - 12q^{45} - 96q^{46} - 228q^{47} - 96q^{50} + 192q^{51} + 32q^{52} + 48q^{53} + 104q^{55} + 32q^{56} + 144q^{57} - 112q^{58} + 24q^{60} + 216q^{61} - 320q^{62} + 84q^{63} - 384q^{65} + 24q^{66} + 112q^{68} - 24q^{70} + 368q^{71} - 96q^{72} + 52q^{73} + 48q^{75} + 256q^{76} - 836q^{77} - 240q^{78} + 144q^{81} + 40q^{82} - 736q^{83} - 72q^{85} + 184q^{86} - 72q^{87} + 64q^{88} + 24q^{90} + 216q^{91} + 192q^{92} - 216q^{93} + 272q^{95} - 408q^{97} + 200q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) −0.448288 + 1.67303i −0.149429 + 0.557678i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −1.45729 4.78292i −0.291457 0.956584i
\(6\) −2.44949 −0.408248
\(7\) −1.05182 6.92053i −0.150260 0.988647i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −2.59808 1.50000i −0.288675 0.166667i
\(10\) 6.00018 3.74136i 0.600018 0.374136i
\(11\) −6.50271 11.2630i −0.591156 1.02391i −0.994077 0.108677i \(-0.965339\pi\)
0.402921 0.915235i \(-0.367995\pi\)
\(12\) −0.896575 3.34607i −0.0747146 0.278839i
\(13\) −0.863323 0.863323i −0.0664095 0.0664095i 0.673122 0.739531i \(-0.264953\pi\)
−0.739531 + 0.673122i \(0.764953\pi\)
\(14\) 9.06862 3.96990i 0.647759 0.283564i
\(15\) 8.65526 0.293964i 0.577018 0.0195976i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −0.902729 0.241886i −0.0531017 0.0142286i 0.232170 0.972675i \(-0.425417\pi\)
−0.285272 + 0.958447i \(0.592084\pi\)
\(18\) 1.09808 4.09808i 0.0610042 0.227671i
\(19\) −5.84532 3.37480i −0.307648 0.177621i 0.338225 0.941065i \(-0.390173\pi\)
−0.645874 + 0.763444i \(0.723507\pi\)
\(20\) 7.30701 + 6.82697i 0.365351 + 0.341349i
\(21\) 12.0498 + 1.34266i 0.573799 + 0.0639361i
\(22\) 13.0054 13.0054i 0.591156 0.591156i
\(23\) 14.5886 3.90901i 0.634287 0.169957i 0.0726729 0.997356i \(-0.476847\pi\)
0.561615 + 0.827399i \(0.310180\pi\)
\(24\) 4.24264 2.44949i 0.176777 0.102062i
\(25\) −20.7526 + 13.9402i −0.830105 + 0.557607i
\(26\) 0.863323 1.49532i 0.0332047 0.0575123i
\(27\) 3.67423 3.67423i 0.136083 0.136083i
\(28\) 8.74233 + 10.9349i 0.312226 + 0.390532i
\(29\) 31.3119i 1.07972i −0.841754 0.539861i \(-0.818477\pi\)
0.841754 0.539861i \(-0.181523\pi\)
\(30\) 3.56961 + 11.7157i 0.118987 + 0.390524i
\(31\) 23.4627 + 40.6387i 0.756863 + 1.31092i 0.944443 + 0.328675i \(0.106602\pi\)
−0.187580 + 0.982249i \(0.560064\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 21.7585 5.83017i 0.659348 0.176672i
\(34\) 1.32169i 0.0388732i
\(35\) −31.5675 + 15.1160i −0.901929 + 0.431885i
\(36\) 6.00000 0.166667
\(37\) −9.80457 36.5911i −0.264988 0.988950i −0.962258 0.272141i \(-0.912268\pi\)
0.697269 0.716809i \(-0.254398\pi\)
\(38\) 2.47052 9.22012i 0.0650138 0.242635i
\(39\) 1.83139 1.05735i 0.0469586 0.0271116i
\(40\) −6.65126 + 12.4804i −0.166282 + 0.312010i
\(41\) −64.3783 −1.57020 −0.785101 0.619368i \(-0.787389\pi\)
−0.785101 + 0.619368i \(0.787389\pi\)
\(42\) 2.57642 + 16.9518i 0.0613434 + 0.403613i
\(43\) 17.7560 + 17.7560i 0.412931 + 0.412931i 0.882758 0.469827i \(-0.155684\pi\)
−0.469827 + 0.882758i \(0.655684\pi\)
\(44\) 22.5261 + 13.0054i 0.511956 + 0.295578i
\(45\) −3.38824 + 14.6123i −0.0752941 + 0.324718i
\(46\) 10.6796 + 18.4976i 0.232165 + 0.402122i
\(47\) −12.9084 48.1749i −0.274647 1.02500i −0.956077 0.293114i \(-0.905308\pi\)
0.681430 0.731883i \(-0.261358\pi\)
\(48\) 4.89898 + 4.89898i 0.102062 + 0.102062i
\(49\) −46.7873 + 14.5583i −0.954844 + 0.297108i
\(50\) −26.6386 23.2462i −0.532772 0.464923i
\(51\) 0.809365 1.40186i 0.0158699 0.0274875i
\(52\) 2.35864 + 0.631996i 0.0453585 + 0.0121538i
\(53\) 19.3489 72.2110i 0.365073 1.36247i −0.502248 0.864724i \(-0.667494\pi\)
0.867321 0.497749i \(-0.165840\pi\)
\(54\) 6.36396 + 3.67423i 0.117851 + 0.0680414i
\(55\) −44.3938 + 47.5154i −0.807161 + 0.863917i
\(56\) −11.7374 + 15.9447i −0.209597 + 0.284727i
\(57\) 8.26653 8.26653i 0.145027 0.145027i
\(58\) 42.7729 11.4610i 0.737464 0.197603i
\(59\) 31.0409 17.9215i 0.526117 0.303754i −0.213317 0.976983i \(-0.568427\pi\)
0.739434 + 0.673229i \(0.235093\pi\)
\(60\) −14.6974 + 9.16442i −0.244957 + 0.152740i
\(61\) −54.5626 + 94.5052i −0.894469 + 1.54927i −0.0600092 + 0.998198i \(0.519113\pi\)
−0.834460 + 0.551068i \(0.814220\pi\)
\(62\) −46.9255 + 46.9255i −0.756863 + 0.756863i
\(63\) −7.64808 + 19.5578i −0.121398 + 0.310441i
\(64\) 8.00000i 0.125000i
\(65\) −2.87110 + 5.38731i −0.0441707 + 0.0828818i
\(66\) 15.9283 + 27.5887i 0.241338 + 0.418010i
\(67\) 60.4832 + 16.2064i 0.902734 + 0.241887i 0.680190 0.733036i \(-0.261897\pi\)
0.222544 + 0.974923i \(0.428564\pi\)
\(68\) 1.80546 0.483771i 0.0265509 0.00711428i
\(69\) 26.1596i 0.379124i
\(70\) −32.2033 37.5892i −0.460047 0.536989i
\(71\) −74.7760 −1.05318 −0.526592 0.850118i \(-0.676530\pi\)
−0.526592 + 0.850118i \(0.676530\pi\)
\(72\) 2.19615 + 8.19615i 0.0305021 + 0.113835i
\(73\) 21.5032 80.2512i 0.294565 1.09933i −0.646997 0.762492i \(-0.723975\pi\)
0.941562 0.336839i \(-0.109358\pi\)
\(74\) 46.3957 26.7866i 0.626969 0.361981i
\(75\) −14.0192 40.9690i −0.186923 0.546254i
\(76\) 13.4992 0.177621
\(77\) −71.1064 + 56.8489i −0.923460 + 0.738297i
\(78\) 2.11470 + 2.11470i 0.0271116 + 0.0271116i
\(79\) 83.9374 + 48.4613i 1.06250 + 0.613434i 0.926122 0.377223i \(-0.123121\pi\)
0.136377 + 0.990657i \(0.456454\pi\)
\(80\) −19.4831 4.51765i −0.243539 0.0564706i
\(81\) 4.50000 + 7.79423i 0.0555556 + 0.0962250i
\(82\) −23.5641 87.9423i −0.287367 1.07247i
\(83\) 31.9008 + 31.9008i 0.384347 + 0.384347i 0.872666 0.488318i \(-0.162390\pi\)
−0.488318 + 0.872666i \(0.662390\pi\)
\(84\) −22.2135 + 9.72423i −0.264446 + 0.115765i
\(85\) 0.158616 + 4.67018i 0.00186607 + 0.0549433i
