Properties

Label 21.4.g.a.5.2
Level $21$
Weight $4$
Character 21.5
Analytic conductor $1.239$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 21 = 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 21.g (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.23904011012\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} - 29 x^{9} + 6 x^{8} - 49 x^{7} + 1564 x^{6} - 441 x^{5} + 486 x^{4} - 21141 x^{3} - 59049 x + 531441\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 5.2
Root \(0.00299931 - 3.00000i\) of defining polynomial
Character \(\chi\) \(=\) 21.5
Dual form 21.4.g.a.17.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.24076 - 1.29370i) q^{2} +(5.19615 + 0.00519496i) q^{3} +(-0.652660 - 1.13044i) q^{4} +(8.05907 - 13.9587i) q^{5} +(-11.6366 - 6.73392i) q^{6} +(-5.67909 + 17.6280i) q^{7} +24.0767i q^{8} +(26.9999 + 0.0539876i) q^{9} +O(q^{10})\) \(q+(-2.24076 - 1.29370i) q^{2} +(5.19615 + 0.00519496i) q^{3} +(-0.652660 - 1.13044i) q^{4} +(8.05907 - 13.9587i) q^{5} +(-11.6366 - 6.73392i) q^{6} +(-5.67909 + 17.6280i) q^{7} +24.0767i q^{8} +(26.9999 + 0.0539876i) q^{9} +(-36.1169 + 20.8521i) q^{10} +(-30.8296 + 17.7995i) q^{11} +(-3.38545 - 5.87733i) q^{12} +7.40831i q^{13} +(35.5309 - 32.1532i) q^{14} +(41.9486 - 72.4897i) q^{15} +(25.9268 - 44.9065i) q^{16} +(14.4601 + 25.0457i) q^{17} +(-60.4306 - 35.0509i) q^{18} +(30.4580 + 17.5849i) q^{19} -21.0393 q^{20} +(-29.6010 + 91.5685i) q^{21} +92.1090 q^{22} +(-48.0017 - 27.7138i) q^{23} +(-0.125077 + 125.106i) q^{24} +(-67.3971 - 116.735i) q^{25} +(9.58416 - 16.6003i) q^{26} +(140.295 + 0.420792i) q^{27} +(23.6340 - 5.08525i) q^{28} -68.1510i q^{29} +(-187.777 + 108.163i) q^{30} +(-154.734 + 89.3356i) q^{31} +(50.6165 - 29.2234i) q^{32} +(-160.288 + 92.3286i) q^{33} -74.8285i q^{34} +(200.297 + 221.338i) q^{35} +(-17.5608 - 30.5571i) q^{36} +(116.838 - 202.370i) q^{37} +(-45.4994 - 78.8072i) q^{38} +(-0.0384859 + 38.4947i) q^{39} +(336.079 + 194.035i) q^{40} -370.068 q^{41} +(184.791 - 166.888i) q^{42} -187.068 q^{43} +(40.2425 + 23.2340i) q^{44} +(218.348 - 376.449i) q^{45} +(71.7068 + 124.200i) q^{46} +(87.3726 - 151.334i) q^{47} +(134.953 - 233.206i) q^{48} +(-278.496 - 200.222i) q^{49} +348.768i q^{50} +(75.0068 + 130.216i) q^{51} +(8.37465 - 4.83511i) q^{52} +(235.715 - 136.090i) q^{53} +(-313.824 - 182.444i) q^{54} +573.789i q^{55} +(-424.424 - 136.733i) q^{56} +(158.173 + 91.5321i) q^{57} +(-88.1672 + 152.710i) q^{58} +(48.4354 + 83.8926i) q^{59} +(-109.323 - 0.109298i) q^{60} +(-333.882 - 192.767i) q^{61} +462.295 q^{62} +(-154.287 + 475.650i) q^{63} -566.055 q^{64} +(103.411 + 59.7041i) q^{65} +(478.612 + 0.478503i) q^{66} +(509.009 + 881.630i) q^{67} +(18.8751 - 32.6926i) q^{68} +(-249.280 - 144.254i) q^{69} +(-162.471 - 755.091i) q^{70} -125.333i q^{71} +(-1.29984 + 650.068i) q^{72} +(195.346 - 112.783i) q^{73} +(-523.613 + 302.308i) q^{74} +(-349.599 - 606.924i) q^{75} -45.9079i q^{76} +(-138.686 - 644.550i) q^{77} +(49.8870 - 86.2076i) q^{78} +(532.154 - 921.718i) q^{79} +(-417.891 - 723.809i) q^{80} +(728.994 + 2.91533i) q^{81} +(829.234 + 478.758i) q^{82} +601.040 q^{83} +(122.832 - 26.3009i) q^{84} +466.140 q^{85} +(419.175 + 242.011i) q^{86} +(0.354042 - 354.123i) q^{87} +(-428.552 - 742.274i) q^{88} +(-752.606 + 1303.55i) q^{89} +(-976.280 + 561.055i) q^{90} +(-130.594 - 42.0725i) q^{91} +72.3506i q^{92} +(-804.484 + 463.397i) q^{93} +(-391.562 + 226.069i) q^{94} +(490.926 - 283.436i) q^{95} +(263.163 - 151.586i) q^{96} -327.463i q^{97} +(365.014 + 808.942i) q^{98} +(-833.358 + 478.920i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 3q^{3} + 14q^{4} - 56q^{7} - 3q^{9} + O(q^{10}) \) \( 12q - 3q^{3} + 14q^{4} - 56q^{7} - 3q^{9} + 30q^{10} - 192q^{12} + 6q^{15} + 134q^{16} + 66q^{18} + 300q^{19} + 357q^{21} - 268q^{22} + 414q^{24} - 42q^{25} - 602q^{28} - 822q^{30} - 930q^{31} - 855q^{33} + 852q^{36} + 764q^{37} - 426q^{39} + 2298q^{40} + 966q^{42} - 1012q^{43} + 2367q^{45} + 608q^{46} - 336q^{49} - 1341q^{51} - 3000q^{52} - 4158q^{54} + 270q^{57} + 2870q^{58} - 918q^{60} + 2358q^{61} + 1071q^{63} - 548q^{64} + 2934q^{66} + 792q^{67} - 4242q^{70} - 2712q^{72} - 2904q^{73} - 2418q^{75} + 4296q^{78} + 1674q^{79} + 837q^{81} + 5040q^{82} + 3864q^{84} + 348q^{85} + 1638q^{87} - 554q^{88} - 1218q^{91} - 1479q^{93} - 1356q^{94} - 4410q^{96} - 3354q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/21\mathbb{Z}\right)^\times\).

