Newspace parameters
Level: | \( N \) | \(=\) | \( 21 = 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 21.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.36806021607\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
Defining polynomial: |
\( x^{16} - 171 x^{14} + 21495 x^{12} - 1128902 x^{10} + 42970860 x^{8} - 655075344 x^{6} + 7244325760 x^{4} - 29387167488 x^{2} + 90230547456 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{4}\cdot 3^{8} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 171 x^{14} + 21495 x^{12} - 1128902 x^{10} + 42970860 x^{8} - 655075344 x^{6} + 7244325760 x^{4} - 29387167488 x^{2} + 90230547456 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 13230933495217 \nu^{14} + \cdots + 35\!\cdots\!44 ) / 25\!\cdots\!32 \)
|
\(\beta_{3}\) | \(=\) |
\( ( - 13230933495217 \nu^{15} + \cdots + 93\!\cdots\!12 \nu ) / 25\!\cdots\!32 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 56\!\cdots\!45 \nu^{14} + \cdots - 31\!\cdots\!92 ) / 12\!\cdots\!32 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 58\!\cdots\!09 \nu^{14} + \cdots - 18\!\cdots\!84 ) / 80\!\cdots\!52 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 65\!\cdots\!81 \nu^{15} + \cdots + 10\!\cdots\!16 ) / 51\!\cdots\!28 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 11\!\cdots\!65 \nu^{14} + \cdots - 19\!\cdots\!80 ) / 12\!\cdots\!32 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 17\!\cdots\!40 \nu^{15} + \cdots - 19\!\cdots\!96 ) / 12\!\cdots\!32 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 12\!\cdots\!59 \nu^{15} + \cdots - 66\!\cdots\!60 ) / 51\!\cdots\!28 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 988408623043793 \nu^{15} + \cdots + 62\!\cdots\!00 ) / 17\!\cdots\!76 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 10\!\cdots\!87 \nu^{14} + \cdots - 93\!\cdots\!48 ) / 64\!\cdots\!16 \)
|
\(\beta_{12}\) | \(=\) |
\( ( 65\!\cdots\!81 \nu^{15} + \cdots - 14\!\cdots\!00 ) / 51\!\cdots\!28 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 22\!\cdots\!35 \nu^{15} + \cdots + 66\!\cdots\!60 ) / 51\!\cdots\!28 \)
|
\(\beta_{14}\) | \(=\) |
\( ( - 51\!\cdots\!05 \nu^{15} + \cdots - 44\!\cdots\!88 ) / 51\!\cdots\!28 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 12\!\cdots\!29 \nu^{15} + \cdots + 44\!\cdots\!88 ) / 51\!\cdots\!28 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{12} + \beta_{10} - \beta_{8} - \beta_{7} + \beta_{4} - 43\beta_{2} + \beta _1 + 44 \)
|
\(\nu^{3}\) | \(=\) |
\( - 2 \beta_{15} + 10 \beta_{14} + 5 \beta_{13} + 8 \beta_{12} + 6 \beta_{11} + 6 \beta_{10} - \beta_{9} + 10 \beta_{8} - 3 \beta_{7} + 12 \beta_{6} + 9 \beta_{5} - 9 \beta_{4} - 74 \beta_{3} - 16 \beta_{2} + 10 \beta _1 - 8 \)
|
\(\nu^{4}\) | \(=\) |
\( - 159 \beta_{11} + 93 \beta_{10} - 93 \beta_{8} - 159 \beta_{7} + 93 \beta_{6} + 139 \beta_{5} + 139 \beta_{4} - 3495 \beta_{2} + 93 \beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( - 139 \beta_{15} + 643 \beta_{14} + 1286 \beta_{13} + 1166 \beta_{12} + 391 \beta_{11} + 384 \beta_{10} - 278 \beta_{9} + 1934 \beta_{8} - 782 \beta_{7} + 1550 \beta_{6} + 1173 \beta_{5} - 1173 \beta_{4} - 6568 \beta_{3} + \cdots - 1166 \)