\(86\) −17.7560 + 30.7543i −0.206465 + 0.357609i
\(87\) 52.3859 + 14.0368i 0.602137 + 0.161342i
\(88\) −9.52063 + 35.5315i −0.108189 + 0.403767i
\(89\) −44.1998 25.5187i −0.496627 0.286727i 0.230693 0.973027i \(-0.425901\pi\)
−0.727319 + 0.686299i \(0.759234\pi\)
\(90\) −21.2010 + 0.720063i −0.235566 + 0.00800070i
\(91\) −5.06659 + 6.88271i −0.0556768 + 0.0756342i
\(92\) −21.3592 + 21.3592i −0.232165 + 0.232165i
\(93\) −78.5079 + 21.0361i −0.844171 + 0.226195i
\(94\) 61.0833 35.2664i 0.649822 0.375175i
\(95\) −7.62307 + 32.8757i −0.0802429 + 0.346060i
\(96\) −4.89898 + 8.48528i −0.0510310 + 0.0883883i
\(97\) −83.5410 + 83.5410i −0.861248 + 0.861248i −0.991483 0.130235i \(-0.958427\pi\)
0.130235 + 0.991483i \(0.458427\pi\)
\(98\) −37.0124 58.5840i −0.377677 0.597796i
\(99\) 39.0163i 0.394104i
\(100\) 22.0044 44.8977i 0.220044 0.448977i
\(101\) 80.9688 + 140.242i 0.801671 + 1.38854i 0.918516 + 0.395385i \(0.129389\pi\)
−0.116844 + 0.993150i \(0.537278\pi\)
\(102\) 2.21123 + 0.592496i 0.0216787 + 0.00580879i
\(103\) 80.9886 21.7008i 0.786297 0.210688i 0.156738 0.987640i \(-0.449902\pi\)
0.629559 + 0.776953i \(0.283236\pi\)
\(104\) 3.45329i 0.0332047i
\(105\) −11.1382 59.5898i −0.106078 0.567522i
\(106\) 105.724 0.997399
\(107\) −19.2233 71.7422i −0.179657 0.670488i −0.995711 0.0925131i \(-0.970510\pi\)
0.816055 0.577974i \(-0.196157\pi\)
\(108\) −2.68973 + 10.0382i −0.0249049 + 0.0929463i
\(109\) 106.923 61.7319i 0.980942 0.566347i 0.0783878 0.996923i \(-0.475023\pi\)
0.902554 + 0.430576i \(0.141689\pi\)
\(110\) −81.1565 43.2513i −0.737787 0.393193i
\(111\) 65.6134 0.591112
\(112\) −26.0770 10.1974i −0.232831 0.0910486i
\(113\) −41.6631 41.6631i −0.368700 0.368700i 0.498303 0.867003i \(-0.333957\pi\)
−0.867003 + 0.498303i \(0.833957\pi\)
\(114\) 14.3181 + 8.26653i 0.125597 + 0.0725134i
\(115\) −39.9563 64.0796i −0.347446 0.557214i
\(116\) 31.3119 + 54.2339i 0.269930 + 0.467533i
\(117\) 0.947995 + 3.53796i 0.00810252 + 0.0302390i
\(118\) 35.8429 + 35.8429i 0.303754 + 0.303754i
\(119\) −0.724467 + 6.50178i −0.00608795 + 0.0546368i
\(120\) −17.8985 16.7226i −0.149154 0.139355i
\(121\) −24.0705 + 41.6914i −0.198930 + 0.344557i
\(122\) −149.068 39.9426i −1.22187 0.327398i
\(123\) 28.8600 107.707i 0.234634 0.875666i
\(124\) −81.2773 46.9255i −0.655462 0.378431i
\(125\) 96.9172 + 78.9433i 0.775338 + 0.631547i
\(126\) −29.5158 3.28883i −0.234253 0.0261018i
\(127\) 105.461 105.461i 0.830399 0.830399i −0.157172 0.987571i \(-0.550238\pi\)
0.987571 + 0.157172i \(0.0502378\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) −37.6662 + 21.7466i −0.291986 + 0.168578i
\(130\) −8.41010 1.95010i −0.0646931 0.0150007i
\(131\) 104.890 181.676i 0.800690 1.38684i −0.118472 0.992957i \(-0.537800\pi\)
0.919162 0.393879i \(-0.128867\pi\)
\(132\) −31.8567 + 31.8567i −0.241338 + 0.241338i
\(133\) −17.2071 + 44.0024i −0.129377 + 0.330845i
\(134\) 88.5535i 0.660847i
\(135\) −22.9280 12.2192i −0.169837 0.0905122i
\(136\) 1.32169 + 2.28923i 0.00971829 + 0.0168326i
\(137\) 218.804 + 58.6283i 1.59711 + 0.427943i 0.944167 0.329467i \(-0.106869\pi\)
0.652940 + 0.757410i \(0.273536\pi\)
\(138\) −35.7347 + 9.57507i −0.258947 + 0.0693846i
\(139\) 42.1416i 0.303177i 0.988444 + 0.151588i \(0.0484389\pi\)
−0.988444 + 0.151588i \(0.951561\pi\)
\(140\) 39.5606 57.7491i 0.282576 0.412494i
\(141\) 86.3848 0.612658
\(142\) −27.3699 102.146i −0.192746 0.719337i
\(143\) −4.10969 + 15.3376i −0.0287391 + 0.107256i
\(144\) −10.3923 + 6.00000i −0.0721688 + 0.0416667i
\(145\) −149.762 + 45.6305i −1.03284 + 0.314693i
\(146\) 117.496 0.804766
\(147\) −3.38231 84.8031i −0.0230089 0.576892i
\(148\) 53.5732 + 53.5732i 0.361981 + 0.361981i
\(149\) 66.4442 + 38.3616i 0.445934 + 0.257460i 0.706112 0.708101i \(-0.250448\pi\)
−0.260177 + 0.965561i \(0.583781\pi\)
\(150\) 50.8334 34.1463i 0.338889 0.227642i
\(151\) 15.4393 + 26.7416i 0.102247 + 0.177097i 0.912610 0.408831i \(-0.134064\pi\)
−0.810363 + 0.585928i \(0.800730\pi\)
\(152\) 4.94105 + 18.4402i 0.0325069 + 0.121317i
\(153\) 1.98253 + 1.98253i 0.0129577 + 0.0129577i
\(154\) −103.684 76.3250i −0.673271 0.495617i
\(155\) 160.179 171.443i 1.03342 1.10608i
\(156\) −2.11470 + 3.66277i −0.0135558 + 0.0234793i
\(157\) −62.1560 16.6546i −0.395898 0.106081i 0.0553769 0.998466i \(-0.482364\pi\)
−0.451275 + 0.892385i \(0.649031\pi\)
\(158\) −35.4761 + 132.399i −0.224532 + 0.837967i
\(159\) 112.138 + 64.7426i 0.705268 + 0.407186i
\(160\) −0.960084 28.2680i −0.00600052 0.176675i
\(161\) −42.3970 96.8493i −0.263335 0.601548i
\(162\) −9.00000 + 9.00000i −0.0555556 + 0.0555556i
\(163\) 90.5074 24.2514i 0.555260 0.148782i 0.0297323 0.999558i \(-0.490535\pi\)
0.525528 + 0.850776i \(0.323868\pi\)
\(164\) 111.506 64.3783i 0.679917 0.392550i
\(165\) −59.5936 95.5729i −0.361173 0.579230i
\(166\) −31.9008 + 55.2538i −0.192174 + 0.332854i
\(167\) −30.1240 + 30.1240i −0.180383 + 0.180383i −0.791523 0.611140i \(-0.790711\pi\)
0.611140 + 0.791523i \(0.290711\pi\)
\(168\) −21.4143 26.7849i −0.127466 0.159434i
\(169\) 167.509i 0.991180i
\(170\) −6.32152 + 1.92608i −0.0371854 + 0.0113299i
\(171\) 10.1244 + 17.5360i 0.0592070 + 0.102549i
\(172\) −48.5104 12.9983i −0.282037 0.0755716i
\(173\) 57.0293 15.2810i 0.329649 0.0883293i −0.0901984 0.995924i \(-0.528750\pi\)
0.419848 + 0.907595i \(0.362083\pi\)
\(174\) 76.6983i 0.440795i
\(175\) 118.301 + 128.957i 0.676008 + 0.736895i
\(176\) −52.0217 −0.295578
\(177\) 16.0679 + 59.9664i 0.0907794 + 0.338793i
\(178\) 18.6810 69.7185i 0.104950 0.391677i
\(179\) 185.470 107.081i 1.03615 0.598220i 0.117408 0.993084i \(-0.462542\pi\)
0.918740 + 0.394864i \(0.129208\pi\)