\(n\) \(8\) \(10\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.24076 1.29370i −0.792229 0.457393i 0.0485179 0.998822i \(-0.484550\pi\)
−0.840747 + 0.541429i \(0.817884\pi\)
\(3\) 5.19615 + 0.00519496i 1.00000 + 0.000999771i
\(4\) −0.652660 1.13044i −0.0815825 0.141305i
\(5\) 8.05907 13.9587i 0.720825 1.24851i −0.239845 0.970811i \(-0.577097\pi\)
0.960670 0.277694i \(-0.0895701\pi\)
\(6\) −11.6366 6.73392i −0.791771 0.458185i
\(7\) −5.67909 + 17.6280i −0.306642 + 0.951825i
\(8\) 24.0767i 1.06405i
\(9\) 26.9999 + 0.0539876i 0.999998 + 0.00199954i
\(10\) −36.1169 + 20.8521i −1.14212 + 0.659401i
\(11\) −30.8296 + 17.7995i −0.845043 + 0.487886i −0.858975 0.512017i \(-0.828898\pi\)
0.0139322 + 0.999903i \(0.495565\pi\)
\(12\) −3.38545 5.87733i −0.0814412 0.141386i
\(13\) 7.40831i 0.158054i 0.996872 + 0.0790268i \(0.0251813\pi\)
−0.996872 + 0.0790268i \(0.974819\pi\)
\(14\) 35.5309 32.1532i 0.678289 0.613807i
\(15\) 41.9486 72.4897i 0.722073 1.24778i
\(16\) 25.9268 44.9065i 0.405106 0.701664i
\(17\) 14.4601 + 25.0457i 0.206300 + 0.357322i 0.950546 0.310584i \(-0.100524\pi\)
−0.744246 + 0.667905i \(0.767191\pi\)
\(18\) −60.4306 35.0509i −0.791313 0.458977i
\(19\) 30.4580 + 17.5849i 0.367765 + 0.212329i 0.672482 0.740114i \(-0.265228\pi\)
−0.304716 + 0.952443i \(0.598562\pi\)
\(20\) −21.0393 −0.235227
\(21\) −29.6010 + 91.5685i −0.307593 + 0.951518i
\(22\) 92.1090 0.892623
\(23\) −48.0017 27.7138i −0.435175 0.251249i 0.266374 0.963870i \(-0.414175\pi\)
−0.701549 + 0.712621i \(0.747508\pi\)
\(24\) −0.125077 + 125.106i −0.00106380 + 1.06405i
\(25\) −67.3971 116.735i −0.539177 0.933881i
\(26\) 9.58416 16.6003i 0.0722927 0.125215i
\(27\) 140.295 + 0.420792i 0.999996 + 0.00299931i
\(28\) 23.6340 5.08525i 0.159514 0.0343222i
\(29\) 68.1510i 0.436390i −0.975905 0.218195i \(-0.929983\pi\)
0.975905 0.218195i \(-0.0700169\pi\)
\(30\) −187.777 + 108.163i −1.14277 + 0.658259i
\(31\) −154.734 + 89.3356i −0.896484 + 0.517585i −0.876058 0.482206i \(-0.839836\pi\)
−0.0204262 + 0.999791i \(0.506502\pi\)
\(32\) 50.6165 29.2234i 0.279619 0.161438i
\(33\) −160.288 + 92.3286i −0.845530 + 0.487041i
\(34\) 74.8285i 0.377440i
\(35\) 200.297 + 221.338i 0.967323 + 1.06894i
\(36\) −17.5608 30.5571i −0.0812998 0.141468i
\(37\) 116.838 202.370i 0.519137 0.899172i −0.480615 0.876931i \(-0.659587\pi\)
0.999753 0.0222405i \(-0.00707996\pi\)
\(38\) −45.4994 78.8072i −0.194236 0.336427i
\(39\) −0.0384859 + 38.4947i −0.000158017 + 0.158053i
\(40\) 336.079 + 194.035i 1.32847 + 0.766992i
\(41\) −370.068 −1.40963 −0.704816 0.709390i \(-0.748970\pi\)
−0.704816 + 0.709390i \(0.748970\pi\)
\(42\) 184.791 166.888i 0.678902 0.613129i
\(43\) −187.068 −0.663432 −0.331716 0.943379i \(-0.607628\pi\)
−0.331716 + 0.943379i \(0.607628\pi\)
\(44\) 40.2425 + 23.2340i 0.137881 + 0.0796059i
\(45\) 218.348 376.449i 0.723320 1.24706i
\(46\) 71.7068 + 124.200i 0.229839 + 0.398093i
\(47\) 87.3726 151.334i 0.271162 0.469666i −0.697998 0.716100i \(-0.745925\pi\)
0.969160 + 0.246434i \(0.0792588\pi\)
\(48\) 134.953 233.206i 0.405807 0.701259i
\(49\) −278.496 200.222i −0.811942 0.583739i
\(50\) 348.768i 0.986464i
\(51\) 75.0068 + 130.216i 0.205942 + 0.357528i
\(52\) 8.37465 4.83511i 0.0223338 0.0128944i
\(53\) 235.715 136.090i 0.610905 0.352706i −0.162415 0.986723i \(-0.551928\pi\)
0.773319 + 0.634017i \(0.218595\pi\)
\(54\) −313.824 182.444i −0.790853 0.459768i
\(55\) 573.789i 1.40672i
\(56\) −424.424 136.733i −1.01279 0.326282i
\(57\) 158.173 + 91.5321i 0.367553 + 0.212697i
\(58\) −88.1672 + 152.710i −0.199602 + 0.345721i
\(59\) 48.4354 + 83.8926i 0.106877 + 0.185117i 0.914504 0.404578i \(-0.132581\pi\)
−0.807626 + 0.589695i \(0.799248\pi\)
\(60\) −109.323 0.109298i −0.235227 0.000235173i
\(61\) −333.882 192.767i −0.700807 0.404611i 0.106841 0.994276i \(-0.465927\pi\)
−0.807648 + 0.589665i \(0.799260\pi\)
\(62\) 462.295 0.946960
\(63\) −154.287 + 475.650i −0.308544 + 0.951210i
\(64\) −566.055 −1.10558
\(65\) 103.411 + 59.7041i 0.197331 + 0.113929i
\(66\) 478.612 + 0.478503i 0.892623 + 0.000892419i
\(67\) 509.009 + 881.630i 0.928140 + 1.60759i 0.786432 + 0.617677i \(0.211926\pi\)
0.141708 + 0.989908i \(0.454741\pi\)
\(68\) 18.8751 32.6926i 0.0336609 0.0583023i
\(69\) −249.280 144.254i −0.434924 0.251684i
\(70\) −162.471 755.091i −0.277414 1.28929i
\(71\) 125.333i 0.209497i −0.994499 0.104749i \(-0.966596\pi\)
0.994499 0.104749i \(-0.0334038\pi\)
\(72\) −1.29984 + 650.068i −0.00212761 + 1.06405i
\(73\) 195.346 112.783i 0.313199 0.180825i −0.335158 0.942162i \(-0.608790\pi\)
0.648357 + 0.761337i \(0.275456\pi\)
\(74\) −523.613 + 302.308i −0.822551 + 0.474900i
\(75\) −349.599 606.924i −0.538243 0.934420i
\(76\) 45.9079i 0.0692894i
\(77\) −138.686 644.550i −0.205256 0.953939i
\(78\) 49.8870 86.2076i 0.0724178 0.125142i
\(79\) 532.154 921.718i 0.757874 1.31268i −0.186059 0.982539i \(-0.559572\pi\)
0.943933 0.330138i \(-0.107095\pi\)
\(80\) −417.891 723.809i −0.584021 1.01155i
\(81\) 728.994 + 2.91533i 0.999992 + 0.00399908i
\(82\) 829.234 + 478.758i 1.11675 + 0.644756i
\(83\) 601.040 0.794852 0.397426 0.917634i \(-0.369904\pi\)
0.397426 + 0.917634i \(0.369904\pi\)
\(84\) 122.832 26.3009i 0.159548 0.0341627i
\(85\) 466.140 0.594824
\(86\) 419.175 + 242.011i 0.525590 + 0.303450i
\(87\) 0.354042 354.123i 0.000436290 0.436390i
\(88\) −428.552 742.274i −0.519134 0.899166i
\(89\) −752.606 + 1303.55i −0.896360 + 1.55254i −0.0642474 + 0.997934i \(0.520465\pi\)
−0.832112 + 0.554607i \(0.812869\pi\)
\(90\) −976.280 + 561.055i −1.14343 + 0.657116i
\(91\) −130.594 42.0725i −0.150439 0.0484658i
\(92\) 72.3506i 0.0819900i
\(93\) −804.484 + 463.397i −0.897001 + 0.516689i
\(94\) −391.562 + 226.069i −0.429645 + 0.248055i
\(95\) 490.926 283.436i 0.530189 0.306105i
\(96\) 263.163 151.586i 0.279781 0.161159i
\(97\) 327.463i 0.342771i −0.985204 0.171386i \(-0.945176\pi\)
0.985204 0.171386i \(-0.0548244\pi\)
\(98\) 365.014 + 808.942i 0.376245 + 0.833831i
\(99\) −833.358 + 478.920i −0.846017 + 0.486195i
\(100\) −87.9747 + 152.377i −0.0879747 + 0.152377i
\(101\) 547.845 + 948.895i 0.539729 + 0.934837i 0.998918 + 0.0464990i \(0.0148064\pi\)
−0.459190 + 0.888338i \(0.651860\pi\)
\(102\) 0.388731 388.820i 0.000377354 0.377440i
\(103\) 179.848 + 103.835i 0.172048 + 0.0993318i 0.583551 0.812076i \(-0.301663\pi\)