|
\(\nu^{6}\) | \(=\) |
\( -8921\beta_{12} - 15927\beta_{11} - 3656\beta_{7} + 8921\beta_{6} + 19583\beta_{5} - 3656\beta_{4} - 346408 \)
|
\(\nu^{7}\) | \(=\) |
\( 15927 \beta_{15} - 72935 \beta_{14} + 72935 \beta_{13} - 44431 \beta_{11} - 39034 \beta_{10} - 15927 \beta_{9} + 49828 \beta_{8} - 44431 \beta_{7} - 49828 \beta_{6} - 880102 \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( - 902945 \beta_{12} + 470256 \beta_{11} - 902945 \beta_{10} + 902945 \beta_{8} + 1744655 \beta_{7} + 470256 \beta_{5} - 2214911 \beta_{4} + 34544399 \beta_{2} - 902945 \beta _1 - 35447344 \)
|
\(\nu^{9}\) | \(=\) |
\( 3489310 \beta_{15} - 15960734 \beta_{14} - 7980367 \beta_{13} - 15466810 \beta_{12} - 9725022 \beta_{11} - 9725022 \beta_{10} + 1744655 \beta_{9} - 21208598 \beta_{8} + \cdots + 15466810 \)
|
\(\nu^{10}\) | \(=\) |
\( 242314767 \beta_{11} - 94099521 \beta_{10} + 94099521 \beta_{8} + 242314767 \beta_{7} - 94099521 \beta_{6} - 188263727 \beta_{5} - 188263727 \beta_{4} + 3621924255 \beta_{2} - 94099521 \beta_1 \)
|
\(\nu^{11}\) | \(=\) |
\( 188263727 \beta_{15} - 861092303 \beta_{14} - 1722184606 \beta_{13} - 1682200810 \beta_{12} - 524678015 \beta_{11} - 632844780 \beta_{10} + 376527454 \beta_{9} + \cdots + 1682200810 \)
|
\(\nu^{12}\) | \(=\) |
\( 9941629681 \beta_{12} + 20195416575 \beta_{11} + 5951790976 \beta_{7} - 9941629681 \beta_{6} - 26147207551 \beta_{5} + 5951790976 \beta_{4} + \cdots + 393676948736 \)
|
\(\nu^{13}\) | \(=\) |
\( - 20195416575 \beta_{15} + 92373091039 \beta_{14} - 92373091039 \beta_{13} + 56284253807 \beta_{11} + 44068514642 \beta_{10} + 20195416575 \beta_{9} + \cdots + 1049359678214 \beta_1 \)
|
\(\nu^{14}\) | \(=\) |
\( 1056780975361 \beta_{12} - 643984782144 \beta_{11} + 1056780975361 \beta_{10} - 1056780975361 \beta_{8} - 2161024276975 \beta_{7} + \cdots + 41898267202496 \)
|
\(\nu^{15}\) | \(=\) |
\( - 4322048553950 \beta_{15} + 19769208691870 \beta_{14} + 9884604345935 \beta_{13} + 19403874824906 \beta_{12} + 12045628622910 \beta_{11} + \cdots - 19403874824906 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).
\(n\) | \(8\) | \(10\) |
\(\chi(n)\) | \(-1\) | \(\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
−8.95007 | − | 5.16733i | 14.3022 | + | 6.20057i | 37.4025 | + | 64.7831i | 15.8704 | − | 27.4884i | −95.9654 | − | 129.400i | 20.8412 | − | 127.956i | − | 442.375i | 166.106 | + | 177.364i | −284.083 | + | 164.015i | |||||||||||||||||||||||||||||||||||||||||||||||||
5.2 | −5.89199 | − | 3.40174i | 1.92849 | − | 15.4687i | 7.14372 | + | 12.3733i | −7.45706 | + | 12.9160i | −63.9832 | + | 84.5813i | −125.096 | + | 34.0278i | 120.507i | −235.562 | − | 59.6625i | 87.8738 | − | 50.7340i | |||||||||||||||||||||||||||||||||||||||||||||||||||
5.3 | −3.16536 | − | 1.82752i | 7.01741 | + | 13.9196i | −9.32032 | − | 16.1433i | −37.1622 | + | 64.3668i | 3.22580 | − | 56.8851i | 45.3051 | + | 121.468i | 185.094i | −144.512 | + | 195.359i | 235.264 | − | 135.830i | |||||||||||||||||||||||||||||||||||||||||||||||||||
