Properties

Label 21.4.g.a.5.3
Level $21$
Weight $4$
Character 21.5
Analytic conductor $1.239$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 21.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.23904011012\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} - 29 x^{9} + 6 x^{8} - 49 x^{7} + 1564 x^{6} - 441 x^{5} + 486 x^{4} - 21141 x^{3} - 59049 x + 531441\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 5.3
Root \(-2.23014 + 2.00661i\) of defining polynomial
Character \(\chi\) \(=\) 21.5
Dual form 21.4.g.a.17.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.65310 - 0.954416i) q^{2} +(-3.47555 - 3.86271i) q^{3} +(-2.17818 - 3.77272i) q^{4} +(0.623706 - 1.08029i) q^{5} +(2.05878 + 9.70256i) q^{6} +(10.0808 - 15.5363i) q^{7} +23.5862i q^{8} +(-2.84113 + 26.8501i) q^{9} +O(q^{10})\) \(q+(-1.65310 - 0.954416i) q^{2} +(-3.47555 - 3.86271i) q^{3} +(-2.17818 - 3.77272i) q^{4} +(0.623706 - 1.08029i) q^{5} +(2.05878 + 9.70256i) q^{6} +(10.0808 - 15.5363i) q^{7} +23.5862i q^{8} +(-2.84113 + 26.8501i) q^{9} +(-2.06209 + 1.19055i) q^{10} +(35.2392 - 20.3453i) q^{11} +(-7.00257 + 21.5260i) q^{12} -19.5973i q^{13} +(-31.4927 + 16.0617i) q^{14} +(-6.34057 + 1.34540i) q^{15} +(5.08559 - 8.80850i) q^{16} +(-52.3592 - 90.6889i) q^{17} +(30.3228 - 41.6742i) q^{18} +(35.0345 + 20.2272i) q^{19} -5.43418 q^{20} +(-95.0487 + 15.0578i) q^{21} -77.6716 q^{22} +(69.6324 + 40.2023i) q^{23} +(91.1068 - 81.9750i) q^{24} +(61.7220 + 106.906i) q^{25} +(-18.7040 + 32.3962i) q^{26} +(113.589 - 82.3444i) q^{27} +(-80.5720 - 4.19132i) q^{28} +211.712i q^{29} +(11.7656 + 3.82746i) q^{30} +(-86.6242 + 50.0125i) q^{31} +(146.596 - 84.6373i) q^{32} +(-201.064 - 65.4076i) q^{33} +199.890i q^{34} +(-10.4962 - 20.5803i) q^{35} +(107.486 - 47.7656i) q^{36} +(94.9875 - 164.523i) q^{37} +(-38.6103 - 66.8750i) q^{38} +(-75.6987 + 68.1113i) q^{39} +(25.4799 + 14.7109i) q^{40} -186.753 q^{41} +(171.496 + 65.8241i) q^{42} +158.618 q^{43} +(-153.515 - 88.6317i) q^{44} +(27.2339 + 19.8158i) q^{45} +(-76.7393 - 132.916i) q^{46} +(179.034 - 310.097i) q^{47} +(-51.6999 + 10.9702i) q^{48} +(-139.753 - 313.238i) q^{49} -235.634i q^{50} +(-168.328 + 517.442i) q^{51} +(-73.9351 + 42.6865i) q^{52} +(-366.460 + 211.576i) q^{53} +(-266.364 + 27.7123i) q^{54} -50.7580i q^{55} +(366.442 + 237.769i) q^{56} +(-43.6323 - 205.629i) q^{57} +(202.061 - 349.980i) q^{58} +(312.781 + 541.753i) q^{59} +(18.8867 + 20.9907i) q^{60} +(699.575 + 403.900i) q^{61} +190.931 q^{62} +(388.510 + 314.812i) q^{63} -404.486 q^{64} +(-21.1708 - 12.2229i) q^{65} +(269.952 + 300.023i) q^{66} +(-149.272 - 258.547i) q^{67} +(-228.096 + 395.074i) q^{68} +(-86.7208 - 408.695i) q^{69} +(-2.29089 + 44.0390i) q^{70} -455.386i q^{71} +(-633.292 - 67.0114i) q^{72} +(-434.467 + 250.840i) q^{73} +(-314.047 + 181.315i) q^{74} +(198.428 - 609.970i) q^{75} -176.234i q^{76} +(39.1491 - 752.584i) q^{77} +(190.144 - 40.3465i) q^{78} +(30.9561 - 53.6176i) q^{79} +(-6.34382 - 10.9878i) q^{80} +(-712.856 - 152.569i) q^{81} +(308.720 + 178.240i) q^{82} -73.1180 q^{83} +(263.842 + 325.794i) q^{84} -130.627 q^{85} +(-262.211 - 151.388i) q^{86} +(817.783 - 735.816i) q^{87} +(479.870 + 831.158i) q^{88} +(57.3723 - 99.3717i) q^{89} +(-26.1077 - 58.7498i) q^{90} +(-304.469 - 197.557i) q^{91} -350.271i q^{92} +(494.251 + 160.784i) q^{93} +(-591.922 + 341.746i) q^{94} +(43.7025 - 25.2316i) q^{95} +(-836.432 - 272.098i) q^{96} +1416.51i q^{97} +(-67.9336 + 651.195i) q^{98} +(446.156 + 1003.98i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + O(q^{10}) \) \( 12 q - 3 q^{3} + 14 q^{4} - 56 q^{7} - 3 q^{9} + 30 q^{10} - 192 q^{12} + 6 q^{15} + 134 q^{16} + 66 q^{18} + 300 q^{19} + 357 q^{21} - 268 q^{22} + 414 q^{24} - 42 q^{25} - 602 q^{28} - 822 q^{30} - 930 q^{31} - 855 q^{33} + 852 q^{36} + 764 q^{37} - 426 q^{39} + 2298 q^{40} + 966 q^{42} - 1012 q^{43} + 2367 q^{45} + 608 q^{46} - 336 q^{49} - 1341 q^{51} - 3000 q^{52} - 4158 q^{54} + 270 q^{57} + 2870 q^{58} - 918 q^{60} + 2358 q^{61} + 1071 q^{63} - 548 q^{64} + 2934 q^{66} + 792 q^{67} - 4242 q^{70} - 2712 q^{72} - 2904 q^{73} - 2418 q^{75} + 4296 q^{78} + 1674 q^{79} + 837 q^{81} + 5040 q^{82} + 3864 q^{84} + 348 q^{85} + 1638 q^{87} - 554 q^{88} - 1218 q^{91} - 1479 q^{93} - 1356 q^{94} - 4410 q^{96} - 3354 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65310 0.954416i −0.584458 0.337437i 0.178445 0.983950i \(-0.442893\pi\)
−0.762903 + 0.646513i \(0.776227\pi\)
\(3\) −3.47555 3.86271i −0.668870 0.743380i
\(4\) −2.17818 3.77272i −0.272273 0.471590i
\(5\) 0.623706 1.08029i 0.0557859 0.0966240i −0.836784 0.547533i \(-0.815567\pi\)
0.892570 + 0.450909i \(0.148900\pi\)
\(6\) 2.05878 + 9.70256i 0.140082 + 0.660175i
\(7\) 10.0808 15.5363i 0.544314 0.838881i
\(8\) 23.5862i 1.04237i
\(9\) −2.84113 + 26.8501i −0.105227 + 0.994448i
\(10\) −2.06209 + 1.19055i −0.0652090 + 0.0376484i
\(11\) 35.2392 20.3453i 0.965910 0.557668i 0.0679230 0.997691i \(-0.478363\pi\)
0.897987 + 0.440022i \(0.145029\pi\)
\(12\) −7.00257 + 21.5260i −0.168456 + 0.517834i
\(13\) 19.5973i 0.418101i −0.977905 0.209050i \(-0.932963\pi\)
0.977905 0.209050i \(-0.0670373\pi\)
\(14\) −31.4927 + 16.0617i −0.601198 + 0.306619i
\(15\) −6.34057 + 1.34540i −0.109142 + 0.0231588i
\(16\) 5.08559 8.80850i 0.0794623 0.137633i
\(17\) −52.3592 90.6889i −0.746999 1.29384i −0.949255 0.314507i \(-0.898161\pi\)
0.202256 0.979333i \(-0.435173\pi\)
\(18\) 30.3228 41.6742i 0.397064 0.545706i
\(19\) 35.0345 + 20.2272i 0.423025 + 0.244234i 0.696371 0.717682i \(-0.254797\pi\)
−0.273346 + 0.961916i \(0.588130\pi\)
\(20\) −5.43418 −0.0607559
\(21\) −95.0487 + 15.0578i −0.987683 + 0.156470i
\(22\) −77.6716 −0.752711
\(23\) 69.6324 + 40.2023i 0.631276 + 0.364467i 0.781246 0.624223i \(-0.214584\pi\)
−0.149970 + 0.988691i \(0.547918\pi\)
\(24\) 91.1068 81.9750i 0.774879 0.697212i
\(25\) 61.7220 + 106.906i 0.493776 + 0.855245i
\(26\) −18.7040 + 32.3962i −0.141083 + 0.244362i
\(27\) 113.589 82.3444i 0.809636 0.586933i