−0.411503 + 0.911408i \(0.634996\pi\)
\(104\) −178.367 −0.168177
\(105\) 1039.62 + 1151.15i 0.966254 + 1.06991i
\(106\) −704.242 −0.645302
\(107\) −1561.25 901.391i −1.41058 0.814399i −0.415138 0.909759i \(-0.636267\pi\)
−0.995443 + 0.0953593i \(0.969600\pi\)
\(108\) −91.0895 158.870i −0.0811583 0.141549i
\(109\) −141.825 245.647i −0.124627 0.215860i 0.796960 0.604032i \(-0.206440\pi\)
−0.921587 + 0.388172i \(0.873107\pi\)
\(110\) 742.313 1285.72i 0.643425 1.11444i
\(111\) 608.160 1050.94i 0.520036 0.898652i
\(112\) 644.374 + 712.067i 0.543639 + 0.600750i
\(113\) 1037.39i 0.863627i −0.901963 0.431814i \(-0.857874\pi\)
0.901963 0.431814i \(-0.142126\pi\)
\(114\) −236.012 409.730i −0.193900 0.336621i
\(115\) −773.697 + 446.694i −0.627371 + 0.362213i
\(116\) −77.0406 + 44.4794i −0.0616641 + 0.0356018i
\(117\) −0.399957 + 200.024i −0.000316035 + 0.158053i
\(118\) 250.644i 0.195540i
\(119\) −523.626 + 112.667i −0.403368 + 0.0867915i
\(120\) 1745.31 + 1009.98i 1.32770 + 0.768320i
\(121\) −31.8573 + 55.1785i −0.0239349 + 0.0414564i
\(122\) 498.767 + 863.890i 0.370133 + 0.641090i
\(123\) −1922.93 1.92249i −1.40963 0.00140931i
\(124\) 201.977 + 116.611i 0.146275 + 0.0844518i
\(125\) −157.864 −0.112958
\(126\) 961.070 866.216i 0.679515 0.612450i
\(127\) 1645.81 1.14994 0.574968 0.818176i \(-0.305015\pi\)
0.574968 + 0.818176i \(0.305015\pi\)
\(128\) 863.461 + 498.520i 0.596249 + 0.344245i
\(129\) −972.033 0.971811i −0.663432 0.000663281i
\(130\) −154.479 267.565i −0.104221 0.180516i
\(131\) −314.185 + 544.184i −0.209545 + 0.362943i −0.951571 0.307428i \(-0.900532\pi\)
0.742026 + 0.670371i \(0.233865\pi\)
\(132\) 208.985 + 120.936i 0.137802 + 0.0797437i
\(133\) −482.961 + 437.048i −0.314873 + 0.284939i
\(134\) 2634.03i 1.69810i
\(135\) 1136.52 1954.95i 0.724566 1.24634i
\(136\) −603.016 + 348.151i −0.380207 + 0.219513i
\(137\) −432.079 + 249.461i −0.269453 + 0.155569i −0.628639 0.777697i \(-0.716388\pi\)
0.359186 + 0.933266i \(0.383054\pi\)
\(138\) 371.954 + 645.734i 0.229441 + 0.398322i
\(139\) 1216.65i 0.742410i 0.928551 + 0.371205i \(0.121055\pi\)
−0.928551 + 0.371205i \(0.878945\pi\)
\(140\) 119.484 370.882i 0.0721303 0.223895i
\(141\) 454.788 785.900i 0.271631 0.469395i
\(142\) −162.144 + 280.841i −0.0958226 + 0.165970i
\(143\) −131.864 228.395i −0.0771121 0.133562i
\(144\) 702.446 1211.07i 0.406508 0.700853i
\(145\) −951.300 549.233i −0.544835 0.314561i
\(146\) −583.631 −0.330833
\(147\) −1446.07 1041.83i −0.811358 0.584550i
\(148\) −305.022 −0.169410
\(149\) 2010.18 + 1160.58i 1.10524 + 0.638111i 0.937592 0.347736i \(-0.113050\pi\)
0.167648 + 0.985847i \(0.446383\pi\)
\(150\) −1.81183 + 1812.25i −0.000986238 + 0.986463i
\(151\) −488.726 846.497i −0.263390 0.456205i 0.703750 0.710447i \(-0.251507\pi\)
−0.967141 + 0.254242i \(0.918174\pi\)
\(152\) −423.386 + 733.326i −0.225929 + 0.391320i
\(153\) 389.070 + 677.012i 0.205585 + 0.357733i
\(154\) −523.095 + 1623.70i −0.273716 + 0.849621i
\(155\) 2879.85i 1.49235i
\(156\) 43.5411 25.0804i 0.0223466 0.0128721i
\(157\) −143.752 + 82.9950i −0.0730740 + 0.0421893i −0.536092 0.844160i \(-0.680100\pi\)
0.463018 + 0.886349i \(0.346767\pi\)
\(158\) −2384.86 + 1376.90i −1.20082 + 0.693293i
\(159\) 1225.52 705.920i 0.611257 0.352095i
\(160\) 942.055i 0.465475i
\(161\) 761.145 688.786i 0.372588 0.337168i
\(162\) −1629.73 949.635i −0.790393 0.460558i
\(163\) −488.511 + 846.127i −0.234743 + 0.406587i −0.959198 0.282735i \(-0.908758\pi\)
0.724455 + 0.689322i \(0.242092\pi\)
\(164\) 241.528 + 418.340i 0.115001 + 0.199188i
\(165\) −2.98081 + 2981.49i −0.00140640 + 1.40672i
\(166\) −1346.79 777.568i −0.629704 0.363560i
\(167\) −1.00709 −0.000466651 −0.000233326 1.00000i \(-0.500074\pi\)
−0.000233326 1.00000i \(0.500074\pi\)
\(168\) −2204.66 712.692i −1.01246 0.327294i
\(169\) 2142.12 0.975019
\(170\) −1044.51 603.048i −0.471236 0.272068i
\(171\) 821.414 + 476.436i 0.367340 + 0.213064i
\(172\) 122.092 + 211.469i 0.0541245 + 0.0937463i
\(173\) 1978.27 3426.47i 0.869395 1.50584i 0.00677983 0.999977i \(-0.497842\pi\)
0.862616 0.505860i \(-0.168825\pi\)
\(174\) −458.923 + 793.046i −0.199948 + 0.345521i
\(175\) 2440.57 525.130i 1.05423 0.226835i
\(176\) 1845.93i 0.790582i
\(177\) 251.242 + 436.170i 0.106692 + 0.185224i
\(178\) 3372.82 1947.30i 1.42024 0.819978i
\(179\) 2423.54 1399.23i 1.01198 0.584266i 0.100208 0.994967i \(-0.468049\pi\)
0.911770 + 0.410701i \(0.134716\pi\)
\(180\) −568.060 1.13586i −0.235226 0.000470346i
\(181\) 1506.74i 0.618758i −0.950939 0.309379i \(-0.899879\pi\)
0.950939 0.309379i \(-0.100121\pi\)
\(182\) 238.201 + 263.224i 0.0970144 + 0.107206i
\(183\) −1733.90 1003.38i −0.700403 0.405312i
\(184\) 667.255 1155.72i 0.267341 0.463048i
\(185\) −1883.21 3261.82i −0.748414 1.29629i
\(186\) 2402.16 + 2.40161i 0.946960 + 0.000946744i
\(187\) −891.599 514.765i −0.348664 0.201301i
\(188\) −228.098 −0.0884882
\(189\) −804.168 + 2470.75i −0.309495 + 0.950901i
\(190\) −1466.73 −0.560041
\(191\) −3184.51 1838.58i −1.20640 0.696518i −0.244433 0.969666i \(-0.578602\pi\)
−0.961972 + 0.273148i \(0.911935\pi\)
\(192\) −2941.30 2.94063i −1.10557 0.00110532i
\(193\) 64.7335 + 112.122i 0.0241431 + 0.0418171i 0.877845 0.478946i \(-0.158981\pi\)
−0.853701 + 0.520763i \(0.825648\pi\)
\(194\) −423.640 + 733.766i −0.156781 + 0.271553i
\(195\) 537.026 + 310.769i 0.197217 + 0.114126i
\(196\) −44.5763 + 445.500i −0.0162450 + 0.162354i
\(197\) 3044.81i 1.10119i 0.834774 + 0.550593i \(0.185598\pi\)
−0.834774 + 0.550593i \(0.814402\pi\)
\(198\) 2486.94 + 4.97275i 0.892621 + 0.00178484i
\(199\) 3458.29 1996.64i 1.23192 0.711248i 0.264488 0.964389i \(-0.414797\pi\)
0.967429 + 0.253141i \(0.0814637\pi\)
\(200\) 2810.59 1622.70i 0.993695 0.573710i
\(201\) 2640.31 + 4583.73i 0.926532 + 1.60851i
\(202\) 2835.00i 0.987473i
\(203\) 1201.37 + 387.035i 0.415367 + 0.133815i
\(204\) 98.2476 169.778i 0.0337191 0.0582687i
\(205\) −2982.40 + 5165.67i −1.01610 + 1.75993i
\(206\) −268.664 465.339i −0.0908674 0.157387i
\(207\) −1294.55 750.862i −0.434672 0.252118i
\(208\) 332.682 + 192.074i 0.110901 + 0.0640285i
\(209\) −1252.01 −0.414370
\(210\) −840.300 3924.41i −0.276125 1.28957i
\(211\) −4383.67 −1.43026 −0.715129 0.698992i \(-0.753632\pi\)