\(180\) −8.74372 28.6975i −0.0485762 0.159431i
\(181\) −265.353 −1.46604 −0.733019 0.680208i \(-0.761890\pi\)
−0.733019 + 0.680208i \(0.761890\pi\)
\(182\) −11.2565 4.40184i −0.0618487 0.0241860i
\(183\) −133.651 133.651i −0.730331 0.730331i
\(184\) −36.9952 21.3592i −0.201061 0.116083i
\(185\) −160.724 + 100.218i −0.868781 + 0.541720i
\(186\) −57.4717 99.5440i −0.308988 0.535183i
\(187\) 3.14582 + 11.7404i 0.0168226 + 0.0627828i
\(188\) 70.5329 + 70.5329i 0.375175 + 0.375175i
\(189\) −29.2923 21.5630i −0.154986 0.114090i
\(190\) −47.6993 + 1.62004i −0.251049 + 0.00852655i
\(191\) 2.14117 3.70861i 0.0112103 0.0194168i −0.860366 0.509677i \(-0.829765\pi\)
0.871576 + 0.490260i \(0.163098\pi\)
\(192\) −13.3843 3.58630i −0.0697097 0.0186787i
\(193\) 61.2292 228.511i 0.317250 1.18399i −0.604627 0.796509i \(-0.706678\pi\)
0.921877 0.387484i \(-0.126656\pi\)
\(194\) −144.697 83.5410i −0.745862 0.430624i
\(195\) −7.72608 7.21850i −0.0396209 0.0370180i
\(196\) 66.4798 72.0031i 0.339183 0.367363i
\(197\) 6.11514 6.11514i 0.0310413 0.0310413i −0.691416 0.722457i \(-0.743013\pi\)
0.722457 + 0.691416i \(0.243013\pi\)
\(198\) −53.2972 + 14.2809i −0.269178 + 0.0721260i
\(199\) −214.306 + 123.729i −1.07691 + 0.621756i −0.930062 0.367402i \(-0.880247\pi\)
−0.146851 + 0.989159i \(0.546914\pi\)
\(200\) 69.3856 + 13.6249i 0.346928 + 0.0681246i
\(201\) −54.2277 + 93.9252i −0.269790 + 0.467289i
\(202\) −161.938 + 161.938i −0.801671 + 0.801671i
\(203\) −216.695 + 32.9345i −1.06746 + 0.162239i
\(204\) 3.23746i 0.0158699i
\(205\) 93.8176 + 307.916i 0.457647 + 1.50203i
\(206\) 59.2878 + 102.689i 0.287805 + 0.498492i
\(207\) −43.7658 11.7270i −0.211429 0.0566523i
\(208\) −4.71729 + 1.26399i −0.0226793 + 0.00607689i
\(209\) 87.7813i 0.420006i
\(210\) 77.3243 37.0264i 0.368211 0.176316i
\(211\) −299.419 −1.41905 −0.709524 0.704681i \(-0.751090\pi\)
−0.709524 + 0.704681i \(0.751090\pi\)
\(212\) 38.6978 + 144.422i 0.182537 + 0.681236i
\(213\) 33.5212 125.103i 0.157376 0.587337i
\(214\) 90.9654 52.5189i 0.425072 0.245415i
\(215\) 59.0500 110.801i 0.274651 0.515355i
\(216\) −14.6969 −0.0680414
\(217\) 256.562 205.119i 1.18231 0.945249i
\(218\) 123.464 + 123.464i 0.566347 + 0.566347i
\(219\) 124.623 + 71.9513i 0.569056 + 0.328545i
\(220\) 29.3770 126.693i 0.133532 0.575877i
\(221\) 0.570522 + 0.988172i 0.00258155 + 0.00447137i
\(222\) 24.0162 + 89.6296i 0.108181 + 0.403737i
\(223\) 151.041 + 151.041i 0.677313 + 0.677313i 0.959391 0.282078i \(-0.0910237\pi\)
−0.282078 + 0.959391i \(0.591024\pi\)
\(224\) 4.38510 39.3544i 0.0195763 0.175689i
\(225\) 74.8272 5.08868i 0.332565 0.0226164i
\(226\) 41.6631 72.1626i 0.184350 0.319304i
\(227\) 55.4109 + 14.8473i 0.244101 + 0.0654066i 0.378795 0.925481i \(-0.376339\pi\)
−0.134694 + 0.990887i \(0.543005\pi\)
\(228\) −6.05152 + 22.5846i −0.0265418 + 0.0990552i
\(229\) 85.5592 + 49.3976i 0.373621 + 0.215710i 0.675039 0.737782i \(-0.264127\pi\)
−0.301418 + 0.953492i \(0.597460\pi\)
\(230\) 72.9094 78.0360i 0.316997 0.339287i
\(231\) −63.2339 144.448i −0.273740 0.625316i
\(232\) −62.6239 + 62.6239i −0.269930 + 0.269930i
\(233\) −416.934 + 111.717i −1.78942 + 0.479473i −0.992247 0.124281i \(-0.960337\pi\)
−0.797170 + 0.603754i \(0.793671\pi\)
\(234\) −4.48596 + 2.58997i −0.0191708 + 0.0110682i
\(235\) −211.605 + 131.945i −0.900448 + 0.561466i
\(236\) −35.8429 + 62.0818i −0.151877 + 0.263058i
\(237\) −118.705 + 118.705i −0.500867 + 0.500867i
\(238\) −9.14677 + 1.39018i −0.0384318 + 0.00584108i
\(239\) 344.565i 1.44169i 0.693094 + 0.720847i \(0.256247\pi\)
−0.693094 + 0.720847i \(0.743753\pi\)
\(240\) 16.2922 30.5706i 0.0678842 0.127378i
\(241\) 50.1238 + 86.8170i 0.207983 + 0.360237i 0.951079 0.308948i \(-0.0999769\pi\)
−0.743096 + 0.669185i \(0.766644\pi\)
\(242\) −65.7619 17.6209i −0.271744 0.0728135i
\(243\) −15.0573 + 4.03459i −0.0619642 + 0.0166032i
\(244\) 218.251i 0.894469i
\(245\) 137.814 + 202.564i 0.562505 + 0.826794i
\(246\) 157.694 0.641032
\(247\) 2.13286 + 7.95994i 0.00863506 + 0.0322265i
\(248\) 34.3518 128.203i 0.138515 0.516947i
\(249\) −67.6719 + 39.0704i −0.271775 + 0.156909i
\(250\) −72.3644 + 161.287i −0.289458 + 0.645147i
\(251\) 404.247 1.61054 0.805272 0.592905i \(-0.202019\pi\)
0.805272 + 0.592905i \(0.202019\pi\)
\(252\) −6.31092 41.5232i −0.0250433 0.164774i
\(253\) −138.893 138.893i −0.548983 0.548983i
\(254\) 182.663 + 105.461i 0.719147 + 0.415200i
\(255\) −7.88446 1.82821i −0.0309195 0.00716946i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 9.03579 + 33.7220i 0.0351587 + 0.131214i 0.981275 0.192614i \(-0.0616966\pi\)
−0.946116 + 0.323828i \(0.895030\pi\)
\(258\) −43.4932 43.4932i −0.168578 0.168578i
\(259\) −242.917 + 106.340i −0.937905 + 0.410579i
\(260\) −0.414431 12.2022i −0.00159397 0.0469315i
\(261\) −46.9679 + 81.3508i −0.179954 + 0.311689i
\(262\) 286.566 + 76.7851i 1.09376 + 0.293073i
\(263\) −53.2792 + 198.841i −0.202583 + 0.756049i 0.787590 + 0.616199i \(0.211328\pi\)
−0.990173 + 0.139849i \(0.955338\pi\)
\(264\) −55.1773 31.8567i −0.209005 0.120669i
\(265\) −373.576 + 12.6880i −1.40972 + 0.0478793i
\(266\) −66.4066 7.39941i −0.249649 0.0278173i
\(267\) 62.5079 62.5079i 0.234112 0.234112i
\(268\) −120.966 + 32.4128i −0.451367 + 0.120943i
\(269\) −124.603 + 71.9393i −0.463206 + 0.267432i −0.713392 0.700766i \(-0.752842\pi\)
0.250185 + 0.968198i \(0.419509\pi\)
\(270\) 8.29945 35.7927i 0.0307387 0.132566i
\(271\) 95.3473 165.146i 0.351835 0.609396i −0.634736 0.772729i \(-0.718891\pi\)
0.986571 + 0.163333i \(0.0522245\pi\)
\(272\) −2.64337 + 2.64337i −0.00971829 + 0.00971829i
\(273\) −9.24371 11.5620i −0.0338597 0.0423517i