\(28\) −80.5720 4.19132i −0.543810 0.0282888i
\(29\) 211.712i 1.35565i 0.735222 + 0.677827i \(0.237078\pi\)
−0.735222 + 0.677827i \(0.762922\pi\)
\(30\) 11.7656 + 3.82746i 0.0716034 + 0.0232932i
\(31\) −86.6242 + 50.0125i −0.501876 + 0.289758i −0.729488 0.683994i \(-0.760242\pi\)
0.227612 + 0.973752i \(0.426908\pi\)
\(32\) 146.596 84.6373i 0.809837 0.467560i
\(33\) −201.064 65.4076i −1.06063 0.345030i
\(34\) 199.890i 1.00826i
\(35\) −10.4962 20.5803i −0.0506910 0.0993916i
\(36\) 107.486 47.7656i 0.497622 0.221137i
\(37\) 94.9875 164.523i 0.422050 0.731012i −0.574090 0.818792i \(-0.694644\pi\)
0.996140 + 0.0877801i \(0.0279773\pi\)
\(38\) −38.6103 66.8750i −0.164827 0.285488i
\(39\) −75.6987 + 68.1113i −0.310808 + 0.279655i
\(40\) 25.4799 + 14.7109i 0.100718 + 0.0581497i
\(41\) −186.753 −0.711362 −0.355681 0.934607i \(-0.615751\pi\)
−0.355681 + 0.934607i \(0.615751\pi\)
\(42\) 171.496 + 65.8241i 0.630058 + 0.241830i
\(43\) 158.618 0.562536 0.281268 0.959629i \(-0.409245\pi\)
0.281268 + 0.959629i \(0.409245\pi\)
\(44\) −153.515 88.6317i −0.525982 0.303676i
\(45\) 27.2339 + 19.8158i 0.0902174 + 0.0656437i
\(46\) −76.7393 132.916i −0.245969 0.426032i
\(47\) 179.034 310.097i 0.555635 0.962388i −0.442219 0.896907i \(-0.645809\pi\)
0.997854 0.0654808i \(-0.0208581\pi\)
\(48\) −51.6999 + 10.9702i −0.155463 + 0.0329877i
\(49\) −139.753 313.238i −0.407444 0.913230i
\(50\) 235.634i 0.666473i
\(51\) −168.328 + 517.442i −0.462170 + 1.42071i
\(52\) −73.9351 + 42.6865i −0.197172 + 0.113837i
\(53\) −366.460 + 211.576i −0.949758 + 0.548343i −0.893006 0.450045i \(-0.851408\pi\)
−0.0567521 + 0.998388i \(0.518074\pi\)
\(54\) −266.364 + 27.7123i −0.671251 + 0.0698364i
\(55\) 50.7580i 0.124440i
\(56\) 366.442 + 237.769i 0.874427 + 0.567379i
\(57\) −43.6323 205.629i −0.101390 0.477829i
\(58\) 202.061 349.980i 0.457447 0.792322i
\(59\) 312.781 + 541.753i 0.690180 + 1.19543i 0.971779 + 0.235895i \(0.0758020\pi\)
−0.281599 + 0.959532i \(0.590865\pi\)
\(60\) 18.8867 + 20.9907i 0.0406378 + 0.0451647i
\(61\) 699.575 + 403.900i 1.46838 + 0.847772i 0.999372 0.0354209i \(-0.0112772\pi\)
0.469011 + 0.883192i \(0.344611\pi\)
\(62\) 190.931 0.391101
\(63\) 388.510 + 314.812i 0.776948 + 0.629565i
\(64\) −404.486 −0.790012
\(65\) −21.1708 12.2229i −0.0403986 0.0233241i
\(66\) 269.952 + 300.023i 0.503466 + 0.559550i
\(67\) −149.272 258.547i −0.272187 0.471441i 0.697235 0.716843i \(-0.254413\pi\)
−0.969421 + 0.245402i \(0.921080\pi\)
\(68\) −228.096 + 395.074i −0.406775 + 0.704555i
\(69\) −86.7208 408.695i −0.151304 0.713059i
\(70\) −2.29089 + 44.0390i −0.00391162 + 0.0751952i
\(71\) 455.386i 0.761189i −0.924742 0.380594i \(-0.875719\pi\)
0.924742 0.380594i \(-0.124281\pi\)
\(72\) −633.292 67.0114i −1.03659 0.109686i
\(73\) −434.467 + 250.840i −0.696582 + 0.402172i −0.806073 0.591816i \(-0.798411\pi\)
0.109491 + 0.993988i \(0.465078\pi\)
\(74\) −314.047 + 181.315i −0.493341 + 0.284831i
\(75\) 198.428 609.970i 0.305500 0.939110i
\(76\) 176.234i 0.265993i
\(77\) 39.1491 752.584i 0.0579410 1.11383i
\(78\) 190.144 40.3465i 0.276020 0.0585685i
\(79\) 30.9561 53.6176i 0.0440865 0.0763601i −0.843140 0.537694i \(-0.819296\pi\)
0.887227 + 0.461334i \(0.152629\pi\)
\(80\) −6.34382 10.9878i −0.00886576 0.0153559i
\(81\) −712.856 152.569i −0.977855 0.209285i
\(82\) 308.720 + 178.240i 0.415761 + 0.240040i
\(83\) −73.1180 −0.0966957 −0.0483478 0.998831i \(-0.515396\pi\)
−0.0483478 + 0.998831i \(0.515396\pi\)
\(84\) 263.842 + 325.794i 0.342709 + 0.423179i
\(85\) −130.627 −0.166688
\(86\) −262.211 151.388i −0.328779 0.189820i
\(87\) 817.783 735.816i 1.00777 0.906755i
\(88\) 479.870 + 831.158i 0.581298 + 1.00684i
\(89\) 57.3723 99.3717i 0.0683309 0.118353i −0.829836 0.558008i \(-0.811566\pi\)
0.898167 + 0.439655i \(0.144899\pi\)
\(90\) −26.1077 58.7498i −0.0305777 0.0688086i
\(91\) −304.469 197.557i −0.350737 0.227578i
\(92\) 350.271i 0.396938i
\(93\) 494.251 + 160.784i 0.551090 + 0.179274i
\(94\) −591.922 + 341.746i −0.649490 + 0.374983i
\(95\) 43.7025 25.2316i 0.0471977 0.0272496i
\(96\) −836.432 272.098i −0.889250 0.289280i
\(97\) 1416.51i 1.48273i 0.671101 + 0.741366i \(0.265822\pi\)
−0.671101 + 0.741366i \(0.734178\pi\)
\(98\) −67.9336 + 651.195i −0.0700238 + 0.671231i
\(99\) 446.156 + 1003.98i 0.452933 + 1.01923i
\(100\) 268.883 465.720i 0.268883 0.465720i
\(101\) 120.406 + 208.549i 0.118622 + 0.205459i 0.919222 0.393740i \(-0.128819\pi\)
−0.800600 + 0.599199i \(0.795486\pi\)
\(102\) 772.117 694.727i 0.749520 0.674394i
\(103\) −960.453 554.518i −0.918799 0.530469i −0.0355471 0.999368i \(-0.511317\pi\)
−0.883252 + 0.468899i \(0.844651\pi\)
\(104\) 462.226 0.435817
\(105\) −43.0157 + 112.072i −0.0399800 + 0.104163i
\(106\) 807.725 0.740124
\(107\) 924.644 + 533.843i 0.835408 + 0.482323i 0.855701 0.517471i \(-0.173126\pi\)
−0.0202926 + 0.999794i \(0.506460\pi\)
\(108\) −558.079 249.178i −0.497233 0.222011i
\(109\) −5.04376 8.73604i −0.00443215 0.00767671i 0.863801 0.503833i \(-0.168077\pi\)
−0.868233 + 0.496157i \(0.834744\pi\)
\(110\) −48.4442 + 83.9079i −0.0419907 + 0.0727300i
\(111\) −965.640 + 204.899i −0.825716 + 0.175208i
\(112\) −85.5845 167.808i −0.0722051 0.141575i
\(113\) 884.294i 0.736171i 0.929792 + 0.368086i \(0.119987\pi\)
−0.929792 + 0.368086i \(0.880013\pi\)
\(114\) −124.127 + 381.568i −0.101979 + 0.313484i
\(115\) 86.8602 50.1487i 0.0704326 0.0406643i
\(116\) 798.731 461.148i 0.639313 0.369108i
\(117\) 526.189 + 55.6784i 0.415780 + 0.0439954i
\(118\) 1194.09i 0.931569i
\(119\) −1936.79 100.751i −1.49198 0.0776122i
\(120\) −31.7330 149.550i −0.0241401 0.113767i
\(121\) 162.366 281.226i 0.121988 0.211289i
\(122\) −770.976 1335.37i −0.572139 0.990973i
\(123\) 649.067 + 721.372i 0.475808 + 0.528812i
\(124\) 377.366 + 217.873i 0.273294 + 0.157787i
\(125\) 309.912 0.221755
\(126\) −341.783 891.215i −0.241655 0.630125i
\(127\) −840.132 −0.587005 −0.293503 0.955958i \(-0.594821\pi\)
−0.293503 + 0.955958i \(0.594821\pi\)
\(128\) −504.115 291.051i −0.348108 0.200980i
\(129\) −551.285 612.697i −0.376263 0.418178i