−0.715129 + 0.698992i \(0.753632\pi\)
\(212\) −307.683 177.641i −0.0996783 0.0575493i
\(213\) 0.651100 651.249i 0.000209449 0.209497i
\(214\) 2332.27 + 4039.60i 0.745002 + 1.29038i
\(215\) −1507.59 + 2611.23i −0.478219 + 0.828299i
\(216\) −10.1313 + 3377.85i −0.00319141 + 1.06404i
\(217\) −696.065 3235.00i −0.217751 1.01201i
\(218\) 733.916i 0.228014i
\(219\) 1015.63 585.022i 0.313379 0.180512i
\(220\) 648.634 374.489i 0.198777 0.114764i
\(221\) −185.546 + 107.125i −0.0564759 + 0.0326064i
\(222\) −2722.34 + 1568.12i −0.823025 + 0.474077i
\(223\) 4851.53i 1.45687i 0.685114 + 0.728436i \(0.259753\pi\)
−0.685114 + 0.728436i \(0.740247\pi\)
\(224\) 227.697 + 1058.23i 0.0679180 + 0.315652i
\(225\) −1813.42 3155.48i −0.537308 0.934958i
\(226\) −1342.08 + 2324.55i −0.395017 + 0.684190i
\(227\) 1184.05 + 2050.83i 0.346203 + 0.599642i 0.985572 0.169259i \(-0.0541374\pi\)
−0.639368 + 0.768901i \(0.720804\pi\)
\(228\) 0.238490 238.544i 6.92736e−5 0.0692894i
\(229\) −3737.27 2157.72i −1.07845 0.622646i −0.147975 0.988991i \(-0.547276\pi\)
−0.930479 + 0.366345i \(0.880609\pi\)
\(230\) 2311.56 0.662695
\(231\) −717.285 3349.90i −0.204303 0.954144i
\(232\) 1640.85 0.464340
\(233\) 4826.98 + 2786.86i 1.35719 + 0.783576i 0.989245 0.146270i \(-0.0467267\pi\)
0.367949 + 0.929846i \(0.380060\pi\)
\(234\) 259.668 447.689i 0.0725429 0.125070i
\(235\) −1408.28 2439.22i −0.390920 0.677094i
\(236\) 63.2237 109.507i 0.0174386 0.0302046i
\(237\) 2769.94 4786.62i 0.759186 1.31192i
\(238\) 1319.08 + 424.957i 0.359257 + 0.115739i
\(239\) 4683.70i 1.26763i −0.773485 0.633814i \(-0.781488\pi\)
0.773485 0.633814i \(-0.218512\pi\)
\(240\) −2167.67 3763.19i −0.583009 1.01214i
\(241\) −1896.77 + 1095.10i −0.506977 + 0.292703i −0.731590 0.681745i \(-0.761222\pi\)
0.224613 + 0.974448i \(0.427888\pi\)
\(242\) 142.769 82.4279i 0.0379238 0.0218953i
\(243\) 3787.95 + 18.9356i 0.999988 + 0.00499884i
\(244\) 503.245i 0.132037i
\(245\) −5039.26 + 2273.84i −1.31407 + 0.592940i
\(246\) 4306.34 + 2492.01i 1.11611 + 0.645872i
\(247\) −130.275 + 225.642i −0.0335594 + 0.0581266i
\(248\) −2150.90 3725.47i −0.550736 0.953902i
\(249\) 3123.09 + 3.12238i 0.794851 + 0.000794670i
\(250\) 353.735 + 204.229i 0.0894887 + 0.0516663i
\(251\) −2240.70 −0.563473 −0.281736 0.959492i \(-0.590910\pi\)
−0.281736 + 0.959492i \(0.590910\pi\)
\(252\) 638.390 136.026i 0.159583 0.0340032i
\(253\) 1973.16 0.490323
\(254\) −3687.86 2129.19i −0.911012 0.525973i
\(255\) 2422.13 + 2.42158i 0.594823 + 0.000594688i
\(256\) 974.345 + 1687.61i 0.237877 + 0.412015i
\(257\) 555.785 962.648i 0.134898 0.233651i −0.790660 0.612255i \(-0.790263\pi\)
0.925559 + 0.378604i \(0.123596\pi\)
\(258\) 2176.84 + 1259.70i 0.525287 + 0.303975i
\(259\) 2903.85 + 3208.90i 0.696665 + 0.769851i
\(260\) 155.866i 0.0371784i
\(261\) 3.67931 1840.07i 0.000872580 0.436389i
\(262\) 1408.03 812.924i 0.332016 0.191689i
\(263\) −1782.86 + 1029.34i −0.418007 + 0.241337i −0.694224 0.719759i \(-0.744252\pi\)
0.276217 + 0.961095i \(0.410919\pi\)
\(264\) −2222.96 3859.19i −0.518235 0.899685i
\(265\) 4387.04i 1.01696i
\(266\) 1647.61 354.512i 0.379780 0.0817162i
\(267\) −3917.42 + 6769.54i −0.897912 + 1.55164i
\(268\) 664.420 1150.81i 0.151440 0.262302i
\(269\) 2414.62 + 4182.24i 0.547294 + 0.947940i 0.998459 + 0.0554999i \(0.0176752\pi\)
−0.451165 + 0.892441i \(0.648991\pi\)
\(270\) −5075.81 + 2910.26i −1.14409 + 0.655973i
\(271\) −191.772 110.720i −0.0429865 0.0248183i 0.478353 0.878168i \(-0.341234\pi\)
−0.521339 + 0.853350i \(0.674567\pi\)
\(272\) 1499.62 0.334293
\(273\) −678.368 219.293i −0.150391 0.0486162i
\(274\) 1290.91 0.284624
\(275\) 4155.65 + 2399.27i 0.911255 + 0.526113i
\(276\) −0.375859 + 375.945i −8.19712e−5 + 0.0819899i
\(277\) −1233.58 2136.62i −0.267576 0.463455i 0.700660 0.713496i \(-0.252889\pi\)
−0.968235 + 0.250041i \(0.919556\pi\)
\(278\) 1573.99 2726.22i 0.339573 0.588158i
\(279\) −4182.63 + 2403.70i −0.897517 + 0.515792i
\(280\) −5329.09 + 4822.47i −1.13741 + 1.02928i
\(281\) 4174.76i 0.886282i −0.896452 0.443141i \(-0.853864\pi\)
0.896452 0.443141i \(-0.146136\pi\)
\(282\) −2035.79 + 1172.65i −0.429892 + 0.247626i
\(283\) −5628.39 + 3249.55i −1.18224 + 0.682565i −0.956531 0.291630i \(-0.905802\pi\)
−0.225706 + 0.974195i \(0.572469\pi\)
\(284\) −141.681 + 81.7998i −0.0296030 + 0.0170913i
\(285\) 2552.40 1470.23i 0.530494 0.305574i
\(286\) 682.372i 0.141082i
\(287\) 2101.65 6523.57i 0.432252 1.34172i
\(288\) 1368.22 786.299i 0.279942 0.160879i
\(289\) 2038.31 3530.46i 0.414881 0.718595i
\(290\) 1421.09 + 2461.40i 0.287756 + 0.498408i
\(291\) 1.70116 1701.55i 0.000342693 0.342771i
\(292\) −254.989 147.218i −0.0511030 0.0295043i
\(293\) −5637.32 −1.12401 −0.562007 0.827133i \(-0.689970\pi\)
−0.562007 + 0.827133i \(0.689970\pi\)
\(294\) 1892.47 + 4205.28i 0.375411 + 0.834207i
\(295\) 1561.38 0.308159
\(296\) 4872.38 + 2813.07i 0.956762 + 0.552387i
\(297\) −4332.74 + 2484.21i −0.846503 + 0.485349i
\(298\) −3002.90 5201.17i −0.583735 1.01106i
\(299\) 205.312 355.611i 0.0397108 0.0687810i
\(300\) −457.922 + 791.315i −0.0881270 + 0.152289i
\(301\) 1062.38 3297.64i 0.203436 0.631472i
\(302\) 2529.06i 0.481892i
\(303\) 2841.75 + 4933.45i 0.538794 + 0.935376i
\(304\) 1579.36 911.841i 0.297968 0.172032i
\(305\) −5381.56 + 3107.05i −1.01032 + 0.583308i
\(306\) 4.03981 2020.36i 0.000754708 0.377440i
\(307\) 3442.95i 0.640064i 0.947407 + 0.320032i \(0.103694\pi\)
−0.947407 + 0.320032i \(0.896306\pi\)
\(308\) −638.111 + 577.448i −0.118051 + 0.106828i
\(309\) 933.976 + 540.477i 0.171948 + 0.0995037i
\(310\) 3725.67 6453.05i 0.682593 1.18228i
\(311\) 75.7324 + 131.172i 0.0138083 + 0.0239167i 0.872847 0.487994i \(-0.162271\pi\)
−0.859039 + 0.511911i \(0.828938\pi\)
\(312\) −926.824 0.926612i −0.168177 0.000168138i
\(313\) 8335.31 + 4812.40i 1.50524 + 0.869050i 0.999982 + 0.00608123i \(0.00193573\pi\)
0.505257 + 0.862969i \(0.331398\pi\)
\(314\) 429.484 0.0771885
\(315\) 5396.05 + 5986.94i 0.965184 + 1.07087i
\(316\) −1389.26 −0.247317
\(317\) −7866.93 4541.98i −1.39385 0.804741i −0.400112 0.916466i \(-0.631029\pi\)
−0.993739 + 0.111726i \(0.964362\pi\)
\(318\) −3659.34 3.65851i −0.645301 0.000645154i
\(319\) 1213.05 + 2101.07i 0.212909 + 0.368768i
\(320\) −4561.87 + 7901.39i −0.796926 + 1.38032i