\(274\) 320.351i 1.16916i
\(275\) 291.957 + 143.089i 1.06166 + 0.520322i
\(276\) −26.1596 45.3097i −0.0947811 0.164166i
\(277\) 47.5729 + 12.7471i 0.171743 + 0.0460185i 0.343666 0.939092i \(-0.388331\pi\)
−0.171923 + 0.985110i \(0.554998\pi\)
\(278\) −57.5665 + 15.4249i −0.207074 + 0.0554852i
\(279\) 140.776i 0.504575i
\(280\) 93.3669 + 32.9031i 0.333453 + 0.117511i
\(281\) −343.443 −1.22222 −0.611109 0.791546i \(-0.709276\pi\)
−0.611109 + 0.791546i \(0.709276\pi\)
\(282\) 31.6190 + 118.004i 0.112124 + 0.418453i
\(283\) −28.4135 + 106.040i −0.100401 + 0.374701i −0.997783 0.0665533i \(-0.978800\pi\)
0.897382 + 0.441255i \(0.145466\pi\)
\(284\) 129.516 74.7760i 0.456042 0.263296i
\(285\) −51.5849 27.4914i −0.181000 0.0964612i
\(286\) −22.4558 −0.0785167
\(287\) 67.7143 + 445.531i 0.235938 + 1.55237i
\(288\) −12.0000 12.0000i −0.0416667 0.0416667i
\(289\) −249.525 144.063i −0.863408 0.498489i
\(290\) −117.149 187.877i −0.403963 0.647853i
\(291\) −102.316 177.217i −0.351603 0.608994i
\(292\) 43.0065 + 160.502i 0.147282 + 0.549666i
\(293\) −24.9404 24.9404i −0.0851209 0.0851209i 0.663264 0.748385i \(-0.269171\pi\)
−0.748385 + 0.663264i \(0.769171\pi\)
\(294\) 114.605 35.6604i 0.389813 0.121294i
\(295\) −130.952 122.349i −0.443906 0.414744i
\(296\) −53.5732 + 92.7914i −0.180990 + 0.313485i
\(297\) −65.2755 17.4905i −0.219783 0.0588906i
\(298\) −28.0826 + 104.806i −0.0942370 + 0.351697i
\(299\) −15.9694 9.21995i −0.0534094 0.0308360i
\(300\) 65.2510 + 56.9412i 0.217503 + 0.189804i
\(301\) 104.205 141.557i 0.346196 0.470290i
\(302\) −30.8785 + 30.8785i −0.102247 + 0.102247i
\(303\) −270.927 + 72.5946i −0.894148 + 0.239586i
\(304\) −23.3813 + 13.4992i −0.0769121 + 0.0444052i
\(305\) 531.524 + 123.247i 1.74270 + 0.404090i
\(306\) −1.98253 + 3.43384i −0.00647886 + 0.0112217i
\(307\) 311.194 311.194i 1.01366 1.01366i 0.0137553 0.999905i \(-0.495621\pi\)
0.999905 0.0137553i \(-0.00437859\pi\)
\(308\) 66.3110 169.572i 0.215296 0.550557i
\(309\) 145.225i 0.469983i
\(310\) 292.825 + 156.057i 0.944596 + 0.503409i
\(311\) −226.533 392.367i −0.728403 1.26163i −0.957558 0.288241i \(-0.906929\pi\)
0.229155 0.973390i \(-0.426404\pi\)
\(312\) −5.77747 1.54807i −0.0185175 0.00496176i
\(313\) 325.203 87.1378i 1.03899 0.278396i 0.301293 0.953532i \(-0.402582\pi\)
0.737693 + 0.675136i \(0.235915\pi\)
\(314\) 91.0027i 0.289817i
\(315\) 104.689 + 8.07885i 0.332345 + 0.0256471i
\(316\) −193.845 −0.613434
\(317\) −131.216 489.707i −0.413932 1.54482i −0.786965 0.616998i \(-0.788349\pi\)
0.373033 0.927818i \(-0.378318\pi\)
\(318\) −47.3949 + 176.880i −0.149041 + 0.556227i
\(319\) −352.667 + 203.613i −1.10554 + 0.638284i
\(320\) 38.2634 11.6583i 0.119573 0.0364322i
\(321\) 128.645 0.400762
\(322\) 116.780 93.3646i 0.362671 0.289952i
\(323\) 4.46043 + 4.46043i 0.0138094 + 0.0138094i
\(324\) −15.5885 9.00000i −0.0481125 0.0277778i
\(325\) 29.9511 + 5.88135i 0.0921572 + 0.0180965i
\(326\) 66.2560 + 114.759i 0.203239 + 0.352021i
\(327\) 55.3473 + 206.559i 0.169258 + 0.631678i
\(328\) 128.757 + 128.757i 0.392550 + 0.392550i
\(329\) −319.818 + 140.004i −0.972091 + 0.425545i
\(330\) 108.742 116.389i 0.329522 0.352692i
\(331\) 88.2204 152.802i 0.266527 0.461638i −0.701436 0.712733i \(-0.747457\pi\)
0.967963 + 0.251095i \(0.0807906\pi\)
\(332\) −87.1547 23.3530i −0.262514 0.0703404i
\(333\) −29.4137 + 109.773i −0.0883294 + 0.329650i
\(334\) −52.1762 30.1240i −0.156216 0.0901915i
\(335\) −10.6274 312.904i −0.0317234 0.934040i
\(336\) 28.7507 39.0564i 0.0855675 0.116239i
\(337\) 93.6762 93.6762i 0.277971 0.277971i −0.554328 0.832299i \(-0.687025\pi\)
0.832299 + 0.554328i \(0.187025\pi\)
\(338\) 228.822 61.3127i 0.676988 0.181398i
\(339\) 88.3808 51.0267i 0.260710 0.150521i
\(340\) −4.94491 7.93037i −0.0145438 0.0233246i
\(341\) 305.143 528.523i 0.894847 1.54992i
\(342\) −20.2488 + 20.2488i −0.0592070 + 0.0592070i
\(343\) 149.963 + 308.480i 0.437210 + 0.899360i
\(344\) 71.0241i 0.206465i
\(345\) 125.119 38.1220i 0.362664 0.110499i
\(346\) 41.7484 + 72.3103i 0.120660 + 0.208989i
\(347\) 462.828 + 124.014i 1.33380 + 0.357390i 0.854130 0.520060i \(-0.174090\pi\)
0.479668 + 0.877450i \(0.340757\pi\)
\(348\) −104.772 + 28.0735i −0.301068 + 0.0806710i
\(349\) 529.116i 1.51609i −0.652201 0.758046i \(-0.726154\pi\)
0.652201 0.758046i \(-0.273846\pi\)
\(350\) −132.857 + 208.804i −0.379590 + 0.596583i
\(351\) −6.34410 −0.0180744
\(352\) −19.0413 71.0630i −0.0540945 0.201883i
\(353\) −42.6410 + 159.138i −0.120796 + 0.450817i −0.999655 0.0262647i \(-0.991639\pi\)
0.878859 + 0.477082i \(0.158305\pi\)
\(354\) −76.0343 + 43.8984i −0.214786 + 0.124007i
\(355\) 108.970 + 357.648i 0.306958 + 1.00746i
\(356\) 102.075 0.286727
\(357\) −10.5529 4.12672i −0.0295600 0.0115595i
\(358\) 214.163 + 214.163i 0.598220 + 0.598220i
\(359\) −308.088 177.875i −0.858184 0.495473i 0.00521959 0.999986i \(-0.498339\pi\)
−0.863404 + 0.504513i \(0.831672\pi\)
\(360\) 36.0011 22.4482i 0.100003 0.0623560i
\(361\) −157.721 273.182i −0.436902 0.756736i
\(362\) −97.1260 362.479i −0.268304 1.00132i
\(363\) −58.9605 58.9605i −0.162426 0.162426i
\(364\) 1.89288 16.9878i 0.00520022 0.0466698i
\(365\) −415.171 + 14.1007i −1.13746 + 0.0386322i
\(366\) 133.651 231.490i 0.365166 0.632485i
\(367\) −367.501 98.4715i −1.00136 0.268315i −0.279347 0.960190i \(-0.590118\pi\)
−0.722017 + 0.691875i \(0.756785\pi\)
\(368\) 15.6360 58.3544i 0.0424892 0.158572i
\(369\) 167.260 + 96.5674i 0.453278 + 0.261700i
\(370\) −195.730 182.871i −0.529000 0.494247i
\(371\) −520.090 57.9515i −1.40186 0.156203i
\(372\) 114.943 114.943i 0.308988 0.308988i