\(130\) 23.3315 + 40.4114i 0.0157408 + 0.0272639i
\(131\) −258.951 + 448.517i −0.172707 + 0.299138i −0.939366 0.342918i \(-0.888585\pi\)
0.766658 + 0.642056i \(0.221918\pi\)
\(132\) 191.189 + 901.027i 0.126067 + 0.594124i
\(133\) 667.434 340.400i 0.435142 0.221928i
\(134\) 569.871i 0.367383i
\(135\) −18.1098 174.067i −0.0115455 0.110973i
\(136\) 2139.01 1234.96i 1.34866 0.778651i
\(137\) 950.957 549.035i 0.593034 0.342389i −0.173262 0.984876i \(-0.555431\pi\)
0.766296 + 0.642487i \(0.222097\pi\)
\(138\) −246.707 + 758.380i −0.152182 + 0.467808i
\(139\) 828.268i 0.505416i −0.967543 0.252708i \(-0.918679\pi\)
0.967543 0.252708i \(-0.0813212\pi\)
\(140\) −54.7811 + 84.4270i −0.0330703 + 0.0509670i
\(141\) −1820.06 + 386.197i −1.08707 + 0.230664i
\(142\) −434.628 + 752.797i −0.256853 + 0.444883i
\(143\) −398.714 690.592i −0.233162 0.403848i
\(144\) 222.060 + 161.575i 0.128507 + 0.0935039i
\(145\) 228.710 + 132.046i 0.130989 + 0.0756264i
\(146\) 957.621 0.542830
\(147\) −724.230 + 1628.50i −0.406350 + 0.913717i
\(148\) −827.601 −0.459651
\(149\) 773.007 + 446.296i 0.425015 + 0.245382i 0.697221 0.716857i \(-0.254420\pi\)
−0.272206 + 0.962239i \(0.587753\pi\)
\(150\) −910.186 + 818.956i −0.495442 + 0.445783i
\(151\) −712.518 1234.12i −0.383999 0.665106i 0.607630 0.794220i \(-0.292120\pi\)
−0.991630 + 0.129113i \(0.958787\pi\)
\(152\) −477.083 + 826.332i −0.254583 + 0.440950i
\(153\) 2583.76 1148.19i 1.36526 0.606705i
\(154\) −782.996 + 1206.73i −0.409712 + 0.631436i
\(155\) 124.772i 0.0646577i
\(156\) 421.851 + 137.231i 0.216507 + 0.0704314i
\(157\) −244.872 + 141.377i −0.124477 + 0.0718670i −0.560946 0.827853i \(-0.689562\pi\)
0.436468 + 0.899720i \(0.356229\pi\)
\(158\) −102.347 + 59.0900i −0.0515334 + 0.0297528i
\(159\) 2090.91 + 680.189i 1.04289 + 0.339261i
\(160\) 211.155i 0.104333i
\(161\) 1326.55 676.557i 0.649358 0.331181i
\(162\) 1032.81 + 932.572i 0.500894 + 0.452283i
\(163\) −1158.07 + 2005.83i −0.556484 + 0.963858i 0.441303 + 0.897358i \(0.354516\pi\)
−0.997786 + 0.0664997i \(0.978817\pi\)
\(164\) 406.781 + 704.565i 0.193685 + 0.335471i
\(165\) −196.064 + 176.412i −0.0925063 + 0.0832342i
\(166\) 120.871 + 69.7849i 0.0565145 + 0.0326287i
\(167\) −2344.70 −1.08646 −0.543229 0.839585i \(-0.682798\pi\)
−0.543229 + 0.839585i \(0.682798\pi\)
\(168\) −355.155 2241.84i −0.163100 1.02953i
\(169\) 1812.95 0.825192
\(170\) 215.939 + 124.672i 0.0974221 + 0.0562467i
\(171\) −642.640 + 883.213i −0.287391 + 0.394977i
\(172\) −345.499 598.423i −0.153163 0.265287i
\(173\) 516.901 895.298i 0.227163 0.393458i −0.729803 0.683657i \(-0.760388\pi\)
0.956966 + 0.290199i \(0.0937216\pi\)
\(174\) −2054.15 + 435.869i −0.894969 + 0.189903i
\(175\) 2283.13 + 118.767i 0.986218 + 0.0513026i
\(176\) 413.872i 0.177255i
\(177\) 1005.55 3091.07i 0.427016 1.31265i
\(178\) −189.684 + 109.514i −0.0798730 + 0.0461147i
\(179\) −125.472 + 72.4412i −0.0523922 + 0.0302486i −0.525967 0.850505i \(-0.676297\pi\)
0.473575 + 0.880753i \(0.342963\pi\)
\(180\) 15.4392 145.908i 0.00639316 0.0604186i
\(181\) 2057.17i 0.844797i 0.906410 + 0.422398i \(0.138812\pi\)
−0.906410 + 0.422398i \(0.861188\pi\)
\(182\) 314.766 + 617.171i 0.128198 + 0.251361i
\(183\) −871.257 4106.03i −0.351941 1.65862i
\(184\) −948.219 + 1642.36i −0.379911 + 0.658025i
\(185\) −118.489 205.228i −0.0470889 0.0815604i
\(186\) −663.589 737.511i −0.261595 0.290736i
\(187\) −3690.19 2130.53i −1.44307 0.833155i
\(188\) −1559.88 −0.605137
\(189\) −134.257 2594.85i −0.0516706 0.998664i
\(190\) −96.3259 −0.0367801
\(191\) −2553.66 1474.36i −0.967417 0.558538i −0.0689690 0.997619i \(-0.521971\pi\)
−0.898448 + 0.439080i \(0.855304\pi\)
\(192\) 1405.81 + 1562.41i 0.528415 + 0.587279i
\(193\) 1135.40 + 1966.57i 0.423460 + 0.733455i 0.996275 0.0862300i \(-0.0274820\pi\)
−0.572815 + 0.819685i \(0.694149\pi\)
\(194\) 1351.94 2341.63i 0.500329 0.866594i
\(195\) 26.3662 + 124.258i 0.00968270 + 0.0456323i
\(196\) −877.352 + 1209.54i −0.319735 + 0.440794i
\(197\) 495.849i 0.179329i 0.995972 + 0.0896645i \(0.0285795\pi\)
−0.995972 + 0.0896645i \(0.971421\pi\)
\(198\) 220.675 2085.49i 0.0792055 0.748532i
\(199\) 727.207 419.853i 0.259047 0.149561i −0.364853 0.931065i \(-0.618881\pi\)
0.623900 + 0.781504i \(0.285547\pi\)
\(200\) −2521.50 + 1455.79i −0.891484 + 0.514699i
\(201\) −479.890 + 1475.19i −0.168402 + 0.517670i
\(202\) 459.668i 0.160109i
\(203\) 3289.22 + 2134.24i 1.13723 + 0.737902i
\(204\) 2318.81 492.028i 0.795831 0.168867i
\(205\) −116.479 + 201.747i −0.0396840 + 0.0687347i
\(206\) 1058.48 + 1833.34i 0.357999 + 0.620073i
\(207\) −1277.27 + 1755.42i −0.428871 + 0.589420i
\(208\) −172.623 99.6638i −0.0575444 0.0332233i
\(209\) 1646.12 0.544805
\(210\) 178.072 144.211i 0.0585150 0.0473880i
\(211\) 4001.71 1.30564 0.652818 0.757514i \(-0.273586\pi\)
0.652818 + 0.757514i \(0.273586\pi\)
\(212\) 1596.43 + 921.701i 0.517186 + 0.298598i
\(213\) −1759.03 + 1582.72i −0.565852 + 0.509136i
\(214\) −1019.02 1764.99i −0.325507 0.563795i
\(215\) 98.9311 171.354i 0.0313816 0.0543545i
\(216\) 1942.19 + 2679.13i 0.611803 + 0.843943i
\(217\) −96.2355 + 1849.99i −0.0301055 + 0.578734i
\(218\) 19.2554i 0.00598228i
\(219\) 2478.93 + 806.416i 0.764889 + 0.248825i
\(220\) −191.496 + 110.560i −0.0586848 + 0.0338817i
\(221\) −1777.26 + 1026.10i −0.540955 + 0.312321i
\(222\) 1791.85 + 582.905i 0.541718 + 0.176225i
\(223\) 3040.54i 0.913047i −0.889711 0.456523i \(-0.849095\pi\)
0.889711 0.456523i \(-0.150905\pi\)
\(224\) 162.862 3130.78i 0.0485788 0.933856i
\(225\) −3045.79 + 1353.51i −0.902455 + 0.401040i
\(226\) 843.984 1461.82i 0.248411 0.430261i
\(227\) 2198.24 + 3807.46i 0.642741 + 1.11326i 0.984818 + 0.173588i \(0.0555360\pi\)
−0.342078 + 0.939672i \(0.611131\pi\)
\(228\) −680.742 + 612.510i −0.197734 + 0.177914i
\(229\) −1717.81 991.778i −0.495703 0.286194i 0.231234 0.972898i \(-0.425724\pi\)
−0.726937 + 0.686704i \(0.759057\pi\)
\(230\) −191.451 −0.0548865
\(231\) −3043.08 + 2464.42i −0.866754 + 0.701935i
\(232\) −4993.49 −1.41310