\(321\) −8107.83 4691.87i −1.40977 0.815809i
\(322\) −2596.63 + 558.709i −0.449393 + 0.0966946i
\(323\) 1017.12i 0.175214i
\(324\) −472.490 825.987i −0.0810167 0.141630i
\(325\) 864.811 499.299i 0.147603 0.0852188i
\(326\) 2189.27 1263.98i 0.371941 0.214740i
\(327\) −735.666 1277.16i −0.124411 0.215985i
\(328\) 8910.00i 1.49992i
\(329\) 2171.52 + 2399.65i 0.363890 + 0.402118i
\(330\) 3863.85 6676.95i 0.644539 1.11380i
\(331\) 702.788 1217.26i 0.116703 0.202136i −0.801756 0.597651i \(-0.796101\pi\)
0.918459 + 0.395516i \(0.129434\pi\)
\(332\) −392.275 679.440i −0.0648460 0.112317i
\(333\) 3165.55 5457.66i 0.520934 0.898132i
\(334\) 2.25664 + 1.30287i 0.000369695 + 0.000213443i
\(335\) 16408.6 2.67611
\(336\) 3344.56 + 3703.35i 0.543038 + 0.601293i
\(337\) 7983.35 1.29045 0.645223 0.763994i \(-0.276764\pi\)
0.645223 + 0.763994i \(0.276764\pi\)
\(338\) −4799.97 2771.27i −0.772438 0.445967i
\(339\) 5.38923 5390.46i 0.000863430 0.863627i
\(340\) −304.231 526.944i −0.0485272 0.0840516i
\(341\) 3180.25 5508.36i 0.505045 0.874764i
\(342\) −1224.23 2130.25i −0.193563 0.336815i
\(343\) 5111.13 3772.26i 0.804592 0.593828i
\(344\) 4503.97i 0.705924i
\(345\) −4022.57 + 2317.07i −0.627732 + 0.361585i
\(346\) −8865.68 + 5118.60i −1.37752 + 0.795312i
\(347\) −2268.41 + 1309.67i −0.350935 + 0.202612i −0.665097 0.746757i \(-0.731610\pi\)
0.314162 + 0.949369i \(0.398276\pi\)
\(348\) −400.545 + 230.721i −0.0616997 + 0.0355401i
\(349\) 6032.33i 0.925224i 0.886561 + 0.462612i \(0.153088\pi\)
−0.886561 + 0.462612i \(0.846912\pi\)
\(350\) −6148.09 1980.68i −0.938941 0.302491i
\(351\) −3.11736 + 1039.35i −0.000474052 + 0.158053i
\(352\) −1040.32 + 1801.89i −0.157527 + 0.272845i
\(353\) 2658.15 + 4604.06i 0.400791 + 0.694190i 0.993822 0.110990i \(-0.0354020\pi\)
−0.593031 + 0.805180i \(0.702069\pi\)
\(354\) 1.30209 1302.39i 0.000195495 0.195540i
\(355\) −1749.49 1010.07i −0.261558 0.151011i
\(356\) 1964.78 0.292509
\(357\) −2721.43 + 582.715i −0.403454 + 0.0863881i
\(358\) −7240.77 −1.06896
\(359\) −1612.51 930.982i −0.237061 0.136867i 0.376764 0.926309i \(-0.377037\pi\)
−0.613825 + 0.789442i \(0.710370\pi\)
\(360\) 9063.64 + 5257.09i 1.32693 + 0.769647i
\(361\) −2811.04 4868.87i −0.409832 0.709851i
\(362\) −1949.28 + 3376.25i −0.283016 + 0.490198i
\(363\) −165.822 + 286.550i −0.0239763 + 0.0414325i
\(364\) 37.6731 + 175.088i 0.00542475 + 0.0252118i
\(365\) 3635.70i 0.521373i
\(366\) 2587.18 + 4491.49i 0.369492 + 0.641459i
\(367\) −1675.89 + 967.574i −0.238367 + 0.137621i −0.614426 0.788975i \(-0.710612\pi\)
0.376059 + 0.926596i \(0.377279\pi\)
\(368\) −2489.06 + 1437.06i −0.352585 + 0.203565i
\(369\) −9991.81 19.9791i −1.40963 0.00281862i
\(370\) 9745.28i 1.36928i
\(371\) 1060.36 + 4928.06i 0.148385 + 0.689629i
\(372\) 1048.90 + 606.980i 0.146190 + 0.0845980i
\(373\) −3871.04 + 6704.83i −0.537359 + 0.930732i 0.461687 + 0.887043i \(0.347244\pi\)
−0.999045 + 0.0436892i \(0.986089\pi\)
\(374\) 1331.91 + 2306.93i 0.184148 + 0.318953i
\(375\) −820.284 0.820097i −0.112958 0.000112932i
\(376\) 3643.61 + 2103.64i 0.499747 + 0.288529i
\(377\) 504.884 0.0689730
\(378\) 4998.36 4495.99i 0.680127 0.611770i
\(379\) −3722.15 −0.504470 −0.252235 0.967666i \(-0.581166\pi\)
−0.252235 + 0.967666i \(0.581166\pi\)
\(380\) −640.815 369.975i −0.0865082 0.0499455i
\(381\) 8551.86 + 8.54991i 1.14994 + 0.00114967i
\(382\) 4757.15 + 8239.63i 0.637165 + 1.10360i
\(383\) −3546.73 + 6143.12i −0.473184 + 0.819578i −0.999529 0.0306926i \(-0.990229\pi\)
0.526345 + 0.850271i \(0.323562\pi\)
\(384\) 4484.08 + 2594.87i 0.595905 + 0.344841i
\(385\) −10114.8 3258.60i −1.33895 0.431359i
\(386\) 334.984i 0.0441716i
\(387\) −5050.82 10.0994i −0.663431 0.00132656i
\(388\) −370.177 + 213.722i −0.0484353 + 0.0279641i
\(389\) 6173.12 3564.05i 0.804601 0.464537i −0.0404765 0.999180i \(-0.512888\pi\)
0.845077 + 0.534644i \(0.179554\pi\)
\(390\) −801.305 1391.11i −0.104040 0.180620i
\(391\) 1602.98i 0.207330i
\(392\) 4820.69 6705.25i 0.621126 0.863945i
\(393\) −1635.38 + 2826.03i −0.209908 + 0.362733i
\(394\) 3939.08 6822.69i 0.503675 0.872391i
\(395\) −8577.33 14856.4i −1.09259 1.89242i
\(396\) 1085.29 + 629.489i 0.137722 + 0.0798814i
\(397\) 7738.99 + 4468.11i 0.978360 + 0.564857i 0.901775 0.432206i \(-0.142265\pi\)
0.0765855 + 0.997063i \(0.475598\pi\)
\(398\) −10332.3 −1.30128
\(399\) −2511.81 + 2268.46i −0.315157 + 0.284624i
\(400\) −6989.56 −0.873695
\(401\) 7719.60 + 4456.91i 0.961343 + 0.555032i 0.896586 0.442869i \(-0.146039\pi\)
0.0647568 + 0.997901i \(0.479373\pi\)
\(402\) 13.6837 13686.8i 0.00169771 1.69810i
\(403\) −661.826 1146.32i −0.0818062 0.141692i
\(404\) 715.112 1238.61i 0.0880648 0.152533i
\(405\) 5915.71 10152.3i 0.725812 1.24561i
\(406\) −2191.27 2421.47i −0.267859 0.295999i
\(407\) 8318.63i 1.01312i
\(408\) −3135.17 + 1805.91i −0.380427 + 0.219133i
\(409\) −2680.13 + 1547.37i −0.324019 + 0.187073i −0.653183 0.757200i \(-0.726567\pi\)
0.329163 + 0.944273i \(0.393233\pi\)
\(410\) 13365.7 7716.69i 1.60996 0.929513i
\(411\) −2246.44 + 1293.99i −0.269608 + 0.155299i
\(412\) 271.076i 0.0324149i
\(413\) −1753.93 + 377.389i −0.208972 + 0.0449639i
\(414\) 1929.38 + 3357.26i 0.229043 + 0.398552i
\(415\) 4843.82 8389.74i 0.572949 0.992377i
\(416\) 216.496 + 374.983i 0.0255159 + 0.0441948i
\(417\) −6.32046 + 6321.90i −0.000742240 + 0.742409i
\(418\) 2805.45 + 1619.73i 0.328276 + 0.189530i
\(419\) −7234.25 −0.843476 −0.421738 0.906718i \(-0.638580\pi\)
−0.421738 + 0.906718i \(0.638580\pi\)
\(420\) 622.784 1926.54i 0.0723542 0.223822i
\(421\) 406.124 0.0470148 0.0235074 0.999724i \(-0.492517\pi\)
0.0235074 + 0.999724i \(0.492517\pi\)
\(422\) 9822.77 + 5671.18i 1.13309 + 0.654191i
\(423\) 2367.23 4081.29i 0.272101 0.469123i
\(424\) 3276.60 + 5675.23i 0.375296 + 0.650032i
\(425\) 1949.14 3376.01i 0.222464 0.385319i
\(426\) −843.982 + 1458.45i −0.0959885 + 0.165874i
\(427\) 5294.25 4790.95i 0.600016 0.542975i
\(428\) 2353.21i 0.265763i
\(429\) −683.999 1187.46i −0.0769785 0.133639i
\(430\) 6756.31 3900.76i 0.757717 0.437468i
\(431\) −10590.4 + 6114.37i −1.18358 + 0.683338i −0.956839 0.290618i \(-0.906139\pi\)
−0.226737 + 0.973956i \(0.572806\pi\)
\(432\) 3656.31 6289.27i 0.407209 0.700446i
\(433\) 3252.79i 0.361014i 0.983574 + 0.180507i \(0.0577738\pi\)
