Properties

Label 21.6.a.b
Level $21$
Weight $6$
Character orbit 21.a
Self dual yes
Analytic conductor $3.368$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [21,6,Mod(1,21)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("21.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 21.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.36806021607\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - 9 q^{3} - 31 q^{4} - 34 q^{5} - 9 q^{6} - 49 q^{7} - 63 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - 9 q^{3} - 31 q^{4} - 34 q^{5} - 9 q^{6} - 49 q^{7} - 63 q^{8} + 81 q^{9} - 34 q^{10} - 340 q^{11} + 279 q^{12} + 454 q^{13} - 49 q^{14} + 306 q^{15} + 929 q^{16} - 798 q^{17} + 81 q^{18} + 892 q^{19} + 1054 q^{20} + 441 q^{21} - 340 q^{22} - 3192 q^{23} + 567 q^{24} - 1969 q^{25} + 454 q^{26} - 729 q^{27} + 1519 q^{28} - 8242 q^{29} + 306 q^{30} - 2496 q^{31} + 2945 q^{32} + 3060 q^{33} - 798 q^{34} + 1666 q^{35} - 2511 q^{36} + 9798 q^{37} + 892 q^{38} - 4086 q^{39} + 2142 q^{40} + 19834 q^{41} + 441 q^{42} - 17236 q^{43} + 10540 q^{44} - 2754 q^{45} - 3192 q^{46} + 8928 q^{47} - 8361 q^{48} + 2401 q^{49} - 1969 q^{50} + 7182 q^{51} - 14074 q^{52} + 150 q^{53} - 729 q^{54} + 11560 q^{55} + 3087 q^{56} - 8028 q^{57} - 8242 q^{58} - 42396 q^{59} - 9486 q^{60} + 14758 q^{61} - 2496 q^{62} - 3969 q^{63} - 26783 q^{64} - 15436 q^{65} + 3060 q^{66} - 1676 q^{67} + 24738 q^{68} + 28728 q^{69} + 1666 q^{70} + 14568 q^{71} - 5103 q^{72} + 78378 q^{73} + 9798 q^{74} + 17721 q^{75} - 27652 q^{76} + 16660 q^{77} - 4086 q^{78} - 2272 q^{79} - 31586 q^{80} + 6561 q^{81} + 19834 q^{82} - 37764 q^{83} - 13671 q^{84} + 27132 q^{85} - 17236 q^{86} + 74178 q^{87} + 21420 q^{88} - 117286 q^{89} - 2754 q^{90} - 22246 q^{91} + 98952 q^{92} + 22464 q^{93} + 8928 q^{94} - 30328 q^{95} - 26505 q^{96} + 10002 q^{97} + 2401 q^{98} - 27540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −9.00000 −31.0000 −34.0000 −9.00000 −49.0000 −63.0000 81.0000 −34.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 21.6.a.b 1
3.b odd 2 1 63.6.a.c 1
4.b odd 2 1 336.6.a.l 1
5.b even 2 1 525.6.a.c 1
5.c odd 4 2 525.6.d.d 2
7.b odd 2 1 147.6.a.e 1
7.c even 3 2 147.6.e.f 2
7.d odd 6 2 147.6.e.e 2
12.b even 2 1 1008.6.a.t 1
21.c even 2 1 441.6.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.6.a.b 1 1.a even 1 1 trivial
63.6.a.c 1 3.b odd 2 1
147.6.a.e 1 7.b odd 2 1
147.6.e.e 2 7.d odd 6 2
147.6.e.f 2 7.c even 3 2
336.6.a.l 1 4.b odd 2 1
441.6.a.d 1 21.c even 2 1
525.6.a.c 1 5.b even 2 1
525.6.d.d 2 5.c odd 4 2
1008.6.a.t 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 1 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(21))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 9 \) Copy content Toggle raw display
$5$ \( T + 34 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T + 340 \) Copy content Toggle raw display
$13$ \( T - 454 \) Copy content Toggle raw display
$17$ \( T + 798 \) Copy content Toggle raw display
$19$ \( T - 892 \) Copy content Toggle raw display
$23$ \( T + 3192 \) Copy content Toggle raw display
$29$ \( T + 8242 \) Copy content Toggle raw display
$31$ \( T + 2496 \) Copy content Toggle raw display
$37$ \( T - 9798 \) Copy content Toggle raw display
$41$ \( T - 19834 \) Copy content Toggle raw display
$43$ \( T + 17236 \) Copy content Toggle raw display
$47$ \( T - 8928 \) Copy content Toggle raw display
$53$ \( T - 150 \) Copy content Toggle raw display
$59$ \( T + 42396 \) Copy content Toggle raw display
$61$ \( T - 14758 \) Copy content Toggle raw display
$67$ \( T + 1676 \) Copy content Toggle raw display
$71$ \( T - 14568 \) Copy content Toggle raw display
$73$ \( T - 78378 \) Copy content Toggle raw display
$79$ \( T + 2272 \) Copy content Toggle raw display
$83$ \( T + 37764 \) Copy content Toggle raw display
$89$ \( T + 117286 \) Copy content Toggle raw display
$97$ \( T - 10002 \) Copy content Toggle raw display
show more
show less