\(233\) −3787.78 2186.87i −1.06500 0.614879i −0.138191 0.990406i \(-0.544129\pi\)
−0.926812 + 0.375526i \(0.877462\pi\)
\(234\) −816.701 594.245i −0.228160 0.166013i
\(235\) −223.329 386.818i −0.0619932 0.107375i
\(236\) 1362.59 2360.07i 0.375834 0.650964i
\(237\) −314.699 + 66.7758i −0.0862527 + 0.0183019i
\(238\) 3105.55 + 2015.06i 0.845810 + 0.548810i
\(239\) 3826.41i 1.03561i −0.855500 0.517803i \(-0.826750\pi\)
0.855500 0.517803i \(-0.173250\pi\)
\(240\) −20.3946 + 62.6931i −0.00548526 + 0.0168618i
\(241\) 2979.03 1719.94i 0.796250 0.459715i −0.0459083 0.998946i \(-0.514618\pi\)
0.842158 + 0.539231i \(0.181285\pi\)
\(242\) −536.813 + 309.929i −0.142594 + 0.0823264i
\(243\) 1888.24 + 3283.82i 0.498479 + 0.866902i
\(244\) 3519.07i 0.923300i
\(245\) −425.553 44.3943i −0.110970 0.0115765i
\(246\) −384.483 1811.98i −0.0996493 0.469624i
\(247\) 396.398 686.582i 0.102114 0.176867i
\(248\) −1179.61 2043.14i −0.302036 0.523142i
\(249\) 254.125 + 282.434i 0.0646768 + 0.0718816i
\(250\) −512.314 295.785i −0.129606 0.0748282i
\(251\) −2046.61 −0.514664 −0.257332 0.966323i \(-0.582843\pi\)
−0.257332 + 0.966323i \(0.582843\pi\)
\(252\) 341.453 2151.46i 0.0853552 0.537814i
\(253\) 3271.72 0.813008
\(254\) 1388.82 + 801.835i 0.343080 + 0.198077i
\(255\) 454.000 + 504.575i 0.111493 + 0.123913i
\(256\) 2173.51 + 3764.63i 0.530642 + 0.919099i
\(257\) −3025.57 + 5240.44i −0.734357 + 1.27194i 0.220648 + 0.975354i \(0.429183\pi\)
−0.955005 + 0.296590i \(0.904150\pi\)
\(258\) 326.560 + 1539.00i 0.0788014 + 0.371372i
\(259\) −1598.53 3134.29i −0.383505 0.751950i
\(260\) 106.495i 0.0254021i
\(261\) −5684.49 601.501i −1.34813 0.142651i
\(262\) 856.143 494.294i 0.201880 0.116556i
\(263\) 5433.69 3137.14i 1.27398 0.735530i 0.298242 0.954490i \(-0.403600\pi\)
0.975734 + 0.218960i \(0.0702665\pi\)
\(264\) 1542.72 4742.33i 0.359650 1.10557i
\(265\) 527.844i 0.122359i
\(266\) −1428.22 74.2951i −0.329209 0.0171253i
\(267\) −583.245 + 123.758i −0.133685 + 0.0283666i
\(268\) −650.284 + 1126.32i −0.148218 + 0.256721i
\(269\) −1668.18 2889.37i −0.378106 0.654899i 0.612681 0.790331i \(-0.290091\pi\)
−0.990787 + 0.135432i \(0.956758\pi\)
\(270\) −136.195 + 305.034i −0.0306985 + 0.0687548i
\(271\) 2462.26 + 1421.59i 0.551925 + 0.318654i 0.749898 0.661553i \(-0.230103\pi\)
−0.197973 + 0.980207i \(0.563436\pi\)
\(272\) −1065.11 −0.237433
\(273\) 295.091 + 1862.70i 0.0654202 + 0.412951i
\(274\) −2096.03 −0.462138
\(275\) 4350.06 + 2511.51i 0.953886 + 0.550726i
\(276\) −1353.00 + 1217.39i −0.295076 + 0.265500i
\(277\) −3174.17 5497.82i −0.688510 1.19253i −0.972320 0.233654i \(-0.924932\pi\)
0.283809 0.958881i \(-0.408402\pi\)
\(278\) −790.512 + 1369.21i −0.170546 + 0.295394i
\(279\) −1096.73 2467.96i −0.235339 0.529580i
\(280\) 485.411 247.566i 0.103603 0.0528390i
\(281\) 3735.88i 0.793110i 0.918011 + 0.396555i \(0.129794\pi\)
−0.918011 + 0.396555i \(0.870206\pi\)
\(282\) 3377.32 + 1098.67i 0.713179 + 0.232003i
\(283\) −4777.96 + 2758.56i −1.00361 + 0.579432i −0.909313 0.416112i \(-0.863392\pi\)
−0.0942927 + 0.995545i \(0.530059\pi\)
\(284\) −1718.05 + 991.914i −0.358969 + 0.207251i
\(285\) −249.353 81.1164i −0.0518259 0.0168594i
\(286\) 1522.15i 0.314709i
\(287\) −1882.62 + 2901.44i −0.387205 + 0.596748i
\(288\) 1856.02 + 4176.59i 0.379747 + 0.854541i
\(289\) −3026.48 + 5242.01i −0.616014 + 1.06697i
\(290\) −252.054 436.570i −0.0510383 0.0884008i
\(291\) 5471.58 4923.16i 1.10223 0.991755i
\(292\) 1892.70 + 1092.75i 0.379321 + 0.219001i
\(293\) 7574.50 1.51026 0.755131 0.655574i \(-0.227573\pi\)
0.755131 + 0.655574i \(0.227573\pi\)
\(294\) 2751.49 2000.85i 0.545816 0.396912i
\(295\) 780.333 0.154009
\(296\) 3880.48 + 2240.40i 0.761988 + 0.439934i
\(297\) 2327.45 5212.75i 0.454721 1.01843i
\(298\) −851.904 1475.54i −0.165602 0.286831i
\(299\) 787.855 1364.61i 0.152384 0.263937i
\(300\) −2733.46 + 580.012i −0.526055 + 0.111623i
\(301\) 1599.01 2464.34i 0.306196 0.471901i
\(302\) 2720.15i 0.518302i
\(303\) 387.088 1189.91i 0.0733915 0.225606i
\(304\) 356.343 205.735i 0.0672291 0.0388148i
\(305\) 872.657 503.829i 0.163830 0.0945874i
\(306\) −5367.06 567.912i −1.00266 0.106096i
\(307\) 10635.6i 1.97723i 0.150480 + 0.988613i \(0.451918\pi\)
−0.150480 + 0.988613i \(0.548082\pi\)
\(308\) −2924.57 + 1491.57i −0.541047 + 0.275941i
\(309\) 1196.16 + 5637.21i 0.220217 + 1.03783i
\(310\) 119.085 206.261i 0.0218179 0.0377897i
\(311\) −2885.59 4997.99i −0.526132 0.911287i −0.999537 0.0304419i \(-0.990309\pi\)
0.473405 0.880845i \(-0.343025\pi\)
\(312\) −1606.49 1785.45i −0.291505 0.323978i
\(313\) −2030.41 1172.26i −0.366664 0.211694i 0.305336 0.952245i \(-0.401231\pi\)
−0.672000 + 0.740551i \(0.734565\pi\)
\(314\) 539.730 0.0970023
\(315\) 582.404 223.354i 0.104174 0.0399509i
\(316\) −269.712 −0.0480142
\(317\) −6852.10 3956.06i −1.21405 0.700929i −0.250407 0.968141i \(-0.580565\pi\)
−0.963638 + 0.267211i \(0.913898\pi\)
\(318\) −2807.29 3120.01i −0.495047 0.550193i
\(319\) 4307.36 + 7460.56i 0.756005 + 1.30944i
\(320\) −252.280 + 436.962i −0.0440715 + 0.0763341i
\(321\) −1151.56 5427.03i −0.200230 0.943637i
\(322\) −2838.63 147.664i −0.491275 0.0255559i
\(323\) 4236.32i 0.729769i
\(324\) 977.130 + 3021.73i 0.167546 + 0.518129i
\(325\) 2095.06 1209.58i 0.357579 0.206448i
\(326\) 3828.79 2210.55i 0.650482 0.375556i
\(327\) −16.2150 + 49.8451i −0.00274218 + 0.00842949i
\(328\) 4404.78i 0.741505i
\(329\) −3012.94 5907.57i −0.504889 0.989953i
\(330\) 492.482 104.500i 0.0821523 0.0174319i
\(331\) 2440.02 4226.23i 0.405182 0.701797i −0.589160 0.808016i \(-0.700541\pi\)
0.994343 + 0.106220i \(0.0338747\pi\)
\(332\) 159.264 + 275.854i 0.0263276 + 0.0456007i
\(333\) 4147.59 + 3017.86i 0.682543 + 0.496629i
\(334\) 3876.02 + 2237.82i 0.634989 + 0.366611i
\(335\) −372.407 −0.0607367
\(336\) −350.743 + 913.814i −0.0569482 + 0.148371i
\(337\) −4136.39 −0.668616 −0.334308 0.942464i \(-0.608503\pi\)
−0.334308 + 0.942464i \(0.608503\pi\)
\(338\) −2996.97 1730.30i −0.482290 0.278450i
