Defining parameters
Level: | \( N \) | \(=\) | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 210.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(210, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 8 | 104 |
Cusp forms | 80 | 8 | 72 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(210, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
210.2.i.a | $2$ | $1.677$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(-1\) | \(-1\) | \(4\) | \(q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
210.2.i.b | $2$ | $1.677$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(1\) | \(-1\) | \(-4\) | \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
210.2.i.c | $2$ | $1.677$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-1\) | \(1\) | \(-4\) | \(q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
210.2.i.d | $2$ | $1.677$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(1\) | \(1\) | \(4\) | \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(210, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(210, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)