\(373\) 323.837 86.7718i 0.868195 0.232632i 0.202888 0.979202i \(-0.434967\pi\)
0.665307 + 0.746570i \(0.268301\pi\)
\(374\) −14.8862 + 8.59455i −0.0398027 + 0.0229801i
\(375\) −175.522 + 126.756i −0.468058 + 0.338017i
\(376\) −70.5329 + 122.167i −0.187587 + 0.324911i
\(377\) −27.0323 + 27.0323i −0.0717038 + 0.0717038i
\(378\) 18.7339 47.9066i 0.0495606 0.126737i
\(379\) 674.043i 1.77848i −0.457443 0.889239i \(-0.651235\pi\)
0.457443 0.889239i \(-0.348765\pi\)
\(380\) −19.6722 64.5655i −0.0517689 0.169909i
\(381\) 129.162 + 223.716i 0.339009 + 0.587181i
\(382\) 5.84978 + 1.56744i 0.0153136 + 0.00410326i
\(383\) −30.9124 + 8.28295i −0.0807112 + 0.0216265i −0.298949 0.954269i \(-0.596636\pi\)
0.218237 + 0.975896i \(0.429969\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 375.526 + 257.251i 0.975392 + 0.668184i
\(386\) 334.563 0.866743
\(387\) −19.4975 72.7655i −0.0503811 0.188025i
\(388\) 61.1563 228.238i 0.157619 0.588243i
\(389\) −486.253 + 280.738i −1.25001 + 0.721692i −0.971111 0.238629i \(-0.923302\pi\)
−0.278897 + 0.960321i \(0.589969\pi\)
\(390\) 7.03272 13.1962i 0.0180326 0.0338363i
\(391\) −14.1151 −0.0361000
\(392\) 122.691 + 64.4581i 0.312988 + 0.164434i
\(393\) 256.928 + 256.928i 0.653761 + 0.653761i
\(394\) 10.5917 + 6.11514i 0.0268826 + 0.0155207i
\(395\) 109.466 472.088i 0.277128 1.19516i
\(396\) −39.0163 67.5782i −0.0985259 0.170652i
\(397\) −116.982 436.584i −0.294666 1.09971i −0.941483 0.337062i \(-0.890567\pi\)
0.646817 0.762645i \(-0.276100\pi\)
\(398\) −247.459 247.459i −0.621756 0.621756i
\(399\) −65.9036 48.5138i −0.165172 0.121589i
\(400\) 6.78491 + 99.7696i 0.0169623 + 0.249424i
\(401\) 77.9394 134.995i 0.194363 0.336646i −0.752329 0.658788i \(-0.771070\pi\)
0.946691 + 0.322142i \(0.104403\pi\)
\(402\) −148.153 39.6975i −0.368540 0.0987499i
\(403\) 14.8284 55.3402i 0.0367950 0.137321i
\(404\) −280.484 161.938i −0.694268 0.400836i
\(405\) 30.7214 32.8816i 0.0758552 0.0811890i
\(406\) −124.305 283.956i −0.306171 0.699399i
\(407\) −348.371 + 348.371i −0.855948 + 0.855948i
\(408\) −4.42245 + 1.18499i −0.0108393 + 0.00290439i
\(409\) 109.690 63.3296i 0.268191 0.154840i −0.359874 0.933001i \(-0.617180\pi\)
0.628065 + 0.778161i \(0.283847\pi\)
\(410\) −386.281 + 240.862i −0.942150 + 0.587469i
\(411\) −196.174 + 339.783i −0.477309 + 0.826723i
\(412\) −118.576 + 118.576i −0.287805 + 0.287805i
\(413\) −156.675 195.969i −0.379359 0.474502i
\(414\) 64.0776i 0.154777i
\(415\) 106.090 199.068i 0.255640 0.479681i
\(416\) −3.45329 5.98128i −0.00830118 0.0143781i
\(417\) −70.5043 18.8916i −0.169075 0.0453035i
\(418\) −119.912 + 32.1302i −0.286870 + 0.0768665i
\(419\) 768.293i 1.83363i −0.399307 0.916817i \(-0.630749\pi\)
0.399307 0.916817i \(-0.369251\pi\)
\(420\) 78.8816 + 92.0743i 0.187813 + 0.219225i
\(421\) 557.422 1.32404 0.662021 0.749485i \(-0.269699\pi\)
0.662021 + 0.749485i \(0.269699\pi\)
\(422\) −109.595 409.014i −0.259704 0.969228i
\(423\) −38.7252 + 144.525i −0.0915490 + 0.341666i
\(424\) −183.120 + 105.724i −0.431886 + 0.249350i
\(425\) 22.1059 7.56444i 0.0520140 0.0177987i
\(426\) 183.163 0.429960
\(427\) 711.416 + 278.200i 1.66608 + 0.651521i
\(428\) 105.038 + 105.038i 0.245415 + 0.245415i
\(429\) −23.8179 13.7513i −0.0555197 0.0320543i
\(430\) 172.971 + 40.1077i 0.402258 + 0.0932738i
\(431\) −60.4377 104.681i −0.140227 0.242880i 0.787355 0.616500i \(-0.211450\pi\)
−0.927582 + 0.373620i \(0.878116\pi\)
\(432\) −5.37945 20.0764i −0.0124524 0.0464731i
\(433\) 301.713 + 301.713i 0.696797 + 0.696797i 0.963718 0.266921i \(-0.0860063\pi\)
−0.266921 + 0.963718i \(0.586006\pi\)
\(434\) 374.106 + 275.392i 0.861996 + 0.634543i
\(435\) −9.20460 271.013i −0.0211600 0.623018i
\(436\) −123.464 + 213.845i −0.283174 + 0.490471i
\(437\) −98.4672 26.3842i −0.225325 0.0603758i
\(438\) −52.6720 + 196.574i −0.120256 + 0.448800i
\(439\) 428.223 + 247.234i 0.975450 + 0.563176i 0.900893 0.434040i \(-0.142912\pi\)
0.0745567 + 0.997217i \(0.476246\pi\)
\(440\) 183.818 6.24315i 0.417769 0.0141890i
\(441\) 143.395 + 32.3575i 0.325158 + 0.0733729i
\(442\) −1.14104 + 1.14104i −0.00258155 + 0.00258155i
\(443\) −451.126 + 120.879i −1.01834 + 0.272864i −0.729111 0.684395i \(-0.760066\pi\)
−0.289231 + 0.957259i \(0.593400\pi\)
\(444\) −113.646 + 65.6134i −0.255959 + 0.147778i
\(445\) −57.6424 + 248.592i −0.129533 + 0.558634i
\(446\) −151.041 + 261.610i −0.338657 + 0.586571i
\(447\) −93.9663 + 93.9663i −0.210215 + 0.210215i
\(448\) 55.3642 8.41456i 0.123581 0.0187825i
\(449\) 542.409i 1.20804i 0.796970 + 0.604019i \(0.206435\pi\)
−0.796970 + 0.604019i \(0.793565\pi\)
\(450\) 34.3399 + 100.353i 0.0763109 + 0.223007i
\(451\) 418.633 + 725.094i 0.928233 + 1.60775i
\(452\) 113.826 + 30.4995i 0.251827 + 0.0674768i
\(453\) −51.6608 + 13.8425i −0.114041 + 0.0305573i
\(454\) 81.1271i 0.178694i
\(455\) 40.3029 + 14.2030i 0.0885779 + 0.0312154i
\(456\) −33.0661 −0.0725134
\(457\) −113.360 423.064i −0.248052 0.925742i −0.971825 0.235704i \(-0.924261\pi\)
0.723773 0.690038i \(-0.242406\pi\)
\(458\) −36.1616 + 134.957i −0.0789554 + 0.294665i
\(459\) −4.20558 + 2.42809i −0.00916249 + 0.00528997i
\(460\) 133.286 + 71.0329i 0.289752 + 0.154419i
\(461\) 418.754 0.908360 0.454180 0.890910i \(-0.349932\pi\)
0.454180 + 0.890910i \(0.349932\pi\)
\(462\) 174.174 139.251i 0.377001 0.301408i
\(463\) 571.669 + 571.669i 1.23471 + 1.23471i 0.962135 + 0.272572i \(0.0878742\pi\)
0.272572 + 0.962135i \(0.412126\pi\)
\(464\) −108.468 62.6239i −0.233767 0.134965i
\(465\) 215.023 + 344.841i 0.462414 + 0.741594i
\(466\) −305.217 528.651i −0.654972 1.13445i
\(467\) 114.030 + 425.564i 0.244175 + 0.911273i 0.973796 + 0.227422i \(0.0730295\pi\)