\(339\) 3415.77 3073.41i 0.547255 0.492403i
\(340\) 284.529 + 492.819i 0.0453846 + 0.0786085i
\(341\) −2035.04 + 3524.80i −0.323178 + 0.559761i
\(342\) 1905.30 846.691i 0.301248 0.133871i
\(343\) −6275.39 986.454i −0.987869 0.155287i
\(344\) 3741.20i 0.586373i
\(345\) −495.597 161.222i −0.0773393 0.0251591i
\(346\) −1708.97 + 986.676i −0.265535 + 0.153306i
\(347\) 2009.83 1160.38i 0.310933 0.179517i −0.336411 0.941715i \(-0.609213\pi\)
0.647344 + 0.762198i \(0.275880\pi\)
\(348\) −4557.31 1482.53i −0.702004 0.228368i
\(349\) 226.795i 0.0347853i 0.999849 + 0.0173926i \(0.00553653\pi\)
−0.999849 + 0.0173926i \(0.994463\pi\)
\(350\) −3660.88 2375.39i −0.559092 0.362771i
\(351\) −1613.73 2226.03i −0.245397 0.338509i
\(352\) 3443.95 5965.10i 0.521486 0.903241i
\(353\) 742.854 + 1286.66i 0.112006 + 0.194000i 0.916579 0.399854i \(-0.130939\pi\)
−0.804573 + 0.593854i \(0.797606\pi\)
\(354\) −4612.44 + 4150.13i −0.692509 + 0.623098i
\(355\) −491.949 284.027i −0.0735491 0.0424636i
\(356\) −499.869 −0.0744185
\(357\) 6342.25 + 7831.45i 0.940245 + 1.16102i
\(358\) 276.556 0.0408280
\(359\) 9419.94 + 5438.60i 1.38486 + 0.799550i 0.992730 0.120359i \(-0.0384045\pi\)
0.392131 + 0.919909i \(0.371738\pi\)
\(360\) −467.380 + 642.344i −0.0684252 + 0.0940402i
\(361\) −2611.22 4522.77i −0.380700 0.659392i
\(362\) 1963.39 3400.70i 0.285066 0.493748i
\(363\) −1650.61 + 350.241i −0.238662 + 0.0506416i
\(364\) −82.1386 + 1578.99i −0.0118276 + 0.227367i
\(365\) 625.800i 0.0897421i
\(366\) −2478.59 + 7619.21i −0.353983 + 1.08815i
\(367\) −3299.69 + 1905.08i −0.469325 + 0.270965i −0.715957 0.698144i \(-0.754009\pi\)
0.246632 + 0.969109i \(0.420676\pi\)
\(368\) 708.243 408.904i 0.100325 0.0579229i
\(369\) 530.587 5014.32i 0.0748544 0.707413i
\(370\) 452.349i 0.0635581i
\(371\) −407.121 + 7826.30i −0.0569721 + 1.09521i
\(372\) −469.976 2214.89i −0.0655030 0.308700i
\(373\) 4869.55 8434.30i 0.675967 1.17081i −0.300219 0.953870i \(-0.597060\pi\)
0.976185 0.216938i \(-0.0696070\pi\)
\(374\) 4066.83 + 7043.95i 0.562274 + 0.973888i
\(375\) −1077.11 1197.10i −0.148325 0.164848i
\(376\) 7314.00 + 4222.74i 1.00317 + 0.579179i
\(377\) 4148.98 0.566800
\(378\) −2254.63 + 4417.67i −0.306787 + 0.601113i
\(379\) 320.171 0.0433933 0.0216967 0.999765i \(-0.493093\pi\)
0.0216967 + 0.999765i \(0.493093\pi\)
\(380\) −190.384 109.918i −0.0257013 0.0148386i
\(381\) 2919.92 + 3245.19i 0.392630 + 0.436368i
\(382\) 2814.30 + 4874.51i 0.376943 + 0.652884i
\(383\) −2185.13 + 3784.75i −0.291527 + 0.504939i −0.974171 0.225812i \(-0.927497\pi\)
0.682644 + 0.730751i \(0.260830\pi\)
\(384\) 627.829 + 2958.81i 0.0834343 + 0.393206i
\(385\) −788.592 511.683i −0.104391 0.0677346i
\(386\) 4334.57i 0.571564i
\(387\) −450.654 + 4258.92i −0.0591939 + 0.559413i
\(388\) 5344.11 3085.42i 0.699242 0.403708i
\(389\) −11877.4 + 6857.42i −1.54809 + 0.893791i −0.549805 + 0.835293i \(0.685298\pi\)
−0.998288 + 0.0584981i \(0.981369\pi\)
\(390\) 75.0078 230.575i 0.00973889 0.0299375i
\(391\) 8419.84i 1.08903i
\(392\) 7388.10 3296.25i 0.951927 0.424709i
\(393\) 2632.49 558.587i 0.337892 0.0716971i
\(394\) 473.246 819.687i 0.0605122 0.104810i
\(395\) −38.6150 66.8832i −0.00491882 0.00851964i
\(396\) 2815.93 3870.07i 0.357337 0.491107i
\(397\) −2181.61 1259.55i −0.275798 0.159232i 0.355722 0.934592i \(-0.384235\pi\)
−0.631520 + 0.775360i \(0.717568\pi\)
\(398\) −1602.86 −0.201869
\(399\) −3634.57 1395.03i −0.456030 0.175035i
\(400\) 1255.57 0.156946
\(401\) −2268.96 1309.98i −0.282560 0.163136i 0.352022 0.935992i \(-0.385494\pi\)
−0.634582 + 0.772856i \(0.718828\pi\)
\(402\) 2201.25 1980.61i 0.273105 0.245731i
\(403\) 980.109 + 1697.60i 0.121148 + 0.209835i
\(404\) 524.530 908.513i 0.0645950 0.111882i
\(405\) −609.431 + 674.933i −0.0747725 + 0.0828091i
\(406\) −3400.45 6667.38i −0.415669 0.815016i
\(407\) 7730.22i 0.941456i
\(408\) −12204.5 3970.22i −1.48091 0.481753i
\(409\) −12058.7 + 6962.09i −1.45786 + 0.841694i −0.998906 0.0467669i \(-0.985108\pi\)
−0.458952 + 0.888461i \(0.651775\pi\)
\(410\) 385.101 222.338i 0.0463872 0.0267817i
\(411\) −5425.86 1765.08i −0.651187 0.211836i
\(412\) 4831.36i 0.577729i
\(413\) 11569.9 + 601.863i 1.37850 + 0.0717088i
\(414\) 3786.85 1682.83i 0.449549 0.199774i
\(415\) −45.6041 + 78.9886i −0.00539426 + 0.00934313i
\(416\) −1658.66 2872.89i −0.195487 0.338593i
\(417\) −3199.36 + 2878.69i −0.375716 + 0.338057i
\(418\) −2721.19 1571.08i −0.318416 0.183837i
\(419\) −15171.1 −1.76887 −0.884433 0.466666i \(-0.845455\pi\)
−0.884433 + 0.466666i \(0.845455\pi\)
\(420\) 516.512 81.8265i 0.0600076 0.00950648i
\(421\) −1052.53 −0.121846 −0.0609228 0.998142i \(-0.519404\pi\)
−0.0609228 + 0.998142i \(0.519404\pi\)
\(422\) −6615.22 3819.30i −0.763090 0.440570i
\(423\) 7817.47 + 5688.11i 0.898577 + 0.653819i
\(424\) −4990.27 8643.40i −0.571578 0.990002i
\(425\) 6463.43 11195.0i 0.737700 1.27773i
\(426\) 4418.41 937.541i 0.502518 0.106629i
\(427\) 13327.4 6797.16i 1.51044 0.770345i
\(428\) 4651.23i 0.525294i
\(429\) −1281.81 + 3940.30i −0.144258 + 0.443449i
\(430\) −327.085 + 188.843i −0.0366824 + 0.0211786i
\(431\) −6923.58 + 3997.33i −0.773776 + 0.446740i −0.834220 0.551432i \(-0.814082\pi\)
0.0604442 + 0.998172i \(0.480748\pi\)
\(432\) −147.665 1419.32i −0.0164456 0.158072i
\(433\) 12889.4i 1.43055i 0.698845 + 0.715273i \(0.253697\pi\)
−0.698845 + 0.715273i \(0.746303\pi\)
\(434\) 1924.74 2966.36i 0.212882 0.328087i
\(435\) −284.838 1342.38i −0.0313953 0.147959i
\(436\) −21.9724 + 38.0574i −0.00241351 + 0.00418032i
\(437\) 1626.36 + 2816.94i 0.178030 + 0.308358i
\(438\) −3328.26 3699.02i −0.363083 0.403529i
\(439\) 12456.7 + 7191.89i 1.35427 + 0.781891i 0.988845 0.148948i \(-0.0475888\pi\)
0.365430 + 0.930839i \(0.380922\pi\)
\(440\) 1197.19 0.129713
\(441\) 8807.53 2862.44i 0.951034 0.309085i
\(442\) 3917.30 0.421554
\(443\) −3432.16 1981.56i −0.368097 0.212521i 0.304530 0.952503i \(-0.401501\pi\)
−0.672627 + 0.739982i \(0.734834\pi\)
\(444\) 2876.37 + 3196.79i 0.307447 + 0.341695i
\(445\) −71.5668 123.957i −0.00762380 0.0132048i