−0.983574 + 0.180507i \(0.942226\pi\)
\(434\) −2625.41 + 8149.36i −0.290378 + 0.901341i
\(435\) −4940.24 2858.84i −0.544521 0.315105i
\(436\) −185.126 + 320.648i −0.0203348 + 0.0352208i
\(437\) −974.689 1688.21i −0.106695 0.184801i
\(438\) −3032.63 3.03194i −0.330833 0.000330758i
\(439\) −13036.8 7526.81i −1.41734 0.818303i −0.421278 0.906932i \(-0.638418\pi\)
−0.996065 + 0.0886287i \(0.971752\pi\)
\(440\) −13814.9 −1.49682
\(441\) −7508.57 5421.03i −0.810773 0.585361i
\(442\) 554.353 0.0596558
\(443\) −204.373 117.995i −0.0219189 0.0126549i 0.489001 0.872283i \(-0.337362\pi\)
−0.510919 + 0.859629i \(0.670695\pi\)
\(444\) −1584.94 1.58458i −0.169410 0.000169371i
\(445\) 12130.6 + 21010.8i 1.29224 + 2.23822i
\(446\) 6276.44 10871.1i 0.666364 1.15418i
\(447\) 10439.2 + 6040.99i 1.10460 + 0.639215i
\(448\) 3214.67 9978.44i 0.339016 1.05231i
\(449\) 5874.66i 0.617466i 0.951149 + 0.308733i \(0.0999049\pi\)
−0.951149 + 0.308733i \(0.900095\pi\)
\(450\) −18.8291 + 9416.70i −0.00197248 + 0.986462i
\(451\) 11409.0 6587.02i 1.19120 0.687739i
\(452\) −1172.71 + 677.066i −0.122035 + 0.0704568i
\(453\) −2535.09 4401.07i −0.262934 0.456468i
\(454\) 6127.24i 0.633405i
\(455\) −1639.74 + 1483.86i −0.168950 + 0.152889i
\(456\) −2203.79 + 3808.27i −0.226320 + 0.391094i
\(457\) −153.883 + 266.533i −0.0157513 + 0.0272821i −0.873794 0.486297i \(-0.838347\pi\)
0.858042 + 0.513579i \(0.171681\pi\)
\(458\) 5582.89 + 9669.85i 0.569588 + 0.986556i
\(459\) 2018.15 + 3519.88i 0.205227 + 0.357939i
\(460\) 1009.92 + 583.079i 0.102365 + 0.0591004i
\(461\) 4752.26 0.480119 0.240060 0.970758i \(-0.422833\pi\)
0.240060 + 0.970758i \(0.422833\pi\)
\(462\) −2726.52 + 8434.28i −0.274565 + 0.849347i
\(463\) −9529.43 −0.956523 −0.478261 0.878218i \(-0.658733\pi\)
−0.478261 + 0.878218i \(0.658733\pi\)
\(464\) −3060.42 1766.94i −0.306199 0.176784i
\(465\) −14.9607 + 14964.1i −0.00149201 + 1.49235i
\(466\) −7210.74 12489.4i −0.716805 1.24154i
\(467\) 3269.28 5662.56i 0.323949 0.561097i −0.657350 0.753586i \(-0.728323\pi\)
0.981299 + 0.192489i \(0.0616559\pi\)
\(468\) 226.376 130.096i 0.0223595 0.0128497i
\(469\) −18432.1 + 3965.99i −1.81475 + 0.390474i
\(470\) 7287.61i 0.715218i
\(471\) −747.386 + 430.508i −0.0731162 + 0.0421162i
\(472\) −2019.85 + 1166.16i −0.196973 + 0.113723i
\(473\) 5767.23 3329.71i 0.560629 0.323679i
\(474\) −12399.3 + 7142.19i −1.20151 + 0.692092i
\(475\) 4740.69i 0.457932i
\(476\) 469.113 + 518.395i 0.0451718 + 0.0499172i
\(477\) 6371.64 3661.70i 0.611609 0.351484i
\(478\) −6059.32 + 10495.0i −0.579805 + 1.00425i
\(479\) −3671.28 6358.85i −0.350199 0.606562i 0.636085 0.771619i \(-0.280553\pi\)
−0.986284 + 0.165057i \(0.947219\pi\)
\(480\) 4.89394 4895.06i 0.000465368 0.465475i
\(481\) 1499.22 + 865.574i 0.142117 + 0.0820515i
\(482\) 5666.94 0.535523
\(483\) 3958.60 3575.08i 0.372925 0.336795i
\(484\) 83.1680 0.00781066
\(485\) −4570.96 2639.05i −0.427952 0.247078i
\(486\) −8463.39 4942.91i −0.789932 0.461348i
\(487\) −3508.78 6077.39i −0.326485 0.565489i 0.655327 0.755345i \(-0.272531\pi\)
−0.981812 + 0.189857i \(0.939198\pi\)
\(488\) 4641.19 8038.77i 0.430526 0.745693i
\(489\) −2542.77 + 4394.06i −0.235150 + 0.406352i
\(490\) 14233.5 + 1424.19i 1.31225 + 0.131302i
\(491\) 224.222i 0.0206089i 0.999947 + 0.0103045i \(0.00328007\pi\)
−0.999947 + 0.0103045i \(0.996720\pi\)
\(492\) 1252.84 + 2175.01i 0.114802 + 0.199303i
\(493\) 1706.89 985.471i 0.155932 0.0900272i
\(494\) 583.829 337.074i 0.0531735 0.0306997i
\(495\) −30.9775 + 15492.3i −0.00281280 + 1.40672i
\(496\) 9264.74i 0.838708i
\(497\) 2209.38 + 711.777i 0.199405 + 0.0642406i
\(498\) −6994.07 4047.36i −0.629341 0.364189i
\(499\) 10396.1 18006.6i 0.932651 1.61540i 0.153881 0.988089i \(-0.450823\pi\)
0.778770 0.627309i \(-0.215844\pi\)
\(500\) 103.031 + 178.456i 0.00921540 + 0.0159615i
\(501\) −5.23298 0.00523178i −0.000466651 4.66545e-7i
\(502\) 5020.87 + 2898.80i 0.446399 + 0.257729i
\(503\) 7341.52 0.650780 0.325390 0.945580i \(-0.394504\pi\)
0.325390 + 0.945580i \(0.394504\pi\)
\(504\) −11452.1 3714.71i −1.01213 0.328306i
\(505\) 17660.5 1.55620
\(506\) −4421.38 2552.69i −0.388448 0.224270i
\(507\) 11130.8 + 11.1282i 0.975019 + 0.000974796i
\(508\) −1074.15 1860.49i −0.0938146 0.162492i
\(509\) −9956.11 + 17244.5i −0.866988 + 1.50167i −0.00192778 + 0.999998i \(0.500614\pi\)
−0.865060 + 0.501669i \(0.832720\pi\)
\(510\) −5424.29 3138.95i −0.470964 0.272539i
\(511\) 878.757 + 4084.07i 0.0760742 + 0.353559i
\(512\) 13018.4i 1.12370i
\(513\) 4265.72 + 2479.90i 0.367127 + 0.213431i
\(514\) −2490.76 + 1438.04i −0.213741 + 0.123403i
\(515\) 2898.81 1673.63i 0.248032 0.143202i
\(516\) 633.308 + 1099.46i 0.0540307 + 0.0938004i
\(517\) 6220.75i 0.529184i
\(518\) −2355.46 10947.1i −0.199793 0.928548i
\(519\) 10297.2 17794.2i 0.870900 1.50497i
\(520\) −1437.47 + 2489.78i −0.121226 + 0.209969i
\(521\) −3745.90 6488.08i −0.314992 0.545582i 0.664444 0.747338i \(-0.268668\pi\)
−0.979436 + 0.201756i \(0.935335\pi\)
\(522\) −2388.75 + 4118.40i −0.200293 + 0.345321i
\(523\) 249.515 + 144.058i 0.0208614 + 0.0120444i 0.510394 0.859940i \(-0.329499\pi\)
−0.489533 + 0.871985i \(0.662833\pi\)
\(524\) 820.223 0.0683809
\(525\) 12684.3 2715.97i 1.05445 0.225781i
\(526\) 5326.62 0.441543
\(527\) −4474.94 2583.61i −0.369889 0.213555i
\(528\) −9.58956 + 9591.75i −0.000790401 + 0.790582i
\(529\) −4547.39 7876.32i −0.373748 0.647351i
\(530\) −5675.53 + 9830.30i −0.465149 + 0.805662i
\(531\) 1303.23 + 2267.71i 0.106507 + 0.185330i
\(532\) 809.266 + 260.715i 0.0659514 + 0.0212470i
\(533\) 2741.58i 0.222797i
\(534\) 17535.8 10100.9i 1.42106 0.818558i
\(535\) −25164.5 + 14528.7i −2.03356 + 1.17408i
\(536\) −21226.7 + 12255.2i −1.71055 + 0.987586i
\(537\) 12600.4 7258.03i 1.01256 0.583254i
\(538\) 12495.2i 1.00131i
\(539\) 12149.8 + 1215.69i 0.970923 + 0.0971496i
\(540\) −2951.72 8.85317i −0.235226 0.000705518i
\(541\) −7400.87 + 12818.7i −0.588149 + 1.01870i 0.406326 + 0.913728i \(0.366810\pi\)
−0.994475 + 0.104975i \(0.966524\pi\)
\(542\) 286.478 + 496.194i 0.0227034 + 0.0393235i
\(543\) 7.82747 7829.25i 0.000618616 0.618758i
\(544\) 1463.84 + 845.149i 0.115371 + 0.0666093i
\(545\) −4571.90 −0.359337
\(546\) 1236.36 + 1368.99i 0.0969072 + 0.107303i