−0.729622 + 0.683851i \(0.760304\pi\)
\(468\) −5.17994 5.17994i −0.0110682 0.0110682i
\(469\) 48.5395 435.622i 0.103496 0.928831i
\(470\) −257.692 240.763i −0.548282 0.512262i
\(471\) 55.7275 96.5229i 0.118317 0.204932i
\(472\) −97.9247 26.2388i −0.207468 0.0555908i
\(473\) 84.5243 315.449i 0.178698 0.666911i
\(474\) −205.604 118.705i −0.433763 0.250433i
\(475\) 168.351 11.4488i 0.354423 0.0241028i
\(476\) −5.24697 11.9859i −0.0110230 0.0251804i
\(477\) −158.586 + 158.586i −0.332466 + 0.332466i
\(478\) −470.684 + 126.120i −0.984696 + 0.263848i
\(479\) 418.951 241.882i 0.874638 0.504972i 0.00575111 0.999983i \(-0.498169\pi\)
0.868887 + 0.495011i \(0.164836\pi\)
\(480\) 47.7236 + 11.0659i 0.0994242 + 0.0230540i
\(481\) −23.1255 + 40.0545i −0.0480779 + 0.0832734i
\(482\) −100.248 + 100.248i −0.207983 + 0.207983i
\(483\) 181.038 27.5152i 0.374820 0.0569672i
\(484\) 96.2822i 0.198930i
\(485\) 521.313 + 277.827i 1.07487 + 0.572839i
\(486\) −11.0227 19.0919i −0.0226805 0.0392837i
\(487\) −575.465 154.195i −1.18165 0.316623i −0.386071 0.922469i \(-0.626168\pi\)
−0.795582 + 0.605846i \(0.792835\pi\)
\(488\) 298.136 79.8852i 0.610934 0.163699i
\(489\) 162.293i 0.331888i
\(490\) −226.265 + 262.401i −0.461765 + 0.535512i
\(491\) −493.037 −1.00415 −0.502074 0.864824i \(-0.667430\pi\)
−0.502074 + 0.864824i \(0.667430\pi\)
\(492\) 57.7200 + 215.414i 0.117317 + 0.437833i
\(493\) −7.57390 + 28.2662i −0.0153629 + 0.0573351i
\(494\) −10.0928 + 5.82708i −0.0204308 + 0.0117957i
\(495\) 186.612 56.8579i 0.376993 0.114864i
\(496\) 187.702 0.378431
\(497\) 78.6509 + 517.489i 0.158251 + 1.04123i
\(498\) −78.1407 78.1407i −0.156909 0.156909i
\(499\) 327.714 + 189.206i 0.656741 + 0.379170i 0.791034 0.611772i \(-0.209543\pi\)
−0.134293 + 0.990942i \(0.542876\pi\)
\(500\) −246.809 39.8166i −0.493618 0.0796332i
\(501\) −36.8942 63.9026i −0.0736410 0.127550i
\(502\) 147.965 + 552.211i 0.294750 + 1.10002i
\(503\) −458.146 458.146i −0.910826 0.910826i 0.0855108 0.996337i \(-0.472748\pi\)
−0.996337 + 0.0855108i \(0.972748\pi\)
\(504\) 54.4117 23.8194i 0.107960 0.0472607i
\(505\) 552.772 591.640i 1.09460 1.17156i
\(506\) 138.893 240.569i 0.274492 0.475434i
\(507\) 280.249 + 75.0924i 0.552759 + 0.148111i
\(508\) −77.2026 + 288.124i −0.151974 + 0.567173i
\(509\) 602.762 + 348.005i 1.18421 + 0.683703i 0.956984 0.290140i \(-0.0937017\pi\)
0.227224 + 0.973843i \(0.427035\pi\)
\(510\) −0.388529 11.4396i −0.000761822 0.0224305i
\(511\) −577.998 64.4039i −1.13111 0.126035i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −33.8769 + 9.07728i −0.0660368 + 0.0176945i
\(514\) −42.7578 + 24.6862i −0.0831864 + 0.0480277i
\(515\) −221.817 355.738i −0.430712 0.690753i
\(516\) 43.4932 75.3324i 0.0842892 0.145993i
\(517\) −458.655 + 458.655i −0.887147 + 0.887147i
\(518\) −234.177 292.908i −0.452079 0.565460i
\(519\) 102.262i 0.197037i
\(520\) 16.5168 5.03244i 0.0317631 0.00967777i
\(521\) −46.9311 81.2870i −0.0900788 0.156021i 0.817465 0.575978i \(-0.195379\pi\)
−0.907544 + 0.419957i \(0.862045\pi\)
\(522\) −128.319 34.3829i −0.245821 0.0658676i
\(523\) −696.690 + 186.678i −1.33210 + 0.356936i −0.853499 0.521094i \(-0.825524\pi\)
−0.478605 + 0.878030i \(0.658857\pi\)
\(524\) 419.562i 0.800690i
\(525\) −268.782 + 140.112i −0.511965 + 0.266881i
\(526\) −291.123 −0.553466
\(527\) −11.3506 42.3610i −0.0215381 0.0803814i
\(528\) 23.3207 87.0340i 0.0441680 0.164837i
\(529\) −260.580 + 150.446i −0.492590 + 0.284397i
\(530\) −154.071 505.671i −0.290699 0.954096i
\(531\) −107.529 −0.202502
\(532\) −14.1987 93.4215i −0.0266893 0.175604i
\(533\) 55.5792 + 55.5792i 0.104276 + 0.104276i
\(534\) 108.267 + 62.5079i 0.202747 + 0.117056i
\(535\) −315.123 + 196.492i −0.589015 + 0.367275i
\(536\) −88.5535 153.379i −0.165212 0.286155i
\(537\) 96.0065 + 358.301i 0.178783 + 0.667228i
\(538\) −143.879 143.879i −0.267432 0.267432i
\(539\) 468.215 + 432.299i 0.868674 + 0.802039i
\(540\) 51.9316 1.76379i 0.0961696 0.00326627i
\(541\) −501.633 + 868.854i −0.927233 + 1.60601i −0.139303 + 0.990250i \(0.544486\pi\)
−0.787930 + 0.615765i \(0.788847\pi\)
\(542\) 260.494 + 69.7990i 0.480615 + 0.128781i
\(543\) 118.955 443.944i 0.219069 0.817577i
\(544\) −4.57846 2.64337i −0.00841628 0.00485914i
\(545\) −451.076 421.442i −0.827662 0.773287i
\(546\) 12.4106 16.8591i 0.0227300 0.0308775i
\(547\) −188.091 + 188.091i −0.343860 + 0.343860i −0.857816 0.513957i \(-0.828179\pi\)
0.513957 + 0.857816i \(0.328179\pi\)
\(548\) −437.607 + 117.257i −0.798553 + 0.213972i
\(549\) 283.516 163.688i 0.516422 0.298156i
\(550\) −88.5989 + 451.195i −0.161089 + 0.820354i
\(551\) −105.671 + 183.028i −0.191781 + 0.332175i
\(552\) 52.3192 52.3192i 0.0947811 0.0947811i
\(553\) 247.091 631.864i 0.446818 1.14261i
\(554\) 69.6516i 0.125725i
\(555\) −95.6176 313.824i −0.172284 0.565448i
\(556\) −42.1416 72.9914i −0.0757942 0.131279i
\(557\) 535.638 + 143.524i 0.961648 + 0.257673i 0.705298 0.708911i \(-0.250813\pi\)
0.256350 + 0.966584i \(0.417480\pi\)
\(558\) 192.304 51.5278i 0.344631 0.0923437i
\(559\) 30.6584i 0.0548450i
\(560\) −10.7718 + 139.585i −0.0192354 + 0.249259i
\(561\) −21.0523 −0.0375263
\(562\) −125.709 469.152i −0.223681 0.834791i
\(563\) −153.153 + 571.577i −0.272031 + 1.01523i 0.685774 + 0.727815i \(0.259464\pi\)
−0.957805 + 0.287419i \(0.907203\pi\)
\(564\) −149.623 + 86.3848i −0.265289 + 0.153165i
\(565\) −138.556 + 259.986i −0.245232 + 0.460153i
\(566\) −155.254 −0.274300
\(567\) 49.2070 39.3405i 0.0867848 0.0693836i
\(568\) 149.552 + 149.552i 0.263296 + 0.263296i
\(569\) −337.893 195.083i −0.593837 0.342852i 0.172776 0.984961i \(-0.444726\pi\)