5.4 | −1.84692 | − | 1.06632i | −6.34074 | + | 14.2406i | −13.7259 | − | 23.7740i | 47.5262 | − | 82.3179i | 26.8959 | − | 19.5400i | −95.0499 | − | 88.1619i | 126.790i | −162.590 | − | 180.592i | −175.555 | + | 101.356i | |||||||||||||||||||||||||||||||||||||||||||||||||||
5.5 | 1.84692 | + | 1.06632i | −15.5031 | − | 1.62906i | −13.7259 | − | 23.7740i | −47.5262 | + | 82.3179i | −26.8959 | − | 19.5400i | −95.0499 | − | 88.1619i | − | 126.790i | 237.692 | + | 50.5111i | −175.555 | + | 101.356i | ||||||||||||||||||||||||||||||||||||||||||||||||||
5.6 | 3.16536 | + | 1.82752i | −8.54605 | − | 13.0371i | −9.32032 | − | 16.1433i | 37.1622 | − | 64.3668i | −3.22580 | − | 56.8851i | 45.3051 | + | 121.468i | − | 185.094i | −96.9302 | + | 222.831i | 235.264 | − | 135.830i | ||||||||||||||||||||||||||||||||||||||||||||||||||
5.7 | 5.89199 | + | 3.40174i | 14.3605 | + | 6.06423i | 7.14372 | + | 12.3733i | 7.45706 | − | 12.9160i | 63.9832 | + | 84.5813i | −125.096 | + | 34.0278i | − | 120.507i | 169.450 | + | 174.171i | 87.8738 | − | 50.7340i | ||||||||||||||||||||||||||||||||||||||||||||||||||
5.8 | 8.95007 | + | 5.16733i | 1.78125 | − | 15.4864i | 37.4025 | + | 64.7831i | −15.8704 | + | 27.4884i | 95.9654 | − | 129.400i | 20.8412 | − | 127.956i | 442.375i | −236.654 | − | 55.1702i | −284.083 | + | 164.015i | |||||||||||||||||||||||||||||||||||||||||||||||||||
17.1 | −8.95007 | + | 5.16733i | 14.3022 | − | 6.20057i | 37.4025 | − | 64.7831i | 15.8704 | + | 27.4884i | −95.9654 | + | 129.400i | 20.8412 | + | 127.956i | 442.375i | 166.106 | − | 177.364i | −284.083 | − | 164.015i | |||||||||||||||||||||||||||||||||||||||||||||||||||
17.2 | −5.89199 | + | 3.40174i | 1.92849 | + | 15.4687i | 7.14372 | − | 12.3733i | −7.45706 | − | 12.9160i | −63.9832 | − | 84.5813i | −125.096 | − | 34.0278i | − | 120.507i | −235.562 | + | 59.6625i | 87.8738 | + | 50.7340i | ||||||||||||||||||||||||||||||||||||||||||||||||||
17.3 | −3.16536 | + | 1.82752i | 7.01741 | − | 13.9196i | −9.32032 | + | 16.1433i | −37.1622 | − | 64.3668i | 3.22580 | + | 56.8851i | 45.3051 | − | 121.468i | − | 185.094i | −144.512 | − | 195.359i | 235.264 | + | 135.830i | ||||||||||||||||||||||||||||||||||||||||||||||||||
17.4 | −1.84692 | + | 1.06632i | −6.34074 | − | 14.2406i | −13.7259 | + | 23.7740i | 47.5262 | + | 82.3179i | 26.8959 | + | 19.5400i | −95.0499 | + | 88.1619i | − | 126.790i | −162.590 | + | 180.592i | −175.555 | − | 101.356i | ||||||||||||||||||||||||||||||||||||||||||||||||||
17.5 | 1.84692 | − | 1.06632i | −15.5031 | + | 1.62906i | −13.7259 | + | 23.7740i | −47.5262 | − | 82.3179i | −26.8959 | + | 19.5400i | −95.0499 | + | 88.1619i | 126.790i | 237.692 | − | 50.5111i | −175.555 | − | 101.356i | |||||||||||||||||||||||||||||||||||||||||||||||||||
17.6 | 3.16536 | − | 1.82752i | −8.54605 | + | 13.0371i | −9.32032 | + | 16.1433i | 37.1622 | + | 64.3668i | −3.22580 | + | 56.8851i | 45.3051 | − | 121.468i | 185.094i | −96.9302 | − | 222.831i | 235.264 | + | 135.830i | |||||||||||||||||||||||||||||||||||||||||||||||||||
17.7 | 5.89199 | − | 3.40174i | 14.3605 | − | 6.06423i | 7.14372 | − | 12.3733i | 7.45706 | + | 12.9160i | 63.9832 | − | 84.5813i | −125.096 | − | 34.0278i | 120.507i | 169.450 | − | 174.171i | 87.8738 | + | 50.7340i | |||||||||||||||||||||||||||||||||||||||||||||||||||