\(446\) −2901.94 + 5026.30i −0.308096 + 0.533637i
\(447\) −962.710 4537.03i −0.101867 0.480076i
\(448\) −4077.56 + 6284.22i −0.430015 + 0.662726i
\(449\) 13479.1i 1.41675i 0.705838 + 0.708373i \(0.250570\pi\)
−0.705838 + 0.708373i \(0.749430\pi\)
\(450\) 6326.79 + 669.465i 0.662773 + 0.0701308i
\(451\) −6581.00 + 3799.54i −0.687112 + 0.396704i
\(452\) 3336.19 1926.15i 0.347171 0.200439i
\(453\) −2290.65 + 7041.49i −0.237581 + 0.730327i
\(454\) 8392.13i 0.867538i
\(455\) −403.318 + 205.698i −0.0415557 + 0.0211940i
\(456\) 4850.01 1029.12i 0.498076 0.105686i
\(457\) −1989.79 + 3446.42i −0.203673 + 0.352772i −0.949709 0.313134i \(-0.898621\pi\)
0.746036 + 0.665905i \(0.231955\pi\)
\(458\) 1893.14 + 3279.01i 0.193145 + 0.334537i
\(459\) −13415.1 5989.74i −1.36419 0.609101i
\(460\) −378.395 218.466i −0.0383538 0.0221436i
\(461\) 9053.72 0.914694 0.457347 0.889288i \(-0.348800\pi\)
0.457347 + 0.889288i \(0.348800\pi\)
\(462\) 7382.59 1169.56i 0.743440 0.117777i
\(463\) −5736.10 −0.575764 −0.287882 0.957666i \(-0.592951\pi\)
−0.287882 + 0.957666i \(0.592951\pi\)
\(464\) 1864.87 + 1076.68i 0.186582 + 0.107723i
\(465\) 481.960 433.652i 0.0480653 0.0432476i
\(466\) 4174.37 + 7230.23i 0.414966 + 0.718742i
\(467\) 6196.30 10732.3i 0.613984 1.06345i −0.376578 0.926385i \(-0.622899\pi\)
0.990562 0.137067i \(-0.0437675\pi\)
\(468\) −936.077 2106.44i −0.0924576 0.208056i
\(469\) −5521.65 287.234i −0.543638 0.0282798i
\(470\) 852.596i 0.0836752i
\(471\) 1397.17 + 454.509i 0.136684 + 0.0444643i
\(472\) −12777.9 + 7377.32i −1.24608 + 0.719425i
\(473\) 5589.57 3227.14i 0.543359 0.313709i
\(474\) 583.959 + 189.967i 0.0565868 + 0.0184081i
\(475\) 4993.85i 0.482387i
\(476\) 3838.58 + 7526.44i 0.369624 + 0.724735i
\(477\) −4639.67 10440.6i −0.445359 1.00219i
\(478\) −3651.98 + 6325.42i −0.349452 + 0.605268i
\(479\) 4133.87 + 7160.07i 0.394324 + 0.682989i 0.993015 0.117991i \(-0.0376455\pi\)
−0.598691 + 0.800980i \(0.704312\pi\)
\(480\) −815.632 + 733.880i −0.0775590 + 0.0697851i
\(481\) −3224.21 1861.50i −0.305637 0.176460i
\(482\) −6566.17 −0.620499
\(483\) −7223.82 2772.67i −0.680529 0.261202i
\(484\) −1414.65 −0.132856
\(485\) 1530.24 + 883.487i 0.143268 + 0.0827156i
\(486\) 12.6949 7230.63i 0.00118488 0.674873i
\(487\) −470.075 814.194i −0.0437395 0.0757590i 0.843327 0.537401i \(-0.180594\pi\)
−0.887066 + 0.461642i \(0.847260\pi\)
\(488\) −9526.46 + 16500.3i −0.883694 + 1.53060i
\(489\) 11772.9 2498.08i 1.08873 0.231017i
\(490\) 661.109 + 479.542i 0.0609507 + 0.0442112i
\(491\) 1057.30i 0.0971801i −0.998819 0.0485900i \(-0.984527\pi\)
0.998819 0.0485900i \(-0.0154728\pi\)
\(492\) 1307.75 4020.03i 0.119833 0.368368i
\(493\) 19199.9 11085.1i 1.75400 1.01267i
\(494\) −1310.57 + 756.658i −0.119363 + 0.0689142i
\(495\) 1362.86 + 144.210i 0.123749 + 0.0130944i
\(496\) 1017.37i 0.0920995i
\(497\) −7075.02 4590.68i −0.638547 0.414326i
\(498\) −150.534 709.431i −0.0135454 0.0638361i
\(499\) 3086.65 5346.23i 0.276909 0.479620i −0.693706 0.720258i \(-0.744023\pi\)
0.970615 + 0.240638i \(0.0773568\pi\)
\(500\) −675.044 1169.21i −0.0603778 0.104577i
\(501\) 8149.12 + 9056.91i 0.726699 + 0.807651i
\(502\) 3383.24 + 1953.31i 0.300800 + 0.173667i
\(503\) −4284.28 −0.379775 −0.189887 0.981806i \(-0.560812\pi\)
−0.189887 + 0.981806i \(0.560812\pi\)
\(504\) −7425.23 + 9163.49i −0.656242 + 0.809869i
\(505\) 300.390 0.0264697
\(506\) −5408.46 3122.58i −0.475169 0.274339i
\(507\) −6300.98 7002.89i −0.551946 0.613431i
\(508\) 1829.96 + 3169.58i 0.159826 + 0.276826i
\(509\) 7550.52 13077.9i 0.657507 1.13884i −0.323752 0.946142i \(-0.604944\pi\)
0.981259 0.192693i \(-0.0617223\pi\)
\(510\) −268.932 1267.42i −0.0233500 0.110043i
\(511\) −482.673 + 9278.68i −0.0417851 + 0.803258i
\(512\) 3640.92i 0.314272i
\(513\) 5645.13 587.315i 0.485845 0.0505470i
\(514\) 10003.1 5775.30i 0.858401 0.495598i
\(515\) −1198.08 + 691.712i −0.102512 + 0.0591854i
\(516\) −1110.74 + 3414.41i −0.0947624 + 0.291301i
\(517\) 14570.1i 1.23944i
\(518\) −348.892 + 6706.94i −0.0295935 + 0.568892i
\(519\) −5254.79 + 1115.01i −0.444431 + 0.0943037i
\(520\) 288.293 499.338i 0.0243125 0.0421104i
\(521\) −6894.00 11940.8i −0.579715 1.00410i −0.995512 0.0946385i \(-0.969830\pi\)
0.415796 0.909458i \(-0.363503\pi\)
\(522\) 8822.93 + 6419.71i 0.739788 + 0.538281i
\(523\) −832.513 480.652i −0.0696047 0.0401863i 0.464794 0.885419i \(-0.346128\pi\)
−0.534398 + 0.845233i \(0.679462\pi\)
\(524\) 2256.17 0.188094
\(525\) −7476.36 9231.85i −0.621514 0.767449i
\(526\) −11976.5 −0.992780
\(527\) 9071.15 + 5237.23i 0.749802 + 0.432898i
\(528\) −1598.67 + 1438.43i −0.131767 + 0.118560i
\(529\) −2851.06 4938.17i −0.234327 0.405866i
\(530\) 503.783 872.577i 0.0412885 0.0715138i
\(531\) −15434.8 + 6859.02i −1.26142 + 0.560557i
\(532\) −2738.03 1776.59i −0.223136 0.144784i
\(533\) 3659.84i 0.297421i
\(534\) 1082.28 + 352.073i 0.0877054 + 0.0285313i
\(535\) 1153.41 665.922i 0.0932080 0.0538137i
\(536\) 6098.14 3520.76i 0.491417 0.283720i
\(537\) 715.903 + 232.889i 0.0575298 + 0.0187149i
\(538\) 6368.54i 0.510348i
\(539\) −11297.7 8194.92i −0.902834 0.654880i
\(540\) −617.261 + 447.474i −0.0491902 + 0.0356596i
\(541\) 597.846 1035.50i 0.0475109 0.0822913i −0.841292 0.540581i \(-0.818204\pi\)
0.888803 + 0.458290i \(0.151538\pi\)
\(542\) −2713.57 4700.04i −0.215051 0.372480i
\(543\) 7946.26 7149.79i 0.628005 0.565059i
\(544\) −15351.3 8863.09i −1.20989 0.698533i
\(545\) −12.5833 −0.000989006
\(546\) 1289.97 3360.86i 0.101109 0.263428i
\(547\) 18601.8 1.45403 0.727014 0.686622i \(-0.240907\pi\)
0.727014 + 0.686622i \(0.240907\pi\)
\(548\) −4142.71 2391.80i −0.322934 0.186446i
\(549\) −12832.3 + 17636.1i −0.997578 + 1.37102i
\(550\) −4794.05 8303.53i −0.371671 0.643753i
\(551\) −4282.34 + 7417.24i −0.331096 + 0.573475i
\(552\) 9639.56 2045.41i 0.743274 0.157715i
\(553\) −520.955 1021.45i −0.0400601 0.0785473i
\(554\) 12117.9i 0.929315i
\(555\) −380.925 + 1170.97i −0.0291340 + 0.0895582i
\(556\) −3124.83 + 1804.12i −0.238349 + 0.137611i