−0.766613 + 0.642109i \(0.778060\pi\)
\(570\) 18.6726 80.5288i 0.0327590 0.141279i
\(571\) 5.20468 + 9.01477i 0.00911502 + 0.0157877i 0.870547 0.492085i \(-0.163765\pi\)
−0.861432 + 0.507873i \(0.830432\pi\)
\(572\) −8.21938 30.6752i −0.0143695 0.0536279i
\(573\) 5.24477 + 5.24477i 0.00915318 + 0.00915318i
\(574\) −583.822 + 255.575i −1.01711 + 0.445253i
\(575\) −248.260 + 284.490i −0.431756 + 0.494765i
\(576\) 12.0000 20.7846i 0.0208333 0.0360844i
\(577\) −575.421 154.184i −0.997263 0.267216i −0.276965 0.960880i \(-0.589329\pi\)
−0.720299 + 0.693664i \(0.755995\pi\)
\(578\) 105.462 393.588i 0.182460 0.680948i
\(579\) 354.857 + 204.877i 0.612880 + 0.353846i
\(580\) 213.766 228.797i 0.368562 0.394477i
\(581\) 187.217 254.324i 0.322232 0.437736i
\(582\) 204.633 204.633i 0.351603 0.351603i
\(583\) −939.135 + 251.640i −1.61087 + 0.431630i
\(584\) −203.509 + 117.496i −0.348474 + 0.201192i
\(585\) 15.5403 9.69001i 0.0265646 0.0165641i
\(586\) 24.9404 43.1981i 0.0425605 0.0737169i
\(587\) −57.7749 + 57.7749i −0.0984239 + 0.0984239i −0.754604 0.656180i \(-0.772171\pi\)
0.656180 + 0.754604i \(0.272171\pi\)
\(588\) 90.6614 + 143.501i 0.154186 + 0.244049i
\(589\) 316.728i 0.537739i
\(590\) 119.200 223.667i 0.202035 0.379097i
\(591\) 7.48949 + 12.9722i 0.0126726 + 0.0219495i
\(592\) −146.365 39.2183i −0.247237 0.0662471i
\(593\) 901.848 241.650i 1.52082 0.407503i 0.600810 0.799392i \(-0.294845\pi\)
0.920013 + 0.391888i \(0.128178\pi\)
\(594\) 95.5700i 0.160892i
\(595\) 32.1532 6.00989i 0.0540391 0.0101007i
\(596\) −153.446 −0.257460
\(597\) −110.933 414.007i −0.185817 0.693479i
\(598\) 6.74947 25.1894i 0.0112867 0.0421227i
\(599\) −811.636 + 468.598i −1.35498 + 0.782301i −0.988943 0.148297i \(-0.952621\pi\)
−0.366042 + 0.930598i \(0.619287\pi\)
\(600\) −53.8996 + 109.976i −0.0898327 + 0.183294i
\(601\) 89.1175 0.148282 0.0741410 0.997248i \(-0.476379\pi\)
0.0741410 + 0.997248i \(0.476379\pi\)
\(602\) 231.512 + 90.5330i 0.384572 + 0.150387i
\(603\) −132.830 132.830i −0.220282 0.220282i
\(604\) −53.4832 30.8785i −0.0885483 0.0511234i
\(605\) 234.484 + 54.3711i 0.387577 + 0.0898696i
\(606\) −198.332 343.521i −0.327281 0.566867i
\(607\) 214.931 + 802.135i 0.354088 + 1.32147i 0.881628 + 0.471945i \(0.156448\pi\)
−0.527540 + 0.849530i \(0.676886\pi\)
\(608\) −26.9984 26.9984i −0.0444052 0.0444052i
\(609\) 42.0412 377.302i 0.0690332 0.619544i
\(610\) 26.1923 + 771.187i 0.0429383 + 1.26424i
\(611\) −30.4463 + 52.7346i −0.0498303 + 0.0863087i
\(612\) −5.41637 1.45131i −0.00885029 0.00237143i
\(613\) 259.965 970.204i 0.424087 1.58271i −0.341822 0.939765i \(-0.611044\pi\)
0.765909 0.642949i \(-0.222289\pi\)
\(614\) 539.004 + 311.194i 0.877856 + 0.506830i
\(615\) −557.211 + 18.9249i −0.906034 + 0.0307722i
\(616\) 255.911 + 28.5151i 0.415439 + 0.0462907i
\(617\) 92.1769 92.1769i 0.149395 0.149395i −0.628453 0.777848i \(-0.716311\pi\)
0.777848 + 0.628453i \(0.216311\pi\)
\(618\) −198.381 + 53.1560i −0.321004 + 0.0860129i
\(619\) 420.450 242.747i 0.679241 0.392160i −0.120328 0.992734i \(-0.538395\pi\)
0.799569 + 0.600574i \(0.205061\pi\)
\(620\) −105.996 + 457.127i −0.170962 + 0.737301i
\(621\) 39.2394 67.9646i 0.0631874 0.109444i
\(622\) 453.067 453.067i 0.728403 0.728403i
\(623\) −130.113 + 332.727i −0.208849 + 0.534072i
\(624\) 8.45881i 0.0135558i
\(625\) 236.343 578.590i 0.378149 0.925745i
\(626\) 238.065 + 412.341i 0.380295 + 0.658691i
\(627\) −146.861 39.3513i −0.234228 0.0627612i
\(628\) 124.312 33.3093i 0.197949 0.0530403i
\(629\) 35.4035i 0.0562853i
\(630\) 27.2828 + 145.965i 0.0433061 + 0.231690i
\(631\) 204.708 0.324418 0.162209 0.986756i \(-0.448138\pi\)
0.162209 + 0.986756i \(0.448138\pi\)
\(632\) −70.9523 264.797i −0.112266 0.418983i
\(633\) 134.226 500.938i 0.212047 0.791372i
\(634\) 620.923 358.490i 0.979374 0.565442i
\(635\) −658.096 350.723i −1.03637 0.552320i
\(636\) −258.971 −0.407186
\(637\) 52.9611 + 27.8241i 0.0831415 + 0.0436799i
\(638\) −407.225 407.225i −0.638284 0.638284i
\(639\) 194.274 + 112.164i 0.304028 + 0.175531i
\(640\) 29.9309 + 48.0015i 0.0467670 + 0.0750023i
\(641\) 587.986 + 1018.42i 0.917295 + 1.58880i 0.803506 + 0.595296i \(0.202965\pi\)
0.113788 + 0.993505i \(0.463701\pi\)
\(642\) 47.0872 + 175.732i 0.0733445 + 0.273725i
\(643\) 395.839 + 395.839i 0.615612 + 0.615612i 0.944403 0.328791i \(-0.106641\pi\)
−0.328791 + 0.944403i \(0.606641\pi\)
\(644\) 170.283 + 125.351i 0.264415 + 0.194644i
\(645\) 158.903 + 148.463i 0.246361 + 0.230176i
\(646\) −4.46043 + 7.72569i −0.00690468 + 0.0119593i
\(647\) −445.523 119.378i −0.688598 0.184509i −0.102480 0.994735i \(-0.532678\pi\)
−0.586118 + 0.810226i \(0.699344\pi\)
\(648\) 6.58846 24.5885i 0.0101674 0.0379452i
\(649\) −403.700 233.076i −0.622034 0.359131i
\(650\) 2.92878 + 43.0667i 0.00450582 + 0.0662564i
\(651\) 228.157 + 521.189i 0.350472 + 0.800598i
\(652\) −132.512 + 132.512i −0.203239 + 0.203239i
\(653\) 242.537 64.9876i 0.371419 0.0995215i −0.0682808 0.997666i \(-0.521751\pi\)
0.439700 + 0.898145i \(0.355085\pi\)
\(654\) −261.906 + 151.212i −0.400468 + 0.231210i
\(655\) −1021.79 236.929i −1.55999 0.361724i
\(656\) −128.757 + 223.013i −0.196275 + 0.339959i
\(657\) −176.244 + 176.244i −0.268255 + 0.268255i
\(658\) −308.311 385.634i −0.468558 0.586071i
\(659\) 524.406i 0.795760i −0.917437 0.397880i \(-0.869746\pi\)
0.917437 0.397880i \(-0.130254\pi\)
\(660\) 198.792 + 105.944i 0.301200 + 0.160520i
\(661\) 148.475 + 257.165i 0.224621 + 0.389055i 0.956206 0.292696i \(-0.0945522\pi\)
−0.731585 + 0.681751i \(0.761219\pi\)
\(662\) 241.023 + 64.5818i 0.364082 + 0.0975556i