\(547\) −4036.80 −0.315541 −0.157771 0.987476i \(-0.550431\pi\)
−0.157771 + 0.987476i \(0.550431\pi\)
\(548\) 564.001 + 325.626i 0.0439652 + 0.0253833i
\(549\) −9004.40 5222.73i −0.699997 0.406012i
\(550\) −6207.88 10752.4i −0.481282 0.833604i
\(551\) 1198.43 2075.74i 0.0926585 0.160489i
\(552\) 3473.16 6001.82i 0.267803 0.462780i
\(553\) 13225.9 + 14615.4i 1.01704 + 1.12388i
\(554\) 6383.53i 0.489549i
\(555\) −9768.51 16958.7i −0.747117 1.29704i
\(556\) 1375.35 794.059i 0.104906 0.0605676i
\(557\) 14891.1 8597.36i 1.13277 0.654007i 0.188142 0.982142i \(-0.439754\pi\)
0.944631 + 0.328135i \(0.106420\pi\)
\(558\) 12481.9 + 24.9582i 0.946959 + 0.00189349i
\(559\) 1385.86i 0.104858i
\(560\) 15132.6 3256.03i 1.14191 0.245701i
\(561\) −4630.21 2679.43i −0.348463 0.201650i
\(562\) −5400.90 + 9354.64i −0.405380 + 0.702138i
\(563\) 9453.63 + 16374.2i 0.707678 + 1.22573i 0.965716 + 0.259600i \(0.0835907\pi\)
−0.258038 + 0.966135i \(0.583076\pi\)
\(564\) −1185.23 1.18496i −0.0884882 8.84680e-5i
\(565\) −14480.7 8360.43i −1.07824 0.622524i
\(566\) 16815.8 1.24880
\(567\) −4191.41 + 12834.2i −0.310446 + 0.950591i
\(568\) 3017.60 0.222915
\(569\) −6255.57 3611.66i −0.460891 0.266096i 0.251528 0.967850i \(-0.419067\pi\)
−0.712419 + 0.701754i \(0.752400\pi\)
\(570\) −7621.35 7.61961i −0.560041 0.000559913i
\(571\) 4965.17 + 8599.93i 0.363898 + 0.630290i 0.988599 0.150574i \(-0.0481122\pi\)
−0.624700 + 0.780865i \(0.714779\pi\)
\(572\) −172.125 + 298.129i −0.0125820 + 0.0217926i
\(573\) −16537.7 9570.08i −1.20571 0.697724i
\(574\) −13148.9 + 11898.9i −0.956138 + 0.865242i
\(575\) 7471.31i 0.541870i
\(576\) −15283.4 30.5599i −1.10557 0.00221064i
\(577\) 7254.16 4188.19i 0.523388 0.302178i −0.214932 0.976629i \(-0.568953\pi\)
0.738320 + 0.674451i \(0.235620\pi\)
\(578\) −9134.73 + 5273.94i −0.657361 + 0.379528i
\(579\) 335.782 + 582.937i 0.0241013 + 0.0418412i
\(580\) 1433.85i 0.102651i
\(581\) −3413.36 + 10595.2i −0.243735 + 0.756560i
\(582\) −2205.11 + 3810.56i −0.157053 + 0.271397i
\(583\) −4844.67 + 8391.21i −0.344161 + 0.596104i
\(584\) 2715.44 + 4703.27i 0.192407 + 0.333258i
\(585\) 2788.85 + 1617.59i 0.197102 + 0.114323i
\(586\) 12631.9 + 7293.03i 0.890476 + 0.514116i
\(587\) −21277.2 −1.49609 −0.748043 0.663650i \(-0.769006\pi\)
−0.748043 + 0.663650i \(0.769006\pi\)
\(588\) −233.939 + 2314.65i −0.0164073 + 0.162338i
\(589\) −6283.84 −0.439594
\(590\) −3498.67 2019.96i −0.244132 0.140950i
\(591\) −15.8177 + 15821.3i −0.00110093 + 1.10118i
\(592\) −6058.48 10493.6i −0.420611 0.728520i
\(593\) −1424.49 + 2467.29i −0.0986454 + 0.170859i −0.911124 0.412132i \(-0.864784\pi\)
0.812479 + 0.582991i \(0.198118\pi\)
\(594\) 12922.5 + 38.7587i 0.892619 + 0.00267725i
\(595\) −2647.25 + 8217.14i −0.182398 + 0.566168i
\(596\) 3029.86i 0.208235i
\(597\) 17980.2 10356.9i 1.23263 0.710016i
\(598\) −920.111 + 531.227i −0.0629200 + 0.0363269i
\(599\) 3844.40 2219.57i 0.262234 0.151401i −0.363119 0.931743i \(-0.618288\pi\)
0.625353 + 0.780342i \(0.284955\pi\)
\(600\) 14612.7 8417.17i 0.994268 0.572716i
\(601\) 7868.29i 0.534033i −0.963692 0.267017i \(-0.913962\pi\)
0.963692 0.267017i \(-0.0860379\pi\)
\(602\) −6646.70 + 6014.83i −0.449999 + 0.407220i
\(603\) 13695.6 + 23831.4i 0.924924 + 1.60944i
\(604\) −637.943 + 1104.95i −0.0429761 + 0.0744367i
\(605\) 513.480 + 889.374i 0.0345057 + 0.0597656i
\(606\) 14.7277 14731.1i 0.000987247 0.987473i
\(607\) −15144.9 8743.92i −1.01271 0.584686i −0.100724 0.994914i \(-0.532116\pi\)
−0.911983 + 0.410228i \(0.865449\pi\)
\(608\) 2055.57 0.137112
\(609\) 6240.48 + 2017.33i 0.415233 + 0.134231i
\(610\) 16078.4 1.06720
\(611\) 1121.13 + 647.284i 0.0742324 + 0.0428581i
\(612\) 511.391 881.679i 0.0337774 0.0582349i
\(613\) −6422.07 11123.3i −0.423140 0.732900i 0.573105 0.819482i \(-0.305739\pi\)
−0.996245 + 0.0865820i \(0.972406\pi\)
\(614\) 4454.16 7714.83i 0.292761 0.507077i
\(615\) −15523.8 + 26826.1i −1.01786 + 1.75892i
\(616\) 15518.6 3339.10i 1.01504 0.218403i
\(617\) 23625.5i 1.54153i −0.637117 0.770767i \(-0.719873\pi\)
0.637117 0.770767i \(-0.280127\pi\)
\(618\) −1393.60 2419.37i −0.0907100 0.157478i
\(619\) 16529.1 9543.05i 1.07328 0.619657i 0.144202 0.989548i \(-0.453938\pi\)
0.929075 + 0.369891i \(0.120605\pi\)
\(620\) 3255.49 1879.56i 0.210877 0.121750i
\(621\) −6722.75 3908.32i −0.434420 0.252553i
\(622\) 391.901i 0.0252633i
\(623\) −18704.9 20669.9i −1.20289 1.32925i
\(624\) 1727.67 + 999.772i 0.110836 + 0.0641393i
\(625\) 7152.40 12388.3i 0.457754 0.792853i
\(626\) −12451.6 21566.9i −0.794996 1.37697i
\(627\) −6505.63 6.50415i −0.414370 0.000414275i
\(628\) 187.642 + 108.335i 0.0119231 + 0.00688382i
\(629\) 6757.98 0.428391
\(630\) −4345.94 20396.2i −0.274835 1.28985i
\(631\) 32.3893 0.00204342 0.00102171 0.999999i \(-0.499675\pi\)
0.00102171 + 0.999999i \(0.499675\pi\)
\(632\) 22191.9 + 12812.5i 1.39675 + 0.806414i
\(633\) −22778.2 22.7730i −1.43026 0.00142993i
\(634\) 11751.9 + 20355.0i 0.736166 + 1.27508i
\(635\) 13263.7 22973.4i 0.828902 1.43570i
\(636\) −1597.85 924.648i −0.0996207 0.0576489i
\(637\) 1483.31 2063.19i 0.0922620 0.128330i
\(638\) 6277.32i 0.389532i
\(639\) 6.76643 3383.98i 0.000418898 0.209497i
\(640\) 13917.4 8035.20i 0.859583 0.496280i
\(641\) −18742.7 + 10821.1i −1.15490 + 0.666784i −0.950078 0.312014i \(-0.898996\pi\)
−0.204827 + 0.978798i \(0.565663\pi\)
\(642\) 12097.8 + 21002.5i 0.743711 + 1.29112i
\(643\) 19867.3i 1.21849i −0.792982 0.609246i \(-0.791472\pi\)
0.792982 0.609246i \(-0.208528\pi\)
\(644\) −1275.40 410.886i −0.0780401 0.0251416i
\(645\) −7847.24 + 13560.5i −0.479046 + 0.827820i
\(646\) 1315.85 2279.12i 0.0801417 0.138809i
\(647\) 11212.2 + 19420.1i 0.681294 + 1.18004i 0.974586 + 0.224012i \(0.0719156\pi\)
−0.293293 + 0.956023i \(0.594751\pi\)
\(648\) −70.1913 + 17551.7i −0.00425521 + 1.06404i
\(649\) −2986.49 1724.25i −0.180632 0.104288i
\(650\) −2583.78 −0.155914
\(651\) −3600.05 16813.2i −0.216739 1.01223i
\(652\) 1275.33 0.0766038
\(653\) 17358.5 + 10021.9i 1.04026 + 0.600594i 0.919907 0.392137i \(-0.128264\pi\)
0.120353 + 0.992731i \(0.461597\pi\)
\(654\) −3.81267 + 3813.54i −0.000227962 + 0.228014i
\(655\) 5064.07 + 8771.22i 0.302091 + 0.523237i
\(656\) −9594.67 + 16618.5i −0.571050 + 0.989088i
\(657\) 5280.41 3034.59i 0.313559 0.180199i
