Properties

Label 210.2.g
Level $210$
Weight $2$
Character orbit 210.g
Rep. character $\chi_{210}(169,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 210.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(210, [\chi])\).

Total New Old
Modular forms 56 4 52
Cusp forms 40 4 36
Eisenstein series 16 0 16

Trace form

\( 4q - 4q^{4} - 4q^{9} + O(q^{10}) \) \( 4q - 4q^{4} - 4q^{9} - 8q^{15} + 4q^{16} + 16q^{19} - 4q^{21} - 12q^{25} + 16q^{26} + 4q^{30} + 8q^{31} - 24q^{34} - 8q^{35} + 4q^{36} - 8q^{39} + 16q^{41} - 16q^{46} - 4q^{49} + 16q^{50} - 8q^{51} + 8q^{55} + 32q^{59} + 8q^{60} - 4q^{64} - 16q^{65} + 8q^{66} + 16q^{69} + 4q^{70} - 40q^{71} - 24q^{74} - 16q^{76} + 16q^{79} + 4q^{81} + 4q^{84} - 16q^{85} + 24q^{86} - 8q^{91} - 24q^{94} + 8q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(210, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
210.2.g.a \(2\) \(1.677\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(-2\) \(0\) \(q+iq^{2}+iq^{3}-q^{4}+(-1+2i)q^{5}+\cdots\)
210.2.g.b \(2\) \(1.677\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(2\) \(0\) \(q+iq^{2}-iq^{3}-q^{4}+(1-2i)q^{5}+q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(210, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(210, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)