\(663\) −1.90900 + 0.511516i −0.00287934 + 0.000771517i
\(664\) 127.603i 0.192174i
\(665\) 235.536 + 18.1763i 0.354189 + 0.0273328i
\(666\) −160.719 −0.241321
\(667\) −122.399 456.798i −0.183506 0.684854i
\(668\) 22.0523 82.3002i 0.0330124 0.123204i
\(669\) −320.406 + 184.987i −0.478933 + 0.276512i
\(670\) 423.544 129.048i 0.632156 0.192609i
\(671\) 1419.22 2.11508
\(672\) 63.8755 + 24.9785i 0.0950528 + 0.0371704i
\(673\) −41.9638 41.9638i −0.0623533 0.0623533i 0.675243 0.737596i \(-0.264039\pi\)
−0.737596 + 0.675243i \(0.764039\pi\)
\(674\) 162.252 + 93.6762i 0.240730 + 0.138985i
\(675\) −25.0306 + 127.469i −0.0370823 + 0.188844i
\(676\) 167.509 + 290.135i 0.247795 + 0.429193i
\(677\) −255.227 952.520i −0.376997 1.40697i −0.850405 0.526129i \(-0.823643\pi\)
0.473408 0.880843i \(-0.343024\pi\)
\(678\) 102.053 + 102.053i 0.150521 + 0.150521i
\(679\) 666.018 + 490.278i 0.980880 + 0.722058i
\(680\) 9.02312 9.65759i 0.0132693 0.0142023i
\(681\) −49.6800 + 86.0483i −0.0729516 + 0.126356i
\(682\) 833.666 + 223.380i 1.22238 + 0.327537i
\(683\) 107.123 399.787i 0.156841 0.585339i −0.842099 0.539322i \(-0.818680\pi\)
0.998941 0.0460170i \(-0.0146528\pi\)
\(684\) −35.0719 20.2488i −0.0512747 0.0296035i
\(685\) −38.4454 1131.96i −0.0561247 1.65249i
\(686\) −366.502 + 317.765i −0.534259 + 0.463214i
\(687\) −120.999 + 120.999i −0.176127 + 0.176127i
\(688\) 97.0207 25.9966i 0.141019 0.0377858i
\(689\) −79.0458 + 45.6371i −0.114725 + 0.0662367i
\(690\) 97.8724 + 156.962i 0.141844 + 0.227482i
\(691\) 455.346 788.682i 0.658966 1.14136i −0.321917 0.946768i \(-0.604327\pi\)
0.980884 0.194595i \(-0.0623393\pi\)
\(692\) −83.4967 + 83.4967i −0.120660 + 0.120660i
\(693\) 270.013 41.0381i 0.389629 0.0592180i
\(694\) 677.627i 0.976408i
\(695\) 201.560 61.4124i 0.290014 0.0883632i
\(696\) −76.6983 132.845i −0.110199 0.190870i
\(697\) 58.1161 + 15.5722i 0.0833804 + 0.0223417i
\(698\) 722.786 193.670i 1.03551 0.277464i
\(699\) 747.626i 1.06957i
\(700\) −333.860 105.058i −0.476944 0.150083i
\(701\) 295.328 0.421296 0.210648 0.977562i \(-0.432443\pi\)
0.210648 + 0.977562i \(0.432443\pi\)
\(702\) −2.32210 8.66621i −0.00330784 0.0123450i
\(703\) −66.1769 + 246.975i −0.0941349 + 0.351316i
\(704\) 90.1042 52.0217i 0.127989 0.0738945i
\(705\) −125.887 413.172i −0.178564 0.586059i
\(706\) −232.995 −0.330021
\(707\) 885.384 707.856i 1.25231 1.00121i
\(708\) −87.7969 87.7969i −0.124007 0.124007i
\(709\) 754.639 + 435.691i 1.06437 + 0.614515i 0.926638 0.375955i \(-0.122685\pi\)
0.137733 + 0.990469i \(0.456019\pi\)
\(710\) −448.670 + 279.764i −0.631929 + 0.394034i
\(711\) −145.384 251.812i −0.204478 0.354166i
\(712\) 37.3620 + 139.437i 0.0524748 + 0.195838i
\(713\) 501.146 + 501.146i 0.702869 + 0.702869i
\(714\) 1.77457 15.9260i 0.00248540 0.0223054i
\(715\) 79.3474 2.69493i 0.110975 0.00376913i
\(716\) −214.163 + 370.941i −0.299110 + 0.518074i
\(717\) −576.468 154.464i −0.804001 0.215431i
\(718\) 130.213 485.963i 0.181356 0.676829i
\(719\) −783.472 452.338i −1.08967 0.629121i −0.156181 0.987728i \(-0.549918\pi\)
−0.933488 + 0.358607i \(0.883252\pi\)
\(720\) 43.8421 + 40.9618i 0.0608918 + 0.0568914i
\(721\) −235.367 537.658i −0.326445 0.745712i
\(722\) 315.443 315.443i 0.436902 0.436902i
\(723\) −167.718 + 44.9398i −0.231975 + 0.0621574i
\(724\) 459.605 265.353i 0.634813 0.366510i
\(725\) 436.494 + 649.805i 0.602060 + 0.896283i
\(726\) 58.9605 102.123i 0.0812129 0.140665i
\(727\) −155.082 + 155.082i −0.213318 + 0.213318i −0.805675 0.592357i \(-0.798197\pi\)
0.592357 + 0.805675i \(0.298197\pi\)
\(728\) 23.8986 3.63224i 0.0328277 0.00498934i
\(729\) 27.0000i 0.0370370i
\(730\) −171.225 561.973i −0.234555 0.769827i
\(731\) −11.7340 20.3238i −0.0160519 0.0278027i
\(732\) 365.140 + 97.8390i 0.498825 + 0.133660i
\(733\) −297.763 + 79.7853i −0.406225 + 0.108848i −0.456145 0.889906i \(-0.650770\pi\)
0.0499198 + 0.998753i \(0.484103\pi\)
\(734\) 538.058i 0.733049i
\(735\) −400.677 + 139.760i −0.545139 + 0.190149i
\(736\) 85.4368 0.116083
\(737\) −210.771 786.609i −0.285986 1.06731i
\(738\) −70.6922 + 263.827i −0.0957889 + 0.357489i
\(739\) 204.986 118.349i 0.277383 0.160147i −0.354855 0.934921i \(-0.615470\pi\)
0.632238 + 0.774774i \(0.282136\pi\)
\(740\) 178.165 334.308i 0.240763 0.451767i
\(741\) −14.2734 −0.0192623
\(742\) −111.203 731.668i −0.149869 0.986075i
\(743\) 605.403 + 605.403i 0.814809 + 0.814809i 0.985351 0.170541i \(-0.0545516\pi\)
−0.170541 + 0.985351i \(0.554552\pi\)
\(744\) 199.088 + 114.943i 0.267591 + 0.154494i
\(745\) 86.6521 373.701i 0.116312 0.501612i
\(746\) 237.065 + 410.609i 0.317781 + 0.550414i
\(747\) −35.0295 130.732i −0.0468936 0.175009i
\(748\) −17.1891 17.1891i −0.0229801 0.0229801i
\(749\) −476.274 + 208.495i −0.635880 + 0.278364i
\(750\) −237.398 193.371i −0.316530 0.257828i
\(751\) −426.169 + 738.147i −0.567469 + 0.982886i 0.429346 + 0.903140i \(0.358744\pi\)
−0.996815 + 0.0797456i \(0.974589\pi\)
\(752\) −192.699 51.6337i −0.256249 0.0686618i
\(753\) −181.219 + 676.318i −0.240662 + 0.898164i
\(754\) −46.8214 27.0323i −0.0620973 0.0358519i
\(755\) 105.403 112.815i 0.139607 0.149424i
\(756\) 72.2987 + 8.05595i 0.0956332 + 0.0106560i
\(757\) −61.7687 + 61.7687i −0.0815967 + 0.0815967i −0.746727 0.665130i \(-0.768376\pi\)
0.665130 + 0.746727i \(0.268376\pi\)
\(758\) 920.760 246.717i 1.21472 0.325484i
\(759\) 294.636 170.108i 0.388190 0.224122i
\(760\) 80.9976 50.5053i 0.106576 0.0664544i
\(761\) 46.4211 80.4037i 0.0610002 0.105655i −0.833913 0.551897i \(-0.813904\pi\)
0.894913 + 0.446241i \(0.147238\pi\)
\(762\) −258.325 + 258.325i −0.339009 + 0.339009i
\(763\) −539.680 675.031i