17.8 | 8.95007 | − | 5.16733i | 1.78125 | + | 15.4864i | 37.4025 | − | 64.7831i | −15.8704 | − | 27.4884i | 95.9654 | + | 129.400i | 20.8412 | + | 127.956i | − | 442.375i | −236.654 | + | 55.1702i | −284.083 | − | 164.015i | ||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
21.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 21.6.g.c | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 21.6.g.c | ✓ | 16 |
7.c | even | 3 | 1 | 147.6.c.c | 16 | ||
7.d | odd | 6 | 1 | inner | 21.6.g.c | ✓ | 16 |
7.d | odd | 6 | 1 | 147.6.c.c | 16 | ||
21.g | even | 6 | 1 | inner | 21.6.g.c | ✓ | 16 |
21.g | even | 6 | 1 | 147.6.c.c | 16 | ||
21.h | odd | 6 | 1 | 147.6.c.c | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
21.6.g.c | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
21.6.g.c | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
21.6.g.c | ✓ | 16 | 7.d | odd | 6 | 1 | inner |
21.6.g.c | ✓ | 16 | 21.g | even | 6 | 1 | inner |
147.6.c.c | 16 | 7.c | even | 3 | 1 | ||
147.6.c.c | 16 | 7.d | odd | 6 | 1 | ||
147.6.c.c | 16 | 21.g | even | 6 | 1 | ||
147.6.c.c | 16 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{16} - 171 T_{2}^{14} + 21495 T_{2}^{12} - 1128902 T_{2}^{10} + 42970860 T_{2}^{8} - 655075344 T_{2}^{6} + 7244325760 T_{2}^{4} - 29387167488 T_{2}^{2} + 90230547456 \)
acting on \(S_{6}^{\mathrm{new}}(21, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{16} - 171 T^{14} + \cdots + 90230547456 \)
$3$
\( T^{16} - 18 T^{15} + \cdots + 12\!\cdots\!01 \)
$5$
\( T^{16} + 15789 T^{14} + \cdots + 12\!\cdots\!96 \)
$7$
\( (T^{8} + 308 T^{7} + \cdots + 79\!\cdots\!01)^{2} \)
$11$
\( T^{16} - 233511 T^{14} + \cdots + 25\!\cdots\!36 \)
$13$
\( (T^{8} + 825711 T^{6} + \cdots + 39\!\cdots\!16)^{2} \)
$17$
\( T^{16} + 2274750 T^{14} + \cdots + 62\!\cdots\!36 \)
$19$
\( (T^{8} - 1629 T^{7} + \cdots + 29\!\cdots\!24)^{2} \)
$23$
\( T^{16} - 34314906 T^{14} + \cdots + 66\!\cdots\!16 \)
$29$
\( (T^{8} + 95665689 T^{6} + \cdots + 48\!\cdots\!04)^{2} \)
$31$
\( (T^{8} + 4896 T^{7} + \cdots + 62\!\cdots\!61)^{2} \)
$37$
\( (T^{8} + 5233 T^{7} + \cdots + 59\!\cdots\!56)^{2} \)
$41$
\( (T^{8} - 509738712 T^{6} + \cdots + 13\!\cdots\!44)^{2} \)
$43$
\( (T^{4} - 27763 T^{3} + \cdots - 52\!\cdots\!64)^{4} \)
$47$
\( T^{16} + 175724658 T^{14} + \cdots + 40\!\cdots\!16 \)
$53$
\( T^{16} - 1823558175 T^{14} + \cdots + 10\!\cdots\!56 \)
$59$
\( T^{16} + 2009137293 T^{14} + \cdots + 28\!\cdots\!16 \)
$61$
\( (T^{8} + 64290 T^{7} + \cdots + 12\!\cdots\!76)^{2} \)
$67$
\( (T^{8} + 51101 T^{7} + \cdots + 24\!\cdots\!96)^{2} \)
$71$
\( (T^{8} + 6392338344 T^{6} + \cdots + 25\!\cdots\!96)^{2} \)
$73$
\( (T^{8} - 172575 T^{7} + \cdots + 10\!\cdots\!36)^{2} \)
$79$
\( (T^{8} + 125654 T^{7} + \cdots + 83\!\cdots\!09)^{2} \)
$83$
\( (T^{8} - 19036730139 T^{6} + \cdots + 56\!\cdots\!04)^{2} \)
$89$
\( T^{16} + 20057888862 T^{14} + \cdots + 32\!\cdots\!16 \)
$97$
\( (T^{8} + 34813643163 T^{6} + \cdots + 60\!\cdots\!24)^{2} \)
show more
show less