\(557\) 5908.09 3411.04i 0.449432 0.259480i −0.258158 0.966103i \(-0.583116\pi\)
0.707590 + 0.706623i \(0.249782\pi\)
\(558\) −542.458 + 5126.51i −0.0411543 + 0.388929i
\(559\) 3108.49i 0.235197i
\(560\) −234.661 12.2070i −0.0177076 0.000921141i
\(561\) 4595.80 + 21658.9i 0.345873 + 1.63002i
\(562\) 3565.58 6175.77i 0.267624 0.463539i
\(563\) −5679.80 9837.71i −0.425178 0.736430i 0.571259 0.820770i \(-0.306455\pi\)
−0.996437 + 0.0843399i \(0.973122\pi\)
\(564\) 5421.43 + 6025.36i 0.404758 + 0.449847i
\(565\) 955.293 + 551.539i 0.0711318 + 0.0410680i
\(566\) 10531.2 0.782087
\(567\) −9556.55 + 9537.12i −0.707826 + 0.706387i
\(568\) 10740.8 0.793443
\(569\) 18467.2 + 10662.1i 1.36061 + 0.785549i 0.989705 0.143122i \(-0.0457141\pi\)
0.370905 + 0.928671i \(0.379047\pi\)
\(570\) 334.785 + 372.079i 0.0246011 + 0.0273416i
\(571\) 7384.00 + 12789.5i 0.541175 + 0.937343i 0.998837 + 0.0482163i \(0.0153537\pi\)
−0.457662 + 0.889126i \(0.651313\pi\)
\(572\) −1736.94 + 3008.47i −0.126967 + 0.219913i
\(573\) 3180.36 + 14988.3i 0.231870 + 1.09275i
\(574\) 5881.34 2999.56i 0.427670 0.218117i
\(575\) 9925.45i 0.719861i
\(576\) 1149.20 10860.5i 0.0831305 0.785626i
\(577\) 16718.5 9652.44i 1.20624 0.696424i 0.244305 0.969698i \(-0.421440\pi\)
0.961936 + 0.273275i \(0.0881068\pi\)
\(578\) 10006.1 5777.04i 0.720069 0.415732i
\(579\) 3650.16 11220.6i 0.261996 0.805377i
\(580\) 1150.48i 0.0823640i
\(581\) −737.091 + 1135.98i −0.0526328 + 0.0811162i
\(582\) −13743.8 + 2916.29i −0.978863 + 0.207705i
\(583\) −8609.17 + 14911.5i −0.611587 + 1.05930i
\(584\) −5916.35 10247.4i −0.419213 0.726099i
\(585\) 388.336 533.710i 0.0274457 0.0377200i
\(586\) −12521.4 7229.22i −0.882684 0.509618i
\(587\) 4397.46 0.309204 0.154602 0.987977i \(-0.450590\pi\)
0.154602 + 0.987977i \(0.450590\pi\)
\(588\) 7721.38 814.854i 0.541538 0.0571497i
\(589\) −4046.45 −0.283075
\(590\) −1289.97 744.762i −0.0900119 0.0519684i
\(591\) 1915.32 1723.35i 0.133310 0.119948i
\(592\) −966.135 1673.40i −0.0670742 0.116176i
\(593\) −10970.1 + 19000.8i −0.759677 + 1.31580i 0.183339 + 0.983050i \(0.441309\pi\)
−0.943015 + 0.332749i \(0.892024\pi\)
\(594\) −8822.62 + 6395.82i −0.609422 + 0.441791i
\(595\) −1316.83 + 2029.46i −0.0907307 + 0.139832i
\(596\) 3888.46i 0.267244i
\(597\) −4149.21 1349.77i −0.284449 0.0925335i
\(598\) −2604.80 + 1503.88i −0.178124 + 0.102840i
\(599\) −4765.07 + 2751.12i −0.325034 + 0.187659i −0.653634 0.756810i \(-0.726757\pi\)
0.328600 + 0.944469i \(0.393423\pi\)
\(600\) 14386.9 + 4680.17i 0.978903 + 0.318445i
\(601\) 5814.58i 0.394645i 0.980339 + 0.197322i \(0.0632246\pi\)
−0.980339 + 0.197322i \(0.936775\pi\)
\(602\) −4995.31 + 2547.68i −0.338196 + 0.172484i
\(603\) 7366.11 3273.41i 0.497465 0.221067i
\(604\) −3103.99 + 5376.27i −0.209105 + 0.362181i
\(605\) −202.537 350.804i −0.0136104 0.0235739i
\(606\) −1775.56 + 1597.60i −0.119022 + 0.107092i
\(607\) −11510.7 6645.69i −0.769693 0.444382i 0.0630721 0.998009i \(-0.479910\pi\)
−0.832765 + 0.553627i \(0.813244\pi\)
\(608\) 6847.90 0.456775
\(609\) −3187.91 20123.0i −0.212119 1.33896i
\(610\) −1923.45 −0.127669
\(611\) −6077.05 3508.59i −0.402375 0.232311i
\(612\) −9959.72 7246.85i −0.657839 0.478655i
\(613\) −9797.17 16969.2i −0.645520 1.11807i −0.984181 0.177166i \(-0.943307\pi\)
0.338661 0.940909i \(-0.390026\pi\)
\(614\) 10150.8 17581.7i 0.667189 1.15561i
\(615\) 1184.12 251.257i 0.0776394 0.0164743i
\(616\) 17750.6 + 923.379i 1.16103 + 0.0603961i
\(617\) 348.388i 0.0227319i −0.999935 0.0113660i \(-0.996382\pi\)
0.999935 0.0113660i \(-0.00361797\pi\)
\(618\) 3402.88 10460.5i 0.221495 0.680878i
\(619\) 5867.68 3387.71i 0.381005 0.219973i −0.297251 0.954799i \(-0.596070\pi\)
0.678255 + 0.734826i \(0.262736\pi\)
\(620\) 470.731 271.777i 0.0304920 0.0176045i
\(621\) 11219.9 1167.31i 0.725022 0.0754307i
\(622\) 11016.2i 0.710145i
\(623\) −965.508 1893.10i −0.0620903 0.121742i
\(624\) 214.986 + 1013.18i 0.0137922 + 0.0649994i
\(625\) −7521.95 + 13028.4i −0.481405 + 0.833818i
\(626\) 2237.65 + 3875.72i 0.142866 + 0.247452i
\(627\) −5721.16 6358.48i −0.364404 0.404997i
\(628\) 1066.75 + 615.890i 0.0677836 + 0.0391349i
\(629\) −19893.9 −1.26108
\(630\) −1175.94 186.631i −0.0743662 0.0118025i
\(631\) −7326.82 −0.462244 −0.231122 0.972925i \(-0.574240\pi\)
−0.231122 + 0.972925i \(0.574240\pi\)
\(632\) 1264.64 + 730.138i 0.0795957 + 0.0459546i
\(633\) −13908.2 15457.5i −0.873301 0.970584i
\(634\) 7551.46 + 13079.5i 0.473039 + 0.819327i
\(635\) −523.995 + 907.586i −0.0327466 + 0.0567188i
\(636\) −1988.21 9369.98i −0.123959 0.584189i
\(637\) −6138.62 + 2738.79i −0.381822 + 0.170353i
\(638\) 16444.0i 1.02042i
\(639\) 12227.2 + 1293.81i 0.756963 + 0.0800975i
\(640\) −628.838 + 363.060i −0.0388391 + 0.0224238i
\(641\) −2433.38 + 1404.91i −0.149942 + 0.0865689i −0.573094 0.819490i \(-0.694257\pi\)
0.423152 + 0.906059i \(0.360924\pi\)
\(642\) −3276.01 + 10070.5i −0.201392 + 0.619081i
\(643\) 27485.5i 1.68573i −0.538128 0.842863i \(-0.680868\pi\)
0.538128 0.842863i \(-0.319132\pi\)
\(644\) −5441.92 3531.03i −0.332984 0.216059i
\(645\) −1005.73 + 213.405i −0.0613962 + 0.0130276i
\(646\) −4043.21 + 7003.05i −0.246251 + 0.426519i
\(647\) 14659.9 + 25391.7i 0.890790 + 1.54289i 0.838930 + 0.544239i \(0.183181\pi\)
0.0518595 + 0.998654i \(0.483485\pi\)
\(648\) 3598.53 16813.6i 0.218153 1.01929i
\(649\) 22044.3 + 12727.3i 1.33330 + 0.769783i
\(650\) −4617.78 −0.278653
\(651\) 7480.44 6057.99i 0.450356 0.364718i
\(652\) 10089.9 0.606061
\(653\) −14500.6 8371.91i −0.868992 0.501713i −0.00197863 0.999998i \(-0.500630\pi\)
−0.867013 + 0.498285i \(0.833963\pi\)
\(654\) 74.3780 66.9229i 0.00444711 0.00400137i
\(655\) 323.019 + 559.485i 0.0192693 + 0.0333754i
\(656\) −949.747 + 1645.01i −0.0565265 + 0.0979068i
\(657\) −5500.69 12378.1i −0.326640 0.735034i
\(658\) −657.599 + 12641.4i −0.0389603 + 0.748954i
\(659\) 9520.47i 0.562769i −0.959595 0.281385i \(-0.909206\pi\)
0.959595 0.281385i \(-0.0907937\pi\)
\(660\) 1092.62 + 355.437i 0.0644394 + 0.0209626i
