Properties

Label 210.2.g
Level $210$
Weight $2$
Character orbit 210.g
Rep. character $\chi_{210}(169,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 210.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(210, [\chi])\).

Total New Old
Modular forms 56 4 52
Cusp forms 40 4 36
Eisenstein series 16 0 16

Trace form

\( 4 q - 4 q^{4} - 4 q^{9} - 8 q^{15} + 4 q^{16} + 16 q^{19} - 4 q^{21} - 12 q^{25} + 16 q^{26} + 4 q^{30} + 8 q^{31} - 24 q^{34} - 8 q^{35} + 4 q^{36} - 8 q^{39} + 16 q^{41} - 16 q^{46} - 4 q^{49} + 16 q^{50}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(210, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
210.2.g.a 210.g 5.b $2$ $1.677$ \(\Q(\sqrt{-1}) \) None 210.2.g.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}+(2 i-1)q^{5}+\cdots\)
210.2.g.b 210.g 5.b $2$ $1.677$ \(\Q(\sqrt{-1}) \) None 210.2.g.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-i q^{3}-q^{4}+(-2 i+1)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(210, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(210, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)