\(658\) −1761.43 8186.34i −0.104358 0.485011i
\(659\) 13217.9i 0.781327i −0.920533 0.390664i \(-0.872246\pi\)
0.920533 0.390664i \(-0.127754\pi\)
\(660\) 3372.34 1942.53i 0.198891 0.114565i
\(661\) 8470.90 4890.68i 0.498457 0.287784i −0.229619 0.973281i \(-0.573748\pi\)
0.728076 + 0.685496i \(0.240415\pi\)
\(662\) −3149.56 + 1818.40i −0.184911 + 0.106758i
\(663\) −964.682 + 555.674i −0.0565085 + 0.0325499i
\(664\) 14471.0i 0.845761i
\(665\) 2208.41 + 10263.7i 0.128780 + 0.598511i
\(666\) −14153.8 + 8134.03i −0.823499 + 0.473254i
\(667\) −1888.72 + 3271.36i −0.109642 + 0.189906i
\(668\) 0.657286 + 1.13845i 3.80706e−5 + 6.59402e-5i
\(669\) −25.2035 + 25209.3i −0.00145654 + 1.45687i
\(670\) −36767.7 21227.8i −2.12009 1.22403i
\(671\) 13724.6 0.789617
\(672\) 1177.65 + 5499.92i 0.0676024 + 0.315720i
\(673\) −4670.73 −0.267524 −0.133762 0.991014i \(-0.542706\pi\)
−0.133762 + 0.991014i \(0.542706\pi\)
\(674\) −17888.8 10328.1i −1.02233 0.590242i
\(675\) −9406.39 16405.8i −0.536373 0.935494i
\(676\) −1398.07 2421.53i −0.0795445 0.137775i
\(677\) −13521.0 + 23419.1i −0.767584 + 1.32949i 0.171286 + 0.985221i \(0.445208\pi\)
−0.938870 + 0.344273i \(0.888125\pi\)
\(678\) −6985.73 + 12071.8i −0.395701 + 0.683795i
\(679\) 5772.53 + 1859.69i 0.326258 + 0.105108i
\(680\) 11223.1i 0.632921i
\(681\) 6141.85 + 10662.6i 0.345604 + 0.599988i
\(682\) −14252.4 + 8228.61i −0.800222 + 0.462009i
\(683\) 11596.9 6695.45i 0.649694 0.375101i −0.138645 0.990342i \(-0.544275\pi\)
0.788339 + 0.615241i \(0.210941\pi\)
\(684\) 2.47846 1239.51i 0.000138547 0.0692893i
\(685\) 8041.69i 0.448551i
\(686\) −16333.0 + 1840.44i −0.909034 + 0.102432i
\(687\) −19408.2 11231.2i −1.07783 0.623724i
\(688\) −4850.07 + 8400.57i −0.268761 + 0.465507i
\(689\) 1008.20 + 1746.25i 0.0557464 + 0.0965557i
\(690\) 12011.2 + 12.0085i 0.662694 + 0.000662543i
\(691\) 26837.3 + 15494.6i 1.47748 + 0.853025i 0.999676 0.0254396i \(-0.00809856\pi\)
0.477807 + 0.878465i \(0.341432\pi\)
\(692\) −5164.56 −0.283710
\(693\) −3709.72 17410.3i −0.203348 0.954348i
\(694\) 6777.28 0.370694
\(695\) 16982.9 + 9805.07i 0.926903 + 0.535147i
\(696\) 8526.09 + 8.52414i 0.464340 + 0.000464234i
\(697\) −5351.23 9268.60i −0.290807 0.503692i
\(698\) 7804.05 13517.0i 0.423191 0.732989i
\(699\) 25067.3 + 14506.0i 1.35641 + 0.784933i
\(700\) −2186.49 2416.18i −0.118059 0.130462i
\(701\) 2892.67i 0.155855i −0.996959 0.0779277i \(-0.975170\pi\)
0.996959 0.0779277i \(-0.0248303\pi\)
\(702\) 1351.60 2324.91i 0.0726679 0.124997i
\(703\) 7117.31 4109.18i 0.381841 0.220456i
\(704\) 17451.2 10075.5i 0.934259 0.539395i
\(705\) −7304.98 12681.9i −0.390243 0.677485i
\(706\) 13755.5i 0.733277i
\(707\) −19838.4 + 4268.57i −1.05530 + 0.227067i
\(708\) 329.089 568.685i 0.0174688 0.0301871i
\(709\) −7965.19 + 13796.1i −0.421917 + 0.730781i −0.996127 0.0879267i \(-0.971976\pi\)
0.574210 + 0.818708i \(0.305309\pi\)
\(710\) 2613.46 + 4526.64i 0.138143 + 0.239270i
\(711\) 14417.9 24857.6i 0.760497 1.31116i
\(712\) −31385.2 18120.2i −1.65198 0.953770i
\(713\) 9903.30 0.520171
\(714\) 6851.93 + 2214.99i 0.359141 + 0.116098i
\(715\) −4250.81 −0.222337
\(716\) −3163.50 1826.45i −0.165119 0.0953317i
\(717\) 24.3316 24337.2i 0.00126734 1.26763i
\(718\) 2408.83 + 4172.22i 0.125204 + 0.216860i
\(719\) −5938.87 + 10286.4i −0.308042 + 0.533545i −0.977934 0.208914i \(-0.933007\pi\)
0.669892 + 0.742459i \(0.266341\pi\)
\(720\) −11244.0 19565.4i −0.581997 1.01272i
\(721\) −2851.78 + 2580.67i −0.147303 + 0.133300i
\(722\) 14546.6i 0.749819i
\(723\) −9861.57 + 5680.44i −0.507270 + 0.292196i
\(724\) −1703.28 + 983.389i −0.0874336 + 0.0504798i
\(725\) −7955.61 + 4593.18i −0.407537 + 0.235291i
\(726\) 742.279 427.566i 0.0379457 0.0218574i
\(727\) 16795.8i 0.856839i 0.903580 + 0.428419i \(0.140929\pi\)
−0.903580 + 0.428419i \(0.859071\pi\)
\(728\) 1012.96 3144.27i 0.0515700 0.160075i
\(729\) 19682.6 + 118.070i 0.999982 + 0.00599859i
\(730\) −4703.52 + 8146.74i −0.238473 + 0.413047i
\(731\) −2705.03 4685.24i −0.136866 0.237059i
\(732\) −2.61434 + 2614.94i −0.000132007 + 0.132037i
\(733\) 22048.4 + 12729.7i 1.11102 + 0.641447i 0.939093 0.343663i \(-0.111668\pi\)
0.171926 + 0.985110i \(0.445001\pi\)
\(734\) 5007.02 0.251788
\(735\) −26196.6 + 11789.0i −1.31466 + 0.591626i
\(736\) −3239.57 −0.162245
\(737\) −31385.1 18120.2i −1.56864 0.905653i
\(738\) 22363.4 + 12971.2i 1.11546 + 0.646988i
\(739\) 9319.48 + 16141.8i 0.463901 + 0.803499i 0.999151 0.0411940i \(-0.0131162\pi\)
−0.535251 + 0.844693i \(0.679783\pi\)
\(740\) −2458.19 + 4257.72i −0.122115 + 0.211509i
\(741\) −678.099 + 1171.79i −0.0336175 + 0.0580930i
\(742\) 3999.45 12414.4i 0.197877 0.614214i
\(743\) 14043.3i 0.693401i 0.937976 + 0.346700i \(0.112698\pi\)
−0.937976 + 0.346700i \(0.887302\pi\)
\(744\) −11157.1 19369.3i −0.549782 0.954452i
\(745\) 32400.4 18706.4i 1.59337 0.919932i
\(746\) 17348.1 10016.0i 0.851422 0.491569i
\(747\) 16228.0 + 32.4487i 0.794850 + 0.00158934i
\(748\) 1343.87i 0.0656907i
\(749\) 24756.3 22402.8i 1.20771 1.09290i
\(750\) 1837.00 + 1063.04i 0.0894370 + 0.0517557i
\(751\) −8115.13 + 14055.8i −0.394308 + 0.682961i −0.993013 0.118009i \(-0.962349\pi\)
0.598705 + 0.800970i \(0.295682\pi\)
\(752\) −4530.58 7847.20i −0.219699 0.380529i
\(753\) −11643.0 11.6404i −0.563473 0.000563344i
\(754\) −1131.32 653.170i −0.0546424 0.0315478i
\(755\) −15754.7 −0.759433
\(756\) 3317.88 703.493i 0.159616 0.0338436i
\(757\) −33345.7 −1.60102 −0.800508 0.599322i \(-0.795437\pi\)
−0.800508 + 0.599322i \(0.795437\pi\)
\(758\) 8340.45 + 4815.36i 0.399655 + 0.230741i
\(759\) 10252.8 + 10.2505i 0.490322 + 0.000490211i
\(760\) 6824.19 + 11819.9i 0.325710 + 0.564146i
\(761\) 5394.02 9342.71i 0.256942 0.445037i −0.708479 0.705732i \(-0.750618\pi\)
0.965421 + 0.260695i \(0.0839517\pi\)
\(762\) −19151.6 11082.7i −0.910486 0.526884i
\(763\) 5135.72 1105.04i 0.243677 0.0524313i
\(764\) 4799.87i 0.227295i
\(765\) 12585.8 + 25.1658i 0.594822 + 0.00118937i
\(766\) 15894.7 9176.84i 0.749740 0.432862i
\(767\) −621.503 + 358.825i −0.0292584 + 0.0168923i
\(768\) 5054.08 + 8774.16i 0.237465 + 0.412253i
\(769\) 35799.6i 1.67876i −0.543543 0.839381i \(-0.682918\pi\)
0.543543 0.839381i \(-0.317082\pi\)
\(770\) 18449.1 + 20387.3i 0.863455 + 0.954163i