\(661\) −20217.5 + 11672.6i −1.18966 + 0.686853i −0.958230 0.285998i \(-0.907675\pi\)
−0.231434 + 0.972851i \(0.574342\pi\)
\(662\) −8067.16 + 4657.58i −0.473624 + 0.273447i
\(663\) 10140.5 + 3298.77i 0.594002 + 0.193233i
\(664\) 1724.58i 0.100793i
\(665\) 48.5515 933.331i 0.00283120 0.0544256i
\(666\) −3976.08 8947.34i −0.231337 0.520574i
\(667\) −8511.31 + 14742.0i −0.494092 + 0.855792i
\(668\) 5107.19 + 8845.91i 0.295813 + 0.512363i
\(669\) −11744.7 + 10567.5i −0.678740 + 0.610709i
\(670\) 615.625 + 355.431i 0.0354980 + 0.0204948i
\(671\) 32869.9 1.89110
\(672\) −12659.3 + 10252.1i −0.726703 + 0.588516i
\(673\) −12283.5 −0.703559 −0.351780 0.936083i \(-0.614423\pi\)
−0.351780 + 0.936083i \(0.614423\pi\)
\(674\) 6837.85 + 3947.84i 0.390778 + 0.225616i
\(675\) 15814.0 + 7060.82i 0.901750 + 0.402624i
\(676\) −3948.93 6839.74i −0.224677 0.389152i
\(677\) −6495.88 + 11251.2i −0.368769 + 0.638727i −0.989373 0.145397i \(-0.953554\pi\)
0.620604 + 0.784124i \(0.286887\pi\)
\(678\) −8579.91 + 1820.57i −0.486002 + 0.103125i
\(679\) 22007.4 + 14279.6i 1.24384 + 0.807072i
\(680\) 3081.00i 0.173751i
\(681\) 7067.05 21724.2i 0.397665 1.22243i
\(682\) 6728.24 3884.55i 0.377768 0.218104i
\(683\) 7366.62 4253.12i 0.412703 0.238274i −0.279248 0.960219i \(-0.590085\pi\)
0.691950 + 0.721945i \(0.256752\pi\)
\(684\) 4731.90 + 500.703i 0.264516 + 0.0279896i
\(685\) 1369.74i 0.0764018i
\(686\) 9432.34 + 7620.03i 0.524968 + 0.424102i
\(687\) 2139.38 + 10082.4i 0.118810 + 0.559923i
\(688\) 806.667 1397.19i 0.0447004 0.0774234i
\(689\) 4146.31 + 7181.62i 0.229263 + 0.397095i
\(690\) 665.397 + 739.520i 0.0367119 + 0.0408015i
\(691\) −22372.0 12916.5i −1.23165 0.711093i −0.264276 0.964447i \(-0.585133\pi\)
−0.967374 + 0.253354i \(0.918466\pi\)
\(692\) −4503.61 −0.247401
\(693\) 20095.7 + 3189.34i 1.10155 + 0.174824i
\(694\) −4429.93 −0.242303
\(695\) −894.770 516.595i −0.0488353 0.0281951i
\(696\) 17355.1 + 19288.4i 0.945177 + 1.05047i
\(697\) 9778.22 + 16936.4i 0.531387 + 0.920389i
\(698\) 216.457 374.914i 0.0117378 0.0203305i
\(699\) 4717.33 + 22231.7i 0.255259 + 1.20298i
\(700\) −4524.99 8872.30i −0.244327 0.479059i
\(701\) 22607.8i 1.21810i −0.793134 0.609048i \(-0.791552\pi\)
0.793134 0.609048i \(-0.208448\pi\)
\(702\) 543.086 + 5220.01i 0.0291987 + 0.280650i
\(703\) 6655.69 3842.67i 0.357076 0.206158i
\(704\) −14253.8 + 8229.41i −0.763080 + 0.440565i
\(705\) −717.975 + 2207.06i −0.0383553 + 0.117905i
\(706\) 2835.96i 0.151180i
\(707\) 4453.86 + 231.688i 0.236923 + 0.0123246i
\(708\) −13852.0 + 2939.26i −0.735298 + 0.156023i
\(709\) 5472.41 9478.50i 0.289874 0.502077i −0.683905 0.729571i \(-0.739720\pi\)
0.973779 + 0.227494i \(0.0730532\pi\)
\(710\) 542.159 + 939.048i 0.0286576 + 0.0496364i
\(711\) 1351.69 + 983.509i 0.0712971 + 0.0518769i
\(712\) 2343.80 + 1353.19i 0.123368 + 0.0712263i
\(713\) −8042.46 −0.422430
\(714\) −3009.89 18999.3i −0.157762 0.995841i
\(715\) −994.720 −0.0520285
\(716\) 546.601 + 315.580i 0.0285299 + 0.0164718i
\(717\) −14780.3 + 13298.9i −0.769849 + 0.692685i
\(718\) −10381.4 17981.1i −0.539595 0.934607i
\(719\) 12885.3 22317.9i 0.668344 1.15761i −0.310023 0.950729i \(-0.600337\pi\)
0.978367 0.206877i \(-0.0663299\pi\)
\(720\) 313.048 139.114i 0.0162036 0.00720068i
\(721\) −18297.3 + 9331.88i −0.945116 + 0.482021i
\(722\) 9968.76i 0.513849i
\(723\) −16997.4 5529.40i −0.874330 0.284427i
\(724\) 7761.13 4480.89i 0.398398 0.230015i
\(725\) −22633.2 + 13067.3i −1.15942 + 0.669389i
\(726\) 3062.89 + 996.381i 0.156576 + 0.0509355i
\(727\) 15593.1i 0.795485i −0.917497 0.397742i \(-0.869794\pi\)
0.917497 0.397742i \(-0.130206\pi\)
\(728\) 4659.63 7181.28i 0.237221 0.365599i
\(729\) 6121.81 18706.8i 0.311020 0.950403i
\(730\) 597.273 1034.51i 0.0302823 0.0524505i
\(731\) −8305.13 14384.9i −0.420214 0.727832i
\(732\) −13593.2 + 12230.7i −0.686363 + 0.617568i
\(733\) 692.858 + 400.022i 0.0349131 + 0.0201571i 0.517355 0.855771i \(-0.326917\pi\)
−0.482442 + 0.875928i \(0.660250\pi\)
\(734\) 7272.94 0.365734
\(735\) 1307.55 + 1798.08i 0.0656185 + 0.0902358i
\(736\) 13610.4 0.681641
\(737\) −10520.5 6073.99i −0.525815 0.303580i
\(738\) −5662.86 + 7782.76i −0.282456 + 0.388194i
\(739\) 454.445 + 787.122i 0.0226211 + 0.0391810i 0.877114 0.480282i \(-0.159466\pi\)
−0.854493 + 0.519463i \(0.826132\pi\)
\(740\) −516.179 + 894.048i −0.0256421 + 0.0444133i
\(741\) −4029.77 + 855.076i −0.199781 + 0.0423914i
\(742\) 8142.55 12549.1i 0.402860 0.620877i
\(743\) 8109.00i 0.400391i −0.979756 0.200195i \(-0.935842\pi\)
0.979756 0.200195i \(-0.0641577\pi\)
\(744\) −3792.28 + 11657.5i −0.186870 + 0.574442i
\(745\) 964.258 556.715i 0.0474197 0.0273778i
\(746\) −16099.7 + 9295.14i −0.790148 + 0.456192i
\(747\) 207.737 1963.22i 0.0101750 0.0961588i
\(748\) 18562.8i 0.907382i
\(749\) 17615.1 8983.95i 0.859337 0.438273i
\(750\) 638.041 + 3006.94i 0.0310639 + 0.146397i
\(751\) 10382.2 17982.5i 0.504463 0.873756i −0.495524 0.868594i \(-0.665024\pi\)
0.999987 0.00516122i \(-0.00164288\pi\)
\(752\) −1820.99 3154.05i −0.0883041 0.152947i
\(753\) 7113.09 + 7905.46i 0.344243 + 0.382591i
\(754\) −6858.67 3959.85i −0.331271 0.191259i
\(755\) −1777.61 −0.0856870
\(756\) −9497.21 + 6158.57i −0.456892 + 0.296276i
\(757\) 23295.6 1.11848 0.559242 0.829005i \(-0.311092\pi\)
0.559242 + 0.829005i \(0.311092\pi\)
\(758\) −529.273 305.576i −0.0253616 0.0146425i
\(759\) −11371.0 12637.7i −0.543796 0.604374i
\(760\) 595.119 + 1030.78i 0.0284042 + 0.0491976i
\(761\) 5014.38 8685.16i 0.238858 0.413715i −0.721529 0.692385i \(-0.756560\pi\)
0.960387 + 0.278670i \(0.0898935\pi\)
\(762\) −1729.65 8151.43i −0.0822290 0.387526i
\(763\) −186.571 9.70535i −0.00885233 0.000460494i
\(764\) 12845.7i 0.608299i
\(765\) 371.128 3507.35i 0.0175401 0.165763i
\(766\) 7224.45 4171.04i 0.340770 0.196744i
\(767\) 10616.9 6129.66i 0.499809 0.288565i
\(768\) 6987.55 21479.8i 0.328309 1.00923i
\(769\) 13500.3i 0.633074i 0.948580 + 0.316537i \(0.102520\pi\)
−0.948580 + 0.316537i \(0.897480\pi\)